[go: up one dir, main page]

CN110770160B - Flow channel structure device and its manufacturing method - Google Patents

Flow channel structure device and its manufacturing method Download PDF

Info

Publication number
CN110770160B
CN110770160B CN201780090943.XA CN201780090943A CN110770160B CN 110770160 B CN110770160 B CN 110770160B CN 201780090943 A CN201780090943 A CN 201780090943A CN 110770160 B CN110770160 B CN 110770160B
Authority
CN
China
Prior art keywords
layer
flow channel
material layer
substrate
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780090943.XA
Other languages
Chinese (zh)
Other versions
CN110770160A (en
Inventor
云全新
林建勋
董龙涛
汪天书
朱国丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BGI Shenzhen Co Ltd
Original Assignee
BGI Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BGI Shenzhen Co Ltd filed Critical BGI Shenzhen Co Ltd
Publication of CN110770160A publication Critical patent/CN110770160A/en
Application granted granted Critical
Publication of CN110770160B publication Critical patent/CN110770160B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

A flow channel structure device and method of making the same, the method comprising: providing a substrate (21) comprising a first portion (211) and a second portion (212) adjoining the first portion (211); forming a patterned first sacrificial layer (31) on the substrate (21), the first sacrificial layer (31) covering the second portion (212) and exposing the first portion (211); forming a first structural layer (41) on a first portion (211) of a substrate (21) and a first sacrificial layer (31); performing a first polishing process to expose the first sacrificial layer (31); removing the first sacrificial layer (31) to expose an upper surface of the second portion (212) of the substrate (21) and a side surface of the first structural layer (41); forming a second sacrificial layer (32) on a part of the upper surface of the second portion (212) of the substrate (21), wherein the second sacrificial layer (32) covers a side of the first structural layer (41); forming a second structural layer (42) on the second portion (212) of the substrate (21), the second sacrificial layer (32) and the first structural layer (41); performing a second polishing process to expose a second sacrificial layer (32); and removing the second sacrificial layer (32) by using a selective etching process to form a flow channel (50); the method can realize the flow channel structure device with the vertical flow channel.

Description

流道结构器件及其制造方法Flow channel structure device and its manufacturing method

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种流道结构器件及其制造方法。The present invention relates to the technical field of semiconductors, in particular to a flow channel structure device and a manufacturing method thereof.

背景技术Background technique

基于微纳流道的微纳流控分析技术,在生化分析、基因测序等领域,正受到越来越多的研究和应用。微纳流道器件与集成电路(Integrated Circuit,简称为IC)的结合,也将有助于提升微分析系统的自动化和小型化,更好地拓展其应用空间。在某些应用中,需要在微纳流道中嵌入电极材料,在某些设计中,需要具有高深宽比的纳米流道。Micro-nanofluidic analysis technology based on micro-nano flow channel is receiving more and more research and application in the fields of biochemical analysis and gene sequencing. The combination of micro-nano flow channel device and integrated circuit (Integrated Circuit, referred to as IC) will also help to improve the automation and miniaturization of the micro-analysis system, and better expand its application space. In some applications, electrode materials need to be embedded in the micro-nano channels, and in some designs, nano-channels with high aspect ratios are required.

传统方法中,可以采用电子束光刻或者激光光刻,并结合各向异性刻蚀工艺实现纳米流道。但是直接电子束或激光光刻方法的效率低、尺寸可调性差,且在金属材料上很难实现高深宽比,通常只有1左右。In the traditional method, electron beam lithography or laser lithography can be used in combination with anisotropic etching process to realize nano-channels. However, direct electron beam or laser lithography methods have low efficiency and poor size tunability, and it is difficult to achieve high aspect ratios on metal materials, usually only about 1.

现有技术中也可以采用侧墙法实现上述微纳流道结构。但是侧墙法必须依赖半导体材料侧墙支撑结构实现结构互联与信号引出,这会带来更多寄生效应,并最终会影响检测信号的质量,且工艺热预算高,不利于与CMOS芯片的集成。例如,现有技术中大部分电极引出需要依赖拼接的金属互联线(例如典型材料是铝和铜)或半导体互连线(例如典型材料是多晶硅)与电极材料形成合金结构引出。但是合金结构存在以下缺点:(1)合金过程需要额外热处理工艺,将增加工艺热预算,不利于在IC芯片上实施工艺集成,以典型的多晶硅互联工艺为例,需要多晶硅沉积工艺(温度通常高于600℃)、离子注入与激活(通常需要550℃以上)以及金属半导体合金(通常需要400℃以上)等热预算比较高的工艺技术;(2)合金体将会引入额外的接触电阻,这将会降低器件性能。此外,现有技术中还存在金属引线的横向流道结构,但是这样的横向流道结构中,金属电极分别在流道的上下两侧相对分布,会影响其应用范围,比如,其无法用于包含发光的应用,因为光信号将被上下电极挡住。而且,这样的横向流道结构还限制了在芯片上的制造密度。In the prior art, the sidewall method can also be used to realize the above-mentioned micro-nano flow channel structure. However, the sidewall method must rely on the sidewall support structure of semiconductor materials to realize structural interconnection and signal extraction, which will bring more parasitic effects and ultimately affect the quality of the detection signal, and the process thermal budget is high, which is not conducive to integration with CMOS chips. . For example, most of the electrode leads in the prior art need to rely on spliced metal interconnect lines (eg, typical materials are aluminum and copper) or semiconductor interconnect lines (eg, typical materials are polysilicon) and electrode materials to form alloy structure leads. However, the alloy structure has the following disadvantages: (1) The alloy process requires an additional heat treatment process, which will increase the process thermal budget and is not conducive to the implementation of process integration on the IC chip. Taking the typical polysilicon interconnect process as an example, a polysilicon deposition process (the temperature is usually high (600℃), ion implantation and activation (usually above 550℃), and metal-semiconductor alloys (usually above 400℃) with relatively high thermal budget; (2) the alloy body will introduce additional contact resistance, which will degrade device performance. In addition, there is also a lateral flow channel structure of metal leads in the prior art, but in such a lateral flow channel structure, the metal electrodes are relatively distributed on the upper and lower sides of the flow channel, which will affect its application range. For example, it cannot be used for Include light-emitting applications, as the light signal will be blocked by the upper and lower electrodes. Moreover, such a lateral flow channel structure also limits the fabrication density on the chip.

现有技术中还可以通过调节金属溅射角度实现纳米间隙结构。在该溅射工艺中,粒子溅射方向与衬底基片表面存在一定角度,通过调整角度,可以在预先制备的沟槽底部产生溅射的死角,从而获得纳米间隙流道结构,但工艺可控性和尺寸可调性差。In the prior art, the nanogap structure can also be realized by adjusting the metal sputtering angle. In this sputtering process, the sputtering direction of the particles is at a certain angle with the surface of the substrate. By adjusting the angle, a dead space for sputtering can be generated at the bottom of the pre-prepared trench, thereby obtaining a nano-gap flow channel structure. Poor controllability and size adjustability.

发明内容SUMMARY OF THE INVENTION

本发明的发明人发现上述现有技术中存在问题,并因此针对所述问题中的至少一个问题提出了一种新的技术方案。The inventors of the present invention found that there are problems in the above-mentioned prior art, and therefore proposed a new technical solution for at least one of the problems.

根据本发明的第一方面,提供了一种流道结构器件的制造方法,包括:提供基片,所述基片包括第一部分和与所述第一部分邻接的第二部分;在所述基片上形成图形化的第一牺牲层,所述第一牺牲层覆盖所述第二部分且露出所述第一部分;在所述基片的第一部分和所述第一牺牲层上形成第一结构层;在形成所述第一结构层之后,执行第一抛光处理以露出所述第一牺牲层;去除所述第一牺牲层以露出所述基片的第二部分的上表面和所述第一结构层的侧面;在所述基片的第二部分的部分上表面上形成第二牺牲层,其中所述第二牺牲层覆盖所述第一结构层的被露出的侧面;在所述基片的第二部分、所述第二牺牲层和所述第一结构层上形成第二结构层;在形成所述第二结构层之后,执行第二抛光处理以露出所述第二牺牲层;以及利用选择性刻蚀工艺去除所述第二牺牲层以形成流道。According to a first aspect of the present invention, there is provided a method for manufacturing a flow channel structure device, comprising: providing a substrate, the substrate including a first part and a second part adjacent to the first part; on the substrate forming a patterned first sacrificial layer, the first sacrificial layer covering the second part and exposing the first part; forming a first structure layer on the first part of the substrate and the first sacrificial layer; After forming the first structure layer, a first polishing process is performed to expose the first sacrificial layer; the first sacrificial layer is removed to expose the upper surface of the second portion of the substrate and the first structure the side of the layer; a second sacrificial layer is formed on a part of the upper surface of the second part of the substrate, wherein the second sacrificial layer covers the exposed side of the first structural layer; on the side of the substrate forming a second structure layer on the second part, the second sacrificial layer and the first structure layer; after forming the second structure layer, performing a second polishing process to expose the second sacrificial layer; and using A selective etching process removes the second sacrificial layer to form flow channels.

在一个实施例中,在执行所述第二抛光处理的步骤中,还露出所述第一结构层和所述第二结构层;在利用选择性刻蚀工艺去除所述第二牺牲层之前,所述方法还包括:在所述第二牺牲层、所述第一结构层和所述第二结构层上形成盖帽层。In one embodiment, in the step of performing the second polishing process, the first structural layer and the second structural layer are further exposed; before the second sacrificial layer is removed by a selective etching process, The method also includes forming a capping layer on the second sacrificial layer, the first structural layer, and the second structural layer.

在一个实施例中,所述形成第一结构层的步骤包括:在所述基片的第一部分和所述第一牺牲层上形成第一材料层,其中所述第一材料层覆盖所述第一牺牲层的侧面;以及在所述第一材料层上形成第一支撑层;其中,所述第一结构层包括:所述第一材料层和所述第一支撑层;所述形成第二结构层的步骤包括:在所述基片的第二部分、所述第二牺牲层和所述第一结构层上形成第二材料层,所述第二材料层覆盖所述第二牺牲层的侧面;以及在所述第二材料层上形成第二支撑层;其中,所述第二结构层包括:所述第二材料层和所述第二支撑层。In one embodiment, the step of forming the first structural layer includes: forming a first material layer on the first portion of the substrate and the first sacrificial layer, wherein the first material layer covers the first material layer. A side surface of a sacrificial layer; and forming a first support layer on the first material layer; wherein, the first structure layer includes: the first material layer and the first support layer; the forming a second The step of the structural layer includes: forming a second material layer on the second portion of the substrate, the second sacrificial layer and the first structural layer, the second material layer covering the second sacrificial layer. and forming a second support layer on the second material layer; wherein the second structure layer includes: the second material layer and the second support layer.

在一个实施例中,在去除所述第一牺牲层以露出所述第一结构层的侧面的步骤中,所露出的所述第一结构层的侧面为所述第一材料层的侧面;在形成第二牺牲层的步骤中,所述第二牺牲层覆盖所述第一材料层的被露出的侧面。In one embodiment, in the step of removing the first sacrificial layer to expose the side surface of the first structure layer, the exposed side surface of the first structure layer is the side surface of the first material layer; in In the step of forming the second sacrificial layer, the second sacrificial layer covers the exposed side surface of the first material layer.

在一个实施例中,在执行所述第二抛光处理的步骤中,还露出所述第一材料层、所述第一支撑层、所述第二材料层和所述第二支撑层;在利用选择性刻蚀工艺去除所述第二牺牲层之前,所述方法还包括:在所述第二牺牲层、所述第一材料层、所述第一支撑层、所述第二材料层和所述第二支撑层上形成盖帽层。In one embodiment, in the step of performing the second polishing process, the first material layer, the first support layer, the second material layer and the second support layer are further exposed; Before removing the second sacrificial layer by a selective etching process, the method further includes: removing the second sacrificial layer, the first material layer, the first support layer, the second material layer and the second sacrificial layer. A cap layer is formed on the second support layer.

在一个实施例中,所述盖帽层的材料包括:绝缘介质材料或半导体材料;所述盖帽层的厚度范围为1纳米至10微米。In one embodiment, the material of the capping layer includes: an insulating dielectric material or a semiconductor material; the thickness of the capping layer ranges from 1 nanometer to 10 micrometers.

在一个实施例中,在利用选择性刻蚀工艺去除所述第二牺牲层的步骤中,从所述第二牺牲层的边缘注入选择性刻蚀液以去除所述第二牺牲层。In one embodiment, in the step of removing the second sacrificial layer by a selective etching process, a selective etching solution is injected from the edge of the second sacrificial layer to remove the second sacrificial layer.

在一个实施例中,在利用选择性刻蚀工艺去除所述第二牺牲层之前,所述方法还包括:对所述盖帽层进行刻蚀以形成贯穿所述盖帽层且露出所述第二牺牲层的通孔;其中,在利用选择性刻蚀工艺去除所述第二牺牲层的步骤中,从所述通孔注入选择性刻蚀液以去除所述第二牺牲层。In one embodiment, prior to removing the second sacrificial layer using a selective etching process, the method further includes: etching the capping layer to form through the capping layer and exposing the second sacrificial layer A through hole of the layer; wherein, in the step of removing the second sacrificial layer by a selective etching process, a selective etching solution is injected from the through hole to remove the second sacrificial layer.

在一个实施例中,所述第一材料层的一部分在所述第一支撑层与所述流道之间,所述第一材料层的另一部分在所述第一支撑层与所述基片的第一部分之间;所述第二材料层的一部分在所述第二支撑层与所述流道之间,所述第二材料层的另一部分在所述第二支撑层与所述基片的第二部分之间。In one embodiment, a part of the first material layer is between the first support layer and the flow channel, and another part of the first material layer is between the first support layer and the substrate between the first part of the second material layer; a part of the second material layer is between the second support layer and the flow channel, and another part of the second material layer is between the second support layer and the substrate between the second part.

在一个实施例中,所述第一材料层的材料包括:金属材料或半导体材料;所述第二材料层的材料包括:金属材料或半导体材料;其中,所述第一材料层的在所述第一支撑层与所述流道之间的部分作为所述流道结构器件的第一电极;所述第一材料层的在所述第一支撑层与所述基片的第一部分之间的部分作为所述第一电极的第一引线;所述第二材料层的在所述第二支撑层与所述流道之间的部分作为所述流道结构器件的第二电极;所述第二材料层的在所述第二支撑层与所述基片的第二部分之间的部分作为所述第二电极的第二引线。In one embodiment, the material of the first material layer includes: a metal material or a semiconductor material; the material of the second material layer includes: a metal material or a semiconductor material; wherein, the material of the first material layer in the The part between the first support layer and the flow channel serves as the first electrode of the flow channel structure device; the part of the first material layer between the first support layer and the first part of the substrate part of the first lead of the first electrode; part of the second material layer between the second support layer and the flow channel as the second electrode of the flow channel structure device; the first The portion of the two-material layer between the second support layer and the second portion of the substrate serves as the second lead of the second electrode.

在一个实施例中,所述第一材料层的材料和所述第二材料层的材料分别包括:绝缘介质材料。In one embodiment, the material of the first material layer and the material of the second material layer respectively include: an insulating dielectric material.

