CN110791287B - Rare earth doped tungsten molybdate and preparation method and application thereof - Google Patents
Rare earth doped tungsten molybdate and preparation method and application thereof Download PDFInfo
- Publication number
- CN110791287B CN110791287B CN201910922905.7A CN201910922905A CN110791287B CN 110791287 B CN110791287 B CN 110791287B CN 201910922905 A CN201910922905 A CN 201910922905A CN 110791287 B CN110791287 B CN 110791287B
- Authority
- CN
- China
- Prior art keywords
- rare earth
- molybdate
- doped tungsten
- earth doped
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 title claims abstract description 61
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 52
- 239000010937 tungsten Substances 0.000 title claims abstract description 51
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 41
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 40
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 20
- 239000000126 substance Substances 0.000 claims abstract description 14
- 150000001216 Samarium Chemical class 0.000 claims abstract description 10
- 159000000008 strontium salts Chemical class 0.000 claims abstract description 10
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000002244 precipitate Substances 0.000 claims abstract description 7
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 6
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical group [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 10
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical group [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 8
- 229940010552 ammonium molybdate Drugs 0.000 claims description 8
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 8
- 239000011609 ammonium molybdate Substances 0.000 claims description 8
- YZDZYSPAJSPJQJ-UHFFFAOYSA-N samarium(3+);trinitrate Chemical compound [Sm+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O YZDZYSPAJSPJQJ-UHFFFAOYSA-N 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- MQIMWMYRKISISJ-UHFFFAOYSA-N O.[Sm+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound O.[Sm+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O MQIMWMYRKISISJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- IUDWCJPOHVCDPQ-UHFFFAOYSA-N strontium dinitrate hydrate Chemical compound O.[Sr++].[O-][N+]([O-])=O.[O-][N+]([O-])=O IUDWCJPOHVCDPQ-UHFFFAOYSA-N 0.000 claims description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims 1
- 235000011114 ammonium hydroxide Nutrition 0.000 claims 1
- 230000035484 reaction time Effects 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 12
- 238000001035 drying Methods 0.000 abstract description 3
- 238000001816 cooling Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000012378 ammonium molybdate tetrahydrate Substances 0.000 description 2
- FIXLYHHVMHXSCP-UHFFFAOYSA-H azane;dihydroxy(dioxo)molybdenum;trioxomolybdenum;tetrahydrate Chemical compound N.N.N.N.N.N.O.O.O.O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O.O[Mo](O)(=O)=O FIXLYHHVMHXSCP-UHFFFAOYSA-H 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002001 electrolyte material Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 239000010416 ion conductor Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- HDCOFJGRHQAIPE-UHFFFAOYSA-N samarium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Sm+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HDCOFJGRHQAIPE-UHFFFAOYSA-N 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 150000002823 nitrates Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- -1 rare earth ions Chemical class 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7759—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing samarium
- C09K11/7765—Vanadates; Chromates; Molybdates; Tungstates
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及自活化发光材料技术领域,尤其涉及一种稀土掺杂钨钼酸盐及其制备方法、应用。The invention relates to the technical field of self-activating light-emitting materials, in particular to a rare earth-doped tungsten molybdate, a preparation method and an application thereof.
背景技术Background technique
钨钼酸盐粉体不用向其中掺杂一些稀土离子用来激活,在一些特殊光线的激发下就可以产生非常高效的荧光,以此可以得出通过向基体掺杂别的激活离子能够非常明显地改善该基体的发光性能;钨钼酸盐还具有在高温情况下保持良好稳定性和优良的离子电导等性能。具有ABO4(A=Ca、Sr、Ba等;B=W、Mo)型白钨矿结构的钨钼酸盐氧化物是典型的氧离子导体。钨钼酸盐非常适合做发光材料,在激光器件、氧化物的离子导体等领域都具有非常重要的应用。The tungstomolybdate powder does not need to be doped with some rare earth ions for activation, and can generate very efficient fluorescence under the excitation of some special light, so it can be concluded that doping the matrix with other activated ions can be very obvious. to improve the luminescence properties of the matrix; the tungsten molybdate also has the properties of maintaining good stability and excellent ionic conductivity under high temperature conditions. Tungsten molybdate oxides with an ABO 4 (A=Ca, Sr, Ba, etc.; B=W, Mo) type scheelite structure are typical oxygen ion conductors. Tungstomolybdate is very suitable as a light-emitting material, and has very important applications in the fields of laser devices, ion conductors of oxides, etc.
