[go: up one dir, main page]

CN110670019B - A kind of crater wear-resistant aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating and preparation method thereof - Google Patents

A kind of crater wear-resistant aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating and preparation method thereof Download PDF

Info

Publication number
CN110670019B
CN110670019B CN201910974710.7A CN201910974710A CN110670019B CN 110670019 B CN110670019 B CN 110670019B CN 201910974710 A CN201910974710 A CN 201910974710A CN 110670019 B CN110670019 B CN 110670019B
Authority
CN
China
Prior art keywords
layer
substrate
coating
arc
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910974710.7A
Other languages
Chinese (zh)
Other versions
CN110670019A (en
Inventor
鲜广
赵海波
鲜丽君
熊计
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201910974710.7A priority Critical patent/CN110670019B/en
Publication of CN110670019A publication Critical patent/CN110670019A/en
Application granted granted Critical
Publication of CN110670019B publication Critical patent/CN110670019B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开的抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层是由CoNiCrAlY高熵合金粘结层、α‑Cr2O3氧化物模板层、α‑Al2O3氧化物核心层、AlTiZrN氮化物表层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1~3μm。其制备方法为:对基底进行加热和离子刻蚀后,先利用电弧蒸发镀工艺在基底上沉积CoNiCrAlY层;然后使用阴极电弧离子镀工艺,再继续依次沉积α‑Cr2O3层、α‑Al2O3层和AlTiZrN层。氧化物与氮化物复合涂层具有优良的抗高温氧化性和高的抗磨损性能,在高速切削和干式切削加工条件下具有良好的抗月牙洼磨损能力,且工艺可控性好,便于工业化生产。The crater wear-resistant aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating disclosed by the invention is composed of CoNiCrAlY high-entropy alloy bonding layer, α-Cr 2 O 3 oxide template layer, α-Al 2 O 3 oxide The core layer and the AlTiZrN nitride surface layer are composed of four sub-layers as a whole. The order of the four sub-layers is from the inside to the outside, and the total thickness of the coating is 1-3 μm. The preparation method is as follows: after the substrate is heated and ion-etched, a CoNiCrAlY layer is deposited on the substrate by an arc evaporation plating process; then a cathodic arc ion plating process is used, and α-Cr 2 O 3 layers, α-Cr 2 O 3 layers, α-Cr AlY layers are deposited in sequence Al 2 O 3 layer and AlTiZrN layer. The oxide and nitride composite coating has excellent high temperature oxidation resistance and high wear resistance, and has good crater wear resistance under high-speed cutting and dry cutting conditions, and has good process controllability, which is convenient for industrialization. Production.

Description

Anti-crater wear aluminum-titanium-zirconium-nitrogen and aluminum oxide multilayer composite coating and preparation method thereof
Technical Field
The invention belongs to the technical field of surface coatings of cutting tools, and particularly relates to a crater wear resistant aluminum-titanium-zirconium-nitrogen-aluminum oxide multilayer composite coating and a preparation method thereof.
Background
The surface hardness of the cutting tool can be improved by times by preparing a thin coating on the surface of the cutting tool, and the service life of the cutting tool can be prolonged by times. The nitride hard coating is a widely used coating material on the surface of a cutting tool, such as TiN, TiAlN, CrAlN, TiAlCrN, TiAlSiN and the like, and the common property of the coating materials is that the coating materials have poor oxidation resistance under a high-temperature working state, and are easy to generate crater abrasion and even oxidation spalling failure. Currently, cutting technology is continuously advanced and developed, and particularly, high-speed cutting and dry cutting technologies are increasingly applied, and one problem faced by such cutting technologies is the increase of cutting temperature. Therefore, the application of nitride coated tools to new cutting techniques such as high speed cutting, dry cutting, etc. is challenging.
The advantage of an oxide coating is that the coating itself is an oxide, which does not have the problem of oxidation of the coating or which is oxidation resistant, which is more suitable for the operation of the tool at high temperatures. alpha-Al2O3The coating is an ideal cutter surface coating for cutting processing under high temperature conditions due to compact structure, good chemical stability, good thermal stability and higher hardness and toughnessThe material is also the common alpha-Al contained in the cutter coating prepared by the chemical vapor deposition method at present2O3The reason for (1). However, the chemical vapor deposition method is characterized in that the coating deposition temperature is high (600-1000 ℃), which causes changes to the properties of the blade body material, such as causing embrittlement of carbides in the cemented carbide blade and reduction of toughness, thereby causing the application of the blade in metal cutting (mainly milling) to be limited. The physical vapor deposition method is suitable for the surface coating of a wider range of cutters and other tools, dies and mechanical parts due to the low deposition temperature (< 550 ℃); the method deposits alpha-Al just because of the low deposition temperature2O3Is insufficient in energy, Al produced by physical vapor deposition2O3The coating is usually amorphous or other crystalline structure, and the ideal use effect is difficult to obtain.
Disclosure of Invention
The invention aims to overcome the problems in the prior art and provide a crater wear resistant aluminum-titanium-zirconium-nitrogen-aluminum oxide multilayer composite coating.
The invention also aims to provide a preparation method of the crater wear resistant aluminum-titanium-zirconium-nitrogen-aluminum oxide multilayer composite coating.
The crater wear resistant aluminum-titanium-zirconium-nitrogen and aluminum oxide multilayer composite coating is characterized in that the coating is an integral body formed by a high-entropy alloy bonding layer, an oxide template layer, an oxide core layer and a nitride surface layer, the four sublayers are arranged from inside to outside, and the total thickness of the coating is 1-3 mu m.
Wherein, in the coating, the high-entropy alloy bonding layer is CoaNibCrcAldYeThe thickness of the film is 50-200 nm, wherein a + b + c + d + e =1, the ranges of a, b, c, d and e are 0.15-0.4.
Wherein, in the coating, the oxide template layer is alpha-Cr2O3The thickness is 150-300 nm; the oxide core layer is alpha-Al2O3The thickness is 500-2000 nm; the nitride surface layer is AlTiN, and the thickness is 300-500 nm.
The invention provides a preparation method of the crater wear resistant aluminum-titanium-zirconium-nitrogen and aluminum oxide multilayer composite coating, which comprises the following steps:
A. loading the cleaned substrate material into a vacuum chamber of a coating device, vacuumizing and heating;
B. carrying out ion etching on the surface of the substrate;
C. preparing a high-entropy alloy bonding layer by using an arc evaporation process;
D. preparing an oxide template layer by using a cathodic arc coating process;
E. preparing an oxide core layer by using a cathodic arc coating process;
F. and preparing the nitride surface layer by using a cathodic arc coating process.
In the step A, the vacuumizing and heating is to firstly vacuumize the back bottom to be below 0.03Pa, open an auxiliary heating device of a furnace wall to heat the substrate, and simultaneously open a rack rotating power supply to enable the substrate to rotate and revolve in the vacuum chamber until the temperature of the substrate reaches 380 ℃.
In the step B of the method, argon is introduced into the vacuum chamber, the flow of the argon is adjusted to ensure that the pressure intensity is 0.1-0.25 Pa, then a direct current bias voltage of-100 to-200V and a pulse bias voltage of-200 to-400V are applied to the substrate, and ionized Ar is utilized+And etching the surface of the substrate for 30-90 min.
In the step C of the method, the working pressure of the prepared high-entropy alloy bonding by the arc evaporation process is 0.1-0.2 Pa, the arc current passing through the evaporation crucible is 180-220A, and the material placed in the evaporation crucible is CoaNibCrcAldYeThe high-entropy alloy has a + b + c + d + e =1, the value ranges of a, b, c, d and e are 0.15-0.4, and the evaporation time is 5-10 min.
In the step D, the working gas for preparing the oxide template layer by the cathodic arc coating process is Ar + O2Working pressure is 1.5-3.5 Pa, working target material is Cr arc target, target current is 50-100A, and substrate application is carried outThe bias voltage is-30 to-80V, and the deposition time is 10 to 20 min.
In the step E, the working gas for preparing the oxide core layer by the cathodic arc coating process is Ar + O2The working pressure is 1.0-3.0 Pa, the working target material is an Al arc target, the target current is 80-120A, the bias voltage applied to the substrate is-30-80V, and the deposition time is 40-150 min.
In the step F, the working gas for preparing the nitride surface layer by the cathodic arc coating process is N2The working pressure is 1.5-3.5 Pa, the working target material is an AlTiZr alloy arc target, the target current is 80-120A, the bias voltage applied to the substrate is-30-80V, and the deposition time is 20-35 min.
Compared with the prior art, the invention has the following advantages:
1) the multi-layer composite coating of aluminum, titanium, zirconium, nitrogen and aluminum oxide, which is resistant to crater wear, is composed of four sublayers with different functions and components, and firstly, compared with the traditional Cr and Ti pure metal bonding layer and TiAl alloy bonding layer, the high-entropy alloy bonding layer has higher toughness, can play a good bonding role between a cutter substrate material and a surface coating material, and enables the coating to be firmly combined with the substrate; next, alpha-Cr is used2O3The oxide template layer is beneficial to Al2O3According to alpha-Cr2O3The epitaxial growth of the crystal structure solves the problem of preparing alpha-Al by a physical vapor deposition method due to low temperature2O3The problem of difficulty; thirdly, alpha-Al2O3The combination of the oxide core layer and the AlTiN nitride surface layer avoids the problems of low hardness and insufficient wear resistance of a pure oxide coating and the problems of poor high-temperature oxidation resistance, low chemical stability and low performance of obstructing the diffusion of element atoms inside and outside the pure nitride coating.
2) The invention provides a method for preparing a multi-layer composite coating of aluminum, titanium, zirconium, nitrogen and aluminum oxide, which is resistant to crater wear, and relates to a combined ion plating process which takes cathodic arc deposition as a main process and takes an evaporation plating process for preparing a bonding layer as an auxiliary process. Before coating, the impurities adsorbed in the substrate material are released by heating and simultaneously adoptedBombard and etch the surface of the substrate with ionized Ar +, which enhances the combination of the coating and the substrate; the high-entropy alloy material is evaporated by adopting an electric arc evaporation process, a high-entropy alloy bonding layer is deposited on the substrate, the bonding capacity of the coating and the substrate is further enhanced, the bonding layer is prepared by electric arc evaporation, the advantages of high deposition rate and almost unlimited size and shape of the evaporation raw material are that the evaporation raw material is weighed and then put into an evaporation crucible, and the bonding layer is deposited by adopting cathode electric arc ion plating, so that the evaporation raw material is required to be prepared into a target material with a certain shape and size; high ionization rate of particles and high ion energy in the process of cathode arc ion plating, and alpha-Al is easier to obtain than magnetron sputtering2O3. In the process of depositing the coating, the preparation of the multilayer composite coating is easy by switching different arc targets, and the operation process is simple and easy to master and control.
Detailed Description
The present invention is further illustrated by the following specific examples, but the present invention is not limited to the following examples.
Example 1
Loading a clean metal ceramic substrate into a vacuum chamber of a plasma enhanced composite ion coating system, opening an auxiliary heating device of a furnace wall to heat the substrate when the back substrate is vacuumized to 0.03Pa, and simultaneously opening a rotating power supply to enable the substrate to rotate ceaselessly until the temperature of the substrate reaches 380 ℃; introducing argon into the vacuum chamber, adjusting the flow of argon to ensure that the pressure is 0.16Pa, applying-200V DC bias and-400V pulse bias to the substrate, and utilizing ionized Ar+Etching the surface of the substrate for 60 min; closing substrate bias voltage and adjusting argon flow in sequence to ensure that working pressure is 0.18Pa, starting an evaporation plating main arc power supply to carry out evaporation coating, wherein the main arc current on a crucible is 180A, and the evaporation raw material is Co0.2Ni0.2Cr0.2Al0.2Y0.2Blocking, evaporating and depositing for 10 min; closing a main arc power supply, starting a Cr arc target, setting the target current to be 65A, introducing oxygen into the vacuum chamber, adjusting the flow of argon and oxygen to enable the working pressure to be 2.5Pa, applying bias voltage of-50V to the substrate, and depositing for 12 min; is openedSetting the target current of the Al arc target to be 80A, then closing a Cr arc target power supply, adjusting the gas flow, controlling the pressure to be 2.8Pa, keeping the substrate bias constant, and continuing to deposit for 120 min; starting the AlTiZr alloy arc target, setting the target current to be 100A, then closing an Al arc target power supply, introducing nitrogen, closing oxygen and argon, adjusting the gas flow, controlling the working pressure to be 2.0Pa, continuously keeping the substrate bias voltage unchanged, and finishing the deposition for 25 min. The prepared nitrogen oxide composite coating resisting crater wear consists of a CoNiCrAlY high-entropy alloy bonding layer and alpha-Cr2O3Oxide template layer, alpha-Al2O3The oxide core layer and the AlTiZrN nitride surface layer are composed of four sublayers, the combination of the sublayers and the coating and the substrate is good, and the product has good crater wear resistance under the high-speed turning condition.
Example 2
Putting a clean hard alloy substrate into a vacuum chamber of a plasma enhanced composite ion coating system, opening an auxiliary heating device of a furnace wall to heat the substrate when the back substrate is vacuumized to 0.03Pa, and simultaneously opening a rotating power supply to enable the substrate to rotate ceaselessly until the temperature of the substrate reaches 380 ℃; introducing argon into the vacuum chamber, adjusting the flow of argon to ensure that the pressure is 0.25Pa, applying-150V direct current bias and-350V pulse bias to the substrate, and utilizing ionized Ar+Etching the surface of the substrate for 40 min; closing substrate bias voltage and adjusting argon flow in sequence to ensure that working pressure is 0.12Pa, starting an evaporation plating main arc power supply to carry out evaporation coating, wherein the main arc current on a crucible is 200A, and the evaporation raw material is Co0.2Ni0.2Cr0.2Al0.2Y0.2Blocking, evaporating and depositing for 6 min; closing a main arc power supply, starting a Cr arc target, setting the target current to be 80A, introducing oxygen into the vacuum chamber, adjusting the flow of argon and oxygen to enable the working pressure to be 3.0Pa, applying bias voltage of-70V to the substrate, and depositing for 15 min; starting an Al arc target, setting the target current to be 90A, then closing a Cr arc target power supply, adjusting the gas flow, controlling the pressure to be 2.5Pa, and keeping the substrate bias constant to continue depositing for 150 min; starting the AlTiZr alloy arc target, setting the target current at 120A, then closing the Al arc target power supply, introducing nitrogen gas,And closing oxygen and argon, adjusting the gas flow, controlling the working pressure to be 3.0Pa, continuously keeping the substrate bias constant, and ending the deposition for 20 min. The prepared nitrogen oxide composite coating resisting crater wear consists of a CoNiCrAlY high-entropy alloy bonding layer and alpha-Cr2O3Oxide template layer, alpha-Al2O3The oxide core layer and the AlTiZrN nitride surface layer consist of four sublayers, the sublayers and the coating are well combined with the substrate, and the coating has good crater wear resistance under the dry milling condition.
Example 3
Loading a clean metal ceramic substrate into a vacuum chamber of a plasma enhanced composite ion coating system, opening an auxiliary heating device of a furnace wall to heat the substrate when the back substrate is vacuumized to 0.03Pa, and simultaneously opening a rotating power supply to enable the substrate to rotate ceaselessly until the temperature of the substrate reaches 380 ℃; introducing argon into the vacuum chamber, adjusting the flow of argon to ensure that the pressure is 0.16Pa, applying-200V DC bias and-400V pulse bias to the substrate, and utilizing ionized Ar+Etching the surface of the substrate for 90 min; closing substrate bias voltage and adjusting argon flow in sequence to ensure that working pressure is 0.2Pa, starting an evaporation plating main arc power supply to carry out evaporation coating, wherein the main arc current on a crucible is 220A, and the evaporation raw material is Co0.2Ni0.2Cr0.2Al0.2Y0.2Blocking, evaporating and depositing for 6 min; closing a main arc power supply, starting a Cr arc target, setting the target current to be 90A, introducing oxygen into the vacuum chamber, adjusting the flow of argon and oxygen to enable the working pressure to be 3.5Pa, applying bias voltage of-30V to the substrate, and depositing for 10 min; opening an Al arc target, setting the target current to be 120A, then closing a Cr arc target power supply, adjusting the gas flow, controlling the pressure to be 3.0Pa, adjusting the substrate bias voltage to be-40V, and coating for 130 min; starting the AlTiZr alloy arc target, setting the target current to be 100A, then closing an Al arc target power supply, introducing nitrogen, closing oxygen and argon, adjusting the gas flow, controlling the working pressure to be 2.8Pa, adjusting the substrate bias voltage to be-50V, and finishing the deposition for 30 min. The prepared nitrogen oxide composite coating resisting crater wear consists of a CoNiCrAlY high-entropy alloy bonding layer and alpha-Cr2O3Oxide moldSheet layer, alpha-Al2O3The oxide core layer and the AlTiZrN nitride surface layer are composed of four sublayers, the combination of the sublayers and the coating and the substrate is good, and the product has good crater wear resistance under the high-speed turning condition.
Example 4
Putting a clean hard alloy substrate into a vacuum chamber of a plasma enhanced composite ion coating system, opening an auxiliary heating device of a furnace wall to heat the substrate when the back substrate is vacuumized to 0.03Pa, and simultaneously opening a rotating power supply to enable the substrate to rotate ceaselessly until the temperature of the substrate reaches 380 ℃; introducing argon into the vacuum chamber, adjusting the flow of argon to ensure that the pressure is 0.1Pa, applying-200V DC bias and-400V pulse bias to the substrate, and utilizing ionized Ar+Etching the surface of the substrate for 30 min; closing substrate bias voltage and adjusting argon flow in sequence to ensure that the working pressure is 0.2Pa, starting an evaporation plating main arc power supply to carry out evaporation coating, wherein the main arc current on a crucible is 205A, and the evaporation raw material is Co0.15Ni0.15Cr0.4Al0.15Y0.15Blocking, evaporating and depositing for 10 min; closing a main arc power supply, starting a Cr arc target, setting the target current to be 70A, introducing oxygen into the vacuum chamber, adjusting the flow of argon and oxygen to enable the working pressure to be 1.5Pa, applying bias voltage of-80V to the substrate, and depositing for 15 min; starting an Al arc target, setting the target current to be 120A, then closing a Cr arc target power supply, adjusting the gas flow, controlling the pressure to be 3.0Pa, and continuously coating the film for 40min with the substrate bias voltage kept unchanged; starting the AlTiZr alloy arc target, setting the target current to be 80A, then closing an Al arc target power supply, introducing nitrogen, closing oxygen and argon, adjusting the gas flow, controlling the working pressure to be 1.5Pa, continuously keeping the substrate bias voltage unchanged, and finishing the deposition for 20 min. The prepared nitrogen oxide composite coating resisting crater wear consists of a CoNiCrAlY high-entropy alloy bonding layer and alpha-Cr2O3Oxide template layer, alpha-Al2O3The oxide core layer and the AlTiZrN nitride surface layer consist of four sublayers, the sublayers and the coating are well combined with the substrate, and the coating has good crater wear resistance under the dry milling condition.

Claims (3)

1.一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层,其特征在于,涂层是由高熵合金粘结层、氧化物模板层、氧化物核心层、氮化物表层四个子层构成的整体,这四个子层的顺序是由内至外,涂层总厚度为1~3μm;所述氧化物模板层为α-Cr2O3,厚度为150~300nm;所述氧化物核心层为α-Al2O3,厚度为500~2000nm;所述氮化物表层为AlTiZrN,厚度为300~500nm。1. A kind of aluminum-titanium-zirconium-nitrogen and aluminum oxide multi-layer composite coating of anti-crater wear, it is characterized in that, coating is composed of high-entropy alloy bonding layer, oxide template layer, oxide core layer, nitride surface layer The whole is composed of four sub-layers, the order of the four sub-layers is from inside to outside, and the total thickness of the coating is 1-3 μm; the oxide template layer is α-Cr 2 O 3 , and the thickness is 150-300 nm; the The oxide core layer is α-Al 2 O 3 with a thickness of 500-2000 nm; the nitride surface layer is AlTiZrN with a thickness of 300-500 nm. 2.根据权利要求1所述的一种抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层,其特征在于,所述高熵合金粘结层为CoaNibCrcAldYe,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,厚度为50~200nm。2. a kind of crater wear-resistant aluminum-titanium-zirconium-nitrogen and aluminum oxide multi-layer composite coating according to claim 1, is characterized in that, described high-entropy alloy bonding layer is Co a Ni b Cr c Al d Y e , a+b+c+d+e=1, the value range of a, b, c, d, and e is 0.15-0.4, and the thickness is 50-200 nm. 3.一种权利要求1~2任意一项所述的抗月牙洼磨损的铝钛锆氮与氧化铝多层复合涂层的制备方法,其特征在于,包括以下步骤:3. the preparation method of the aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating that resists crater wear described in any one of claim 1~2, is characterized in that, comprises the following steps: A、将清洁的基底材料装入涂层设备真空室中,抽真空并加热,先将背底真空抽至0.03Pa及以下时,打开炉壁的辅助加热装置对基底进行加热,同时打开机架转动电源使基底在真空室内进行自转和公转运动,至基底温度达到380℃;A. Put the clean base material into the vacuum chamber of the coating equipment, evacuate and heat it. When the vacuum of the back is evacuated to 0.03Pa or below, open the auxiliary heating device of the furnace wall to heat the base, and open the frame at the same time. Rotate the power source to make the substrate rotate and revolve in the vacuum chamber until the substrate temperature reaches 380°C; B、对基底表面进行离子刻蚀,向真空室中通入氩气,调节氩气流量保证压强为0.1~0.25Pa,然后对基底施加-100~-200V的直流偏压和-200~-400V的脉冲偏压,利用离化的Ar+对基底表面进行刻蚀,刻蚀30~90min;B. Perform ion etching on the surface of the substrate, pass argon gas into the vacuum chamber, adjust the argon gas flow rate to ensure that the pressure is 0.1~0.25Pa, and then apply a DC bias voltage of -100~-200V and -200~-400V to the substrate The pulsed bias voltage is used to etch the substrate surface with ionized Ar + , and the etching is performed for 30 to 90 minutes; C、利用电弧蒸镀工艺制备高熵合金粘结层,工作压强为0.1~0.2Pa,蒸镀坩埚上通过的电弧电流为180~220A,蒸镀坩埚内放置的材料为CoaNibCrcAldYe高熵合金,a+b+c+d+e=1,a、b、c、d、e的取值范围为0.15~0.4,蒸镀时间为5~10min;C. The high-entropy alloy bonding layer is prepared by the arc evaporation process. The working pressure is 0.1~0.2Pa, the arc current passing through the evaporation crucible is 180~220A, and the material placed in the evaporation crucible is Co a Ni b Cr c Al d Y e high-entropy alloy, a+b+c+d+e=1, the value range of a, b, c, d, and e is 0.15 to 0.4, and the evaporation time is 5 to 10 minutes; D、利用阴极电弧镀膜工艺制备氧化物模板层,工作气体为Ar+O2,工作压强为1.5~3.5Pa,工作靶材为Cr电弧靶,靶电流为50~100A,基底施加的偏压为-30~-80V,沉积时间10~20min;D. The oxide template layer is prepared by cathodic arc coating process, the working gas is Ar+O 2 , the working pressure is 1.5-3.5Pa, the working target is a Cr arc target, the target current is 50-100A, and the bias voltage applied by the substrate is -30~-80V, deposition time 10~20min; E、利用阴极电弧镀膜工艺制备氧化物核心层,工作气体为Ar+O2,工作压强为1.0~3.0Pa,工作靶材为Al电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间40~150min;E. The oxide core layer is prepared by cathodic arc coating process, the working gas is Ar+O 2 , the working pressure is 1.0-3.0Pa, the working target is an Al arc target, the target current is 80-120A, and the bias voltage applied by the substrate is -30~-80V, deposition time 40~150min; F、利用阴极电弧镀膜工艺制备氮化物表层,工作气体为N2,工作压强为1.5~3.5Pa,工作靶材为AlTiZr合金电弧靶,靶电流为80~120A,基底施加的偏压为-30~-80V,沉积时间20~35min。F. The nitride surface layer is prepared by cathodic arc coating process, the working gas is N 2 , the working pressure is 1.5~3.5Pa, the working target is AlTiZr alloy arc target, the target current is 80~120A, and the bias voltage applied by the substrate is -30 ~-80V, deposition time 20 ~ 35min.
CN201910974710.7A 2019-10-14 2019-10-14 A kind of crater wear-resistant aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating and preparation method thereof Expired - Fee Related CN110670019B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910974710.7A CN110670019B (en) 2019-10-14 2019-10-14 A kind of crater wear-resistant aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910974710.7A CN110670019B (en) 2019-10-14 2019-10-14 A kind of crater wear-resistant aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating and preparation method thereof

Publications (2)

Publication Number Publication Date
CN110670019A CN110670019A (en) 2020-01-10
CN110670019B true CN110670019B (en) 2021-04-02

Family

ID=69082111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910974710.7A Expired - Fee Related CN110670019B (en) 2019-10-14 2019-10-14 A kind of crater wear-resistant aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating and preparation method thereof

Country Status (1)

Country Link
CN (1) CN110670019B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355630B (en) * 2021-08-10 2021-10-29 北京航天天美科技有限公司 Preparation method of aluminum alloy surface hardness coating

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797608B2 (en) * 2005-12-02 2011-10-19 三菱マテリアル株式会社 Surface-coated cutting insert and manufacturing method thereof
IL182344A (en) * 2007-04-01 2011-07-31 Iscar Ltd Cutting insert having ceramic coating
CN101709450B (en) * 2009-11-30 2011-06-15 沈阳大学 Method for preparing zirconium-titanium-aluminum-nitrogen nitride gradient hard reaction film
KR101297298B1 (en) * 2011-06-03 2013-08-16 한국야금 주식회사 Coated layer for cutting tools
CN103121115A (en) * 2011-11-18 2013-05-29 钴碳化钨硬质合金公司 Coated cutting empiecement and method for manufacturing the same
JP6245432B2 (en) * 2013-03-29 2017-12-13 三菱マテリアル株式会社 Surface coated cutting tool
CN103668105B (en) * 2013-12-31 2016-03-09 厦门金鹭特种合金有限公司 A kind of method preparing coating on cutting inserts
DE102014104672A1 (en) * 2014-04-02 2015-10-08 Kennametal Inc. Coated cutting tool and method for its manufacture
CN105088138B (en) * 2014-05-23 2017-08-11 株洲钻石切削刀具股份有限公司 Coated cutting tool with oxycompound coating and preparation method thereof
CN105132908A (en) * 2015-10-16 2015-12-09 广东电网有限责任公司电力科学研究院 Gas turbine blade thermal barrier coating bonding layer and preparation method thereof
CN205473993U (en) * 2016-01-15 2016-08-17 张家港清研再制造产业研究院有限公司 Carbide tool scribbles layer structure
CN106435584A (en) * 2016-10-18 2017-02-22 安徽工业大学 Heat spraying-PVD composite coating and preparing method thereof
CN108642449B (en) * 2018-05-29 2020-01-14 武汉大学 Superhard tough high-entropy alloy nitride nano composite coating hard alloy blade and preparation method thereof
CN108950488A (en) * 2018-08-03 2018-12-07 河北工程大学 TiAl/TiAlN/TiZrAlN composite coating and preparation method thereof
CN109082641B (en) * 2018-08-28 2020-05-22 华南理工大学 A kind of three-layer film structure coating and preparation method thereof
CN109207902A (en) * 2018-09-06 2019-01-15 中国科学院过程工程研究所 A kind of preparation method of ceramic base high-temperature abradable seal coating
CN109628896B (en) * 2019-01-17 2020-10-30 四川大学 Gradient structure TiAlSiYN multi-element nano coating and preparation method thereof

Also Published As

Publication number Publication date
CN110670019A (en) 2020-01-10

Similar Documents

Publication Publication Date Title
CN105112858B (en) A kind of nano combined cutter coat of sandwich construction
CN104789933B (en) A kind of nano-composite coating and its deposition process
CN101712215B (en) TiCN series nanometer gradient compound multi-layer coating and method for preparing same
CN104928638A (en) AlCrSiN-based multilayer nanometer composite cutter coating layer and preparation method thereof
CN111500999A (en) A kind of self-lubricating superhard coating and preparation method thereof
CN110004409B (en) CrAlN nano gradient coating with high hardness and high binding force and preparation process thereof
CN109628896B (en) Gradient structure TiAlSiYN multi-element nano coating and preparation method thereof
CN103789726A (en) AlTiCrN/MoN nano laminated coating firmly combined with surface of tool, and preparation method of coating
CN107858647A (en) CrAlSiN nano-composite coatings that a kind of Al content changes in gradient and preparation method thereof
CN103774096B (en) A kind of preparation method of anti-oxidant rigid composite coating
CN110565051B (en) Diamond coated cutting tool with color layer, preparation method thereof and processing equipment
CN106756841A (en) A kind of preparation method of cutter composite coating
CN105177498A (en) AlCrSiON nano-composite cutting tool coating and preparation method thereof
WO2021072623A1 (en) Coated cutting tool for machining titanium alloy and high-temperature alloy and preparation method therefor
CN106868450A (en) A method of preparing AlTiN hard coating by modulating high power pulse magnetron sputtering
CN110643953B (en) A kind of alumina/titanium-aluminum-nitrogen composite coating suitable for milling and preparation method thereof
CN110670019B (en) A kind of crater wear-resistant aluminum-titanium-zirconium-nitride and aluminum oxide multi-layer composite coating and preparation method thereof
CN110643936B (en) A kind of multi-layer composite coating suitable for milling and preparation method thereof
CN110643951B (en) High-temperature oxidation resistant aluminum-chromium-silicon-nitrogen-aluminum oxide multilayer composite coating and preparation method thereof
CN112941463B (en) Nano multilayer oxynitride corrosion-resistant protective coating and preparation method and application thereof
CN110643952B (en) Oxidation-resistant aluminum oxide/titanium nitride silicon composite coating and preparation method thereof
CN110670020B (en) A kind of zirconium-aluminum-nitride and alumina multi-layer composite coating firmly bonded with cermet and preparation method thereof
CN110616405B (en) Wear-resistant diffusion-resistant aluminum oxide/aluminum titanium chromium nitride composite coating and preparation method thereof
CN108823544A (en) Based on nitridation titanium compound film and preparation method thereof
CN110656313B (en) A kind of zirconium nitride aluminum/alumina composite coating firmly bonded with cemented carbide and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Fresh and wide

Inventor after: Zhao Haibo

Inventor after: Fresh Li Jun

Inventor after: Xiong Ji

Inventor before: Fresh and wide

Inventor before: Zhao Haibo

Inventor before: Fresh Li Jun

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210402