在一个实施例中,所述第一牺牲层的厚度根据所需要的流道的高度来确定;所述第一牺牲层的厚度范围为100纳米至100微米。In one embodiment, the thickness of the first sacrificial layer is determined according to the required height of the flow channel; the thickness of the first sacrificial layer ranges from 100 nanometers to 100 micrometers.

在一个实施例中,所述第二牺牲层的厚度根据所需要的流道的宽度来确定;所述第二牺牲层的厚度范围为0.1纳米至1微米。In one embodiment, the thickness of the second sacrificial layer is determined according to the required width of the flow channel; the thickness of the second sacrificial layer ranges from 0.1 nanometer to 1 micrometer.

在一个实施例中,所述第一材料层的厚度范围为1纳米至500纳米;所述第一支撑层的厚度范围为100纳米至100微米;所述第二材料层的厚度范围为1纳米至500纳米;所述第二支撑层的厚度范围为100纳米至100微米。In one embodiment, the thickness of the first material layer is in the range of 1 nanometer to 500 nanometers; the thickness of the first support layer is in the range of 100 nanometers to 100 micrometers; the thickness of the second material layer is in the range of 1 nanometer to 500 nanometers; the thickness of the second support layer ranges from 100 nanometers to 100 micrometers.

在上述制造方法中,在基片上形成图形化的第一牺牲层;在基片的第一部分和第一牺牲层上形成第一结构层;执行第一抛光处理以露出第一牺牲层;去除第一牺牲层以露出基片的第二部分的上表面和第一结构层的侧面;在基片的第二部分的部分上表面上形成第二牺牲层;在基片的第二部分、第二牺牲层和第一结构层上形成第二结构层;在形成第二结构层之后,执行第二抛光处理以露出第二牺牲层;以及利用选择性刻蚀工艺去除所述第二牺牲层以形成流道。本发明的上述制造方法可以形成具有垂直流道的流道结构器件,而且上述制造方法能够降低工艺热预算,便于流道结构器件与CMOS芯片的集成。In the above manufacturing method, a patterned first sacrificial layer is formed on a substrate; a first structural layer is formed on a first portion of the substrate and the first sacrificial layer; a first polishing process is performed to expose the first sacrificial layer; a sacrificial layer to expose the upper surface of the second part of the substrate and the side surface of the first structural layer; a second sacrificial layer is formed on part of the upper surface of the second part of the substrate; on the second part of the substrate, the second forming a second structure layer on the sacrificial layer and the first structure layer; after forming the second structure layer, performing a second polishing process to expose the second sacrificial layer; and removing the second sacrificial layer using a selective etching process to form runner. The above-mentioned manufacturing method of the present invention can form a flow channel structure device with vertical flow channels, and the above-mentioned manufacturing method can reduce the thermal budget of the process and facilitate the integration of the flow channel structure device and the CMOS chip.

进一步地,由于上述制造方法中,第一牺牲层的厚度和第二牺牲层的厚度可以根据设计需要来确定,因此可以实现高深宽比的流道结构。Further, in the above manufacturing method, the thickness of the first sacrificial layer and the thickness of the second sacrificial layer can be determined according to design requirements, so a flow channel structure with a high aspect ratio can be realized.

进一步地,在第一材料层和第二材料层分别采用金属或半导体等导电材料的情况下,第一材料层可以包括第一电极和第一引线,第二材料层可以包括第二电极和第二引线,由于第一材料层和第二材料层分别整体地形成,因此,相比现有技术,第一电极与第一引线之间可以减小接触电阻,第二电极与第二引线之间也可以减小接触电阻,从而可以提高器件性能。Further, when the first material layer and the second material layer are respectively made of conductive materials such as metal or semiconductor, the first material layer may include a first electrode and a first lead, and the second material layer may include a second electrode and a first lead. Two leads, since the first material layer and the second material layer are integrally formed respectively, therefore, compared with the prior art, the contact resistance between the first electrode and the first lead can be reduced, and the contact resistance between the second electrode and the second lead can be reduced. Contact resistance can also be reduced, which can improve device performance.

根据本发明的第二方面,提供了一种流道结构器件,包括:基片,所述基片包括第一部分和与所述第一部分邻接的第二部分;在所述基片上的第一结构层和第二结构层;其中,所述第一结构层包括:在所述基片的第一部分上的第一材料层和在所述第一材料层上的第一支撑层,所述第二结构层包括:在所述基片的第二部分上的第二材料层和在所述第二材料层上的第二支撑层;在所述第一材料层与所述第二材料层之间的流道;所述第一支撑层和所述第二支撑层分别在所述流道的两侧;其中,所述第一材料层的一部分在所述第一支撑层与所述流道之间,所述第一材料层的另一部分在所述第一支撑层与所述基片的第一部分之间;所述第二材料层的一部分在所述第二支撑层与所述流道之间,所述第二材料层的另一部分在所述第二支撑层与所述基片的第二部分之间。According to a second aspect of the present invention, there is provided a flow channel structure device, comprising: a substrate including a first portion and a second portion adjacent to the first portion; a first structure on the substrate layer and a second structural layer; wherein the first structural layer comprises: a first material layer on a first portion of the substrate and a first support layer on the first material layer, the second The structural layer includes: a second material layer on the second portion of the substrate and a second support layer on the second material layer; between the first material layer and the second material layer The first support layer and the second support layer are respectively on both sides of the flow channel; wherein, a part of the first material layer is between the first support layer and the flow channel. and another part of the first material layer is between the first support layer and the first part of the substrate; a part of the second material layer is between the second support layer and the flow channel and another portion of the second material layer is between the second support layer and the second portion of the substrate.

在一个实施例中,所述流道结构器件还包括:覆盖在所述第一材料层、所述第一支撑层、所述第二材料层和所述第二支撑层上的盖帽层;其中,所述盖帽层覆盖在所述流道之上。In one embodiment, the flow channel structure device further comprises: a cap layer covering the first material layer, the first support layer, the second material layer and the second support layer; wherein , the cap layer covers the flow channel.

在一个实施例中,所述盖帽层的材料包括:绝缘介质材料或半导体材料;所述盖帽层的厚度范围为1纳米至10微米。In one embodiment, the material of the capping layer includes: an insulating dielectric material or a semiconductor material; the thickness of the capping layer ranges from 1 nanometer to 10 micrometers.

在一个实施例中,所述流道结构器件还包括:贯穿所述盖帽层且连通到所述流道的通孔。In one embodiment, the flow channel structure device further includes: a through hole penetrating the cap layer and communicating with the flow channel.

在一个实施例中,所述第一材料层的材料包括:金属材料或半导体材料;所述第二材料层的材料包括:金属材料或半导体材料;其中,所述第一材料层的在所述第一支撑层与所述流道之间的部分作为所述流道结构器件的第一电极;所述第一材料层的在所述第一支撑层与所述基片的第一部分之间的部分作为所述第一电极的第一引线;所述第二材料层的在所述第二支撑层与所述流道之间的部分作为所述流道结构器件的第二电极;所述第二材料层的在所述第二支撑层与所述基片的第二部分之间的部分作为所述第二电极的第二引线。In one embodiment, the material of the first material layer includes: a metal material or a semiconductor material; the material of the second material layer includes: a metal material or a semiconductor material; wherein, the material of the first material layer in the The part between the first support layer and the flow channel serves as the first electrode of the flow channel structure device; the part of the first material layer between the first support layer and the first part of the substrate part of the first lead of the first electrode; part of the second material layer between the second support layer and the flow channel as the second electrode of the flow channel structure device; the first The portion of the two-material layer between the second support layer and the second portion of the substrate serves as the second lead of the second electrode.

在一个实施例中,所述第一材料层的材料和所述第二材料层的材料分别包括:绝缘介质材料。In one embodiment, the material of the first material layer and the material of the second material layer respectively include: an insulating dielectric material.

在一个实施例中,所述流道的高度范围为100纳米至100微米;所述流道的宽度范围为0.1纳米至1微米。In one embodiment, the height of the flow channel is in the range of 100 nanometers to 100 micrometers; the width of the flow channel is in the range of 0.1 nanometers to 1 micrometer.

在一个实施例中,所述第一材料层的厚度范围为1纳米至500纳米;所述第一支撑层的厚度范围为100纳米至100微米;所述第二材料层的厚度范围为1纳米至500纳米;所述第二支撑层的厚度范围为100纳米至100微米。In one embodiment, the thickness of the first material layer is in the range of 1 nanometer to 500 nanometers; the thickness of the first support layer is in the range of 100 nanometers to 100 micrometers; the thickness of the second material layer is in the range of 1 nanometer to 500 nanometers; the thickness of the second support layer ranges from 100 nanometers to 100 micrometers.

本发明上述实施例的流道结构器件具有垂直流道,这可以提高在芯片上的流道的制造密度,降低制造和应用成本等。The flow channel structure device of the above embodiments of the present invention has vertical flow channels, which can improve the manufacturing density of the flow channels on the chip, and reduce the manufacturing and application costs.

进一步地,上述流道结构器件可以实现高深宽比的流道结构。Further, the above-mentioned flow channel structure device can realize a flow channel structure with a high aspect ratio.

进一步地,在第一材料层和第二材料层分别采用金属或半导体等导电材料的情况下,第一材料层可以包括第一电极和第一引线,第二材料层可以包括第二电极和第二引线,由于第一材料层和第二材料层分别整体地形成,因此,相比现有技术,第一电极与第一引线之间可以减小接触电阻,第二电极与第二引线之间也可以减小接触电阻,从而可以提高器件性能。Further, when the first material layer and the second material layer are respectively made of conductive materials such as metal or semiconductor, the first material layer may include a first electrode and a first lead, and the second material layer may include a second electrode and a first lead. Two leads, since the first material layer and the second material layer are integrally formed respectively, therefore, compared with the prior art, the contact resistance between the first electrode and the first lead can be reduced, and the contact resistance between the second electrode and the second lead can be reduced. Contact resistance can also be reduced, which can improve device performance.

根据本发明的第三方面,提供了一种流道传感器,包括:如前所述的流道结构器件。According to a third aspect of the present invention, a flow channel sensor is provided, comprising: the aforementioned flow channel structure device.

根据本发明的第四方面,提供了一种生物化学分析设备,包括:如前所述的流道结构器件。According to a fourth aspect of the present invention, a biochemical analysis device is provided, comprising: the aforementioned flow channel structure device.

根据本发明的第五方面,提供了一种用于分子检测的芯片,包括:如前所述流道结构器件、信号收集单元和信号处理单元;其中,待检测样品被加入到所述流道结构器件的流道中,在所述流道结构器件的电极被施加电激励情况下,所述待检测样品中的目标分子在电激励作用下产生电信号或光信号;所述信号收集单元用于收集所述电信号或所述光信号,并将所述电信号或所述光信号传输到所述信号处理单元;所述信号处理单元用于对所述电信号或所述光信号进行信号处理,识别出所述目标分子的信息。According to a fifth aspect of the present invention, there is provided a chip for molecular detection, comprising: a flow channel structure device, a signal collection unit and a signal processing unit as described above; wherein a sample to be detected is added to the flow channel In the flow channel of the structural device, when the electrodes of the flow channel structural device are applied with electrical excitation, the target molecules in the sample to be detected generate electrical signals or optical signals under the action of electrical excitation; the signal collection unit is used for collecting the electrical signal or the optical signal, and transmitting the electrical signal or the optical signal to the signal processing unit; the signal processing unit is used for performing signal processing on the electrical signal or the optical signal , to identify the information of the target molecule.

根据本发明的第六方面,提供了一种分子检测方法,包括:使用如前所述的芯片进行分子检测。According to a sixth aspect of the present invention, there is provided a molecular detection method, comprising: using the aforementioned chip for molecular detection.

在一个实施例中,使用所述芯片进行分子检测的步骤包括:对待检测样品进行处理;将所述待检测样品加入到所述芯片中;对所述芯片中的流道结构器件中的电极施加电激励,使得所述待检测样品中的目标分子在电激励作用下产生电信号或光信号;以及所述芯片的所述信号处理单元通过所述信号收集单元获得所述电信号或所述光信号,并对所述电信号或所述光信号进行信号处理,识别出所述目标分子的信息。In one embodiment, the step of using the chip for molecular detection includes: processing the sample to be detected; adding the sample to be detected into the chip; applying the application to electrodes in the flow channel structure device in the chip Electrical excitation, so that the target molecule in the sample to be detected generates an electrical signal or an optical signal under the action of electrical excitation; and the signal processing unit of the chip obtains the electrical signal or the optical signal through the signal collection unit signal, and perform signal processing on the electrical signal or the optical signal to identify the information of the target molecule.

在上述实施例中,通过使用包含本发明实施例的流道结构器件的芯片实现了分子检测的应用。In the above-mentioned embodiments, the application of molecular detection is realized by using the chip including the flow channel structure device of the embodiment of the present invention.

通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。Other features and advantages of the present invention will become apparent from the following detailed description of exemplary embodiments of the present invention with reference to the accompanying drawings.

附图说明Description of drawings

构成说明书的一部分的附图描述了本发明的实施例,并且连同说明书一起用于解释本发明的原理。The accompanying drawings, which form a part of the specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.

参照附图,根据下面的详细描述,可以更加清楚地理解本发明,其中:The present invention may be more clearly understood from the following detailed description with reference to the accompanying drawings, wherein:

图1是示出根据本发明一个实施例的流道结构器件的制造方法的流程图。FIG. 1 is a flowchart illustrating a method of manufacturing a flow channel structure device according to an embodiment of the present invention.

图2至图10是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中若干阶段的结构的横截面图。2 to 10 are cross-sectional views schematically showing structures at several stages in a manufacturing process of a flow channel structure device according to an embodiment of the present invention.

图11是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中一个阶段的结构的横截面图。11 is a cross-sectional view schematically showing the structure of a stage in a manufacturing process of a flow channel structure device according to another embodiment of the present invention.

图12是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中一个阶段的结构的俯视图。FIG. 12 is a plan view schematically showing the structure of a stage in a manufacturing process of a flow channel structure device according to another embodiment of the present invention.

图13是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中一个阶段的结构的横截面图。13 is a cross-sectional view schematically showing the structure of a stage in a manufacturing process of a flow channel structure device according to another embodiment of the present invention.

图14至图22是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中若干阶段的结构的横截面图。14 to 22 are cross-sectional views schematically showing structures of several stages in a manufacturing process of a flow channel structure device according to another embodiment of the present invention.

图23是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中一个阶段的结构的横截面图。23 is a cross-sectional view schematically showing the structure of a stage in a manufacturing process of a flow channel structure device according to another embodiment of the present invention.

图24是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中一个阶段的结构的横截面图。24 is a cross-sectional view schematically showing the structure of a stage in a manufacturing process of a flow channel structure device according to another embodiment of the present invention.

图25是示意性地示出根据本发明一个实施例的用于分子检测的芯片的结构图。FIG. 25 is a structural diagram schematically showing a chip for molecular detection according to an embodiment of the present invention.

图26是示出根据本发明一个实施例的分子检测方法的流程图。Figure 26 is a flow chart illustrating a molecular detection method according to one embodiment of the present invention.

具体实施方式Detailed ways

现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangement of components and steps, the numerical expressions and numerical values set forth in these embodiments do not limit the scope of the invention unless specifically stated otherwise.

同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。Meanwhile, it should be understood that, for the convenience of description, the dimensions of various parts shown in the accompanying drawings are not drawn in an actual proportional relationship.

以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses.

对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。Techniques, methods, and apparatus known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods, and apparatus should be considered part of the specification.

在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。In all examples shown and discussed herein, any specific value should be construed as illustrative only and not as limiting. Accordingly, other examples of exemplary embodiments may have different values.

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further discussion in subsequent figures.

图1是示出根据本发明一个实施例的流道结构器件的制造方法的流程图。图2至图10是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中若干阶段的结构的横截面图。下面结合图1以及图2至图10详细描述根据本发明一个实施例的流道结构器件的制造过程。FIG. 1 is a flowchart illustrating a method of manufacturing a flow channel structure device according to an embodiment of the present invention. 2 to 10 are cross-sectional views schematically showing structures at several stages in a manufacturing process of a flow channel structure device according to an embodiment of the present invention. The manufacturing process of the flow channel structure device according to an embodiment of the present invention will be described in detail below with reference to FIG. 1 and FIGS. 2 to 10 .

如图1所示,在步骤S101,提供基片,该基片包括第一部分和与该第一部分邻接的第二部分。As shown in FIG. 1, in step S101, a substrate is provided, the substrate including a first portion and a second portion adjacent to the first portion.

图2是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S101的结构的横截面图。如图2所示,提供基片21,该基片21可以包括第一部分211和与该第一部分211邻接的第二部分212。例如该基片可以包括:半导体衬底(例如硅、锗等)、绝缘衬底(例如石英、氮化硅等)、已集成了IC电路的晶圆或者这些衬底的任意组合。FIG. 2 is a cross-sectional view schematically showing a structure at step S101 in a manufacturing process of a flow channel structure device according to an embodiment of the present invention. As shown in FIG. 2 , a substrate 21 is provided, which may include a first portion 211 and a second portion 212 adjoining the first portion 211 . For example, the substrate may include: a semiconductor substrate (eg, silicon, germanium, etc.), an insulating substrate (eg, quartz, silicon nitride, etc.), a wafer with integrated IC circuits, or any combination of these substrates.

需要说明的是,图2中的虚线仅是为了方便示出第一部分和第二部分,实际中并不一定存在该线,以下附图类似。It should be noted that the dotted line in FIG. 2 is only for the convenience of illustrating the first part and the second part, and the line does not necessarily exist in practice, and the following drawings are similar.

回到图1,在步骤S102,在基片上形成图形化的第一牺牲层,该第一牺牲层覆盖第二部分且露出第一部分。Returning to FIG. 1 , in step S102 , a patterned first sacrificial layer is formed on the substrate, and the first sacrificial layer covers the second portion and exposes the first portion.

图3是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S102的结构的横截面图。如图3所示,在基片21上形成图形化的第一牺牲层31,该第一牺牲层31覆盖第二部分212且露出第一部分211。该第一牺牲层可以作为流道位置的定义层。该第一牺牲层的厚度可以根据所需要的流道的高度来确定。在一个实施例中,该第一牺牲层的厚度范围可以为100纳米至100微米。例如,该第一牺牲层的厚度可以为500纳米、1微米、10微米或50微米等。在一个实施例中,该第一牺牲层的材料可以包括:半导体材料(例如,多晶硅、非晶硅、氧化铟锡等或多种半导体材料的组合)、绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)或者金属材料(例如,铝、铜等或多种金属材料的组合)。FIG. 3 is a cross-sectional view schematically illustrating a structure at step S102 in a manufacturing process of a flow channel structure device according to an embodiment of the present invention. As shown in FIG. 3 , a patterned first sacrificial layer 31 is formed on the substrate 21 , the first sacrificial layer 31 covers the second portion 212 and exposes the first portion 211 . The first sacrificial layer can serve as a defining layer for the position of the flow channel. The thickness of the first sacrificial layer can be determined according to the required height of the flow channel. In one embodiment, the thickness of the first sacrificial layer may range from 100 nanometers to 100 micrometers. For example, the thickness of the first sacrificial layer may be 500 nanometers, 1 micrometer, 10 micrometers, or 50 micrometers. In one embodiment, the material of the first sacrificial layer may include: semiconductor materials (eg, polysilicon, amorphous silicon, indium tin oxide, etc. or a combination of multiple semiconductor materials), insulating dielectric materials (eg, silicon oxide, nitrogen Silicon oxide, silicon oxynitride, etc., or a combination of various insulating dielectric materials) or a metal material (eg, aluminum, copper, etc., or a combination of various metal materials).

可选地,该步骤S102可以包括:在基片上形成第一牺牲层,该第一牺牲层覆盖基片的第一部分和第二部分。可选地,该步骤S102还可以包括:利用光刻方法对该第一牺牲层进行图形化,从而去除该第一牺牲层的覆盖在第一部分上的部分以露出该第一部分。例如该光刻方法可以包括图形曝光、图形显影和图形刻蚀等。例如,该图形曝光的方法可以包括:光学曝光、电子束曝光或纳米压印等。例如,该图形刻蚀的方法可以包括:湿法腐蚀或干法刻蚀等。Optionally, the step S102 may include: forming a first sacrificial layer on the substrate, the first sacrificial layer covering the first part and the second part of the substrate. Optionally, the step S102 may further include: patterning the first sacrificial layer by using a photolithography method, so as to remove a part of the first sacrificial layer covering the first part to expose the first part. For example, the lithography method may include pattern exposure, pattern development, pattern etching, and the like. For example, the pattern exposure method may include: optical exposure, electron beam exposure, or nanoimprinting. For example, the pattern etching method may include wet etching or dry etching.

回到图1,在步骤S103,在基片的第一部分和第一牺牲层上形成第一结构层。Returning to FIG. 1, in step S103, a first structural layer is formed on the first portion of the substrate and the first sacrificial layer.

图4是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S103的结构的横截面图。如图4所示,例如通过淀积工艺在基片21的第一部分211和第一牺牲层31上形成第一结构层41。该第一结构层41覆盖第一牺牲层31的侧面。优选地,该第一结构层的厚度大于或等于该第一牺牲层的厚度,这样在后续执行第一抛光处理的过程中,可以尽量少地抛光去除第一牺牲层的部分,有利于控制好后续所获得的流道的高度。当然,本发明的范围并不仅限于此,例如该第一结构层的厚度也可以小于该第一牺牲层的厚度。FIG. 4 is a cross-sectional view schematically showing the structure at step S103 in the manufacturing process of the flow channel structure device according to one embodiment of the present invention. As shown in FIG. 4 , the first structural layer 41 is formed on the first portion 211 of the substrate 21 and the first sacrificial layer 31 by, for example, a deposition process. The first structure layer 41 covers the side surface of the first sacrificial layer 31 . Preferably, the thickness of the first structural layer is greater than or equal to the thickness of the first sacrificial layer, so that in the subsequent process of performing the first polishing process, the part of the first sacrificial layer can be polished and removed as little as possible, which is conducive to good control The height of the runner obtained subsequently. Of course, the scope of the present invention is not limited to this, for example, the thickness of the first structural layer may also be smaller than the thickness of the first sacrificial layer.

在一个实施例中,该第一结构层的材料可以包括:金属材料(例如,金、铂、银、钛、氮化钛等或多种金属材料的组合)、半导体材料(例如,多晶硅、非晶硅、氧化铟锡等或多种半导体材料的组合)或者绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)。In one embodiment, the material of the first structural layer may include: metal materials (eg, gold, platinum, silver, titanium, titanium nitride, etc. or a combination of multiple metal materials), semiconductor materials (eg, polysilicon, non- crystalline silicon, indium tin oxide, etc., or a combination of multiple semiconductor materials) or insulating dielectric materials (eg, silicon oxide, silicon nitride, silicon oxynitride, etc., or a combination of multiple insulating dielectric materials).

回到图1,在步骤S104,在形成第一结构层之后,执行第一抛光处理以露出第一牺牲层。Returning to FIG. 1 , in step S104 , after the first structural layer is formed, a first polishing process is performed to expose the first sacrificial layer.

图5是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S104的结构的横截面图。如图5所示,例如对图4所示的半导体结构执行第一抛光处理(例如CMP(Chemical Mechanical Polishing,化学机械抛光)),从而露出第一牺牲层31的顶表面。该抛光处理可以去除位于第一牺牲层顶表面上的第一结构层的部分。FIG. 5 is a cross-sectional view schematically showing the structure at step S104 in the manufacturing process of the flow channel structure device according to one embodiment of the present invention. As shown in FIG. 5 , for example, a first polishing process (eg, CMP (Chemical Mechanical Polishing)) is performed on the semiconductor structure shown in FIG. 4 , thereby exposing the top surface of the first sacrificial layer 31 . The polishing process may remove portions of the first structural layer on the top surface of the first sacrificial layer.

回到图1,在步骤S105,去除第一牺牲层以露出基片的第二部分的上表面和第一结构层的侧面。Returning to FIG. 1 , in step S105 , the first sacrificial layer is removed to expose the upper surface of the second portion of the substrate and the side surface of the first structural layer.

图6是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S105的结构的横截面图。如图6所示,例如通过选择性刻蚀工艺去除第一牺牲层31,从而露出基片21的第二部分212的上表面和第一结构层41的侧面。例如,该选择性刻蚀工艺可以包括:干法刻蚀或湿法刻蚀等。FIG. 6 is a cross-sectional view schematically showing the structure at step S105 in the manufacturing process of the flow channel structure device according to one embodiment of the present invention. As shown in FIG. 6 , for example, the first sacrificial layer 31 is removed by a selective etching process, thereby exposing the upper surface of the second portion 212 of the substrate 21 and the side surface of the first structure layer 41 . For example, the selective etching process may include dry etching or wet etching.

回到图1,在步骤S106,在基片的第二部分的部分上表面上形成第二牺牲层,其中该第二牺牲层覆盖第一结构层的被露出的侧面。Returning to FIG. 1 , in step S106 , a second sacrificial layer is formed on a portion of the upper surface of the second portion of the substrate, wherein the second sacrificial layer covers the exposed side surface of the first structural layer.

图7是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S106的结构的横截面图。如图7所示,以第一结构层41作为支撑,在基片21的第二部分212的部分上表面上形成第二牺牲层32,其中该第二牺牲层32覆盖第一结构层41的被露出的侧面。例如,该步骤S106可以包括:在图6所示的半导体结构上淀积第二牺牲层;然后对该第二牺牲层执行回蚀刻,从而形成图7所示的结构。该第二牺牲层的厚度可以根据所需要的流道的宽度来确定。在一个实施例中,该第二牺牲层的厚度范围可以为0.1纳米至1微米。例如,该第二牺牲层的厚度可以为1纳米、10纳米、100纳米或500纳米等。FIG. 7 is a cross-sectional view schematically illustrating a structure at step S106 in a manufacturing process of a flow channel structure device according to an embodiment of the present invention. As shown in FIG. 7 , a second sacrificial layer 32 is formed on a part of the upper surface of the second part 212 of the substrate 21 with the first structural layer 41 as a support, wherein the second sacrificial layer 32 covers the first structural layer 41 exposed side. For example, the step S106 may include: depositing a second sacrificial layer on the semiconductor structure shown in FIG. 6 ; and then performing an etch back on the second sacrificial layer, thereby forming the structure shown in FIG. 7 . The thickness of the second sacrificial layer can be determined according to the required width of the flow channel. In one embodiment, the thickness of the second sacrificial layer may range from 0.1 nanometer to 1 micrometer. For example, the thickness of the second sacrificial layer may be 1 nanometer, 10 nanometers, 100 nanometers, or 500 nanometers.

在一个实施例中,该第二牺牲层的材料可以包括:金属材料(例如铬、铝、钛等或多种金属材料的组合)、半导体材料(例如多晶硅、非晶硅、氧化铟锡等或多种半导体材料的组合)或绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)。In one embodiment, the material of the second sacrificial layer may include: metal materials (eg, chromium, aluminum, titanium, etc. or a combination of multiple metal materials), semiconductor materials (eg, polysilicon, amorphous silicon, indium tin oxide, etc., or a combination of semiconductor materials) or an insulating dielectric material (eg, silicon oxide, silicon nitride, silicon oxynitride, etc., or a combination of multiple insulating dielectric materials).

回到图1,在步骤S107,在基片的第二部分、第二牺牲层和第一结构层上形成第二结构层。Returning to FIG. 1, in step S107, a second structure layer is formed on the second portion of the substrate, the second sacrificial layer and the first structure layer.

图8是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S107的结构的横截面图。如图8所示,例如通过淀积工艺在基片21的第二部分212、第二牺牲层32和第一结构层41上形成第二结构层42。优选地,该第二结构层的厚度大于或等于该第二牺牲层的高度,这样在后续执行第二抛光处理的过程中,可以尽量少地抛光去除第二牺牲层的部分,有利于控制好后续所获得的流道的高度。当然,本发明的范围并不仅限于此,例如该第二结构层的厚度也可以小于该第二牺牲层的高度。FIG. 8 is a cross-sectional view schematically showing the structure at step S107 in the manufacturing process of the flow channel structure device according to one embodiment of the present invention. As shown in FIG. 8 , the second structure layer 42 is formed on the second portion 212 of the substrate 21 , the second sacrificial layer 32 and the first structure layer 41 , for example, by a deposition process. Preferably, the thickness of the second structural layer is greater than or equal to the height of the second sacrificial layer, so that during the subsequent second polishing process, the part of the second sacrificial layer can be polished and removed as little as possible, which is conducive to good control The height of the runner obtained subsequently. Of course, the scope of the present invention is not limited to this, for example, the thickness of the second structure layer may also be smaller than the height of the second sacrificial layer.

在一个实施例中,该第二结构层的材料可以包括:金属材料(例如,金、铂、银、钛、氮化钛等或多种金属材料的组合)、半导体材料(例如,多晶硅、非晶硅、氧化铟锡等或多种半导体材料的组合)或者绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)。In one embodiment, the material of the second structural layer may include: metal materials (eg, gold, platinum, silver, titanium, titanium nitride, etc. or a combination of multiple metal materials), semiconductor materials (eg, polysilicon, non- crystalline silicon, indium tin oxide, etc., or a combination of multiple semiconductor materials) or insulating dielectric materials (eg, silicon oxide, silicon nitride, silicon oxynitride, etc., or a combination of multiple insulating dielectric materials).

回到图1,在步骤S108,在形成第二结构层之后,执行第二抛光处理以露出第二牺牲层。Returning to FIG. 1 , in step S108 , after the second structural layer is formed, a second polishing process is performed to expose the second sacrificial layer.

图9是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S108的结构的横截面图。如图9所示,例如对图8所示的半导体结构执行第二抛光处理(例如CMP),从而露出第二牺牲层32的顶表面。在该执行第二抛光处理的步骤中,还可以露出第一结构层41和第二结构层42,例如露出第一结构层41的顶表面和第二结构层42的顶表面。该第二抛光处理可以去除位于第一结构层和第二牺牲层的顶表面上的第二结构层的部分。FIG. 9 is a cross-sectional view schematically showing the structure at step S108 in the manufacturing process of the flow channel structure device according to one embodiment of the present invention. As shown in FIG. 9 , for example, a second polishing process (eg, CMP) is performed on the semiconductor structure shown in FIG. 8 , thereby exposing the top surface of the second sacrificial layer 32 . In the step of performing the second polishing process, the first structure layer 41 and the second structure layer 42 may also be exposed, for example, the top surface of the first structure layer 41 and the top surface of the second structure layer 42 are exposed. The second polishing process may remove portions of the second structural layer on top surfaces of the first structural layer and the second sacrificial layer.

回到图1,在步骤S109,利用选择性刻蚀工艺去除第二牺牲层以形成流道。Returning to FIG. 1 , in step S109 , the second sacrificial layer is removed by a selective etching process to form a flow channel.

图10是示意性地示出根据本发明一个实施例的流道结构器件的制造过程中在步骤S109的结构的横截面图。如图10所示,利用选择性刻蚀工艺去除第二牺牲层32以形成流道50。在一个实施例中,该流道的高度范围可以为100纳米至100微米。在一个实施例中,该流道的宽度范围可以为0.1纳米至1微米。FIG. 10 is a cross-sectional view schematically showing the structure at step S109 in the manufacturing process of the flow channel structure device according to one embodiment of the present invention. As shown in FIG. 10 , the second sacrificial layer 32 is removed by a selective etching process to form the flow channel 50 . In one embodiment, the height of the flow channel may range from 100 nanometers to 100 micrometers. In one embodiment, the width of the flow channel may range from 0.1 nanometer to 1 micrometer.

至此,提供了根据本发明一个实施例的流道结构器件的制造方法。在该制造方法中,在基片上形成图形化的第一牺牲层;在基片的第一部分和第一牺牲层上形成第一结构层;执行第一抛光处理以露出第一牺牲层;去除第一牺牲层以露出基片的第二部分的上表面和第一结构层的侧面;在基片的第二部分的部分上表面上形成第二牺牲层;在基片的第二部分、第二牺牲层和第一结构层上形成第二结构层;在形成第二结构层之后,执行第二抛光处理以露出第二牺牲层;以及利用选择性刻蚀工艺去除所述第二牺牲层以形成流道。通过上述制造方法,可以形成具有垂直流道(即该流道垂直于基片的表面)的流道结构器件。例如,该流道在垂直于基片的方向上可以为开放空间或可以设置透明材料,因此这不会影响光信号的传输。此外,采用垂直流道,可以使得单个流道的有效表面积是流道的截面积,可以大大提高在芯片上的流道的制造密度,降低制造和应用成本等。So far, a method for fabricating a flow channel structure device according to an embodiment of the present invention is provided. In the manufacturing method, a patterned first sacrificial layer is formed on a substrate; a first structural layer is formed on a first portion of the substrate and the first sacrificial layer; a first polishing process is performed to expose the first sacrificial layer; a sacrificial layer to expose the upper surface of the second part of the substrate and the side surface of the first structural layer; a second sacrificial layer is formed on part of the upper surface of the second part of the substrate; on the second part of the substrate, the second forming a second structure layer on the sacrificial layer and the first structure layer; after forming the second structure layer, performing a second polishing process to expose the second sacrificial layer; and removing the second sacrificial layer using a selective etching process to form runner. Through the above manufacturing method, a flow channel structure device having vertical flow channels (ie, the flow channels are perpendicular to the surface of the substrate) can be formed. For example, the flow channel can be open space in a direction perpendicular to the substrate or can be provided with a transparent material so that this does not affect the transmission of the optical signal. In addition, by using vertical flow channels, the effective surface area of a single flow channel can be the cross-sectional area of the flow channel, which can greatly improve the manufacturing density of the flow channels on the chip, and reduce the manufacturing and application costs.

本发明实施例的上述制造方法能够降低工艺热预算。例如,本发明的方法所涉及的工艺温度比较低(温度范围在室温至350℃之间),而且热处理过程时间短,因此降低了工艺热预算,以便于流道结构器件与CMOS芯片的集成。The above-mentioned manufacturing method of the embodiment of the present invention can reduce the thermal budget of the process. For example, the process temperature involved in the method of the present invention is relatively low (the temperature range is between room temperature and 350° C.), and the heat treatment process time is short, thus reducing the process thermal budget and facilitating the integration of the runner structure device and the CMOS chip.

进一步地,由于上述制造方法中,第一牺牲层的厚度和第二牺牲层的厚度可以根据设计需要来确定,因此可以实现高深宽比的流道结构。例如可以实现宽度10nm、深宽比为100:1的流道结构。本发明实施例的方法所实现的流道结构的深宽比的范围可以为1:1至100000:1。Further, in the above manufacturing method, the thickness of the first sacrificial layer and the thickness of the second sacrificial layer can be determined according to design requirements, so a flow channel structure with a high aspect ratio can be realized. For example, a flow channel structure with a width of 10 nm and an aspect ratio of 100:1 can be realized. The aspect ratio of the flow channel structure implemented by the method of the embodiment of the present invention may range from 1:1 to 100,000:1.

通过上述制造方法,形成了一种流道结构器件。该流道结构器件包括:基片,在基片上的第一结构层和第二结构层,以及在第一结构层与第二结构层之间的流道。在第一结构层和第二结构层分别为绝缘介质材料的情况下,可以形成绝缘介质流道结构器件,这可以应用于流体形成与控制等。在第一结构层和第二结构层分别为导电材料(例如金属材料或半导体材料(例如掺杂的半导体材料))的情况下,可以作为在流道两侧的电极,这可以用于流体处理、生化检测等应用。Through the above manufacturing method, a flow channel structure device is formed. The flow channel structure device includes: a substrate, a first structure layer and a second structure layer on the substrate, and a flow channel between the first structure layer and the second structure layer. In the case where the first structural layer and the second structural layer are made of insulating dielectric materials, respectively, an insulating dielectric flow channel structure device can be formed, which can be applied to fluid formation and control, and the like. Where the first and second structural layers are each a conductive material (eg a metallic material or a semiconductor material (eg a doped semiconductor material)), they can act as electrodes on both sides of the flow channel, which can be used for fluid handling , biochemical detection and other applications.

图11和图13是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中若干阶段的结构的横截面图。图12是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中一个阶段的结构的俯视图。下面结合图11至图13详细描述根据本发明另一些实施例的流道结构器件的制造过程。11 and 13 are cross-sectional views schematically showing structures of several stages in a manufacturing process of a flow channel structure device according to another embodiment of the present invention. FIG. 12 is a plan view schematically showing the structure of a stage in a manufacturing process of a flow channel structure device according to another embodiment of the present invention. The manufacturing process of the flow channel structure device according to other embodiments of the present invention will be described in detail below with reference to FIGS. 11 to 13 .

在本发明的一个实施例中,在利用选择性刻蚀工艺去除第二牺牲层之前,所述制造方法还可以包括:如图11所示,在第二牺牲层32、第一结构层41和第二结构层42上形成盖帽层60。在后续形成流道的步骤中,该盖帽层60可以与第一结构层41和第二结构层42一起实现封闭性流道(即流道的上方被封闭),还可以避免第一结构层41和第二结构层42的上表面与流体接触所可能带来的寄生反应。此外,对于一些需要流体(例如液体)在流道中流动的应用,该实施例的覆盖有盖帽层的流道更容易控制这些流体的流动。在一个实施例中,该盖帽层60的材料可以包括:绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅、硼磷硅玻璃、氧化铝、氧化钛或氧化钽等)或半导体材料(例如,多晶硅或非晶硅等)。在一个实施例中,该盖帽层60的厚度范围可以为1纳米至10微米。例如,该盖帽层的厚度可以为10纳米、100纳米、500纳米、1微米或5微米等。In an embodiment of the present invention, before removing the second sacrificial layer by a selective etching process, the manufacturing method may further include: as shown in FIG. A cap layer 60 is formed on the second structural layer 42 . In the subsequent step of forming the flow channel, the cap layer 60 can realize the closed flow channel together with the first structure layer 41 and the second structure layer 42 (that is, the upper part of the flow channel is closed), and the first structure layer 41 can also be avoided. and the parasitic reaction that may be brought about by the contact between the upper surface of the second structural layer 42 and the fluid. Furthermore, for some applications that require the flow of fluids (eg, liquids) in the flow channel, the flow channel covered with the capping layer of this embodiment makes it easier to control the flow of these fluids. In one embodiment, the material of the capping layer 60 may include: insulating dielectric materials (eg, silicon oxide, silicon nitride, silicon oxynitride, borophosphosilicate glass, aluminum oxide, titanium oxide or tantalum oxide, etc.) or semiconductor materials (eg, polysilicon or amorphous silicon, etc.). In one embodiment, the thickness of the capping layer 60 may range from 1 nanometer to 10 micrometers. For example, the thickness of the capping layer may be 10 nanometers, 100 nanometers, 500 nanometers, 1 micrometer, or 5 micrometers.

在一个实施例中,在利用选择性刻蚀工艺去除第二牺牲层的步骤中,可以从第二牺牲层的边缘注入选择性刻蚀液以去除该第二牺牲层,从而形成如图13所示的流道结构器件。在实际平面结构中,平面延伸的第二牺牲层是有边界的,该第二牺牲层的边缘可以被暴露,因此在第二牺牲层的边缘(即边界处)注入选择性刻蚀液以去除第二牺牲层,从而形成流道。In one embodiment, in the step of removing the second sacrificial layer by a selective etching process, a selective etching solution may be injected from the edge of the second sacrificial layer to remove the second sacrificial layer, thereby forming the second sacrificial layer as shown in FIG. 13 . The flow channel structure device shown. In the actual planar structure, the planar extending second sacrificial layer is bounded, and the edge of the second sacrificial layer can be exposed, so a selective etchant is injected at the edge (ie, the boundary) of the second sacrificial layer to remove The second sacrificial layer, thereby forming the flow channel.

在另一个实施例中,在利用选择性刻蚀工艺去除第二牺牲层之前,所述制造方法还可以包括:如图12所示,对盖帽层60进行刻蚀以形成贯穿该盖帽层且露出第二牺牲层的通孔61。其中,在利用选择性刻蚀工艺去除第二牺牲层的步骤中,可以从该通孔61注入选择性刻蚀液以去除第二牺牲层,从而形成如图13所示的流道结构器件。本领域技术人员应该理解,该通孔的数量、形状或大小等均可以根据设计需要来确定,本发明的范围并不仅限于图12所示的通孔的数量、形状或大小等。在该实施例中通过在盖帽层60上形成通孔,从而在选择性刻蚀工艺中,有利于选择性刻蚀液经过该通孔来去除第二牺牲层,可以加快腐蚀速率。In another embodiment, before using the selective etching process to remove the second sacrificial layer, the manufacturing method may further include: as shown in FIG. 12 , etching the capping layer 60 to form penetrating through the capping layer and exposing The through hole 61 of the second sacrificial layer. Wherein, in the step of removing the second sacrificial layer by a selective etching process, a selective etching solution may be injected from the through hole 61 to remove the second sacrificial layer, thereby forming a flow channel structure device as shown in FIG. 13 . Those skilled in the art should understand that the number, shape or size of the through holes can be determined according to design requirements, and the scope of the present invention is not limited to the number, shape or size of the through holes shown in FIG. 12 . In this embodiment, by forming a through hole on the cap layer 60, in the selective etching process, it is favorable for the selective etching solution to pass through the through hole to remove the second sacrificial layer, and the etching rate can be accelerated.

在图13所示的流道结构器件中,除了具有与图10相同或相似的结构之外,该流道结构器件还包括:在第一结构层41和第二结构层42上的盖帽层60,该盖帽层60覆盖在流道之上。该盖帽层60可以与第一结构层41和第二结构层42一起实现封闭性流道(即流道的上方被封闭),还可以避免第一结构层41和第二结构层42的上表面与流体接触所可能带来的寄生反应。此外,对于一些需要流体(例如液体)在流道中流动的应用,该实施例的覆盖有盖帽层的流道更容易控制这些流体的流动。可选地,该流道结构器件还可以包括:贯穿盖帽层且连通到流道的通孔。In the flow channel structure device shown in FIG. 13 , in addition to having the same or similar structure as FIG. 10 , the flow channel structure device further includes: a cap layer 60 on the first structure layer 41 and the second structure layer 42 , the cap layer 60 covers the flow channel. The cap layer 60 can realize a closed flow channel together with the first structure layer 41 and the second structure layer 42 (that is, the upper part of the flow channel is closed), and can also avoid the upper surface of the first structure layer 41 and the second structure layer 42 Possible parasitic reactions from contact with fluids. Furthermore, for some applications that require the flow of fluids (eg, liquids) in the flow channel, the flow channel covered with the capping layer of this embodiment makes it easier to control the flow of these fluids. Optionally, the flow channel structure device may further include: through holes penetrating the cap layer and communicating with the flow channel.

在一个实施例中,形成第一结构层的步骤可以包括:在基片的第一部分和第一牺牲层上形成第一材料层,其中该第一材料层覆盖该第一牺牲层的侧面;以及在该第一材料层上形成第一支撑层。其中,该第一结构层可以包括:该第一材料层和该第一支撑层。In one embodiment, the step of forming the first structural layer may include: forming a first material layer on the first portion of the substrate and the first sacrificial layer, wherein the first material layer covers sides of the first sacrificial layer; and A first support layer is formed on the first material layer. Wherein, the first structural layer may include: the first material layer and the first support layer.

在另一个实施例中,形成第二结构层的步骤可以包括:在基片的第二部分、第二牺牲层和第一结构层上形成第二材料层,该第二材料层覆盖该第二牺牲层的侧面;以及在该第二材料层上形成第二支撑层。其中,该第二结构层可以包括:该第二材料层和该第二支撑层。In another embodiment, the step of forming the second structural layer may include: forming a second material layer on the second portion of the substrate, the second sacrificial layer and the first structural layer, the second material layer covering the second material layer sides of the sacrificial layer; and forming a second support layer on the second material layer. Wherein, the second structural layer may include: the second material layer and the second support layer.

图14至图22是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中若干阶段的结构的横截面图。下面以第一结构层包括第一材料层和第一支撑层、第二结构层包括第二材料层和第二支撑层为例,并结合图14至图22详细描述根据本发明另一个实施例的流道结构器件的制造过程。14 to 22 are cross-sectional views schematically showing structures of several stages in a manufacturing process of a flow channel structure device according to another embodiment of the present invention. Hereinafter, the first structural layer includes a first material layer and a first support layer, and the second structural layer includes a second material layer and a second support layer as an example, and another embodiment according to the present invention will be described in detail with reference to FIGS. 14 to 22 . The fabrication process of the flow channel structure device.

首先,提供基片,该基片包括第一部分和与该第一部分邻接的第二部分。该步骤在前面已经结合图2详细描述,这里不再赘述。First, a substrate is provided that includes a first portion and a second portion adjoining the first portion. This step has been described in detail above with reference to FIG. 2 , and will not be repeated here.

接下来,在基片上形成图形化的第一牺牲层,该第一牺牲层覆盖第二部分且露出第一部分。该步骤在前面已经结合图3详细描述,这里不再赘述。Next, a patterned first sacrificial layer is formed on the substrate, the first sacrificial layer covering the second portion and exposing the first portion. This step has been described in detail above with reference to FIG. 3 , and will not be repeated here.

接下来,如图14所示,例如通过淀积工艺在基片21的第一部分211和第一牺牲层31上形成第一材料层411,其中该第一材料层411覆盖该第一牺牲层31的侧面。Next, as shown in FIG. 14 , a first material layer 411 is formed on the first portion 211 of the substrate 21 and the first sacrificial layer 31 by, for example, a deposition process, wherein the first material layer 411 covers the first sacrificial layer 31 side.

在一个实施例中,该第一材料层411的材料可以包括:金属材料(例如,金、铂、银、钛、氮化钛等或多种金属材料的组合)或半导体材料(例如,多晶硅、非晶硅、氧化铟锡等或多种半导体材料的组合)。在该实施例中,第一材料层可以采用金属材料或半导体材料(例如掺杂的半导体材料)等导电材料,这样该第一材料层可以作为后续形成的流道的嵌入电极层之一,可应用于流体的处理或生化检测等。In one embodiment, the material of the first material layer 411 may include: a metal material (eg, gold, platinum, silver, titanium, titanium nitride, etc., or a combination of multiple metal materials) or a semiconductor material (eg, polysilicon, Amorphous silicon, indium tin oxide, etc. or a combination of various semiconductor materials). In this embodiment, the first material layer can be a conductive material such as a metal material or a semiconductor material (for example, a doped semiconductor material), so that the first material layer can be used as one of the embedded electrode layers of the subsequently formed flow channel. It is used in fluid treatment or biochemical detection, etc.

在另一个实施例中,该第一材料层411的材料可以包括:绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)。这样可以在后续步骤中可以形成由绝缘介质材料形成的流道,可应用于流体的形成与控制等。In another embodiment, the material of the first material layer 411 may include an insulating dielectric material (eg, silicon oxide, silicon nitride, silicon oxynitride, etc., or a combination of multiple insulating dielectric materials). In this way, a flow channel formed of an insulating medium material can be formed in the subsequent steps, which can be applied to the formation and control of the fluid, and the like.

在一个实施例中,该第一材料层411的厚度范围可以为1纳米至500纳米。例如该第一材料层411的厚度可以为10纳米、50纳米、100纳米或300纳米等。In one embodiment, the thickness of the first material layer 411 may range from 1 nanometer to 500 nanometers. For example, the thickness of the first material layer 411 may be 10 nanometers, 50 nanometers, 100 nanometers, or 300 nanometers.

接下来,如图15所示,例如通过淀积工艺在该第一材料层411上形成第一支撑层412。该第一支撑层412可以作为第一材料层411的支撑层。至此,形成了第一结构层41。该第一结构层41可以包括:在基片21的第一部分211和第一牺牲层31上的第一材料层411和在该第一材料层411上的第一支撑层412。Next, as shown in FIG. 15 , a first support layer 412 is formed on the first material layer 411 by, for example, a deposition process. The first support layer 412 may serve as a support layer for the first material layer 411 . So far, the first structure layer 41 is formed. The first structural layer 41 may include: a first material layer 411 on the first portion 211 of the substrate 21 and the first sacrificial layer 31 and a first support layer 412 on the first material layer 411 .

在一个实施例中,该第一支撑层412的材料可以包括:半导体材料(例如多晶硅、非晶硅、氧化铟锡等或多种半导体材料的组合)、绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)或者导电金属材料(例如,铝、铜、钛、氮化钛等或多种金属材料的组合)。In one embodiment, the material of the first support layer 412 may include: semiconductor materials (eg, polysilicon, amorphous silicon, indium tin oxide, etc., or a combination of multiple semiconductor materials), insulating dielectric materials (eg, silicon oxide, nitrogen, etc.) Silicon oxide, silicon oxynitride, etc., or a combination of various insulating dielectric materials) or conductive metal materials (eg, aluminum, copper, titanium, titanium nitride, etc., or a combination of multiple metal materials).

在一个实施例中,该第一支撑层的厚度范围为100纳米至100微米。例如,该第一支撑层的厚度可以为200纳米、500纳米、1微米、10微米或50微米等。In one embodiment, the thickness of the first support layer ranges from 100 nanometers to 100 micrometers. For example, the thickness of the first support layer may be 200 nanometers, 500 nanometers, 1 micrometer, 10 micrometers, or 50 micrometers.

接下来,如图16所示,对第一结构层41(即第一支撑层412和第一材料层411)执行第一抛光处理(例如CMP)以露出第一牺牲层31。该第一抛光处理可以去除位于第一牺牲层31的顶表面上的第一支撑层412和第一材料层411的部分。当然,也可以进一步抛光去除一部分第一牺牲层。Next, as shown in FIG. 16 , a first polishing process (eg, CMP) is performed on the first structure layer 41 (ie, the first support layer 412 and the first material layer 411 ) to expose the first sacrificial layer 31 . The first polishing process may remove portions of the first support layer 412 and the first material layer 411 on the top surface of the first sacrificial layer 31 . Of course, a part of the first sacrificial layer can also be removed by further polishing.

接下来,如图17所示,例如通过选择性刻蚀工艺去除第一牺牲层31以露出基片21的第二部分212的上表面和第一结构层41的侧面。在该步骤中,如图17所示,所露出的第一结构层41的侧面为第一材料层411的侧面。Next, as shown in FIG. 17 , the first sacrificial layer 31 is removed, for example, by a selective etching process to expose the upper surface of the second portion 212 of the substrate 21 and the side surface of the first structure layer 41 . In this step, as shown in FIG. 17 , the exposed side surface of the first structure layer 41 is the side surface of the first material layer 411 .

接下来,如图18所示,以第一支撑层412和第一材料层411作为支撑,在基片21的第二部分212的部分上表面上形成第二牺牲层32,其中该第二牺牲层32覆盖第一结构层41的被露出的侧面。在该步骤中,该第二牺牲层32覆盖该第一材料层411的被露出的侧面。Next, as shown in FIG. 18 , using the first support layer 412 and the first material layer 411 as supports, a second sacrificial layer 32 is formed on a part of the upper surface of the second portion 212 of the substrate 21 , wherein the second sacrificial layer 32 is formed. Layer 32 covers the exposed sides of first structural layer 41 . In this step, the second sacrificial layer 32 covers the exposed side surface of the first material layer 411 .

接下来,如图19所示,例如通过淀积工艺在基片21的第二部分212、第二牺牲层32和第一结构层41(即第一材料层411和第一支撑层412)上形成第二材料层421,该第二材料层421覆盖该第二牺牲层32的侧面。Next, as shown in FIG. 19 , on the second portion 212 of the substrate 21 , the second sacrificial layer 32 and the first structural layer 41 (ie, the first material layer 411 and the first support layer 412 ), for example, by a deposition process A second material layer 421 is formed, and the second material layer 421 covers the side surface of the second sacrificial layer 32 .

在一个实施例中,该第二材料层421的材料可以包括:金属材料(例如,金、铂、银、钛、氮化钛等或多种金属材料的组合)或半导体材料(例如,多晶硅、非晶硅、氧化铟锡等或多种半导体材料的组合)。在该实施例中,第二材料层可以采用金属材料或半导体材料(例如掺杂的半导体材料)等导电材料,这样该第二材料层可以作为后续形成的流道的嵌入电极层之一,可应用于流体处理或生化检测等。In one embodiment, the material of the second material layer 421 may include: a metal material (eg, gold, platinum, silver, titanium, titanium nitride, etc. or a combination of multiple metal materials) or a semiconductor material (eg, polysilicon, Amorphous silicon, indium tin oxide, etc. or a combination of various semiconductor materials). In this embodiment, the second material layer can be a conductive material such as a metal material or a semiconductor material (for example, a doped semiconductor material), so that the second material layer can be used as one of the embedded electrode layers of the subsequently formed flow channel, which can Used in fluid processing or biochemical detection, etc.

在另一个实施例中,该第二材料层421的材料可以包括:绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)。这样可以在后续步骤中可以形成由绝缘介质材料形成的流道,可应用于流体形成与控制等。In another embodiment, the material of the second material layer 421 may include an insulating dielectric material (eg, silicon oxide, silicon nitride, silicon oxynitride, etc., or a combination of multiple insulating dielectric materials). In this way, a flow channel formed of an insulating medium material can be formed in a subsequent step, which can be applied to fluid formation and control, and the like.

在一个实施例中,该第二材料层421的厚度范围可以为1纳米至500纳米。例如该第二材料层421的厚度可以为10纳米、50纳米、100纳米或300纳米等。In one embodiment, the thickness of the second material layer 421 may range from 1 nm to 500 nm. For example, the thickness of the second material layer 421 may be 10 nanometers, 50 nanometers, 100 nanometers, or 300 nanometers.

接下来,如图20所示,例如通过淀积工艺在该第二材料层421上形成第二支撑层422。该第二支撑层422可以作为第二材料层421的支撑层。至此,形成了第二结构层42。该第二结构层42可以包括:在基片21的第二部分212、第二牺牲层32和第一结构层41(即第一材料层411和第一支撑层412)上的第二材料层421和在该第二材料层421上的第二支撑层422。Next, as shown in FIG. 20 , a second support layer 422 is formed on the second material layer 421 by, for example, a deposition process. The second support layer 422 can serve as a support layer for the second material layer 421 . So far, the second structure layer 42 is formed. The second structural layer 42 may include: a second material layer on the second portion 212 of the substrate 21 , the second sacrificial layer 32 and the first structural layer 41 (ie, the first material layer 411 and the first support layer 412 ) 421 and a second support layer 422 on the second material layer 421.

在一个实施例中,该第二支撑层422的材料可以包括:半导体材料(例如,多晶硅、非晶硅、氧化铟锡等或多种半导体材料的组合)、绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)或导电金属材料(例如,铝、铜、钛、氮化钛等或多种金属材料的组合)。In one embodiment, the material of the second support layer 422 may include: semiconductor materials (eg, polysilicon, amorphous silicon, indium tin oxide, etc., or a combination of multiple semiconductor materials), insulating dielectric materials (eg, silicon oxide, Silicon nitride, silicon oxynitride, etc., or a combination of various insulating dielectric materials) or conductive metal materials (eg, aluminum, copper, titanium, titanium nitride, etc., or a combination of various metal materials).

在一个实施例中,该第二支撑层422的厚度范围可以为100纳米至100微米。例如,该第二支撑层的厚度可以为200纳米、500纳米、1微米、10微米或50微米等。In one embodiment, the thickness of the second support layer 422 may range from 100 nanometers to 100 micrometers. For example, the thickness of the second support layer may be 200 nanometers, 500 nanometers, 1 micrometer, 10 micrometers, or 50 micrometers.

接下来,如图21所示,对第二结构层42(即第二支撑层422和第二材料层421)执行第二抛光处理(例如CMP)以露出第二牺牲层32。此外,该第二抛光处理还可以去除第一支撑层412的顶表面上的第二材料层421和第二支撑层422的部分。如图21所示,在执行该第二抛光处理的步骤中,还露出第一材料层411、第一支撑层412、第二材料层421和第二支撑层422。Next, as shown in FIG. 21 , a second polishing process (eg, CMP) is performed on the second structure layer 42 (ie, the second support layer 422 and the second material layer 421 ) to expose the second sacrificial layer 32 . In addition, the second polishing process may also remove portions of the second material layer 421 and the second support layer 422 on the top surface of the first support layer 412 . As shown in FIG. 21 , in the step of performing the second polishing process, the first material layer 411 , the first support layer 412 , the second material layer 421 and the second support layer 422 are also exposed.

接下来,如图22所示,利用选择性刻蚀工艺去除第二牺牲层32以形成流道50。Next, as shown in FIG. 22 , the second sacrificial layer 32 is removed by a selective etching process to form the flow channel 50 .

至此,提供了根据本发明另一个实施例的流道结构器件的制造方法。通过上述制造方法所形成的流道结构器件中,第一结构层可以包括:第一材料层和第一支撑层,其中该第一材料层的一部分在该第一支撑层与流道之间,该第一材料层的另一部分在该第一支撑层与基片的第一部分之间;第二结构层可以包括:第二材料层和第二支撑层,其中,该第二材料层的一部分在该第二支撑层与该流道之间,该第二材料层的另一部分在该第二支撑层与基片的第二部分之间。So far, a method for fabricating a flow channel structure device according to another embodiment of the present invention is provided. In the flow channel structure device formed by the above manufacturing method, the first structure layer may include: a first material layer and a first support layer, wherein a part of the first material layer is between the first support layer and the flow channel, Another part of the first material layer is between the first support layer and the first part of the substrate; the second structural layer may include: a second material layer and a second support layer, wherein a part of the second material layer is in Between the second support layer and the flow channel, another part of the second material layer is between the second support layer and the second part of the substrate.

在第一材料层的材料包括金属材料或半导体材料(例如掺杂的半导体材料)等导电材料的情况下,该第一材料层的在第一支撑层与流道之间的部分可以作为该流道结构器件的第一电极,该第一材料层的在该第一支撑层与基片的第一部分之间的部分可以作为该第一电极的第一引线。在第二材料层的材料包括金属材料或半导体材料(例如掺杂的半导体材料)等导电材料的情况下,该第二材料层的在第二支撑层与流道之间的部分可以作为该流道结构器件的第二电极,该第二材料层的在该第二支撑层与基片的第二部分之间的部分可以作为该第二电极的第二引线。由于第一材料层和第二材料层分别是通过例如淀积工艺而整体地形成的,因此,相比现有技术,第一电极与第一引线之间可以减小接触电阻,第二电极与第二引线之间也可以减小接触电阻,从而可以提高器件性能。In the case where the material of the first material layer includes a conductive material such as a metal material or a semiconductor material (eg, a doped semiconductor material), the part of the first material layer between the first support layer and the flow channel can serve as the flow channel. For the first electrode of the channel structure device, the part of the first material layer between the first support layer and the first part of the substrate can be used as the first lead of the first electrode. In the case where the material of the second material layer includes a conductive material such as a metal material or a semiconductor material (eg, a doped semiconductor material), the part of the second material layer between the second support layer and the flow channel can serve as the flow channel. The second electrode of the channel structure device, the part of the second material layer between the second support layer and the second part of the substrate can be used as the second lead of the second electrode. Since the first material layer and the second material layer are integrally formed by, for example, a deposition process, respectively, compared with the prior art, the contact resistance between the first electrode and the first lead can be reduced, and the second electrode and the The contact resistance between the second leads can also be reduced, so that the device performance can be improved.

此外,本发明实施例的上述制造方法能够降低工艺热预算。例如,本发明的方法所涉及的工艺温度比较低(温度范围在室温至350℃之间),而且热处理过程时间短,因此降低了工艺热预算,以便于流道结构器件与CMOS芯片的集成。In addition, the above-mentioned manufacturing method of the embodiment of the present invention can reduce the thermal budget of the process. For example, the process temperature involved in the method of the present invention is relatively low (the temperature range is between room temperature and 350° C.), and the heat treatment process time is short, thus reducing the process thermal budget and facilitating the integration of the runner structure device and the CMOS chip.

进一步地,由于上述制造方法中,第一牺牲层的厚度和第二牺牲层的厚度可以根据设计需要来确定,因此可以实现高深宽比的流道结构。Further, in the above manufacturing method, the thickness of the first sacrificial layer and the thickness of the second sacrificial layer can be determined according to design requirements, so a flow channel structure with a high aspect ratio can be realized.

由上述制造方法,还形成了一种流道结构器件。如图22所示,该流道结构器件可以包括基片21,该基片21可以包括第一部分211和与该第一部分211邻接的第二部分212。该流道结构器件还可以包括:在基片21上的第一结构层41和第二结构层42。其中,该第一结构层41可以包括:在基片21的第一部分211上的第一材料层411和在该第一材料层411上的第一支撑层412,该第二结构层42可以包括:在基片21的第二部分212上的第二材料层421和在该第二材料层421上的第二支撑层422。该流道结构器件还可以包括:在该第一材料层411与该第二材料层421之间的流道50。该第一支撑层421和该第二支撑层422分别在流道50的两侧。如图22所示,该第一材料层411的一部分在该第一支撑层412与流道50之间,该第一材料层411的另一部分在该第一支撑层412与该基片21的第一部分211之间;该第二材料层421的一部分在该第二支撑层422与流道50之间,该第二材料层421的另一部分在该第二支撑层422与该基片21的第二部分212之间。From the above manufacturing method, a flow channel structure device is also formed. As shown in FIG. 22 , the flow channel structure device may include a substrate 21 , and the substrate 21 may include a first portion 211 and a second portion 212 adjacent to the first portion 211 . The flow channel structure device may further include: a first structure layer 41 and a second structure layer 42 on the substrate 21 . Wherein, the first structural layer 41 may include: a first material layer 411 on the first part 211 of the substrate 21 and a first supporting layer 412 on the first material layer 411, and the second structural layer 42 may include : a second material layer 421 on the second portion 212 of the substrate 21 and a second support layer 422 on the second material layer 421 . The flow channel structure device may further include: a flow channel 50 between the first material layer 411 and the second material layer 421 . The first support layer 421 and the second support layer 422 are respectively on two sides of the flow channel 50 . As shown in FIG. 22 , a part of the first material layer 411 is between the first support layer 412 and the flow channel 50 , and another part of the first material layer 411 is between the first support layer 412 and the substrate 21 . Between the first part 211; a part of the second material layer 421 is between the second support layer 422 and the flow channel 50, and another part of the second material layer 421 is between the second support layer 422 and the substrate 21 between the second part 212 .

本发明上述实施例的流道结构器件具有垂直流道,例如该流道在垂直于基片的方向上可以为开放空间或可以设置透明材料,因此这不会影响光信号的传输。此外,采用垂直流道,可以使得单个流道的有效表面积是流道的截面积,可以大大提高在芯片上的流道的制造密度,可以提高应用通量(即单位面积的流道数量),以及降低制造和应用成本等。The flow channel structure device of the above-mentioned embodiments of the present invention has vertical flow channels, for example, the flow channel can be open space in the direction perpendicular to the substrate or can be provided with transparent materials, so this will not affect the transmission of optical signals. In addition, by using vertical flow channels, the effective surface area of a single flow channel can be the cross-sectional area of the flow channel, which can greatly improve the manufacturing density of the flow channels on the chip, and can improve the application flux (ie, the number of flow channels per unit area), As well as reducing manufacturing and application costs, etc.

在一个实施例中,该流道50的高度范围可以为100纳米至100微米。例如该流道的高度可以为500纳米、1微米、10微米或50微米等。在一个实施例中,该流道50的宽度范围可以为0.1纳米至1微米。例如,该流道的宽度可以为1纳米、10纳米、14纳米、100纳米或500纳米等。在选择合适的流道高度和宽度后,该流道结构器件可以实现高深宽比的流道结构。In one embodiment, the height of the flow channel 50 may range from 100 nanometers to 100 micrometers. For example, the height of the flow channel can be 500 nanometers, 1 micrometer, 10 micrometers, or 50 micrometers. In one embodiment, the width of the flow channel 50 may range from 0.1 nanometer to 1 micrometer. For example, the width of the flow channel can be 1 nanometer, 10 nanometers, 14 nanometers, 100 nanometers, or 500 nanometers. After selecting the appropriate height and width of the flow channel, the flow channel structure device can realize the flow channel structure with high aspect ratio.

在一个实施例中,该第一材料层411的厚度范围可以为1纳米至500纳米。在一个实施例中,该第一支撑层412的厚度范围可以为100纳米至100微米。在一个实施例中,该第二材料层421的厚度范围可以为1纳米至500纳米。在一个实施例中,该第二支撑层422的厚度范围可以为100纳米至100微米。In one embodiment, the thickness of the first material layer 411 may range from 1 nanometer to 500 nanometers. In one embodiment, the thickness of the first support layer 412 may range from 100 nanometers to 100 micrometers. In one embodiment, the thickness of the second material layer 421 may range from 1 nm to 500 nm. In one embodiment, the thickness of the second support layer 422 may range from 100 nanometers to 100 micrometers.

在一个实施例中,该第一材料层411的材料可以包括:金属材料或半导体材料(例如掺杂的半导体材料)。其中,该第一材料层411的在第一支撑层412与流道50之间的部分可以作为流道结构器件的第一电极;该第一材料层411的在该第一支撑层412与基片21的第一部分211之间的部分可以作为该第一电极的第一引线。在一个实施例中,该第二材料层412的材料可以包括:金属材料或半导体材料(例如掺杂的半导体材料)。其中,该第二材料层412的在第二支撑层422与流道50之间的部分可以作为流道结构器件的第二电极;该第二材料层421的在该第二支撑层422与基片21的第二部分212之间的部分可以作为该第二电极的第二引线。在该实施例中,由于第一材料层和第二材料层分别整体地形成,因此,相比现有技术,第一电极与第一引线之间可以减小接触电阻,第二电极与第二引线之间也可以减小接触电阻,从而可以提高器件性能。In one embodiment, the material of the first material layer 411 may include: a metal material or a semiconductor material (eg, a doped semiconductor material). The part of the first material layer 411 between the first support layer 412 and the flow channel 50 can be used as the first electrode of the flow channel structure device; the part of the first material layer 411 between the first support layer 412 and the base The part between the first parts 211 of the sheet 21 can serve as the first lead of the first electrode. In one embodiment, the material of the second material layer 412 may include: a metal material or a semiconductor material (eg, a doped semiconductor material). The part of the second material layer 412 between the second support layer 422 and the flow channel 50 can be used as the second electrode of the flow channel structure device; the part of the second material layer 421 between the second support layer 422 and the base The portion between the second portions 212 of the sheet 21 may serve as the second lead of the second electrode. In this embodiment, since the first material layer and the second material layer are integrally formed, respectively, compared with the prior art, the contact resistance between the first electrode and the first lead can be reduced, and the second electrode and the second lead can be reduced. Contact resistance between leads can also be reduced, which can improve device performance.

在上述实施例中,上述流道结构器件可以具有镶嵌电极结构,可以具有不同的生化分析与流体处理功能。比如,通过电极施加电激励,流道中可以发生电的或电化学的反应,可以产生电信号或光信号,可以通过获取的电信号或者光信号识别特定的分子种类;再进一步,通过识别多种不同分子种类,可以实现诸如基因测序等功能。In the above-mentioned embodiment, the above-mentioned flow channel structure device may have a damascene electrode structure, and may have different biochemical analysis and fluid processing functions. For example, by applying electrical excitation through electrodes, an electrical or electrochemical reaction can occur in the flow channel, an electrical signal or an optical signal can be generated, and a specific molecular species can be identified through the obtained electrical or optical signal; further, by identifying a variety of Different molecular species can realize functions such as gene sequencing.

在另一个实施例中,该第一材料层411和该第二材料层421的材料可以分别包括:绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅等或多种绝缘介质材料的组合)。这样由绝缘介质材料形成的流道可应用于流体的形成与控制等。例如,利用绝缘介质材料作为第一材料层和第二材料层,可以将流道结构器件应用到某些不需要在流道中施加电极的情况,例如在一些情况下,需要用特定的绝缘介质材料作为材料层来修饰流道表面以获得某些特定效果,比如获得疏水表面或亲水表面等,从而有利于流体的形成和控制。In another embodiment, the materials of the first material layer 411 and the material of the second material layer 421 may respectively include: insulating dielectric materials (eg, silicon oxide, silicon nitride, silicon oxynitride, etc. or a plurality of insulating dielectric materials). combination). Such a flow channel formed of an insulating medium material can be applied to the formation and control of fluid, and the like. For example, by using an insulating dielectric material as the first material layer and the second material layer, the flow channel structure device can be applied to some situations that do not require the application of electrodes in the flow channel, for example, in some cases, it is necessary to use a specific insulating medium material. As a material layer, the surface of the flow channel is modified to obtain some specific effects, such as obtaining a hydrophobic surface or a hydrophilic surface, etc., which is beneficial to the formation and control of the fluid.

图23和图24是示意性地示出根据本发明另一个实施例的流道结构器件的制造过程中若干阶段的结构的横截面图。下面结合图23和图24详细描述根据本发明另一个实施例的流道结构器件的制造过程。23 and 24 are cross-sectional views schematically showing structures of several stages in a manufacturing process of a flow channel structure device according to another embodiment of the present invention. The manufacturing process of the flow channel structure device according to another embodiment of the present invention will be described in detail below with reference to FIG. 23 and FIG. 24 .

在一个实施例中,在利用选择性刻蚀工艺去除第二牺牲层之前以及在执行第二抛光处理之后,所述制造方法还可以包括:在第二牺牲层32、第一材料层411、第一支撑层412、第二材料层421和第二支撑层422上形成盖帽层60。在后续形成流道的步骤中,该盖帽层可以与第一结构层(可以包括第一材料层和第一支撑层)和第二结构层(可以包括第二材料层和第二支撑层)一起实现封闭性流道结构,还可以避免第一材料层与第二材料层顶部与流体的接触而可能带来的寄生反应。此外,对于一些需要流体(例如液体)在流道中流动的应用,该实施例的覆盖有盖帽层的流道更容易控制这些流体的流动。In one embodiment, before the second sacrificial layer is removed by the selective etching process and after the second polishing process is performed, the manufacturing method may further include: in the second sacrificial layer 32, the first material layer 411, the first A cap layer 60 is formed on a support layer 412 , the second material layer 421 and the second support layer 422 . In the subsequent step of forming the flow channel, the capping layer may be together with the first structural layer (which may include the first material layer and the first supporting layer) and the second structural layer (which may include the second material layer and the second supporting layer) By realizing the closed flow channel structure, parasitic reactions that may be caused by the contact between the tops of the first material layer and the second material layer and the fluid can also be avoided. Furthermore, for some applications that require the flow of fluids (eg, liquids) in the flow channel, the flow channel covered with the capping layer of this embodiment makes it easier to control the flow of these fluids.

在一个实施例中,与前面所述类似,在利用选择性刻蚀工艺去除第二牺牲层的步骤中,可以从第二牺牲层的边缘注入选择性刻蚀液以去除该第二牺牲层,从而形成如图24所示的流道结构器件。在实际平面结构中,平面延伸的第二牺牲层是有边界的,该第二牺牲层的边缘可以被暴露,因此在第二牺牲层的边缘(即边界处)注入选择性刻蚀液以去除第二牺牲层,从而形成流道。In one embodiment, similar to the foregoing, in the step of removing the second sacrificial layer by a selective etching process, a selective etching solution may be injected from the edge of the second sacrificial layer to remove the second sacrificial layer, Thus, a flow channel structure device as shown in FIG. 24 is formed. In the actual planar structure, the planar extending second sacrificial layer is bounded, and the edge of the second sacrificial layer can be exposed, so a selective etchant is injected at the edge (ie, the boundary) of the second sacrificial layer to remove The second sacrificial layer, thereby forming the flow channel.

在另一个实施例中,与前面所述类似,在利用选择性刻蚀工艺去除第二牺牲层之前,所述制造方法还可以包括:对盖帽层进行刻蚀以形成贯穿该盖帽层且露出第二牺牲层的通孔(图24中未示出,可以参考图12中的通孔61)。其中,在利用选择性刻蚀工艺去除第二牺牲层的步骤中,可以从该通孔注入选择性刻蚀液以去除第二牺牲层,从而形成如图24所示的流道结构器件。在该实施例中通过在盖帽层上形成通孔,从而在选择性刻蚀工艺中,有利于选择性刻蚀液经过该通孔来去除第二牺牲层,可以加快腐蚀速率。In another embodiment, similar to the foregoing, before removing the second sacrificial layer by a selective etching process, the manufacturing method may further include: etching the capping layer to form the first capping layer penetrating the capping layer and exposing the second sacrificial layer. Two through holes of the sacrificial layer (not shown in FIG. 24 , you can refer to the through holes 61 in FIG. 12 ). Wherein, in the step of removing the second sacrificial layer by a selective etching process, a selective etching solution may be injected from the through hole to remove the second sacrificial layer, thereby forming a flow channel structure device as shown in FIG. 24 . In this embodiment, by forming a through hole on the cap layer, in the selective etching process, it is favorable for the selective etching solution to pass through the through hole to remove the second sacrificial layer, and the etching rate can be accelerated.

由上述制造方法,还形成了根据本发明另一个实施例的流道结构器件。如图24所示,该流道结构器件可以包括与图22相同或相似的结构,例如可以包括:基片21、第一材料层411、第一支撑层412、第二材料层421、第二支撑层422和流道50,这里不再详细描述。From the above-described manufacturing method, a flow channel structure device according to another embodiment of the present invention is also formed. As shown in FIG. 24 , the flow channel structure device may include the same or similar structure as that shown in FIG. 22 , for example, may include: a substrate 21 , a first material layer 411 , a first support layer 412 , a second material layer 421 , a second The support layer 422 and the flow channel 50 are not described in detail here.

在一个实施例中,如图24所示,该流道结构器件还可以包括:覆盖在第一材料层411、第一支撑层412、第二材料层421和第二支撑层422上的盖帽层60。其中,该盖帽层60覆盖在流道50之上。该盖帽层60可以与第一结构层41(可以包括第一材料层411和第一支撑层412)和第二结构层42(可以包括第二材料层421和第二支撑层422)一起实现封闭性流道(即流道的上方被封闭),还可以避免第一结构层41和第二结构层42的上表面与流体接触所可能带来的寄生反应。此外,对于一些需要流体(例如液体)在流道中流动的应用,该实施例的覆盖有盖帽层的流道更容易控制这些流体的流动。In one embodiment, as shown in FIG. 24 , the flow channel structure device may further include: a cap layer covering the first material layer 411 , the first support layer 412 , the second material layer 421 and the second support layer 422 60. Wherein, the cap layer 60 covers the flow channel 50 . The capping layer 60 can achieve sealing together with the first structural layer 41 (which may include the first material layer 411 and the first support layer 412 ) and the second structural layer 42 (which may include the second material layer 421 and the second support layer 422 ) The flow channel (that is, the upper part of the flow channel is closed) can also avoid parasitic reactions that may be caused by the contact between the upper surfaces of the first structural layer 41 and the second structural layer 42 and the fluid. Furthermore, for some applications that require the flow of fluids (eg, liquids) in the flow channel, the flow channel covered with the capping layer of this embodiment makes it easier to control the flow of these fluids.

在一个实施例中,该盖帽层60的材料可以包括:绝缘介质材料(例如,氧化硅、氮化硅、氮氧化硅、硼磷硅玻璃、氧化铝、氧化钛或氧化钽等)或半导体材料(例如,多晶硅或非晶硅等)。In one embodiment, the material of the capping layer 60 may include: insulating dielectric materials (eg, silicon oxide, silicon nitride, silicon oxynitride, borophosphosilicate glass, aluminum oxide, titanium oxide or tantalum oxide, etc.) or semiconductor materials (eg, polysilicon or amorphous silicon, etc.).

在一个实施例中,该盖帽层60的厚度范围可以为1纳米至10微米。例如,该盖帽层的厚度可以为10纳米、100纳米、500纳米、1微米或5微米等。In one embodiment, the thickness of the capping layer 60 may range from 1 nanometer to 10 micrometers. For example, the thickness of the capping layer may be 10 nanometers, 100 nanometers, 500 nanometers, 1 micrometer, or 5 micrometers.

在一个实施例中,该流道结构器件还可以包括:贯穿盖帽层且连通到流道的通孔。In one embodiment, the flow channel structure device may further include: a through hole penetrating the cap layer and communicating with the flow channel.

至此,提供了根据本发明一些实施例的制造方法和由这些制造方法所形成的流道结构器件。本发明实施例的流道可以是纳米流道。本发明具有以下优点:(1)可以实现高深宽比的纳米流道结构,尺寸可控性好;(2)可以实现全金属导电电极镶嵌结构;(3)可以有效提升纳米流道结构的可制造性,降低纳米流道结构制造成本;(4)具有比较低的热预算,可以与集成电路工艺兼容。此外,本发明实施例的流道结构器件可以实现在分子检测、液体形成或者流体运输控制等方面的应用。Thus far, fabrication methods according to some embodiments of the present invention and flow channel structure devices formed by these fabrication methods have been provided. The flow channel of the embodiment of the present invention may be a nano-flow channel. The invention has the following advantages: (1) a nano-channel structure with a high aspect ratio can be realized, and the size controllability is good; (2) an all-metal conductive electrode mosaic structure can be realized; (3) the controllability of the nano-channel structure can be effectively improved manufacturability, reducing the manufacturing cost of the nano-channel structure; (4) having a relatively low thermal budget, which can be compatible with integrated circuit processes. In addition, the flow channel structure device of the embodiment of the present invention can be applied in molecular detection, liquid formation or fluid transport control and the like.

在本发明的一个实施例中,还可以提供一种流道传感器。该流道传感器可以包括:如前所述的流道结构器件(例如,如图22或如图24所示的流道结构器件)。In an embodiment of the present invention, a flow channel sensor can also be provided. The flow channel sensor may include: a flow channel structure device as previously described (eg, a flow channel structure device as shown in FIG. 22 or FIG. 24 ).

在本发明的一个实施例中,还可以提供一种生物化学分析设备。该生物化学分析设备可以包括:如前所述的流道结构器件(例如,如图22或如图24所示的流道结构器件)。In one embodiment of the present invention, a biochemical analysis device can also be provided. The biochemical analysis device may include: a flow channel structure device as previously described (eg, a flow channel structure device as shown in FIG. 22 or FIG. 24 ).

图25是示意性地示出根据本发明一个实施例的用于分子检测的芯片的结构图。如图25所示,该芯片250可以包括:流道结构器件2501、信号收集单元2502和信号处理单元2503。该流道结构器件2501包括电极(例如第一电极和第二电极)。例如该流道结构器件可以为如图22或如图24所示的流道结构器件。其中,待检测样品被加入到该流道结构器件的流道中,在该流道结构器件的电极(例如第一电极和第二电极)被施加电激励情况下,该待检测样品中的目标分子在电激励作用下产生电信号或光信号。FIG. 25 is a structural diagram schematically showing a chip for molecular detection according to an embodiment of the present invention. As shown in FIG. 25 , the chip 250 may include: a flow channel structure device 2501 , a signal collection unit 2502 and a signal processing unit 2503 . The flow channel structure device 2501 includes electrodes (eg, a first electrode and a second electrode). For example, the flow channel structure device may be the flow channel structure device shown in FIG. 22 or FIG. 24 . Wherein, the sample to be detected is added into the flow channel of the flow channel structure device, and the target molecules in the sample to be detected under the condition that the electrodes (for example, the first electrode and the second electrode) of the flow channel structure device are applied with electrical excitation Under the action of electrical excitation, electrical or optical signals are generated.

该信号收集单元2502可以用于收集该电信号或该光信号,并将该电信号或该光信号传输到该信号处理单元2503。The signal collecting unit 2502 can be used to collect the electrical signal or the optical signal, and transmit the electrical signal or the optical signal to the signal processing unit 2503 .

该信号处理单元2503可以用于对该电信号或该光信号进行信号处理,识别出目标分子的信息。The signal processing unit 2503 can be used to perform signal processing on the electrical signal or the optical signal to identify the information of the target molecule.

在本发明的实施例中,还提供了一种分子检测方法。该方法可以包括:使用如前所述的芯片(例如如图25所示的芯片)进行分子检测。In an embodiment of the present invention, a molecular detection method is also provided. The method may include molecular detection using a chip as previously described (eg, the chip shown in Figure 25).

图26是示出根据本发明一个实施例的分子检测方法的流程图。下面结合图26来描述使用芯片进行分子检测的步骤。Figure 26 is a flow chart illustrating a molecular detection method according to one embodiment of the present invention. The steps of molecular detection using the chip will be described below with reference to FIG. 26 .

在步骤S2601,对待检测样品进行处理。例如可以对待检测样品进行化学处理或其他处理。In step S2601, the sample to be detected is processed. For example, the sample to be tested may be chemically or otherwise treated.

在步骤S2602,将待检测样品加入到芯片中。例如将待检测样品加入到该芯片的流道结构器件的流道中。In step S2602, the sample to be detected is added to the chip. For example, the sample to be detected is added into the flow channel of the flow channel structure device of the chip.

在步骤S2603,对芯片中的流道结构器件中的电极(例如第一电极和第二电极)施加电激励,使得待检测样品中的目标分子在电激励作用下产生电信号或光信号。In step S2603, electrical excitation is applied to the electrodes (eg, the first electrode and the second electrode) in the flow channel structure device in the chip, so that the target molecules in the sample to be detected generate electrical or optical signals under the action of electrical excitation.

在步骤S2604,芯片的信号处理单元通过信号收集单元获得电信号或光信号,并对该电信号或该光信号进行信号处理,识别出目标分子的信息。In step S2604, the signal processing unit of the chip obtains the electrical signal or the optical signal through the signal collection unit, and performs signal processing on the electrical signal or the optical signal to identify the information of the target molecule.

在上述实施例中,通过使用包含本发明实施例的流道结构器件的芯片实现了分子检测的应用。In the above-mentioned embodiments, the application of molecular detection is realized by using the chip including the flow channel structure device of the embodiment of the present invention.

至此,已经详细描述了本发明。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。So far, the present invention has been described in detail. Some details that are well known in the art have not been described in order to avoid obscuring the concept of the present invention. Those skilled in the art can fully understand how to implement the technical solutions disclosed herein based on the above description.

虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。While some specific embodiments of the present invention have been described in detail by way of example, those skilled in the art will appreciate that the above examples are provided for illustration only and not for the purpose of limiting the scope of the invention. Those skilled in the art will appreciate that modifications may be made to the above embodiments without departing from the scope and spirit of the present invention. The scope of the invention is defined by the appended claims.

Claims (27)

1.一种流道结构器件的制造方法,其特征在于,包括:1. a manufacturing method of a flow channel structure device is characterized in that, comprising: 提供基片,所述基片包括第一部分和与所述第一部分邻接的第二部分;providing a substrate including a first portion and a second portion adjacent to the first portion; 在所述基片上形成图形化的第一牺牲层,所述第一牺牲层覆盖所述第二部分且露出所述第一部分;forming a patterned first sacrificial layer on the substrate, the first sacrificial layer covering the second part and exposing the first part; 在所述基片的第一部分和所述第一牺牲层上形成第一结构层;forming a first structural layer on the first portion of the substrate and the first sacrificial layer; 在形成所述第一结构层之后,执行第一抛光处理以露出所述第一牺牲层;after forming the first structural layer, performing a first polishing process to expose the first sacrificial layer; 去除所述第一牺牲层以露出所述基片的第二部分的上表面和所述第一结构层的侧面;removing the first sacrificial layer to expose the upper surface of the second portion of the substrate and the sides of the first structural layer; 在所述基片的第二部分的部分上表面上形成第二牺牲层,其中所述第二牺牲层覆盖所述第一结构层的被露出的侧面;forming a second sacrificial layer on a portion of the upper surface of the second portion of the substrate, wherein the second sacrificial layer covers the exposed side of the first structural layer; 在所述基片的第二部分、所述第二牺牲层和所述第一结构层上形成第二结构层;forming a second structural layer on the second portion of the substrate, the second sacrificial layer and the first structural layer; 在形成所述第二结构层之后,执行第二抛光处理以露出所述第二牺牲层;以及after forming the second structural layer, performing a second polishing process to expose the second sacrificial layer; and 利用选择性刻蚀工艺去除所述第二牺牲层以形成流道。The second sacrificial layer is removed by a selective etching process to form flow channels. 2.根据权利要求1所述的制造方法,其特征在于,2. The manufacturing method according to claim 1, characterized in that, 在执行所述第二抛光处理的步骤中,还露出所述第一结构层和所述第二结构层;In the step of performing the second polishing process, the first structural layer and the second structural layer are also exposed; 在利用选择性刻蚀工艺去除所述第二牺牲层之前,所述方法还包括:在所述第二牺牲层、所述第一结构层和所述第二结构层上形成盖帽层。Before removing the second sacrificial layer using a selective etching process, the method further includes: forming a capping layer on the second sacrificial layer, the first structure layer and the second structure layer. 3.根据权利要求1所述的制造方法,其特征在于,3. The manufacturing method according to claim 1, characterized in that, 所述形成第一结构层的步骤包括:在所述基片的第一部分和所述第一牺牲层上形成第一材料层,其中所述第一材料层覆盖所述第一牺牲层的侧面;以及在所述第一材料层上形成第一支撑层;其中,所述第一结构层包括:所述第一材料层和所述第一支撑层;The step of forming the first structural layer includes: forming a first material layer on the first portion of the substrate and the first sacrificial layer, wherein the first material layer covers a side surface of the first sacrificial layer; and forming a first support layer on the first material layer; wherein the first structure layer includes: the first material layer and the first support layer; 所述形成第二结构层的步骤包括:在所述基片的第二部分、所述第二牺牲层和所述第一结构层上形成第二材料层,所述第二材料层覆盖所述第二牺牲层的侧面;以及在所述第二材料层上形成第二支撑层;其中,所述第二结构层包括:所述第二材料层和所述第二支撑层。The step of forming the second structural layer includes: forming a second material layer on the second portion of the substrate, the second sacrificial layer and the first structural layer, the second material layer covering the a side surface of the second sacrificial layer; and forming a second support layer on the second material layer; wherein the second structure layer includes: the second material layer and the second support layer. 4.根据权利要求3所述的制造方法,其特征在于,4. The manufacturing method according to claim 3, characterized in that, 在去除所述第一牺牲层以露出所述第一结构层的侧面的步骤中,所露出的所述第一结构层的侧面为所述第一材料层的侧面;In the step of removing the first sacrificial layer to expose the side surface of the first structure layer, the exposed side surface of the first structure layer is the side surface of the first material layer; 在形成第二牺牲层的步骤中,所述第二牺牲层覆盖所述第一材料层的被露出的侧面。In the step of forming the second sacrificial layer, the second sacrificial layer covers the exposed side surface of the first material layer. 5.根据权利要求3所述的制造方法,其特征在于,5. The manufacturing method according to claim 3, characterized in that, 在执行所述第二抛光处理的步骤中,还露出所述第一材料层、所述第一支撑层、所述第二材料层和所述第二支撑层;In the step of performing the second polishing process, the first material layer, the first support layer, the second material layer and the second support layer are also exposed; 在利用选择性刻蚀工艺去除所述第二牺牲层之前,所述方法还包括:在所述第二牺牲层、所述第一材料层、所述第一支撑层、所述第二材料层和所述第二支撑层上形成盖帽层。Before removing the second sacrificial layer by a selective etching process, the method further includes: in the second sacrificial layer, the first material layer, the first support layer, the second material layer and forming a cap layer on the second support layer. 6.根据权利要求2或5所述的制造方法,其特征在于,6. The manufacturing method according to claim 2 or 5, characterized in that, 所述盖帽层的材料包括:绝缘介质材料或半导体材料;The material of the cap layer includes: insulating dielectric material or semiconductor material; 所述盖帽层的厚度范围为1纳米至10微米。The capping layer has a thickness ranging from 1 nanometer to 10 micrometers. 7.根据权利要求2或5所述的制造方法,其特征在于,7. The manufacturing method according to claim 2 or 5, characterized in that, 在利用选择性刻蚀工艺去除所述第二牺牲层的步骤中,从所述第二牺牲层的边缘注入选择性刻蚀液以去除所述第二牺牲层。In the step of removing the second sacrificial layer by a selective etching process, a selective etching solution is injected from the edge of the second sacrificial layer to remove the second sacrificial layer. 8.根据权利要求2或5所述的制造方法,其特征在于,8. The manufacturing method according to claim 2 or 5, characterized in that, 在利用选择性刻蚀工艺去除所述第二牺牲层之前,所述方法还包括:对所述盖帽层进行刻蚀以形成贯穿所述盖帽层且露出所述第二牺牲层的通孔;Before removing the second sacrificial layer by a selective etching process, the method further includes: etching the capping layer to form a through hole penetrating the capping layer and exposing the second sacrificial layer; 其中,在利用选择性刻蚀工艺去除所述第二牺牲层的步骤中,从所述通孔注入选择性刻蚀液以去除所述第二牺牲层。Wherein, in the step of removing the second sacrificial layer by a selective etching process, a selective etching solution is injected from the through hole to remove the second sacrificial layer. 9.根据权利要求3所述的制造方法,其特征在于,9. The manufacturing method according to claim 3, characterized in that, 所述第一材料层的一部分在所述第一支撑层与所述流道之间,所述第一材料层的另一部分在所述第一支撑层与所述基片的第一部分之间;A part of the first material layer is between the first support layer and the flow channel, and another part of the first material layer is between the first support layer and the first part of the substrate; 所述第二材料层的一部分在所述第二支撑层与所述流道之间,所述第二材料层的另一部分在所述第二支撑层与所述基片的第二部分之间。A portion of the second material layer is between the second support layer and the flow channel, and another portion of the second material layer is between the second support layer and the second portion of the substrate . 10.根据权利要求9所述的制造方法,其特征在于,10. The manufacturing method according to claim 9, characterized in that, 所述第一材料层的材料包括:金属材料或半导体材料;The material of the first material layer includes: metal material or semiconductor material; 所述第二材料层的材料包括:金属材料或半导体材料;The material of the second material layer includes: metal material or semiconductor material; 其中,所述第一材料层的在所述第一支撑层与所述流道之间的部分作为所述流道结构器件的第一电极;所述第一材料层的在所述第一支撑层与所述基片的第一部分之间的部分作为所述第一电极的第一引线;所述第二材料层的在所述第二支撑层与所述流道之间的部分作为所述流道结构器件的第二电极;所述第二材料层的在所述第二支撑层与所述基片的第二部分之间的部分作为所述第二电极的第二引线。The part of the first material layer between the first support layer and the flow channel serves as the first electrode of the flow channel structure device; the part of the first material layer between the first support layer and the flow channel is used as the first electrode of the flow channel structure device; The part between the layer and the first part of the substrate serves as the first lead of the first electrode; the part of the second material layer between the second support layer and the flow channel serves as the first lead of the first electrode; The second electrode of the flow channel structure device; the part of the second material layer between the second support layer and the second part of the substrate serves as the second lead of the second electrode. 11.根据权利要求3所述的制造方法,其特征在于,11. The manufacturing method according to claim 3, wherein, 所述第一材料层的材料和所述第二材料层的材料分别包括:绝缘介质材料。The material of the first material layer and the material of the second material layer respectively include: insulating dielectric material. 12.根据权利要求1所述的制造方法,其特征在于,12. The manufacturing method according to claim 1, wherein, 所述第一牺牲层的厚度根据所需要的流道的高度来确定;The thickness of the first sacrificial layer is determined according to the required height of the flow channel; 所述第一牺牲层的厚度范围为100纳米至100微米。The thickness of the first sacrificial layer ranges from 100 nanometers to 100 micrometers. 13.根据权利要求1所述的制造方法,其特征在于,13. The manufacturing method according to claim 1, wherein, 所述第二牺牲层的厚度根据所需要的流道的宽度来确定;The thickness of the second sacrificial layer is determined according to the required width of the flow channel; 所述第二牺牲层的厚度范围为0.1纳米至1微米。The thickness of the second sacrificial layer ranges from 0.1 nanometer to 1 micrometer. 14.根据权利要求3所述的制造方法,其特征在于,14. The manufacturing method according to claim 3, characterized in that, 所述第一材料层的厚度范围为1纳米至500纳米;The thickness of the first material layer ranges from 1 nanometer to 500 nanometers; 所述第一支撑层的厚度范围为100纳米至100微米;The thickness of the first support layer ranges from 100 nanometers to 100 micrometers; 所述第二材料层的厚度范围为1纳米至500纳米;The thickness of the second material layer ranges from 1 nanometer to 500 nanometers; 所述第二支撑层的厚度范围为100纳米至100微米。The thickness of the second support layer ranges from 100 nanometers to 100 micrometers. 15.一种利用如权利要求9所述的制造方法形成的流道结构器件,其特征在于,包括:15. A flow channel structure device formed by the manufacturing method according to claim 9, characterized in that, comprising: 基片,所述基片包括第一部分和与所述第一部分邻接的第二部分;a substrate comprising a first portion and a second portion adjacent to the first portion; 在所述基片上的第一结构层和第二结构层;其中,所述第一结构层包括:在所述基片的第一部分上的第一材料层和在所述第一材料层上的第一支撑层,所述第二结构层包括:在所述基片的第二部分上的第二材料层和在所述第二材料层上的第二支撑层;A first structural layer and a second structural layer on the substrate; wherein the first structural layer comprises: a first material layer on a first portion of the substrate and a first material layer on the first material layer a first support layer, the second structural layer comprising: a second material layer on the second portion of the substrate and a second support layer on the second material layer; 在所述第一材料层与所述第二材料层之间的流道;所述第一支撑层和所述第二支撑层分别在所述流道的两侧;a flow channel between the first material layer and the second material layer; the first support layer and the second support layer are respectively on both sides of the flow channel; 其中,所述第一材料层的一部分在所述第一支撑层与所述流道之间,所述第一材料层的另一部分在所述第一支撑层与所述基片的第一部分之间;所述第二材料层的一部分在所述第二支撑层与所述流道之间,所述第二材料层的另一部分在所述第二支撑层与所述基片的第二部分之间。Wherein, a part of the first material layer is between the first support layer and the flow channel, and another part of the first material layer is between the first support layer and the first part of the substrate A part of the second material layer is between the second support layer and the flow channel, and another part of the second material layer is between the second support layer and the second part of the substrate between. 16.根据权利要求15所述的流道结构器件,其特征在于,还包括:16. The flow channel structure device of claim 15, further comprising: 覆盖在所述第一材料层、所述第一支撑层、所述第二材料层和所述第二支撑层上的盖帽层;其中,所述盖帽层覆盖在所述流道之上。A cap layer covering the first material layer, the first support layer, the second material layer and the second support layer; wherein the cap layer covers the flow channel. 17.根据权利要求16所述的流道结构器件,其特征在于,17. The flow channel structure device according to claim 16, wherein, 所述盖帽层的材料包括:绝缘介质材料或半导体材料;The material of the cap layer includes: insulating dielectric material or semiconductor material; 所述盖帽层的厚度范围为1纳米至10微米。The capping layer has a thickness ranging from 1 nanometer to 10 micrometers. 18.根据权利要求16所述的流道结构器件,其特征在于,还包括:18. The flow channel structure device of claim 16, further comprising: 贯穿所述盖帽层且连通到所述流道的通孔。A through hole passing through the cap layer and communicating with the flow channel. 19.根据权利要求15所述的流道结构器件,其特征在于,19. The flow channel structure device according to claim 15, wherein, 所述第一材料层的材料包括:金属材料或半导体材料;The material of the first material layer includes: metal material or semiconductor material; 所述第二材料层的材料包括:金属材料或半导体材料;The material of the second material layer includes: metal material or semiconductor material; 其中,所述第一材料层的在所述第一支撑层与所述流道之间的部分作为所述流道结构器件的第一电极;所述第一材料层的在所述第一支撑层与所述基片的第一部分之间的部分作为所述第一电极的第一引线;所述第二材料层的在所述第二支撑层与所述流道之间的部分作为所述流道结构器件的第二电极;所述第二材料层的在所述第二支撑层与所述基片的第二部分之间的部分作为所述第二电极的第二引线。The part of the first material layer between the first support layer and the flow channel serves as the first electrode of the flow channel structure device; the part of the first material layer between the first support layer and the flow channel is used as the first electrode of the flow channel structure device; The part between the layer and the first part of the substrate serves as the first lead of the first electrode; the part of the second material layer between the second support layer and the flow channel serves as the first lead of the first electrode; The second electrode of the flow channel structure device; the part of the second material layer between the second support layer and the second part of the substrate serves as the second lead of the second electrode. 20.根据权利要求15所述的流道结构器件,其特征在于,20. The flow channel structure device according to claim 15, wherein, 所述第一材料层的材料和所述第二材料层的材料分别包括:绝缘介质材料。The material of the first material layer and the material of the second material layer respectively include: insulating dielectric material. 21.根据权利要求15所述的流道结构器件,其特征在于,21. The flow channel structure device according to claim 15, wherein, 所述流道的高度范围为100纳米至100微米;The height of the flow channel ranges from 100 nanometers to 100 micrometers; 所述流道的宽度范围为0.1纳米至1微米。The width of the flow channel ranges from 0.1 nanometer to 1 micrometer. 22.根据权利要求15所述的流道结构器件,其特征在于,22. The flow channel structure device according to claim 15, wherein, 所述第一材料层的厚度范围为1纳米至500纳米;The thickness of the first material layer ranges from 1 nanometer to 500 nanometers; 所述第一支撑层的厚度范围为100纳米至100微米;The thickness of the first support layer ranges from 100 nanometers to 100 micrometers; 所述第二材料层的厚度范围为1纳米至500纳米;The thickness of the second material layer ranges from 1 nanometer to 500 nanometers; 所述第二支撑层的厚度范围为100纳米至100微米。The thickness of the second support layer ranges from 100 nanometers to 100 micrometers. 23.一种流道传感器,其特征在于,包括:如权利要求15至22任意一项所述的流道结构器件。23. A flow channel sensor, characterized by comprising: the flow channel structure device according to any one of claims 15 to 22. 24.一种生物化学分析设备,其特征在于,包括:如权利要求15至22任意一项所述的流道结构器件。24. A biochemical analysis device, comprising: the flow channel structure device according to any one of claims 15 to 22. 25.一种用于分子检测的芯片,其特征在于,包括:如权利要求19所述流道结构器件、信号收集单元和信号处理单元;25. A chip for molecular detection, comprising: a flow channel structure device as claimed in claim 19, a signal collection unit and a signal processing unit; 其中,待检测样品被加入到所述流道结构器件的流道中,在所述流道结构器件的电极被施加电激励情况下,所述待检测样品中的目标分子在电激励作用下产生电信号或光信号;The sample to be detected is added into the flow channel of the flow channel structure device, and the target molecules in the sample to be detected generate electricity under the action of electrical excitation when the electrodes of the flow channel structure device are electrically excited. signal or optical signal; 所述信号收集单元用于收集所述电信号或所述光信号,并将所述电信号或所述光信号传输到所述信号处理单元;The signal collecting unit is used for collecting the electrical signal or the optical signal, and transmitting the electrical signal or the optical signal to the signal processing unit; 所述信号处理单元用于对所述电信号或所述光信号进行信号处理,识别出所述目标分子的信息。The signal processing unit is configured to perform signal processing on the electrical signal or the optical signal to identify the information of the target molecule. 26.一种分子检测方法,其特征在于,包括:使用如权利要求25所述的芯片进行分子检测。26. A molecular detection method, comprising: using the chip of claim 25 for molecular detection. 27.根据权利要求26所述的分子检测方法,其特征在于,使用所述芯片进行分子检测的步骤包括:27. The molecular detection method according to claim 26, wherein the step of using the chip for molecular detection comprises: 对待检测样品进行处理;processing the samples to be tested; 将所述待检测样品加入到所述芯片中;adding the sample to be detected into the chip; 对所述芯片中的流道结构器件中的电极施加电激励,使得所述待检测样品中的目标分子在电激励作用下产生电信号或光信号;以及Applying electrical excitation to the electrodes in the flow channel structure device in the chip, so that the target molecule in the sample to be detected generates an electrical signal or an optical signal under the action of the electrical excitation; and 所述芯片的所述信号处理单元通过所述信号收集单元获得所述电信号或所述光信号,并对所述电信号或所述光信号进行信号处理,识别出所述目标分子的信息。The signal processing unit of the chip obtains the electrical signal or the optical signal through the signal collection unit, and performs signal processing on the electrical signal or the optical signal to identify the information of the target molecule.
CN201780090943.XA 2017-08-01 2017-08-01 Flow channel structure device and its manufacturing method Active CN110770160B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095498 WO2019023943A1 (en) 2017-08-01 2017-08-01 Fluidic channel structure device and manufacturing method therefor

Publications (2)

Publication Number Publication Date
CN110770160A CN110770160A (en) 2020-02-07
CN110770160B true CN110770160B (en) 2022-10-25

Family

ID=65232218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780090943.XA Active CN110770160B (en) 2017-08-01 2017-08-01 Flow channel structure device and its manufacturing method

Country Status (2)

Country Link
CN (1) CN110770160B (en)
WO (1) WO2019023943A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098488A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Functional structure and method for producing functional structure
CN101774531A (en) * 2010-01-05 2010-07-14 上海集成电路研发中心有限公司 MEMS microbridge structure contact hole preparation method
CN102050427A (en) * 2009-11-04 2011-05-11 中国科学院半导体研究所 Preparation method of nano-fluid testing device
CN103923825A (en) * 2014-04-17 2014-07-16 东南大学 Microfluidic chip system integrating cell sorting and detection
CN104190484A (en) * 2014-09-16 2014-12-10 山东华芯半导体有限公司 Preparation method of chip unit suitable for biomolecule detection
CN105158310A (en) * 2015-09-21 2015-12-16 东南大学 Microfluidic detection chip based on micropore electrode and application thereof
CN106206213A (en) * 2016-07-18 2016-12-07 中国科学院西安光学精密机械研究所 Method for preparing organic microchannel plate by adopting MEMS (micro-electromechanical systems) process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098488A (en) * 2005-09-30 2007-04-19 Fujifilm Corp Functional structure and method for producing functional structure
CN102050427A (en) * 2009-11-04 2011-05-11 中国科学院半导体研究所 Preparation method of nano-fluid testing device
CN101774531A (en) * 2010-01-05 2010-07-14 上海集成电路研发中心有限公司 MEMS microbridge structure contact hole preparation method
CN103923825A (en) * 2014-04-17 2014-07-16 东南大学 Microfluidic chip system integrating cell sorting and detection
CN104190484A (en) * 2014-09-16 2014-12-10 山东华芯半导体有限公司 Preparation method of chip unit suitable for biomolecule detection
CN105158310A (en) * 2015-09-21 2015-12-16 东南大学 Microfluidic detection chip based on micropore electrode and application thereof
CN106206213A (en) * 2016-07-18 2016-12-07 中国科学院西安光学精密机械研究所 Method for preparing organic microchannel plate by adopting MEMS (micro-electromechanical systems) process

Also Published As

Publication number Publication date
CN110770160A (en) 2020-02-07
WO2019023943A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CN100499048C (en) Nanogap, nano field effect transistor, molecular device, and biosensor
US9488615B2 (en) Biosensor with a sensing surface on an interlayer dielectric
US10101295B2 (en) On-chip reference electrode for biologically sensitive field effect transistor
CN105977282B (en) Method for manufacturing micro- trap of biosensor
US9714914B2 (en) CMOS compatible biofet
CN113241350A (en) Ladder structure of memory device
TW201721873A (en) Semiconductor device and method of manufacturing the same
CN106601640B (en) Test Lead Letters for Embedded Non-Volatile Memory Technology
US8674474B2 (en) Biosensors integrated with a microfluidic structure
CN110753580B (en) Flow channel structure device and its manufacturing method
US9540234B2 (en) Nanogap device and method of processing signal from the nanogap device
CN110770160B (en) Flow channel structure device and its manufacturing method
CN115498011A (en) Semiconductor structure, method for forming stacked unit layers and stacking two-dimensional material layers
TWI834353B (en) Integrated biosensor structure and manufacturing method thereof
KR102266419B1 (en) Self aligned and scalable nanogap post processing for dna sequencing
CN111108591A (en) Method of forming self-supporting membranes for biological applications
CN109299635B (en) Fingerprint sensor and forming method thereof
CN102050427A (en) Preparation method of nano-fluid testing device
US10788446B1 (en) Ion-sensitive field-effect transistor with micro-pillar well to enhance sensitivity
TW202023937A (en) Method of forming a nanopore and resulting structure
US20120007075A1 (en) Semiconductor chip with backside conductor structure
US20040104402A1 (en) Configuration and method for making contact with the back surface of a semiconductor substrate
US11320417B2 (en) Nanogap sensors and methods of forming the same
KR100769129B1 (en) Silicide Formation Method of Semiconductor Device
CN106206296A (en) A kind of integrated approach of the nanowire biosensor of vertical-channel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20200207

Assignee: Hangzhou Huada Xufeng Technology Co.,Ltd.

Assignor: BGI SHENZHEN

Contract record no.: X2024980036680

Denomination of invention: Channel structure devices and their manufacturing methods

Granted publication date: 20221025

License type: Common License

Record date: 20241217