目前,钨钼酸粉体的制备主要集中传统的固相反应法。但这种方法制备的粉体容易团聚且需要较高的烧结温度(一般为1150-1250℃)才能获得较为致密的材料。为了改进这类材料的性能,人们正在探寻用水热法、溶胶凝胶法等软化学方法制备此类材料,但是目前水热法制得的钨钼酸粉体常用于发光材料领域,很少用于电解质材料。At present, the preparation of tungstomolybdic acid powder mainly focuses on the traditional solid-phase reaction method. However, the powder prepared by this method is easy to agglomerate and requires a relatively high sintering temperature (generally 1150-1250° C.) to obtain a relatively dense material. In order to improve the properties of such materials, people are exploring the preparation of such materials by hydrothermal method, sol-gel method and other soft chemical methods, but the tungstomolybdic acid powder prepared by hydrothermal method is often used in the field of luminescent materials, and is rarely used in the field of luminescent materials. electrolyte material.
发明内容SUMMARY OF THE INVENTION
基于背景技术存在的技术问题,本发明提出了一种稀土掺杂钨钼酸盐及其制备方法、应用,本发明具有良好的导电性能和烧结致密性能;本发明具有较小的粒径,晶体形貌规整,尺寸均匀,晶粒分布合理,且压制密实成型的材料能够烧结成结构致密的烧结体,并且所需的烧结温度低,可以降低烧结能耗;且制备的烧结体具有良好的导电性能,可以用于固体电解质。Based on the technical problems existing in the background technology, the present invention proposes a rare earth doped tungsten molybdate and a preparation method and application thereof. The present invention has good electrical conductivity and sintering compactness; The shape is regular, the size is uniform, the grain distribution is reasonable, and the compacted material can be sintered into a sintered body with a dense structure, and the required sintering temperature is low, which can reduce the sintering energy consumption; and the prepared sintered body has good electrical conductivity. performance, can be used in solid electrolytes.
本发明提出的一种稀土掺杂钨钼酸盐,其化学式为Sr1-xSmx(MoO4)0.5(WO4)0.5,其中,0.05≤x≤0.25。The chemical formula of a rare earth-doped tungsten molybdate proposed by the present invention is Sr 1-x Sm x (MoO 4 ) 0.5 (WO 4 ) 0.5 , wherein 0.05≤x≤0.25.
优选地,x=0.1。Preferably, x=0.1.
本发明还提出了上述稀土掺杂钨钼酸盐的制备方法,包括如下步骤:The present invention also proposes a method for preparing the above-mentioned rare earth doped tungsten molybdate, comprising the following steps:
S1、根据化学式Sr1-xSmx(MoO4)0.5(WO4)0.5,按化学计量比分别称取钐盐、锶盐、钨酸盐和钼酸盐;S1, according to the chemical formula Sr 1-x Sm x (MoO 4 ) 0.5 (WO 4 ) 0.5 , respectively weigh samarium salt, strontium salt, tungstate and molybdate by stoichiometric ratio;
S2、向水中加入钐盐和锶盐溶解,再加入钨酸盐和钼酸盐溶解混匀,然后调节pH≥9,水热反应,冷却至室温,离心取沉淀,洗涤,烘干得到稀土掺杂钨钼酸盐。S2. Add samarium salt and strontium salt to water to dissolve, then add tungstate and molybdate to dissolve and mix, then adjust pH ≥ 9, perform hydrothermal reaction, cool to room temperature, centrifuge to collect precipitate, wash, and dry to obtain rare earth doped Hetero tungsten molybdate.
优选地,pH=9-11。Preferably, pH=9-11.
优选地,pH可以为9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9、10、10.1、10.2、10.3、10.4、10.5、10.6、10.7、10.8、10.9或11。Preferably, the pH may be 9, 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 10, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9 or 11.
优选地,pH=9。Preferably, pH=9.
优选地,水热反应的温度为160-200℃,水热反应的时间为20-28h。Preferably, the temperature of the hydrothermal reaction is 160-200° C., and the time of the hydrothermal reaction is 20-28 h.
优选地,水热反应的温度为180℃,水热反应的时间为24h。Preferably, the temperature of the hydrothermal reaction is 180° C., and the time of the hydrothermal reaction is 24 h.
优选地,钐盐为硝酸钐、硝酸钐水合物中的至少一种。Preferably, the samarium salt is at least one of samarium nitrate and samarium nitrate hydrate.
优选地,锶盐为硝酸锶、硝酸锶水合物中的至少一种。Preferably, the strontium salt is at least one of strontium nitrate and strontium nitrate hydrate.
优选地,钨酸盐为钨酸铵、钨酸铵水合物中的至少一种。Preferably, the tungstate is at least one of ammonium tungstate and ammonium tungstate hydrate.
优选地,钼酸盐为钼酸铵、钼酸铵水合物中的至少一种。Preferably, the molybdate is at least one of ammonium molybdate and ammonium molybdate hydrate.
优选地,用氨水或硝酸调节pH。Preferably, the pH is adjusted with ammonia or nitric acid.
本发明还提出了上述稀土掺杂钨钼酸盐在固体电解质中的应用。The invention also proposes the application of the above rare earth doped tungsten molybdate in solid electrolyte.
本发明选用稀土Sm、Sr掺杂钨钼酸盐,并选择适宜的掺杂量,使得本发明具有良好的导电性能和烧结致密性能;选用水热法进行制备,并通过调节适宜的pH,使得稀土掺杂钨钼酸盐具有纯相白钨矿结构,无其他杂晶相;并且通过适宜的pH和水热反应条件使得稀土掺杂钨钼酸盐具有较小的粒径,晶体形貌规整,尺寸均匀,晶粒分布合理,且压制密实成型的材料能够烧结成结构致密的烧结体,并且所需的烧结温度低,可以降低烧结能耗;且制备的烧结体具有良好的导电性能,可以用于固体电解质。The present invention selects rare earth Sm and Sr doped tungsten molybdate, and selects an appropriate doping amount, so that the present invention has good electrical conductivity and sintering compact performance; selects the hydrothermal method for preparation, and adjusts the appropriate pH, so that the Rare earth doped tungsten molybdate has a pure phase scheelite structure without other heterocrystalline phases; and through suitable pH and hydrothermal reaction conditions, rare earth doped tungsten molybdate has smaller particle size and regular crystal morphology , the size is uniform, the grain distribution is reasonable, and the compacted and compacted material can be sintered into a sintered body with a dense structure, and the required sintering temperature is low, which can reduce the sintering energy consumption; and the prepared sintered body has good electrical conductivity. for solid electrolytes.
附图说明Description of drawings
图1为稀土掺杂钨钼酸盐的TG曲线图。Figure 1 is a TG curve diagram of rare earth doped tungsten molybdate.
图2为不同pH得到的稀土掺杂钨钼酸盐的XRD衍射图谱。Figure 2 is the XRD diffraction pattern of rare earth doped tungsten molybdate obtained at different pH.
图3为不同PH得到的稀土掺杂钨钼酸盐烧结体断面SME图片。Figure 3 is the SME picture of the cross-section of the rare earth doped tungsten molybdate sintered body obtained at different pH.
图4为掺杂不同量Sm的钨钼酸盐的电导率随温度变化曲线。FIG. 4 is a curve of the conductivity of tungsten molybdate doped with different amounts of Sm as a function of temperature.
图5为掺杂不同量Sm的钨钼酸盐的离子电导率阿伦尼乌斯曲线图。Figure 5 is an Arrhenius plot of the ionic conductivity of tungstomolybdate doped with different amounts of Sm.
具体实施方式Detailed ways
下面,通过具体实施例对本发明的技术方案进行详细说明。Hereinafter, the technical solutions of the present invention will be described in detail through specific embodiments.
实施例1Example 1
一种稀土掺杂钨钼酸盐的制备方法,包括如下步骤:A preparation method of rare earth doped tungsten molybdate, comprising the following steps:
S1、根据化学式Sr0.95Sm0.05(MoO4)0.5(WO4)0.5,按化学计量比分别称取钐盐、锶盐、钨酸盐和钼酸盐;S1, according to the chemical formula Sr 0.95 Sm 0.05 (MoO 4 ) 0.5 (WO 4 ) 0.5 , respectively weigh samarium salt, strontium salt, tungstate and molybdate by stoichiometric ratio;
S2、向水中加入钐盐和锶盐溶解,再加入钨酸盐和钼酸盐溶解混匀,然后调节pH≥9,水热反应,冷却至室温,离心取沉淀,洗涤,烘干得到稀土掺杂钨钼酸盐。S2. Add samarium salt and strontium salt to water to dissolve, then add tungstate and molybdate to dissolve and mix, then adjust pH ≥ 9, perform hydrothermal reaction, cool to room temperature, centrifuge to collect precipitate, wash, and dry to obtain rare earth doped Hetero tungsten molybdate.
实施例2Example 2
一种稀土掺杂钨钼酸盐的制备方法,包括如下步骤:A preparation method of rare earth doped tungsten molybdate, comprising the following steps:
S1、根据化学式Sr0.75Sm0.25(MoO4)0.5(WO4)0.5,按化学计量比分别称取硝酸钐、硝酸锶、钨酸铵和钼酸铵;S1, according to chemical formula Sr 0.75 Sm 0.25 (MoO 4 ) 0.5 (WO 4 ) 0.5 , respectively weigh samarium nitrate, strontium nitrate, ammonium tungstate and ammonium molybdate by stoichiometric ratio;
S2、向水中加入硝酸钐和硝酸锶溶解,再加入钨酸铵和钼酸铵溶解混匀,然后调节pH=11,于160℃水热反应28h,冷却至室温,2500rpm离心3min取沉淀,洗涤,烘干得到稀土掺杂钨钼酸盐。S2. Add samarium nitrate and strontium nitrate to water to dissolve, then add ammonium tungstate and ammonium molybdate to dissolve and mix, then adjust pH=11, perform hydrothermal reaction at 160°C for 28h, cool to room temperature, centrifuge at 2500rpm for 3min to get the precipitate, and wash , drying to obtain rare earth doped tungsten molybdate.
实施例3Example 3
一种稀土掺杂钨钼酸盐的制备方法,包括如下步骤:A preparation method of rare earth doped tungsten molybdate, comprising the following steps:
S1、根据化学式Sr0.8Sm0.2(MoO4)0.5(WO4)0.5,按化学计量比分别称取硝酸钐、硝酸锶、钨酸铵和钼酸铵;S1, according to chemical formula Sr 0.8 Sm 0.2 (MoO 4 ) 0.5 (WO 4 ) 0.5 , respectively weigh samarium nitrate, strontium nitrate, ammonium tungstate and ammonium molybdate by stoichiometric ratio;
S2、向水中加入硝酸钐和硝酸锶溶解,再加入钨酸铵和钼酸铵溶解混匀,然后调节pH=10,于200℃水热反应20h,冷却至室温,2500rpm离心3min取沉淀,洗涤,烘干得到稀土掺杂钨钼酸盐。S2. Add samarium nitrate and strontium nitrate to the water to dissolve, then add ammonium tungstate and ammonium molybdate to dissolve and mix, then adjust pH=10, hydrothermally react at 200°C for 20h, cool to room temperature, centrifuge at 2500rpm for 3min to get the precipitate, and wash , drying to obtain rare earth doped tungsten molybdate.
实施例4Example 4
一种稀土掺杂钨钼酸盐的制备方法,包括如下步骤:A preparation method of rare earth doped tungsten molybdate, comprising the following steps:
S1、根据化学式Sr0.9Sm0.1(MoO4)0.5(WO4)0.5,按化学计量比分别称取六水合硝酸钐、硝酸锶、钨酸铵水合物和四水合钼酸铵;S1, according to chemical formula Sr 0.9 Sm 0.1 (MoO 4 ) 0.5 (WO 4 ) 0.5 , respectively weigh samarium nitrate hexahydrate, strontium nitrate, ammonium tungstate hydrate and ammonium molybdate tetrahydrate according to the stoichiometric ratio;
S2、向水中加入六水合硝酸钐和硝酸锶溶解,再加入钨酸铵水合物和四水合钼酸铵溶解混匀,然后调节pH=9,于180℃水热反应24h,冷却至室温,2500rpm离心3min取沉淀,洗涤,烘干得到稀土掺杂钨钼酸盐。S2. Add samarium nitrate hexahydrate and strontium nitrate to water to dissolve, then add ammonium tungstate hydrate and ammonium molybdate tetrahydrate to dissolve and mix, then adjust pH=9, perform hydrothermal reaction at 180°C for 24h, cool to room temperature, 2500rpm The precipitate was collected by centrifugation for 3 min, washed and dried to obtain rare earth doped tungsten molybdate.
取上述稀土掺杂钨钼酸盐进行TG分析,结果参见图1,图1为稀土掺杂钨钼酸盐的TG曲线图,由图1可知:粉体升温过程质量损失大致可以分为三个阶段:首先是室温到200℃,试样损失约为0.5%,主要的原因是其中所含有的结晶水蒸发和少量易挥发杂质的挥发等。当温度从200℃程序升温到550℃时,可以非常明显看到TG曲线有快速下降过程,试样损失量约为2.75%,主要原因可能是随着温度的升高,粉体中所含有的硝酸盐等分解所引起。温度高于500℃,粉体的质量缓慢减少直至不变,这说明各反应基本完成,形成了稳定的固溶体。Take the above rare earth doped tungsten molybdate for TG analysis, the results are shown in Figure 1, Figure 1 is the TG curve of the rare earth doped tungsten molybdate, it can be seen from Figure 1 that the mass loss during the heating process of the powder can be roughly divided into three Stage: The first is from room temperature to 200°C, and the loss of the sample is about 0.5%. The main reasons are the evaporation of the crystal water contained in it and the volatilization of a small amount of volatile impurities. When the temperature is programmed from 200°C to 550°C, it can be clearly seen that the TG curve has a rapid decline process, and the loss of the sample is about 2.75%. The main reason may be that with the increase of temperature, the powder contained in the powder Caused by the decomposition of nitrates, etc. When the temperature is higher than 500 °C, the mass of the powder slowly decreases until it remains unchanged, which indicates that each reaction is basically completed and a stable solid solution is formed.
实施例5Example 5
pH=7,其他同实施例4。pH=7, other is the same as Example 4.
实施例6Example 6
pH=11,其他同实施例4。pH=11, the others are the same as in Example 4.
对实施例4-6的稀土掺杂钨钼酸盐、SrWO4、SrMoO4进行XRD分析,结果参见图2,图2为不同pH得到的稀土掺杂钨钼酸盐的XRD衍射图谱,由图2可以看出,在不同pH下,在晶面(101)和晶面(112)之间存在杂峰,且随着pH的增加杂峰逐渐降低,pH=9时杂峰明显减少,降至很低,到pH=11时杂峰已无明显存在;同时XRD图谱同样可以明显反映出随着水热反应过程中pH的增加,峰高更加明显。由此可以说明在水热法制作粉体过程中要尽可能提高反应样品的pH以减少杂峰的存在和提高结晶性能得到更好的粉体,因此选择pH≥9。XRD analysis was carried out on the rare earth doped tungsten molybdate, SrWO 4 and SrMoO 4 of Examples 4-6, and the results are shown in Figure 2. Figure 2 is the XRD diffraction pattern of the rare earth doped tungsten molybdate obtained at different pH. 2 It can be seen that under different pH, there are impurity peaks between crystal plane (101) and crystal plane (112), and the impurity peak gradually decreases with the increase of pH. It is very low, and there is no obvious impurity peak when pH=11; at the same time, the XRD pattern can also clearly reflect that with the increase of pH during the hydrothermal reaction, the peak height is more obvious. It can be shown that in the process of making powder by hydrothermal method, the pH of the reaction sample should be increased as much as possible to reduce the existence of impurity peaks and improve the crystallization performance to obtain better powder, so pH≥9 is selected.
取实施例4、实施例6分别制备烧结体,烧结体的制备方法为:取稀土掺杂钨钼酸盐,加一滴聚乙烯醇的乙醇溶液研磨至研钵壁上无粉体附着,取1.2g研磨后的粉体压片,以2℃/min的速度升温至650℃,保温3h,再以1.5℃/min的速度升温至845℃,保温2h得到稀土掺杂钨钼酸盐烧结体。Take Example 4 and Example 6 to prepare sintered bodies respectively. The preparation method of the sintered body is as follows: take rare earth doped tungsten molybdate, add a drop of polyvinyl alcohol ethanol solution and grind until no powder adheres to the mortar wall, take 1.2 g. The ground powder was pressed into tablets, heated to 650°C at a rate of 2°C/min, held for 3 hours, then heated to 845°C at a rate of 1.5°C/min, held for 2 hours to obtain a rare earth doped tungsten molybdate sintered body.
对实施例4、实施例6制备的稀土掺杂钨钼酸盐烧结体断面进行SME扫描,结果参见图3,图3为不同PH得到的稀土掺杂钨钼酸盐烧结体断面SME图片,由图3可以看出,1.pH更高的样品在水热反应过程生成的晶粒越小,晶粒的粒度大小越接近纳米级;2.烧结温度相同时,pH=9时,烧结体断面无明显气孔,说明烧结体致密性好,满足用作固体电池电解质材料的要求,而pH=11时,烧结体断面SEM可以看出样品中孔隙较多。由此说明水热反应过程中pH越高,晶粒尺寸越小,烧结过程所需温度越高。SME scanning was carried out on the cross-sections of the rare earth-doped tungsten molybdate sintered bodies prepared in Example 4 and Example 6. The results are shown in Figure 3. Figure 3 is the SME pictures of the cross-sections of the rare earth-doped tungsten molybdate sintered bodies obtained at different pHs. It can be seen from Figure 3 that 1. The smaller the crystal grains generated by the samples with higher pH during the hydrothermal reaction process, the closer the grain size is to the nanoscale; 2. When the sintering temperature is the same, when pH=9, the cross section of the sintered body There is no obvious pores, indicating that the sintered body has good compactness and meets the requirements of being used as an electrolyte material for solid batteries. When pH=11, the SEM of the cross-section of the sintered body shows that there are many pores in the sample. This shows that the higher the pH during the hydrothermal reaction, the smaller the grain size, and the higher the temperature required for the sintering process.
实施例7Example 7
稀土掺杂钨钼酸盐的化学式为Sr0.95Sm0.05(MoO4)0.5(WO4)0.5,其制备方法同实施例4。The chemical formula of the rare earth-doped tungsten molybdate is Sr 0.95 Sm 0.05 (MoO 4 ) 0.5 (WO 4 ) 0.5 , and the preparation method thereof is the same as that in Example 4.
实施例8Example 8
稀土掺杂钨钼酸盐的化学式为Sr0.85Sm0.15(MoO4)0.5(WO4)0.5,其制备方法同实施例4。The chemical formula of the rare earth doped tungsten molybdate is Sr 0.85 Sm 0.15 (MoO 4 ) 0.5 (WO 4 ) 0.5 , and the preparation method thereof is the same as that in Example 4.
实施例9Example 9
稀土掺杂钨钼酸盐的化学式为Sr0.8Sm0.2(MoO4)0.5(WO4)0.5,其制备方法同实施例4。The chemical formula of the rare earth doped tungsten molybdate is Sr 0.8 Sm 0.2 (MoO 4 ) 0.5 (WO 4 ) 0.5 , and the preparation method thereof is the same as that in Example 4.
实施例10Example 10
稀土掺杂钨钼酸盐的化学式为Sr0.75Sm0.25(MoO4)0.5(WO4)0.5,其制备方法同实施例4。The chemical formula of the rare earth doped tungsten molybdate is Sr 0.75 Sm 0.25 (MoO 4 ) 0.5 (WO 4 ) 0.5 , and the preparation method thereof is the same as that in Example 4.
取实施例4、实施例7-10分别制备烧结体,烧结体的制备方法为:取稀土掺杂钨钼酸盐,加一滴聚乙烯醇的乙醇溶液研磨至研钵壁上无粉体附着,取1.2g研磨后的粉体压片,以2℃/min的速度升温至650℃,保温3h,再以1.5℃/min的速度升温至845℃,保温2h得到稀土掺杂钨钼酸盐烧结体。Take Example 4 and Examples 7-10 to prepare sintered bodies respectively. The preparation method of the sintered bodies is as follows: take rare earth doped tungsten molybdate, add a drop of polyvinyl alcohol ethanol solution and grind until no powder adheres to the mortar wall, Take 1.2 g of the ground powder into tablets, heat it up to 650 °C at a rate of 2 °C/min, hold it for 3 hours, then heat it up to 845 °C at a speed of 1.5 °C/min, and keep it for 2 hours to obtain rare earth doped tungsten molybdate sintering body.
检测实施例4、实施例7-10所得烧结体的电导率、离子电导率阿伦尼乌斯曲线,结果参见图4、图5,图4为掺杂不同量Sm的钨钼酸盐的电导率随温度变化曲线,图5为掺杂不同量Sm的钨钼酸盐的离子电导率阿伦尼乌斯曲线图;The Arrhenius curves of the electrical conductivity and ionic conductivity of the sintered bodies obtained in Example 4 and Example 7-10 were tested. The results are shown in Figure 4 and Figure 5. Figure 4 is the electrical conductivity of tungsten molybdate doped with different amounts of Sm. Figure 5 shows the Arrhenius curve of ionic conductivity of tungsten molybdate doped with different amounts of Sm;
由图4可以看出,随着Sm含量越高,电导率逐渐增加,是因为随着Sm含量的增加,Sm3+取代Sr2+,为保持电中性,会有氧从晶格中排出,形成氧空位,进而对其离子导电性有极大地提高,使得离子导电率升高,当Sm含量超过0.1时,电导率就会降低,因为氧空位过多则会发生该氧空位与固溶阳离子发生缔合作用,反而会使得电导能力下降;当Sm含量为0.1时,稀土掺杂钨钼酸盐800℃达到最高电导率,最高电导率为5.9×10-2S·cm-1;It can be seen from Figure 4 that with the increase of Sm content, the electrical conductivity gradually increases, because with the increase of Sm content, Sm 3+ replaces Sr 2+ , in order to maintain electrical neutrality, oxygen will be discharged from the lattice. , forming oxygen vacancies, which greatly improves its ionic conductivity, so that the ionic conductivity increases. When the Sm content exceeds 0.1, the conductivity will decrease, because too many oxygen vacancies will occur. The oxygen vacancies and solid solution The association of cations will reduce the electrical conductivity; when the Sm content is 0.1, the rare earth doped tungsten molybdate reaches the highest electrical conductivity at 800 ℃, and the highest electrical conductivity is 5.9×10 -2 S·cm -1 ;
由图5可以看出,电导活化能的变化与电导率变化具有相同的规律,当Sm含量超过0.1时,电导活化能就会升高;当Sm含量为0.1时,活化能最低。It can be seen from Figure 5 that the change of the conductivity activation energy has the same law as the conductivity change. When the Sm content exceeds 0.1, the conductivity activation energy will increase; when the Sm content is 0.1, the activation energy is the lowest.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. The equivalent replacement or change of the inventive concept thereof shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910922905.7A CN110791287B (en) | 2019-09-27 | 2019-09-27 | Rare earth doped tungsten molybdate and preparation method and application thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910922905.7A CN110791287B (en) | 2019-09-27 | 2019-09-27 | Rare earth doped tungsten molybdate and preparation method and application thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110791287A CN110791287A (en) | 2020-02-14 |
| CN110791287B true CN110791287B (en) | 2022-08-05 |
Family
ID=69439917
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910922905.7A Active CN110791287B (en) | 2019-09-27 | 2019-09-27 | Rare earth doped tungsten molybdate and preparation method and application thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110791287B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113322069A (en) * | 2021-06-10 | 2021-08-31 | 昆明理工大学 | Molybdate reversible multicolor photochromic up-conversion phosphor and preparation method thereof |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101805611A (en) * | 2010-04-23 | 2010-08-18 | 陈连平 | Doping method of scheelite luminescent material |
| CN102367381A (en) * | 2011-09-05 | 2012-03-07 | 四川师范大学 | Lanthanide metal doped tungsten and molybdate phosphor composition |
| CN102382643A (en) * | 2011-09-05 | 2012-03-21 | 四川师范大学 | Preparation method of chemical solution of terbium-doped tungsten molybdate green fluorescent microcrystalline |
| CN102433117A (en) * | 2011-09-05 | 2012-05-02 | 四川师范大学 | Chemical solution preparation method for tungsten molybdate solid solution luminescent microcrystal |
| CN104263367A (en) * | 2014-09-18 | 2015-01-07 | 陕西科技大学 | Mixed alkaline-earth metal-tungstate luminescent material doped with rare earth elements Eu and Sm and synthetic method thereof |
| CN107163941A (en) * | 2017-07-06 | 2017-09-15 | 重庆文理学院 | A kind of alkaline-earth metal tungsten molybdate red phosphor and preparation method thereof |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2807421B1 (en) * | 2000-04-07 | 2002-07-12 | Rhodia Terres Rares | COMPOUNDS DERIVED FROM LA2MO2O9 AND THEIR USE AS ION CONDUCTORS |
-
2019
- 2019-09-27 CN CN201910922905.7A patent/CN110791287B/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101805611A (en) * | 2010-04-23 | 2010-08-18 | 陈连平 | Doping method of scheelite luminescent material |
| CN102367381A (en) * | 2011-09-05 | 2012-03-07 | 四川师范大学 | Lanthanide metal doped tungsten and molybdate phosphor composition |
| CN102382643A (en) * | 2011-09-05 | 2012-03-21 | 四川师范大学 | Preparation method of chemical solution of terbium-doped tungsten molybdate green fluorescent microcrystalline |
| CN102433117A (en) * | 2011-09-05 | 2012-05-02 | 四川师范大学 | Chemical solution preparation method for tungsten molybdate solid solution luminescent microcrystal |
| CN104263367A (en) * | 2014-09-18 | 2015-01-07 | 陕西科技大学 | Mixed alkaline-earth metal-tungstate luminescent material doped with rare earth elements Eu and Sm and synthetic method thereof |
| CN107163941A (en) * | 2017-07-06 | 2017-09-15 | 重庆文理学院 | A kind of alkaline-earth metal tungsten molybdate red phosphor and preparation method thereof |
Non-Patent Citations (1)
| Title |
|---|
| Ca1-xSmxWO4+δ电解质材料的制备及性能;张雪强等;《广东化工》;20171231;第44卷(第23期);第29-30页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110791287A (en) | 2020-02-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Li et al. | Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors | |
| US11201350B2 (en) | Solid-state electrolytes and batteries made therefrom, and methods of making solid-state electrolytes | |
| Huang et al. | Method using water-based solvent to prepare Li7La3Zr2O12 solid electrolytes | |
| CN107887640A (en) | A kind of garnet structure solid electrolyte material and preparation method thereof | |
| JP6831011B2 (en) | High-ion conductive solid electrolyte for all-solid-state batteries and its manufacturing method | |
| CN105244536B (en) | A kind of tantalum doping cubic garnet structure Li7La3Zr2‑xTaxO12Material and preparation method thereof | |
| KR101260685B1 (en) | Method for manufacturing electrode active material for lithium ion secondary battery and lithium ion secondary battery using same | |
| CN100413807C (en) | Method for producing perovskite type composite oxide | |
| JP2017521848A (en) | Manufacture of layered lithium-manganese-nickel-cobalt oxide materials | |
| CN110540423A (en) | Sodium bismuth titanate-based ceramics with high energy storage density and power density, preparation method and application | |
| CN108793987B (en) | Lithium ion conductive oxide solid electrolyte and preparation method thereof | |
| CN112467198A (en) | Oxide solid electrolyte for lithium ion battery and preparation method thereof | |
| CN110885246A (en) | High-conductivity solid electrolyte prepared by sol-gel method | |
| CN114867685B (en) | Amorphous lithium ion conductive oxide powder, method for producing same, and method for producing lithium ion conductive oxide powder having NASICON-type crystal structure | |
| CN106565242B (en) | A method for improving the electrical properties of lanthanum calcium manganese oxide ceramic materials | |
| CN107253857A (en) | A kind of unleaded high energy storage density ceramic material and preparation method thereof | |
| CN106587997A (en) | A kind of SrTiO3 based lead-free high energy storage density ceramic material and preparation method thereof | |
| CN106753371A (en) | A kind of holmium ytterbium codope bismuth tungstate fluorescent material and preparation method thereof | |
| CN115073169A (en) | A kind of (1-x) NBT-SBT-xBKT lead-free ceramic material with high energy and low loss and preparation method thereof | |
| CN110791287B (en) | Rare earth doped tungsten molybdate and preparation method and application thereof | |
| Li et al. | Effect of Ga-Bi co-doped on structural and ionic conductivity of Li7La3Zr2O12 solid electrolytes derived from sol–gel method | |
| CN114573337A (en) | Titanate-based solid complex phase functional material and preparation method thereof | |
| Garskaite et al. | Sol-gel preparation and electrical behaviour of Ln: YAG (Ln= Ce, Nd, Ho, Er) | |
| JP2010161213A (en) | Thermoelectric conversion material, and method of manufacturing the same | |
| CN103708826A (en) | Low dielectric-loss barium strontium titanate pyroelectric ceramic and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |