[go: up one dir, main page]

CN110671100B - Method for manufacturing chessboard-like simulator in device for simulating rock heterogeneity - Google Patents

Method for manufacturing chessboard-like simulator in device for simulating rock heterogeneity Download PDF

Info

Publication number
CN110671100B
CN110671100B CN201910956450.0A CN201910956450A CN110671100B CN 110671100 B CN110671100 B CN 110671100B CN 201910956450 A CN201910956450 A CN 201910956450A CN 110671100 B CN110671100 B CN 110671100B
Authority
CN
China
Prior art keywords
permeability
layer
formula
value
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910956450.0A
Other languages
Chinese (zh)
Other versions
CN110671100A (en
Inventor
张继成
闫志明
范佳乐
冯诗淼
李清清
卢光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201910956450.0A priority Critical patent/CN110671100B/en
Publication of CN110671100A publication Critical patent/CN110671100A/en
Application granted granted Critical
Publication of CN110671100B publication Critical patent/CN110671100B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/0806Details, e.g. sample holders, mounting samples for testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/40Controlling or monitoring, e.g. of flood or hurricane; Forecasting, e.g. risk assessment or mapping

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种利用棋盘状仿真体模拟岩石非均质性的装置及制造方法。主要目的在于可在实验室内实现精准模拟岩石平面非均质性。其特征在于:装置由ISCO恒压泵,电子压力表,五通阀,导管,2×2×10cm的不同渗透率单元,浇筑非均质仿真体以及量筒组成。该装置的制造依赖于实际岩石的渗透率分布情况,首先收集待模拟区域所有井井点的各层渗透率数据,然后通过变差函数将这些渗透率数据进行离散,从而得到平面上任一点的渗透率值,这样可以把岩石的平面非均质性在仿真体中得到充分的体现,使得实验室模拟岩石平面非均质性成为可能,从而可以更加方便的研究平面非均质性对油藏开发的影响。A device and a manufacturing method for simulating rock heterogeneity using a chessboard-shaped simulation body. The main purpose is to accurately simulate rock plane heterogeneity in the laboratory. It is characterized in that: the device consists of an ISCO constant pressure pump, an electronic pressure gauge, a five-way valve, a conduit, a 2×2×10cm unit of different permeability, a casting heterogeneous simulation body and a graduated cylinder. The manufacture of the device depends on the permeability distribution of the actual rock. First, the permeability data of each layer of all well points in the area to be simulated are collected, and then these permeability data are discretized by the variogram to obtain the permeability of any point on the plane. In this way, the plane heterogeneity of the rock can be fully reflected in the simulation body, making it possible to simulate the plane heterogeneity of the rock in the laboratory, so that it can be more convenient to study the effect of plane heterogeneity on reservoir development. Impact.

Description

一种制造模拟岩石非均质性装置中棋盘状仿真体的方法A method for manufacturing a chessboard-shaped simulation body in a device for simulating rock heterogeneity

技术领域:Technical field:

本发明涉及一种用于驱油实验中模拟岩石非均质性的仿真体装置。The invention relates to a simulation body device for simulating rock heterogeneity in oil displacement experiments.

技术背景:technical background:

我国的油田主要就是以陆相碎屑岩储层为主,地质条件复杂性较高,非均质性强,原油的性质相差比较大,所以开采效率比较低。因此对非均质进行全面的研究是十分有必要的。由于储层在形成过程中受沉积作用、成岩作用和构造作用的影响,使其在空间分布及其内部各种属性都存在变化,目前研究储层的非均质性主要是实验方法,但是该方法仅仅是通过不同渗透率岩心的简单并联来模拟储层的非均质性。由于实验条件受限,并联的岩心个数不能太多,同时,每个岩心的渗透率数值都是使用某一研究区块的渗透率的平均值制成的,这样与实际储层的非均质性差距较大,不能很好的对储层进行模拟,从而导致实验室驱油实验的结果有时候不能很好的指导现场开发。my country's oilfields are mainly dominated by continental clastic rock reservoirs, with high complexity of geological conditions, strong heterogeneity, and relatively large differences in the properties of crude oil, so the extraction efficiency is relatively low. Therefore, it is necessary to conduct a comprehensive study of heterogeneity. Due to the influence of sedimentation, diagenesis and tectonic action in the formation process of the reservoir, its spatial distribution and various properties within it vary. At present, the research on the heterogeneity of the reservoir is mainly an experimental method. The method simply simulates the heterogeneity of the reservoir by a simple parallel connection of cores of different permeability. Due to the limited experimental conditions, the number of cores connected in parallel should not be too many. At the same time, the permeability value of each core is made by using the average value of the permeability of a certain research block, which is not uniform with the actual reservoir. The quality gap is large, and the reservoir cannot be simulated well, so that the results of the laboratory oil flooding experiment sometimes cannot guide the field development very well.

发明内容:Invention content:

为了解决技术背景中所提到的技术问题,本发明提供了一种利用棋盘状仿真体模拟岩石非均质性的装置。非均质性研究是油藏描述的重要内容,其参数的空间分布不仅具有随机性,而且具有结构性。本发明以研究区域所有井的渗透率数据为基础,从地质统计学关于变差函数的基本理论出发,根据一些已知的渗透率分布数据,通过变差函数将这些已知的渗透率数据进行离散,这样可以得到平面上任一点的渗透率值,从而形成棋盘状仿真体模型,来反映岩石的平面非均质特征。该模型以实际的渗透率分布为基础,通过变差函数对其进行离散,并用2×2×10cm的渗透率单元将其模拟出来,从而将岩石中渗透率的分布规律可以在棋盘状仿真体中得以充分的体现。同时,在对岩石渗透率分布进行了精细描述的棋盘状仿真体上布置单一的五点法井组,使得实验室中模拟岩石非均质性驱油实验更加接近实际情况,这样能够为现场开发提供更好的实验依据。In order to solve the technical problems mentioned in the technical background, the present invention provides a device for simulating rock heterogeneity by using a chessboard-shaped simulation body. Heterogeneity research is an important part of reservoir description, and the spatial distribution of its parameters is not only random but also structural. The present invention is based on the permeability data of all wells in the research area, starting from the basic theory of geostatistics about the variogram, and according to some known permeability distribution data, the known permeability data are processed by the variogram function. In this way, the permeability value of any point on the plane can be obtained, thus forming a checkerboard simulation model to reflect the plane heterogeneity of the rock. The model is based on the actual permeability distribution, which is discretized by the variogram, and simulated with a 2×2×10cm permeability unit, so that the distribution law of permeability in the rock can be displayed in a checkerboard simulation body. fully reflected in. At the same time, a single five-point method well group is arranged on a checkerboard-shaped simulation body that has a fine description of the rock permeability distribution, so that the simulated rock heterogeneous oil displacement experiment in the laboratory is closer to the actual situation, which can be used for field development. Provide a better experimental basis.

本发明的技术方案是:一种利用浇筑非均质仿真体模拟岩石非均质性的装置,包括ISCO恒压泵、导管、电子压力表、五通阀、第一螺纹接头、流量调节器、第二螺纹接头以及量筒,其独特之处在于:The technical scheme of the present invention is: a device for simulating rock heterogeneity by using a casting heterogeneous simulation body, comprising an ISCO constant pressure pump, a conduit, an electronic pressure gauge, a five-way valve, a first threaded joint, a flow regulator, The second threaded joint and the measuring cylinder are unique in that:

所述装置还包括浇筑非均质仿真体;所述浇筑非均质仿真体由长、宽、高分别为2厘米、2厘米和10厘米的若干个渗透率不同的单元体组成,所述若干个渗透率不同的单元体形成一个方形体;所述单元体的不同渗透率通过对实际地层渗透率的数值通过离散后模拟得出。The device also includes a casting heterogeneous simulation body; the casting heterogeneous simulation body is composed of several units with different permeability, each of which is 2 cm, 2 cm and 10 cm in length, width and height. Each unit body with different permeability forms a square body; the different permeability of the unit body is obtained by the numerical simulation of the actual formation permeability after discretization.

在所述浇筑非均质仿真体的外层浇筑环氧树脂浇筑层,且穿过所述环氧树脂浇筑层在浇筑非均质仿真体上布置有单一五点法井组,所述单一五点法井组采用中央一口井,位于四个对角四口井的模式。An epoxy resin casting layer is cast on the outer layer of the casting heterogeneous simulation body, and a single five-point method well group is arranged on the casting heterogeneous simulation body through the epoxy resin casting layer. The one-five-point well group adopts the pattern of one well in the center and four wells in four diagonal corners.

所述第二螺纹接头两端同时设置有螺纹,第二螺纹接头的下端与浇筑非均质仿真体上的单一五点法井组的螺纹通孔通过旋拧连接,第二螺纹接头的上端与流量调节器的螺纹通孔通过旋拧连接。Both ends of the second threaded joint are provided with threads at the same time, the lower end of the second threaded joint is connected with the threaded through hole of the single five-point method well group on the casting heterogeneous simulation body by screwing, and the upper end of the second threaded joint is connected by screwing. Connect with the threaded through hole of the flow regulator by screwing.

所述第一螺纹接头仅在一端设置有螺纹,其中第一螺纹接头有螺纹的一端与流量调节器的螺纹通孔通过旋拧连接,无螺纹的另一端与第二导管连接。The first threaded joint is provided with threads only at one end, wherein the threaded end of the first threaded joint is connected with the threaded through hole of the flow regulator by screwing, and the unthreaded other end is connected with the second conduit.

所述流量调节器具有两个螺纹通孔和一个旋钮,两个螺纹通孔分别与第一螺纹接头和第二螺纹接头相连接,旋钮用来控制模拟实际注入井和采出井的注入速度和采出速度。The flow regulator has two threaded through holes and a knob, the two threaded through holes are respectively connected with the first threaded joint and the second threaded joint, and the knob is used to control the injection speed and production rate of the simulated actual injection well and production well. out speed.

电子压力表通过第一导管连接在ISCO恒压泵和五通阀的液流输入口之间;五通阀的四个液流输出口分别通过第二导管与接入四个对角井的第一螺纹接头的无螺纹一端相连接;接入一个中央井的第一螺纹接头的无螺纹一端通过第二导管与量筒的入口连接。The electronic pressure gauge is connected between the ISCO constant pressure pump and the liquid flow input port of the five-way valve through the first conduit; The unthreaded end of the threaded joint is connected; the unthreaded end of the first threaded joint connected to a central well is connected with the inlet of the measuring cylinder through the second conduit.

用于制作所述模拟非均质岩石的棋盘状仿真体的方法有两种,第一种方法包括如下步骤:There are two methods for making the chessboard simulation body for simulating heterogeneous rocks, the first method includes the following steps:

第一步,限定渗透率不同的单元体(11)所模拟的平面尺寸为50×50m,待模拟区域的长为L,宽为D,按照公式(1)计算出每一层不同渗透率单元的数量为N;In the first step, the plane size simulated by the unit body (11) with different permeability is defined as 50×50m, the length of the area to be simulated is L, and the width is D. According to formula (1), calculate the unit with different permeability for each layer The number is N;

Figure GDA0003752016910000021
Figure GDA0003752016910000021

第二步,收集待模拟区域所有井井点的各层渗透率数据,建立已知渗透率数据库,其中井的数量为Q,层的数量为P,各井在XOY平面上的坐标为(i,j),则各井在第z层的渗透率值为Kz(i,j);The second step is to collect the permeability data of each layer of all wells in the area to be simulated, and establish a known permeability database, in which the number of wells is Q, the number of layers is P, and the coordinates of each well on the XOY plane are (i , j), then the permeability value of each well in the z-th layer is K z (i, j);

第三步,通过对第二步所获得的第一层渗透率数据进行离散,可以得到第一层平面上任一点的渗透率值,即可以知道第一层上渗透率的分布情况,其具体按照如下过程进行计算:In the third step, by discretizing the permeability data of the first layer obtained in the second step, the permeability value of any point on the plane of the first layer can be obtained, that is, the distribution of the permeability on the first layer can be known. The calculation is performed as follows:

首先,根据各井在第一层上第m行的渗透率值,利用公式(2)求得相距为h的两口井之间的渗透率的变差函数为Kz(h);First, according to the permeability value of each well in the mth row on the first layer, the variogram of the permeability between two wells with a distance of h is obtained by using formula (2) as K z (h);

其中,公式(2)为:Among them, formula (2) is:

Figure GDA0003752016910000031
Figure GDA0003752016910000031

式中:where:

N(h)——距离为h的两口井的对数。N(h) - the logarithm of two wells with distance h.

为了使得计算过程的表达更加方便引入中间替换变量x1、x2和y以及b0,b1和b2。基于公式(2)的结果,利用公式(3)、公式(4)和公式(5)可以求得一系列的x1、x2和y;In order to make the expression of the calculation process more convenient, intermediate substitution variables x 1 , x 2 and y and b 0 , b 1 and b 2 are introduced. Based on the result of formula (2), a series of x 1 , x 2 and y can be obtained by using formula (3), formula (4) and formula (5);

其中,公式(3)、公式(4)和公式(5)分别为:Among them, formula (3), formula (4) and formula (5) are respectively:

x1=h (3)x 1 = h (3)

x2=-h3 (4)x 2 = -h 3 (4)

y=Kz(h) (5)y=K z (h) (5)

然后,将求得的x1、x2和y代入带公式(6)中,使用线性规划的方法进行数据的拟合,可以求得b0,b1,b2Then, substitute the obtained x 1 , x 2 and y into the belt formula (6), and use the linear programming method to fit the data to obtain b 0 , b 1 , b 2 ;

其中,公式(6)为:Among them, formula (6) is:

y=b0+b1x1+b2x2 (6)y=b 0 +b 1 x 1 +b 2 x 2 (6)

通过对比公式(6)和公式(7)可得公式(8)、公式(9)和公式(10)分别为:By comparing formula (6) and formula (7), formula (8), formula (9) and formula (10) can be obtained as:

Figure GDA0003752016910000032
Figure GDA0003752016910000032

Figure GDA0003752016910000033
Figure GDA0003752016910000033

C0=b0 (9)C 0 =b 0 (9)

Figure GDA0003752016910000041
Figure GDA0003752016910000041

最后可以确定第一层上第m行的渗透率的变差函数方程式,如公式(11)所示,即得到第一层第m行上任意两点的渗透率方差之半,从而可以求出第一层第m行上离散后的渗透率值,即可以得到第一层第m行上渗透率的分布情况;Finally, the variogram equation of the permeability of the m-th row on the first layer can be determined, as shown in formula (11), that is, half of the permeability variance of any two points on the m-th row of the first layer can be obtained. The discrete permeability value on the mth row of the first layer, that is, the distribution of the permeability on the mth row of the first layer can be obtained;

其中,公式(11)为:Among them, formula (11) is:

Figure GDA0003752016910000042
Figure GDA0003752016910000042

式中:where:

a——变程,在该范围内渗透率间具有相关性,而在变程外渗透率间不具有相关性;a - variable range, there is a correlation between the permeability within this range, but there is no correlation between the permeability outside the variable range;

C0——块金值,反映渗透率变差函数的变化幅度;C 0 — nugget value, reflecting the variation range of the permeability variation function;

C1——基台值,由于诸多因素影响导致渗透率在短距离内发生大变异;C 1 ——The value of the abutment, due to the influence of many factors, the permeability has a large variation in a short distance;

h——两点之间的距离;h - the distance between two points;

运用同样的方法求得第一层上已知部分渗透率的任意一行的变差函数方程式,从而可以求出该行上离散后的渗透率值,即可以得到该行上渗透率的分布情况;然后基于横向上每一行的渗透率值,在纵向上求出任意一列的变差函数方程式,这样就可以知道第一层上每一点的渗透率值,从而可以得到第一层的渗透率分布情况;Using the same method to obtain the variogram equation of any row of the known partial permeability on the first layer, the discrete permeability value of the row can be obtained, that is, the permeability distribution of the row can be obtained; Then, based on the permeability value of each row in the horizontal direction, the variogram equation of any column in the vertical direction is obtained, so that the permeability value of each point on the first layer can be known, and the permeability distribution of the first layer can be obtained. ;

第四步,重复第三步可以求得第二层上每一点的渗透率值,即可以得到第二层的渗透率分布情况,直到求出第P层上每一点的渗透率值为止,即可以获得所有层的渗透率值和渗透率分布情况;The fourth step, repeating the third step can obtain the permeability value of each point on the second layer, that is, the permeability distribution of the second layer can be obtained, until the permeability value of each point on the P-th layer is obtained, that is, The permeability value and permeability distribution of all layers can be obtained;

第五步,为了减少渗透率单元的制作数量,简化仿真体的制作步骤,同时又在实验误差允许的范围内,划分不同的渗透率区间进行统计分析;对第三步和第四步中所得到的每层渗透率数据进行统计分析,确定其分布到不同渗透率区间的数量,这样就可以确定分布到不同渗透率区间的单元数量;The fifth step, in order to reduce the number of permeability units, simplify the manufacturing steps of the simulation body, and at the same time, within the allowable range of experimental errors, divide different permeability intervals for statistical analysis; The obtained permeability data of each layer is statistically analyzed to determine the number of units distributed to different permeability ranges, so that the number of units distributed to different permeability ranges can be determined;

第六步,根据第五步所得到的分布在不同渗透率区间的渗透率单元数量,由不同粒度的石英砂和环氧树脂胶结形成分布在不同渗透率区间的渗透率单元,然后将每一层的N个具有不同渗透率的单元根据第三步和第四步计算得到的渗透率的分布情况进行排列,依次排列P层,使其所模拟的岩石更加符合实际情况。In the sixth step, according to the number of permeability units distributed in different permeability intervals obtained in the fifth step, the permeability units distributed in different permeability intervals are formed by cementing quartz sand and epoxy resin with different particle sizes. The N units with different permeability in the layer are arranged according to the distribution of permeability calculated in the third and fourth steps, and the P layers are arranged in sequence to make the simulated rocks more in line with the actual situation.

制作所述模拟非均质岩石的棋盘状仿真体的第二种方法包括如下步骤:The second method of making the chessboard simulation body for simulating heterogeneous rocks includes the following steps:

第一步,限定渗透率不同的单元体(11)所模拟的平面尺寸为50×50m,待模拟区域的长为L,宽为D,按照公式(1)计算出每一层不同渗透率单元的数量为N。In the first step, the plane size simulated by the unit body (11) with different permeability is defined as 50×50m, the length of the area to be simulated is L, and the width is D. According to formula (1), calculate the unit with different permeability for each layer The number is N.

Figure GDA0003752016910000051
Figure GDA0003752016910000051

第二步,收集待模拟区域所有井井点的各层渗透率数据,建立已知渗透率数据库,其中井的数量为Q,层的数量为P,各井在XOY平面上的坐标为(i,j),则各井在第z层的渗透率值为Kz(i,j)。The second step is to collect the permeability data of each layer of all wells in the area to be simulated, and establish a known permeability database, in which the number of wells is Q, the number of layers is P, and the coordinates of each well on the XOY plane are (i , j), then the permeability value of each well in the z-th layer is K z (i, j).

第三步,通过对第二步所获得的第一层渗透率数据进行离散,可以得到第一层平面上任一点的渗透率值,即可以知道第一层上渗透率的分布情况,其具体按照如下过程进行计算。In the third step, by discretizing the permeability data of the first layer obtained in the second step, the permeability value of any point on the plane of the first layer can be obtained, that is, the distribution of the permeability on the first layer can be known. The calculation is performed as follows.

首先,根据各井在第一层上第m行的渗透率值,利用公式(2)求得相距为h的两口井之间的渗透率的变差函数为Kz(h)。First, according to the permeability values of the m-th row of each well on the first layer, the variogram of the permeability between two wells separated by h is obtained by using formula (2) as K z (h).

其中,公式(2)为:Among them, formula (2) is:

Figure GDA0003752016910000052
Figure GDA0003752016910000052

式中:where:

N(h)——距离为h的两口井的对数。N(h) - the logarithm of two wells with distance h.

为了使得计算过程的表达更加方便引入中间替换变量x1、x2和y以及b0,b1和b2。基于公式(2)的结果,利用公式(3)、公式(4)和公式(5)可以求得一系列的x1、x2和y。In order to make the expression of the calculation process more convenient, intermediate substitution variables x 1 , x 2 and y and b 0 , b 1 and b 2 are introduced. Based on the result of formula (2), a series of x 1 , x 2 and y can be obtained using formula (3), formula (4) and formula (5).

其中,公式(3)、公式(4)和公式(5)分别为:Among them, formula (3), formula (4) and formula (5) are respectively:

x1=h (3)x 1 = h (3)

x2=-h3 (4)x 2 = -h 3 (4)

y=Kz(h) (5)y=K z (h) (5)

然后,将求得的x1、x2和y代入带公式(6)中,使用线性规划的方法进行数据的拟合,可以求得b0,b1,b2Then, the obtained x 1 , x 2 and y are substituted into the belt formula (6), and the linear programming method is used to fit the data to obtain b 0 , b 1 , and b 2 .

其中,公式(6)为:Among them, formula (6) is:

y=b0+b1x1+b2x2 (6)y=b 0 +b 1 x 1 +b 2 x 2 (6)

通过对比公式(6)和公式(7)可得公式(8)、公式(9)和公式(10)分别为:By comparing formula (6) and formula (7), formula (8), formula (9) and formula (10) can be obtained as:

Figure GDA0003752016910000061
Figure GDA0003752016910000061

Figure GDA0003752016910000062
Figure GDA0003752016910000062

C0=b0 (9)C 0 =b 0 (9)

Figure GDA0003752016910000063
Figure GDA0003752016910000063

最后可以确定第一层上第m行的渗透率的变差函数方程式,如公式(11)所示,即得到第一层第m行上任意两点的渗透率方差之半,从而可以求出第一层第m行上离散后的渗透率值,即可以得到第一层第m行上渗透率的分布情况。Finally, the variogram equation of the permeability of the m-th row on the first layer can be determined, as shown in formula (11), that is, half of the permeability variance of any two points on the m-th row of the first layer can be obtained. The discrete permeability value on the mth row of the first layer can obtain the permeability distribution on the mth row of the first layer.

其中,公式(11)为:Among them, formula (11) is:

Figure GDA0003752016910000064
Figure GDA0003752016910000064

式中:where:

a——变程,在该范围内渗透率间具有相关性,而在变程外渗透率间不具有相关性;a - variable range, there is a correlation between the permeability within this range, but there is no correlation between the permeability outside the variable range;

C0——块金值,反映渗透率变差函数的变化幅度;C 0 — nugget value, reflecting the variation range of the permeability variation function;

C1——基台值,由于诸多因素影响导致渗透率在短距离内发生大变异;C 1 ——The value of the abutment, due to the influence of many factors, the permeability has a large variation in a short distance;

h——两点之间的距离。h - the distance between two points.

运用同样的方法求得第一层上已知部分渗透率的任意一行的变差函数方程式,从而可以求出该行上离散后的渗透率值,即可以得到该行上渗透率的分布情况。然后基于横向上每一行的渗透率值,在纵向上求出任意一列的变差函数方程式,这样就可以知道第一层上每一点的渗透率值,从而可以得到第一层的渗透率分布情况。Using the same method to obtain the variogram equation of any line of known partial permeability on the first layer, the discrete permeability value on the line can be obtained, that is, the permeability distribution on the line can be obtained. Then, based on the permeability value of each row in the horizontal direction, the variogram equation of any column in the vertical direction is obtained, so that the permeability value of each point on the first layer can be known, and the permeability distribution of the first layer can be obtained. .

第四步,重复第三步可以求得第二层上每一点的渗透率值,即可以得到第二层的渗透率分布情况,直到求出第P层上每一点的渗透率值为止,即可以获得所有层的渗透率值和渗透率分布情况。The fourth step, repeating the third step can obtain the permeability value of each point on the second layer, that is, the permeability distribution of the second layer can be obtained, until the permeability value of each point on the P-th layer is obtained, that is, Permeability values and permeability distributions for all layers can be obtained.

第五步,根据第三步和第四步中得到的所有层上的每一点渗透率值以及渗透率的分布情况,由不同粒度的石英砂和环氧树脂胶结形成M个不同渗透率单元,其中M由公式(12)计算得到。In the fifth step, according to the permeability value of each point on all the layers obtained in the third and fourth steps and the distribution of permeability, M units of different permeability are formed by cementing quartz sand and epoxy resin with different particle sizes, where M is calculated by formula (12).

其中,公式(12)为:Among them, formula (12) is:

M=NP (12)M=NP (12)

然后将每一层的N个具有不同渗透率的单元根据第三步和第四步计算得到的渗透率的分布情况进行排列,依次排列P层,使其所模拟的岩石更加符合实际情况。Then, the N units with different permeability in each layer are arranged according to the distribution of permeability calculated in the third and fourth steps, and the P layers are arranged in sequence to make the simulated rocks more in line with the actual situation.

本发明具有以下有益效果:本发明以所待模拟区域所有井井点的各层渗透率数据为基础,从地质统计学关于变差函数的基本理论出发,根据一些已知的渗透率分布数据,通过变差函数将这些已知的渗透率数据进行离散,这样可以得到平面上任一点的渗透率数据,和目前实验中并联几个仅代表某一研究区块平均渗透率的岩心相比,更加符合储层的非均质性,为现场开发提供更加可靠实验依据。The present invention has the following beneficial effects: the present invention is based on the permeability data of each layer of all well points in the area to be simulated, starting from the basic theory of geostatistics about variogram, and according to some known permeability distribution data, These known permeability data are discretized by the variogram, so that the permeability data of any point on the plane can be obtained, which is more in line with the current experiments in parallel with several cores that only represent the average permeability of a certain research block. The heterogeneity of the reservoir provides a more reliable experimental basis for field development.

附图说明:Description of drawings:

图1是利用棋盘状仿真体模拟岩石非均质性的综合装置示意图。Figure 1 is a schematic diagram of a comprehensive device for simulating rock heterogeneity using a checkerboard-shaped simulation body.

图2是棋盘状仿真体示意图。FIG. 2 is a schematic diagram of a checkerboard-shaped simulation body.

图3是棋盘状仿真体的横向剖面图。FIG. 3 is a transverse cross-sectional view of a checkerboard-shaped simulation body.

图4是棋盘状仿真体的纵向剖面图。FIG. 4 is a longitudinal cross-sectional view of a checkerboard-shaped simulation body.

图5是导管、第一螺纹接头和第二螺纹接头以及流量调节器零件示意图。Figure 5 is a schematic diagram of the conduit, the first and second threaded joints, and the flow regulator parts.

图6是第一螺纹接头与流量调节器连接剖面图。FIG. 6 is a sectional view of the connection between the first threaded joint and the flow regulator.

图7是第二螺纹接头与流量调节器连接剖面图。FIG. 7 is a sectional view of the connection between the second threaded joint and the flow regulator.

图8是ISCO恒压泵示意图。Figure 8 is a schematic diagram of an ISCO constant pressure pump.

图9是电子压力表示意图。Figure 9 is a schematic diagram of an electronic pressure gauge.

图10是五通阀示意图。Figure 10 is a schematic diagram of a five-way valve.

图11是待模拟正方形区域井位图。Figure 11 is a well map of the square area to be simulated.

图中1-ISCO恒压泵,2-导管,3-电子压力表,4-五通阀,5-第一螺纹接头,6-流量调节器,7-第二螺纹接头,8-浇筑非均质棋盘状仿真体,9-量筒,10-环氧树脂,11-2×2×10cm的不同渗透率单元,12-旋钮。In the picture 1-ISCO constant pressure pump, 2-duct, 3-electronic pressure gauge, 4-five-way valve, 5-first threaded joint, 6-flow regulator, 7-second threaded joint, 8-pouring non-uniform Quality checkerboard simulation body, 9-grading cylinder, 10-epoxy resin, 11-2×2×10cm units of different permeability, 12-knob.

具体实施方式:Detailed ways:

下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with the accompanying drawings:

由图1到图10所示,本种利用浇筑非均质仿真体模拟岩石非均质性的装置,包括ISCO恒压泵1、导管2、电子压力表3、五通阀4、第一螺纹接头5、流量调节器6、第二螺纹接头7以及量筒9,其独特之处在于:As shown in Figure 1 to Figure 10, this device for simulating rock heterogeneity by using a casting heterogeneous simulation body includes an ISCO constant pressure pump 1, a conduit 2, an electronic pressure gauge 3, a five-way valve 4, a first thread The joint 5, the flow regulator 6, the second threaded joint 7 and the measuring cylinder 9 are unique in that:

所述装置还包括浇筑非均质仿真体8。The device also includes a casting heterogeneous simulation body 8 .

所述浇筑非均质仿真体8由长、宽、高分别为2厘米、2厘米和10厘米的若干个渗透率不同的单元体11组成,所述若干个渗透率不同的单元体11形成一个方形体;所述单元体11的不同渗透率通过对实际地层渗透率的数值通过离散后模拟得出。The casting heterogeneous simulation body 8 is composed of several units 11 with different permeability, each of which is 2 cm, 2 cm, and 10 cm in length, width, and height, and the several units 11 with different permeability form one unit. Square body; the different permeability of the unit body 11 is obtained by discrete simulation of the actual formation permeability value.

在所述浇筑非均质仿真体8的外层浇筑环氧树脂浇筑层10,且穿过所述环氧树脂浇筑层在浇筑非均质仿真体8上布置有单一五点法井组,所述单一五点法井组采用中央一口井,位于四个对角四口井的模式。An epoxy resin casting layer 10 is cast on the outer layer of the casting heterogeneous simulation body 8, and a single five-point method well group is arranged on the casting heterogeneous simulation body 8 through the epoxy resin casting layer, The single five-point method well group adopts the pattern of one well in the center and four wells in four diagonal corners.

所述第二螺纹接头7两端同时设置有螺纹,第二螺纹接头7的下端与浇筑非均质仿真体8上的单一五点法井组的螺纹通孔通过旋拧连接,第二螺纹接头7的上端与流量调节器6的螺纹通孔通过旋拧连接。Both ends of the second threaded joint 7 are provided with threads at the same time. The upper end of the joint 7 is connected with the threaded through hole of the flow regulator 6 by screwing.

所述第一螺纹接头5仅在一端设置有螺纹,其中第一螺纹接头5有螺纹的一端与流量调节器6的螺纹通孔通过旋拧连接,无螺纹的另一端与第二导管连接。The first threaded joint 5 is provided with threads only at one end, wherein the threaded end of the first threaded joint 5 is connected with the threaded through hole of the flow regulator 6 by screwing, and the unthreaded other end is connected with the second conduit.

所述流量调节器6具有两个螺纹通孔和一个旋钮12,两个螺纹通孔分别与第一螺纹接头5和第二螺纹接头7相连接,旋钮12用来控制模拟实际注入井和采出井的注入速度和采出速度。The flow regulator 6 has two threaded through holes and a knob 12. The two threaded through holes are respectively connected with the first threaded joint 5 and the second threaded joint 7. The knob 12 is used to control the simulated actual injection well and production well. injection rate and extraction rate.

电子压力表3通过第一导管2连接在ISCO恒压泵1和五通阀4的液流输入口之间;五通阀4的四个液流输出口分别通过第二导管与接入四个对角井的第一螺纹接头5的无螺纹一端相连接;接入一个中央井的第一螺纹接头5的无螺纹一端通过第二导管与量筒9的入口连接。The electronic pressure gauge 3 is connected between the ISCO constant pressure pump 1 and the liquid flow input port of the five-way valve 4 through the first conduit 2; the four liquid flow output ports of the five-way valve 4 are connected to four The unthreaded end of the first threaded joint 5 of the diagonal wells is connected; the unthreaded end of the first threaded joint 5 connected to a central well is connected to the inlet of the measuring cylinder 9 through the second conduit.

下面给出制作所述模拟非均质岩石的棋盘状仿真体的第一种方法的一个具体实施例:包括如下步骤:A specific embodiment of the first method for making the chessboard-shaped simulation body for simulating heterogeneous rocks is given below: including the following steps:

第一步,限定渗透率单元所模拟的平面尺寸为50×50m,待模拟区域的长L为1500m,宽D为1470m,按照公式(1)计算出每一层不同渗透率单元的数量N为900。In the first step, the plane size simulated by the permeability unit is 50×50m, the length L of the area to be simulated is 1500m, and the width D is 1470m. According to formula (1), the number N of different permeability units in each layer is calculated as 900.

Figure GDA0003752016910000091
Figure GDA0003752016910000091

第二步,待模拟区域中井的数量Q为37,层的数量P为3,由于各个井都为垂直井,故每口井在各个层平面的坐标都是一样的,待模拟正方形区域的井位如图11所示,其每口井对应的平面坐标如表1所示。收集该区域所有井井点的各层渗透率数据,建立已知渗透率数据库,如表2所示。In the second step, the number of wells Q in the area to be simulated is 37, and the number of layers P is 3. Since each well is a vertical well, the coordinates of each well in each layer plane are the same, and the wells in the square area to be simulated are The positions are shown in Figure 11, and the plane coordinates corresponding to each well are shown in Table 1. Collect the permeability data of each layer of all wells in this area, and establish a database of known permeability, as shown in Table 2.

表1每口井平面坐标统计表Table 1 Statistical table of plane coordinates of each well

井号Hashtag 平面坐标plane coordinates 井号Hashtag 平面坐标plane coordinates 井号Hashtag 平面坐标plane coordinates 井号Hashtag 平面坐标plane coordinates W1W1 (4,26)(4,26) W11W11 (14,21)(14,21) W21W21 (24,16)(24,16) W31W31 (4,6)(4,6) W2W2 (8,26)(8,26) W12W12 (18,21)(18,21) W22W22 (28,16)(28,16) W32W32 (8,6)(8,6) W3W3 (12,26)(12,26) W13W13 (22,21)(22,21) W23W23 (2,11)(2,11) W33W33 (12,6)(12,6) W4W4 (16,26)(16,26) W14W14 (26,21)(26,21) W24W24 (6,11)(6,11) W34W34 (16,6)(16,6) W5W5 (20,26)(20,26) W15W15 (30,21)(30,21) W25W25 (10,11)(10,11) W35W35 (20,6)(20,6) W6W6 (24,26)(24,26) W16W16 (4,16)(4,16) W26W26 (14,11)(14,11) W36W36 (24,6)(24,6) W7W7 (28,26)(28,26) W17W17 (8,16)(8,16) W27W27 (18,11)(18,11) W37W37 (28,6)(28,6) W8W8 (2,21)(2,21) W18W18 (12,16)(12,16) W28W28 (22,11)(22,11) W9W9 (6,21)(6,21) W19W19 (16,16)(16,16) W29W29 (26,11)(26,11) W10W10 (10,21)(10,21) W20W20 (20,16)(20,16) W30W30 (30,11)(30,11)

表2已知渗透率数据库Table 2 Known permeability database

Figure GDA0003752016910000092
Figure GDA0003752016910000092

Figure GDA0003752016910000101
Figure GDA0003752016910000101

第三步,通过对第二步所获得的第一层渗透率数据进行离散,可以得到第一层平面上任一点的渗透率值,即可以知道第一层上渗透率的分布情况,求取第一层上第26行的渗透率值和渗透率分布情况具体按照如下过程进行计算。In the third step, by discretizing the permeability data of the first layer obtained in the second step, the permeability value of any point on the plane of the first layer can be obtained, that is, the distribution of the permeability on the first layer can be known, and the first The permeability value and permeability distribution of the 26th row on the first layer are calculated according to the following process.

首先,根据各井在第一层上第26行的渗透率值,利用公式(2)求得相距为h的两口井之间的渗透率的变差函数为K1(h),设相邻的两个渗透率单元之间的距离为1,其计算结果如表3所示。First, according to the permeability value of each well on the 26th row of the first layer, the variogram of the permeability between two wells with a distance of h is obtained by using formula (2) as K 1 (h). The distance between the two permeability units is 1, and the calculation results are shown in Table 3.

其中,公式(2)为:Among them, formula (2) is:

Figure GDA0003752016910000102
Figure GDA0003752016910000102

表3变差函数计算结果Table 3 Variation function calculation results

距离(h)Distance (h) 变差函数(K<sub>1</sub>(h))Variogram (K<sub>1</sub>(h)) 距离(h)Distance (h) 变差函数(K<sub>1</sub>(h))Variogram (K<sub>1</sub>(h)) 44 372.57372.57 1616 286.92286.92 88 480.79480.79 2020 36.0736.07 1212 468.31468.31 24twenty four 397.90397.90

为了使得计算过程的表达更加方便引入中间替换变量x1、x2和y以及b0,b1和b2。基于表3的计算结果,利用公式(3)、公式(4)和公式(5)可以求得一系列的x1、x2和y,其计算结果如表4所示。In order to make the expression of the calculation process more convenient, intermediate substitution variables x 1 , x 2 and y and b 0 , b 1 and b 2 are introduced. Based on the calculation results in Table 3, a series of x 1 , x 2 and y can be obtained by using formula (3), formula (4) and formula (5). The calculation results are shown in Table 4.

其中,公式(3)、公式(4)和公式(5)分别为:Among them, formula (3), formula (4) and formula (5) are respectively:

x1=h (3)x 1 = h (3)

x2=-h3 (4)x 2 = -h 3 (4)

y=K1(h) (5)y=K 1 (h) (5)

表4x1、x2及y的计算结果Table 4 Calculation results of x 1 , x 2 and y

x<sub>1</sub>x<sub>1</sub> x<sub>2</sub>x<sub>2</sub> yy x<sub>1</sub>x<sub>1</sub> x<sub>2</sub>x<sub>2</sub> yy 44 -64-64 372.57372.57 1616 -4096-4096 286.92286.92 88 -512-512 480.79480.79 2020 -8000-8000 36.0736.07 1212 -1728-1728 468.31468.31 24twenty four -13824-13824 397.90397.90

然后,将求得的x1、x2和y代入带公式(6)中,使用线性规划的方法进行数据的拟合,可以求得b0=204,b1=44.66,b2=0.16,则最终得到拟合公式为:Then, substituting the obtained x 1 , x 2 and y into the belt formula (6), and using the linear programming method to fit the data, we can obtain b 0 =204, b 1 =44.66, b 2 =0.16, The final fitting formula is:

y=204+44.66x1+0.16x2 (6)y=204+44.66x 1 +0.16x 2 (6)

将b0=204,b1=44.66,b2=0.16带入到公式(8)、公式(9)和公式(10)中可以得到C0=204、C1=287.19以及a=9.65。Substituting b 0 =204, b 1 =44.66, b 2 =0.16 into formula (8), formula (9) and formula (10), one can obtain C 0 =204, C 1 =287.19 and a=9.65.

其中,公式(8)、公式(9)和公式(10)分别为:Among them, formula (8), formula (9) and formula (10) are respectively:

Figure GDA0003752016910000111
Figure GDA0003752016910000111

C0=b0=204 (9)C 0 =b 0 =204 (9)

Figure GDA0003752016910000112
Figure GDA0003752016910000112

最后可以确定第一层上第26行的渗透率的变差函数方程式为:Finally, it can be determined that the variogram equation of the permeability on the 26th line on the first layer is:

Figure GDA0003752016910000113
Figure GDA0003752016910000113

即已知第一层上第26行任意两点的渗透率方差之半,从而可以求出第一层上第26行离散后的渗透率值,即得到第一层上第26行的渗透率分布情况,如表1第26行所示(从下往上数)。运用同样的方法求得第一层上第6行、第11行、第16行和第21行上所有渗透率单元的渗透率值和渗透率分布情况。然后基于第6行、第11行、第16行、第21行和第26行上已经求得的渗透率值,在纵向上求出任意一列的变差函数方程式,这样就可以知道第一层上每一渗透率单元的渗透率值和渗透率分布情况,如表5所示。That is, half of the permeability variance of any two points on the 26th line on the first layer is known, so that the discrete permeability value of the 26th line on the first layer can be obtained, that is, the permeability of the 26th line on the first layer can be obtained. The distribution is shown in row 26 of Table 1 (counting from bottom to top). Use the same method to obtain the permeability values and permeability distributions of all permeability cells on the first layer on the 6th row, 11th row, 16th row and 21st row. Then, based on the permeability values that have been obtained on the 6th, 11th, 16th, 21st and 26th lines, the variogram equation of any column is obtained in the longitudinal direction, so that the first layer can be known. The permeability value and permeability distribution of each permeability unit are shown in Table 5.

表5第一层平面上渗透率分布表Table 5 Permeability distribution table on the first layer plane

8585 8181 9898 8787 6262 7373 5656 8585 8484 9494 8282 108108 131131 128128 9090 101101 108108 116116 119119 123123 1010 9090 8585 8888 7575 118118 9090 7171 8080 8585 8888 7676 6969 8484 8080 6464 8686 5555 7878 116116 9090 112112 100100 131131 117117 101101 9191 9797 110110 111111 115115 8181 8585 6464 8585 8585 8181 8484 5050 7373 6969 5050 7171 7979 106106 8787 9292 6161 114114 7979 107107 7474 108108 102102 111111 9696 103103 110110 132132 116116 105105 106106 6363 101101 4545 101101 7474 9494 8989 7171 8888 7171 103103 110110 5757 4646 4242 9999 9797 7676 5959 9898 100100 118118 111111 9797 9595 8787 123123 8888 7777 7171 5858 5252 7575 6161 9696 9797 8282 102102 7474 8484 7878 9999 6464 8686 4646 5959 6363 7777 6262 6565 9494 8383 8383 107107 7171 5454 8383 9393 108108 5050 9494 9999 5151 107107 8989 7171 7171 6060 8282 7575 5858 5050 4545 6060 5858 8888 5353 8686 9191 6060 4444 7575 7575 7474 5757 6565 7878 117117 111111 7373 5959 6161 9898 8989 8484 9090 5454 8181 7474 7575 6565 5050 6262 2525 5252 4545 4949 6363 5858 6262 4343 5959 5353 5656 5959 6565 6161 8484 105105 6969 6666 8888 6868 6464 7070 7070 9595 5656 105105 5353 6868 7777 4545 5252 11 5353 5959 3737 6060 4242 5757 3939 4444 3535 5555 5454 8383 6161 6363 4646 4646 4949 7878 6464 7171 8080 5858 4242 9797 6161 3535 101101 6464 4343 2020 4949 6565 3535 4545 4343 5353 4646 3333 4646 5151 9595 8787 7979 6363 7272 5151 4545 7070 6868 6767 7171 4141 5454 8888 3535 8080 5454 5151 4646 4848 3838 4343 6262 3535 5959 4444 5555 6969 5959 5555 6767 6363 4545 5353 4949 111111 3939 3333 5353 4444 5454 4949 6363 6565 4949 5555 9494 4242 5151 5050 6464 4444 7070 4444 5555 3636 5656 6969 5050 8787 9696 7171 7676 4545 8484 5252 5454 7373 6868 5959 6666 6868 9595 9494 5656 4646 104104 4242 4343 6868 3939 6464 3232 5050 6363 6464 4646 5858 5050 7474 7676 8989 5858 6262 4848 6060 7373 2929 7979 6060 5252 6868 5454 9797 8080 9999 7171 3939 6868 3636 6161 6565 6464 4646 5858 4343 8888 4545 5858 7979 7878 3838 9696 8383 7373 6060 4444 6161 6565 7272 4949 4444 7171 9797 8787 4848 5353 5959 5454 5858 5050 7474 5656 5858 7070 7373 6868 7373 7373 8383 106106 107107 8484 104104 8080 9797 5858 6868 7777 8282 7272 8282 7272 9393 7070 6262 5454 3737 7474 4949 5151 5656 6767 6666 5151 7676 6969 5353 7777 7575 101101 9393 7777 103103 7878 8585 8585 9797 5959 8383 7272 101101 5454 6363 8080 6262 6565 5656 7070 3434 3333 3939 7070 6060 8282 103103 6363 7777 4444 8787 114114 106106 7676 126126 8686 9696 6868 9595 7272 7878 7272 9090 117117 6464 9999 8080 6464 7070 8383 3535 6161 4545 5757 9191 111111 4848 8383 7575 9090 7878 9090 7878 9595 8080 7575 9393 7676 6363 6161 7676 7979 7979 110110 6565 6565 7575 8181 7878 6565 6363 5454 3333 6464 6464 110110 9898 5757 7171 8888 101101 7777 7171 106106 105105 9898 7878 8686 100100 5959 8181 104104 7272 6666 7070 7878 9696 6464 7070 6969 6868 6363 7979 103103 119119 7575 8484 7070 6969 6262 115115 9595 8989 114114 9999 9494 6666 7979 104104 9393 6464 7575 7272 8181 100100 9090 8181 8484 8585 6262 7373 7777 9191 100100 9595 9595 110110 7979 8383 8383 8282 121121 8383 101101 114114 5858 7777 9191 8181 8989 103103 9999 8989 7979 5858 7777 5656 6464 114114 5656 5050 6868 9999 106106 102102 130130 120120 9898 7979 9898 9191 110110 9999 121121 113113 110110 8989 8787 9999 7676 9494 113113 106106 7878 8585 9797 8181 9292 8787 7070 6868 9999 103103 9797 104104 9090 9292 113113 105105 8686 7474 105105 6868 127127 131131 104104 117117 5656 112112 9292 106106 102102 104104 6666 7979 7676 6666 5757 9191 6363 8686 113113 8181 104104 9595 9898 9494 101101 6868 7777 8484 105105 104104 9191 7878 105105 7878 101101 9696 105105 128128 9494 104104 115115 9090 109109 9797 7474 8787 101101 101101 8484 8888 8989 8282 8787 9393 8383 8080 110110 106106 9090 102102 8787 108108 105105 8585 8282 118118 119119 112112 110110 102102 8181 108108 9595 9090 8080 8181 8282 8383 7373 8181 7272 8888 9898 119119 103103 115115 138138 116116 1616 109109 9191 110110 8080 7979 9191 7979 115115 118118 133133 9898 9393 122122 7676 105105 7272 8484 8181 8484 109109 9797 8383 109109 117117 8787 9191 9191 139139 114114 114114 133133 122122 109109 122122 110110 125125 104104 115115 114114 118118 122122 8585 105105 104104 8181 9595 112112 104104 100100 105105 8787 8989 9090 9797 9696 115115 130130 136136 109109 146146 118118 103103 100100 126126 121121 109109 102102 102102 8787 118118 6262 100100 128128 132132 7777 107107 109109 124124 117117 116116 8181 110110 9090 125125 131131 112112 129129 115115 112112 138138 9595 113113 6666 7373 114114 7575 109109 8585 116116 8282 7979 5454 103103 122122 117117 113113 122122 121121 113113 101101 8585 7070 8080 113113 117117 137137 134134 116116 114114 116116 108108 118118 8282 9393 9999 9595 100100 112112 9797 8080 8181 101101 123123 123123 149149 121121 114114 128128 114114 100100 109109 121121 117117 116116 8383 117117 131131 105105 120120 136136 8787 109109 105105 116116 9292 106106 8484 100100 112112 9898 111111 9393

第四步,重复第三步可以求得第二层上每一点的渗透率值,即可以得到第二层的渗透率分布情况,依次求出第三层上每一点的渗透率值,即可以获得所有层的渗透率值和渗透率分布情况,第二层和第三层上每一渗透率单元的渗透率值和渗透率分布情况如表6和表7所示。The fourth step, repeating the third step, the permeability value of each point on the second layer can be obtained, that is, the permeability distribution of the second layer can be obtained, and the permeability value of each point on the third layer can be obtained in turn, that is, The permeability values and permeability distributions of all layers are obtained. The permeability values and permeability distributions of each permeability unit on the second and third layers are shown in Tables 6 and 7.

表6第二层平面上渗透率分布表Table 6 Permeability distribution table on the second layer plane

Figure GDA0003752016910000121
Figure GDA0003752016910000121

Figure GDA0003752016910000131
Figure GDA0003752016910000131

表7第三层平面上渗透率分布表Table 7 Permeability distribution on the third layer plane

5656 7373 5454 5757 5757 6060 7070 8181 6565 7878 6565 6363 5353 6060 6060 6767 4747 6161 3636 3737 3737 4646 4242 4343 4646 4242 5050 5555 3535 2828 7474 5151 6262 5151 6565 5858 7171 7676 6666 6666 4848 5858 5959 5454 4848 6161 4343 5353 5656 3737 5050 4343 4747 5252 3838 5252 4949 3838 3030 3232 5858 7272 6666 8282 6868 8181 7272 6969 5757 7474 5454 5555 4848 4545 6565 4848 6060 6363 3838 4242 4343 5959 6060 3939 4141 5353 3838 4141 3636 3636 8787 8181 7575 7272 7676 6565 6969 6868 6060 7171 5656 6262 5454 6161 5757 5656 6666 4444 3434 5050 4848 5959 6363 4747 4747 4242 4848 4646 3434 4040 7373 6565 7979 7979 8383 7979 7272 7373 8181 5050 4848 6565 6767 4343 5454 7070 5858 5050 3434 3737 4545 3535 6565 5151 6262 5151 6161 6262 3737 3131 6262 7474 7979 8383 8181 7777 6767 7070 6161 5050 7171 6060 3737 5757 5252 5656 4747 4949 3636 3232 3939 3131 4444 3333 4141 4545 4646 3737 4747 4848 7777 7373 8585 6868 7070 6767 7676 6161 6363 5959 6868 4545 6767 4848 5353 3333 5151 4040 5252 4343 4343 4646 4646 4848 2828 6161 4646 2626 4040 3535 8080 8484 8787 8080 6060 7272 6464 6565 5858 5353 5757 7373 7373 7272 5656 4949 4646 5454 3232 5454 5151 5252 4949 4343 3232 4242 4343 2525 3232 3232 7979 6464 7676 6666 6161 6969 5555 5353 5757 6363 8080 6262 5252 5959 3838 4545 3333 5151 4545 4444 4646 5656 4444 4646 4343 5252 2525 4242 3434 2929 6969 8181 7777 7676 7979 7777 6060 6363 5959 5858 7373 6868 5353 7272 5353 4242 5555 4747 3333 4646 5656 5151 4848 5151 5858 5252 3434 3939 3232 3232 6767 6464 6666 6161 6262 7373 5656 6666 5151 5959 4747 5959 6262 7171 6060 5151 7171 4141 5151 5959 6464 4040 4343 4141 3737 3838 3434 4848 4242 5151 8181 6767 6767 5656 6161 6161 4747 5454 5151 5555 7575 4848 5353 6767 6161 5252 5252 5454 6363 3131 4949 5151 3131 4242 3636 4747 4242 4545 5555 4545 6868 8888 6060 7676 5959 5858 5757 5959 6161 6060 5252 5252 5858 6161 6060 7070 6666 4848 4545 4747 5050 2525 4949 4646 4141 4343 6060 3232 3434 5050 7272 7171 6262 5555 6060 6464 5959 6666 6767 4141 5757 4242 4646 6060 7979 6464 6060 7373 5353 3131 4545 2828 4343 4646 5353 4444 3939 4040 4040 5151 7272 7070 5454 6262 5656 6363 6464 5959 6363 6666 6565 5555 6060 4545 4646 5353 6868 5353 6464 4545 3939 5252 4444 4343 5151 3939 5050 4141 4242 6060 5757 7676 8181 6262 6262 6969 6464 4747 6767 5656 7373 6262 5252 3333 5151 6666 6363 6868 5454 5050 3737 5252 5757 4242 3232 4545 4242 4343 5252 5151 6363 6363 6666 4949 5858 6565 6464 5050 4949 4848 5858 5555 5757 4444 5959 5757 5555 5858 4343 4747 6161 5353 5555 5050 4848 4141 4040 5151 4646 6868 7171 5555 5050 7575 6464 6666 7272 6060 5353 4242 4242 4747 5050 6262 5858 5757 6060 5454 4343 6363 4343 5050 6060 4444 5050 5858 4747 5555 4646 4444 4949 6262 5959 5959 5959 5858 6060 5656 5353 4646 6464 5353 6666 4646 4141 7272 5555 6060 4545 5959 6161 5656 4747 4242 4444 4242 4848 4343 4848 4444 6868 4949 6464 7979 7171 6363 5656 5050 5050 4949 5757 5757 5353 6464 4747 5252 6060 5858 7777 5656 5252 5858 3939 5656 3434 4646 4747 5050 4141 2929 5050 4242 3939 5656 5757 5555 3838 5555 5454 2727 5858 3434 5050 4242 6363 6060 5858 7474 6363 5353 5555 5050 4949 5757 4242 7474 6262 4848 3939 5454 6868 5454 4343 4545 4949 4949 6464 5151 5858 5454 4848 5555 6161 6868 6767 6161 5353 5353 6060 4747 4141 5757 7272 6161 6262 5757 3939 3535 21twenty one 4545 4848 4545 5555 3636 4949 4949 5454 6262 3535 5858 4242 5656 4444 6969 5656 5353 6666 6464 5656 4343 4343 5555 4747 5757 5353 4242 5656 3232 4141 4444 6767 5656 5151 4141 4646 6363 3434 3737 5252 6161 5353 8181 6161 7474 7272 5656 5858 5454 6969 5454 6464 4848 5151 4646 4747 3838 4343 4343 2929 4343 6464 3939 6464 4444 6363 6969 5050 3434 4040 5252 5656 6363 6565 6464 6565 6363 7171 4141 5858 6565 5151 4949 5151 3838 5151 3939 4141 4848 4141 4545 6363 5656 5959 5656 6060 5050 5252 5757 4343 5656 5454 6565 5757 7777 5353 6666 6363 5757 6565 4949 4646 6565 6161 5252 4848 5959 5252 5555 4343 4747 7474 5656 4545 5454 6464 5252 4444 4949 4545 5454 5656 7070 7474 7777 8383 6464 7373 7575 6060 5959 4444 5858 4747 6262 4949 5050 5151 2828 4545 5050 6969 8080 7878 5959 7474 6767 5656 4242 5858 6767 6363 6161 7070 5151 6868 8383 5858 7575 5858 7676 5454 7070 6767 5757 6868 4848 4141 4343 5252 6464 7070 7878 6464 7676 7474 6262 4848 5454 5858 7777 6060 5959 7272 6363 7575 6060 7676 4747 6868 5151 6161 4646 6262 7070 6262 5858 4141 4949 5555 5656 8080 6767 7878 6767 6161 6767 6666 4141 5555 6161 6868 5757 7373 5858 6565 7373 6767 7272 7272 5959 5050 6161 4242 5454 5353 2828 4040 6262 5050 4545

第五步,为了减少渗透率单元的制作数量,简化仿真体的制作步骤,同时又在实验误差允许的范围内,划分不同的渗透率区间进行统计分析。对第三步和第四步中所得到的每层渗透率数据进行统计分析,确定其分布到不同渗透率区间的数量,这样就可以确定分布到不同渗透率区间的单元数量,每一层不同渗透率区间统计情况如表8至表10所示。In the fifth step, in order to reduce the number of permeability units and simplify the manufacturing steps of the simulation body, at the same time, within the allowable range of experimental errors, different permeability intervals are divided for statistical analysis. Statistical analysis is performed on the permeability data of each layer obtained in the third and fourth steps to determine the number of them distributed to different permeability intervals, so that the number of units distributed to different permeability intervals can be determined, and each layer is different. The statistics of permeability interval are shown in Table 8 to Table 10.

表8第一层不同渗透率区间统计表Table 8 Statistical table of different permeability intervals of the first layer

Figure GDA0003752016910000141
Figure GDA0003752016910000141

表9第二层不同渗透率区间统计表Table 9 Statistical table of different permeability intervals of the second layer

Figure GDA0003752016910000142
Figure GDA0003752016910000142

表10第三层不同渗透率区间统计表Table 10 Statistical table of different permeability intervals of the third layer

Figure GDA0003752016910000143
Figure GDA0003752016910000143

Figure GDA0003752016910000151
Figure GDA0003752016910000151

第六步,根据第五步所得到的分布在不同渗透率区间的渗透率单元数量,采用不同粒径和数目的石英砂按照不同的排列方式进行填充,并运用不同的胶结方式进行胶结,这样可以制得分布在不同渗透率区间的渗透率单元。In the sixth step, according to the number of permeability units distributed in different permeability intervals obtained in the fifth step, use quartz sand with different particle sizes and numbers to fill in different arrangements, and use different cementation methods for cementation, so that Permeability cells distributed in different permeability intervals can be prepared.

由表8的统计结果可知,在第一层中分布在41-45mD渗透率区间的渗透率单元的数量为31,选择一定粒径和数目的石英砂按照一定的排列方式和胶结方式制作渗透率分布在41-45mD之间的大小为12×12×10cm的仿真体,然后通过切割得到31个2×2×10cm的渗透率单元,即完成了分布在41-45mD渗透率区间的渗透率单元的制作,依次完成第一层所有渗透率区间的渗透率单元的制作。根据表9和表10的统计结果完成第二层和第三层的不同渗透率区间的渗透率单元的制作。From the statistical results in Table 8, it can be seen that the number of permeability units distributed in the 41-45mD permeability range in the first layer is 31. Select a certain particle size and number of quartz sand to make permeability according to a certain arrangement and cementation method. The simulation volume with a size of 12×12×10cm distributed between 41-45mD, and then 31 permeability units of 2×2×10cm are obtained by cutting, that is, the permeability units distributed in the 41-45mD permeability range are completed. The production of permeability units in all permeability ranges of the first layer is completed in turn. According to the statistical results in Table 9 and Table 10, the fabrication of permeability units in different permeability intervals of the second layer and the third layer is completed.

根据直角坐标系定义表5、表6和表7左下角的网格坐标为(1,1),右上角的网格坐标为(30,30)。由表5可以看出,在第一层中坐标为(1,1)网格的渗透率为123mD,其对应表8的渗透率区间为121-125mD,从该渗透率区间选取已经制作好的渗透率单元,排列在该网格原来的位置上,即该渗透率单元的坐标为(1,1)。在第一层中坐标为(1,2)网格的渗透率为103mD,其对应表8的渗透率区间为101-105mD,从该渗透率区间选取已经制作好的渗透率单元,排列在该网格原来的位置上,即该渗透率单元的坐标为(1,2),这样依次完成第一层中所有渗透率单元的排列。根据表6和表7,并且与表9和表10相结合,就可以完成第二层和第三层中所有渗透率单元的排列。这样每层900个渗透率单元根据第三步和第四步计算得到的渗透率的分布情况进行排列,依次排列3层,使其所模拟的岩石更加符合实际情况。According to the Cartesian coordinate system, the grid coordinates of the lower left corner of Table 5, Table 6 and Table 7 are defined as (1,1), and the grid coordinates of the upper right corner are (30,30). It can be seen from Table 5 that the permeability of the grid with coordinates (1, 1) in the first layer is 123mD, which corresponds to the permeability range of Table 8 of 121-125mD. The permeability unit is arranged at the original position of the grid, that is, the coordinate of the permeability unit is (1,1). In the first layer, the permeability of the grid with coordinates (1,2) is 103mD, and the permeability range corresponding to Table 8 is 101-105mD. Select the prepared permeability units from this permeability range and arrange them in the In the original position of the grid, that is, the coordinates of the permeability unit are (1, 2), so that the arrangement of all permeability units in the first layer is completed in turn. According to Tables 6 and 7, and in combination with Tables 9 and 10, the arrangement of all permeability cells in the second and third layers can be completed. In this way, 900 permeability units in each layer are arranged according to the distribution of permeability calculated in the third and fourth steps, and 3 layers are arranged in sequence, so that the simulated rocks are more in line with the actual situation.

之后将形成的仿真体,外层由环氧树脂胶结,并在其上布置单一五点法井组和安装第一螺纹接头、流量调节器、第二螺纹接头等装置,最后形成利用棋盘状仿真体模拟岩石非均质性的装置。The outer layer of the simulation body to be formed is glued with epoxy resin, and a single five-point method well group is arranged on it, and the first threaded joint, flow regulator, second threaded joint and other devices are installed on it, and finally a checkerboard shape is formed. A device for simulating rock heterogeneity.

Claims (2)

1. A method of making a checkerboard simulation in a device for simulating rock heterogeneity, comprising the steps of:
firstly, limiting the simulated plane size of unit bodies (11) with different permeabilities to be 50 multiplied by 50m, the length of a region to be simulated to be L and the width of the region to be simulated to be D, and calculating the number of units with different permeabilities of each layer to be N according to a formula (1);
Figure FDA0003752016900000011
secondly, collecting permeability data of all well points of the area to be simulated, establishing a known permeability database, wherein the number of wells is Q, the number of layers is P, the coordinates of each well on an XOY plane are (i, j), and the permeability value of each well on the z-th layer is K z (i,j);
Thirdly, dispersing the first layer permeability data obtained in the second step to obtain the permeability value of any point on the plane of the first layer, namely, knowing the distribution condition of the permeability on the first layer, and specifically calculating according to the following process:
firstly, according to the permeability value of the mth row of each well on the first layer, the permeability variation function between two wells with the distance h is calculated to be K by using a formula (2) z (h);
Wherein, the formula (2) is:
Figure FDA0003752016900000012
in the formula:
n (h) -the logarithm of two wells at a distance h;
introduction of an intermediate replacement variable x for facilitating the expression of a computational process 1 、x 2 And y and b 0 ,b 1 And b 2 (ii) a Based on the result of formula (2), a series of x can be obtained by using formula (3), formula (4) and formula (5) 1 、x 2 And y;
wherein, formula (3), formula (4) and formula (5) are respectively:
x 1 =h (3)
x 2 =-h 3 (4)
y=K z (h) (5)
then, the obtained x 1 、x 2 Substituting y into equation (6), fitting the data by linear programming method to obtain b 0 ,b 1 ,b 2
Wherein, the formula (6) is:
y=b 0 +b 1 x 1 +b 2 x 2 (6)
by comparing equation (6) and equation (7), equations (8), (9) and (10) can be obtained as follows:
Figure FDA0003752016900000021
Figure FDA0003752016900000022
C 0 =b 0 (9)
Figure FDA0003752016900000023
finally, a variation function equation of the permeability of the mth line on the first layer can be determined, as shown in formula (11), namely, half of the permeability variance of any two points on the mth line of the first layer is obtained, so that the permeability value after the dispersion on the mth line of the first layer can be solved, namely, the distribution condition of the permeability on the mth line of the first layer can be obtained;
wherein, formula (11) is:
Figure FDA0003752016900000024
in the formula:
a-variation, with a correlation between permeabilities within this range and no correlation between permeability outside the variation;
C 0 -a block value reflecting the variation amplitude of the permeability variation function;
C 1 the base station value, due to many factors, causes large variations in permeability over short distances;
h is the distance between two points;
the same method is used for obtaining a variation function equation of any line of the known partial permeability on the first layer, so that the permeability value after dispersion on the line can be obtained, namely the distribution situation of the permeability on the line can be obtained; then, based on the permeability value of each row in the transverse direction, solving a variation function equation of any column in the longitudinal direction, so that the permeability value of each point on the first layer can be known, and the permeability distribution condition of the first layer can be obtained;
fourthly, repeating the third step to obtain the permeability value of each point on the second layer, namely obtaining the permeability distribution condition of the second layer, and obtaining the permeability value and the permeability distribution condition of all the layers until the permeability value of each point on the P layer is obtained;
fifthly, in order to reduce the manufacturing number of permeability units, simplify the manufacturing steps of the simulation body, and divide different permeability intervals for statistical analysis within the allowable range of experimental error; performing statistical analysis on the permeability data of each layer obtained in the third step and the fourth step, and determining the number of the permeability data distributed to different permeability intervals, so that the number of units distributed to different permeability intervals can be determined;
and sixthly, cementing quartz sand with different granularities and epoxy resin to form permeability units distributed in different permeability intervals according to the number of the permeability units distributed in different permeability intervals obtained in the fifth step, arranging N units with different permeability in each layer according to the distribution conditions of the permeability calculated in the third step and the fourth step, and sequentially arranging the P layers to enable the simulated rock to better accord with the actual conditions.
2. A method of making a checkerboard simulation in a device for simulating rock heterogeneity, comprising the steps of:
firstly, limiting the simulated plane size of unit bodies (11) with different permeabilities to be 50 multiplied by 50m, the length of a region to be simulated to be L and the width of the region to be simulated to be D, and calculating the number of units with different permeabilities of each layer to be N according to a formula (1);
Figure FDA0003752016900000031
secondly, collecting permeability data of all well points of the area to be simulated, establishing a known permeability database, wherein the number of wells is Q, the number of layers is P, the coordinates of each well on an XOY plane are (i, j), and the permeability value of each well on the z-th layer is K z (i,j);
Thirdly, dispersing the first layer permeability data obtained in the second step to obtain the permeability value of any point on the plane of the first layer, namely, knowing the distribution condition of the permeability on the first layer, and specifically calculating according to the following process;
firstly, according to the permeability value of the mth row of each well on the first layer, the permeability variation function between two wells with the distance h is calculated to be K by using a formula (2) z (h);
Wherein, the formula (2) is:
Figure FDA0003752016900000041
in the formula:
n (h) -the logarithm of two wells at a distance h;
introduction of an intermediate replacement variable x for facilitating the expression of a computational process 1 、x 2 And y and b 0 ,b 1 And b 2 (ii) a Based on the result of formula (2), a series of x can be obtained by using formula (3), formula (4) and formula (5) 1 、x 2 And y;
wherein, formula (3), formula (4) and formula (5) are respectively:
x 1 =h (3)
x 2 =-h 3 (4)
y=K z (h) (5)
then, the obtained x 1 、x 2 Substituting y into equation (6), fitting data by linear programming method to obtain b 0 ,b 1 ,b 2
Wherein, the formula (6) is:
y=b 0 +b 1 x 1 +b 2 x 2 (6)
by comparing the formula (6) and the formula (7), the formula (8), the formula (9), and the formula (10) can be respectively:
Figure FDA0003752016900000042
Figure FDA0003752016900000043
C 0 =b 0 (9)
Figure FDA0003752016900000044
finally, a variation function equation of the permeability of the mth line on the first layer can be determined, as shown in formula (11), namely, half of the variance of the permeability of any two points on the mth line on the first layer is obtained, so that the permeability value after dispersion on the mth line on the first layer can be obtained, namely, the distribution condition of the permeability on the mth line on the first layer can be obtained;
wherein, formula (11) is:
Figure FDA0003752016900000051
in the formula:
a-variation, with a correlation between permeabilities within this range and no correlation between permeability outside the variation;
C 0 -a block value reflecting the variation amplitude of the permeability variation function;
C 1 the base station value, due to many factors, causes large variations in permeability over short distances;
h is the distance between two points;
the same method is used for obtaining a variation function equation of any line of the known partial permeability on the first layer, so that the permeability value after dispersion on the line can be obtained, namely the distribution situation of the permeability on the line can be obtained; then, based on the permeability value of each row in the transverse direction, solving a variation function equation of any column in the longitudinal direction, so that the permeability value of each point on the first layer can be known, and the permeability distribution condition of the first layer can be obtained;
fourthly, repeating the third step to obtain the permeability value of each point on the second layer, namely obtaining the permeability distribution condition of the second layer, and obtaining the permeability value and the permeability distribution condition of all the layers until the permeability value of each point on the P layer is obtained;
fifthly, according to the permeability values of all points on all the layers obtained in the third step and the fourth step and the distribution condition of the permeability, cementing quartz sand and epoxy resin with different granularities to form M units with different permeability, wherein M is obtained by calculation of a formula (12);
wherein, the formula (12) is:
M=NP (12)
and then arranging the N units with different permeabilities of each layer according to the permeability distribution obtained by calculation in the third step and the fourth step, and sequentially arranging the P layers to enable the simulated rock to better conform to the actual situation.
CN201910956450.0A 2019-10-10 2019-10-10 Method for manufacturing chessboard-like simulator in device for simulating rock heterogeneity Active CN110671100B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910956450.0A CN110671100B (en) 2019-10-10 2019-10-10 Method for manufacturing chessboard-like simulator in device for simulating rock heterogeneity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910956450.0A CN110671100B (en) 2019-10-10 2019-10-10 Method for manufacturing chessboard-like simulator in device for simulating rock heterogeneity

Publications (2)

Publication Number Publication Date
CN110671100A CN110671100A (en) 2020-01-10
CN110671100B true CN110671100B (en) 2022-08-30

Family

ID=69081348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910956450.0A Active CN110671100B (en) 2019-10-10 2019-10-10 Method for manufacturing chessboard-like simulator in device for simulating rock heterogeneity

Country Status (1)

Country Link
CN (1) CN110671100B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485096B (en) * 2020-11-16 2022-01-07 中国石油大学(北京) Method for making simulated formations with heterogeneous rock samples for geothermal testing

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1242881A1 (en) * 1999-10-12 2002-09-25 ExxonMobil Upstream Research Company Method and system for simulating a hydrocarbon-bearing formation
CN101446189A (en) * 2008-12-28 2009-06-03 大连理工大学 Supercritical carbon dioxide drive physical analogue device
CN101793137A (en) * 2010-01-29 2010-08-04 西南石油大学 Oil-water displacement efficiency experimental method of longitudinal and planar nonhomogeneous slab models
CN102095740A (en) * 2010-12-17 2011-06-15 中国石油天然气股份有限公司 CT scanning heterogeneous model test system
CN104005742A (en) * 2014-05-29 2014-08-27 东北石油大学 Method and device for simulating differential water injection of heterogeneous reservoir in laboratory
CN104091069A (en) * 2014-07-07 2014-10-08 中国海洋石油总公司 Method for determining oil driving efficiency and sweep coefficient of all layers and positions of heterogeneous reservoir stratum
CN104727814A (en) * 2015-02-14 2015-06-24 东北石油大学 Heterogeneous artificial core
CN104833618A (en) * 2015-02-14 2015-08-12 东北石油大学 Method and device for performing simulating profile control to heterogeneous reservoir in laboratory
CN105840160A (en) * 2016-04-03 2016-08-10 东北石油大学 Method and device for determining liquid output rules of commingled producing well
CN106014366A (en) * 2016-07-27 2016-10-12 东北石油大学 Indoor device capable of simulating injection and production in same well and using method
CN108414415A (en) * 2018-01-27 2018-08-17 东北石油大学 A kind of device and manufacturing method using Centimeter Level rock core simulated formation anisotropism

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863052B1 (en) * 2003-12-02 2006-02-24 Inst Francais Du Petrole METHOD FOR DETERMINING THE COMPONENTS OF A TENSEUR OF EFFECTIVE PERMEABILITY OF A POROUS ROCK
GB0723224D0 (en) * 2007-11-27 2008-01-09 Fujitsu Ltd A multi-level gris embedding process with uniform and non-uniform grid refinement for multigurid-fdtd electromagnetic solver
FR2940441B1 (en) * 2008-12-18 2010-12-24 Inst Francais Du Petrole METHOD FOR DETERMINING THE EVOLUTION OF PETROPHYSICAL PROPERTIES OF A ROCK DURING THE DIAGENESIS
CN102094642B (en) * 2010-12-17 2013-10-16 中国石油天然气股份有限公司 In-layer heterogeneous model oil-water displacement efficiency evaluation system
CN108518212B (en) * 2018-04-09 2020-10-16 西南石油大学 Method for calculating unsteady state yield of shale gas reservoir complex fracture network
CN109002574B (en) * 2018-06-06 2022-11-22 西安石油大学 A method for predicting development indexes of multi-layer reservoirs with pulse periodic water injection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1242881A1 (en) * 1999-10-12 2002-09-25 ExxonMobil Upstream Research Company Method and system for simulating a hydrocarbon-bearing formation
CN101446189A (en) * 2008-12-28 2009-06-03 大连理工大学 Supercritical carbon dioxide drive physical analogue device
CN101793137A (en) * 2010-01-29 2010-08-04 西南石油大学 Oil-water displacement efficiency experimental method of longitudinal and planar nonhomogeneous slab models
CN102095740A (en) * 2010-12-17 2011-06-15 中国石油天然气股份有限公司 CT scanning heterogeneous model test system
CN104005742A (en) * 2014-05-29 2014-08-27 东北石油大学 Method and device for simulating differential water injection of heterogeneous reservoir in laboratory
CN104091069A (en) * 2014-07-07 2014-10-08 中国海洋石油总公司 Method for determining oil driving efficiency and sweep coefficient of all layers and positions of heterogeneous reservoir stratum
CN104727814A (en) * 2015-02-14 2015-06-24 东北石油大学 Heterogeneous artificial core
CN104833618A (en) * 2015-02-14 2015-08-12 东北石油大学 Method and device for performing simulating profile control to heterogeneous reservoir in laboratory
CN105840160A (en) * 2016-04-03 2016-08-10 东北石油大学 Method and device for determining liquid output rules of commingled producing well
CN106014366A (en) * 2016-07-27 2016-10-12 东北石油大学 Indoor device capable of simulating injection and production in same well and using method
CN108414415A (en) * 2018-01-27 2018-08-17 东北石油大学 A kind of device and manufacturing method using Centimeter Level rock core simulated formation anisotropism

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
纵向非均质砂层内石油运移和聚集的模拟实验;马中良等;《中国石油勘探》;20081215(第06期);全文 *
非均质低渗透储层渗流特征实验研究;于倩男等;《西南石油大学学报(自然科学版)》;20180525(第03期);全文 *
非均质底水油藏水平井三维物理模拟实验;刘欣颖等;《石油学报》;20111115(第06期);全文 *
马中良等.纵向非均质砂层内石油运移和聚集的模拟实验.《中国石油勘探》.2008,(第06期), *

Also Published As

Publication number Publication date
CN110671100A (en) 2020-01-10

Similar Documents

Publication Publication Date Title
CN109522634B (en) Numerical analysis method for compact gas multistage volume fracturing horizontal well
CN110147561B (en) Method for predicting volume fracture network of tight oil and gas reservoir containing natural fracture
CN104616350B (en) Fracture hole type carbonate reservoir three-dimensional physical model method for building up
Kruger Determining areal permeability distribution by calculations
CN108414415B (en) Device for simulating formation heterogeneity by centimeter-level core and manufacturing method
CN105422071B (en) Evaluate the rational method of low-permeable heterogeneous gas reservoir fracture parameters of fractured horizontal wells
CN110671100B (en) Method for manufacturing chessboard-like simulator in device for simulating rock heterogeneity
CN106886046B (en) Method for determining available reserves of unproductive blocks of fracture-cavity gas reservoir
CN106291755B (en) A kind of areas Long Sheng low-grade fault law of development quantitative forecasting technique
CN104712330A (en) Well logging permeability interpretation method
CN104179498A (en) Zone-dividing saturation simulation method
CN105626056A (en) Method and device for determining three-dimensional stratum pore pressure of target area
CN103225506A (en) Method for establishing three-part automatic parallel-series electric conduction saturation degree model
CN110991084A (en) A Reservoir Permeability Calculation Method Based on Streamline Numerical Well Testing
CN115310381A (en) Fractured rock mass seepage field simulation method and terminal based on typical unit body calculation
CN114675323A (en) Viscoelastic wave frequency variation anisotropy forward modeling method for partially saturated rock
CN106223939A (en) Oil deposit numerical value determination method and device
He et al. A multi-layer SPH method to simulate water-soil coupling interaction-based on a new wall boundary model
CN114970235B (en) Geomechanical heterogeneous-anisotropic modeling method for fractured reservoirs
CN105928827B (en) Method for calculating optimal water content of fine-grained soil compaction test
CN111680380A (en) Full 3D fracturing design method based on spatial distribution of geomechanical features
CN111963148B (en) Method for determining pressure coefficient and drilling mud density of carbonate fracture-cavity type oil and gas reservoir
CN115201910B (en) Rock physical dynamic template establishment method, system, storage medium and equipment
CN118171520A (en) Ground stress inversion analysis method
CN118330176A (en) A method to improve the efficiency of multi-scale characterization test of aquifer hydraulic parameters

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant