[go: up one dir, main page]

CN110800206A - Motor control device and motor control method - Google Patents

Motor control device and motor control method Download PDF

Info

Publication number
CN110800206A
CN110800206A CN201880042412.8A CN201880042412A CN110800206A CN 110800206 A CN110800206 A CN 110800206A CN 201880042412 A CN201880042412 A CN 201880042412A CN 110800206 A CN110800206 A CN 110800206A
Authority
CN
China
Prior art keywords
command value
voltage command
axis
value
wave control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880042412.8A
Other languages
Chinese (zh)
Inventor
福田健二
高田敬梦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawafuji Electric Co Ltd
Original Assignee
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sawafuji Electric Co Ltd filed Critical Sawafuji Electric Co Ltd
Publication of CN110800206A publication Critical patent/CN110800206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0021Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/12Stator flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/13Different type of waveforms depending on the mode of operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

Provided are a motor control device and a motor control method which can perform torque control based on a command value even when a control mode is switched, suppress torque variation at the time of switching, and have excellent responsiveness. When switching from the sine wave control mode to the rectangular wave control mode, the motor control device (100) and the motor control method output the last voltage phase (theta v) in the sine wave control mode to the voltage phase setting unit (502) as the initial voltage phase (theta v1), and continuously increase the transfer voltage command value | Va' | from the last voltage command value | Va | in the sine wave control mode to the rectangular wave forming voltage value | Va1|, while performing torque control based on the voltage phase (theta v). Thus, the generated drive signals (Su, Sv, Sw) can maintain the continuity at the time of switching, and smooth switching of the control mode with little torque variation can be performed.

Description

电机控制装置和电机控制方法Motor control device and motor control method

技术领域technical field

本发明涉及抑制了在PM电机的控制中、特别是正弦波控制与矩形波控制切换时的转矩变动的电机控制装置和电机控制方法。The present invention relates to a motor control device and a motor control method that suppress torque fluctuation during control of a PM motor, particularly when switching between sine wave control and rectangular wave control.

背景技术Background technique

电动机被用作许多家电或机械设备的动力源。其中,在转子侧设置永磁体并在定子侧设置电枢绕组、控制该电枢绕组的磁场从而使转子旋转的PM(Permanent Magnet)电机(永磁电机)由于不存在励磁损失,因此是低损失且高效率的,随着近年来的节能化的趋势在大型机械设备中也被大量应用。并且,作为该PM电机的控制方法,首先,基于从外部(系统的上位的控制部等)指示的转矩指令值和PM电机的当前的转矩T,生成三相电压指令值Vu、Vv、Vw,并且对该三相电压指令值Vu、Vv、Vw进行三角波比较而生成驱动信号Su、Sv、Sw。并且,这一般是利用通过该驱动信号Su、Sv、Sw使逆变器进行开关动作从而流过的3相交流的驱动电流Iu、Iv、Iw来进行的。另外,多是根据PM电机的运转状况切换正弦波控制和矩形波控制来进行该驱动信号Su、Sv、Sw的生成。在该控制方法中,一般在中/低速旋转的动作区域内通过使用电机效率高的正弦波图案的正弦波控制(PWM控制)进行动作控制,在高速旋转/高转矩的动作区域内通过使用输出电压高而能进行高输出的矩形波图案的矩形波控制进行动作控制。Electric motors are used as power sources for many home appliances or mechanical equipment. Among them, PM (Permanent Magnet) motors (permanent magnet motors) in which permanent magnets are provided on the rotor side, armature windings are provided on the stator side, and the magnetic field of the armature windings are controlled to rotate the rotor have low loss because there is no excitation loss. And high efficiency, with the trend of energy saving in recent years, it has also been widely used in large machinery and equipment. Then, as a control method of the PM motor, first, three-phase voltage command values Vu, Vv, and V are generated based on the torque command value instructed from the outside (control unit at the upper level of the system, etc.) and the current torque T of the PM motor. Vw, and the three-phase voltage command values Vu, Vv, and Vw are compared with triangular waves to generate drive signals Su, Sv, and Sw. In addition, this is generally performed using three-phase AC drive currents Iu, Iv, and Iw that flow through the switching operation of the inverter by the drive signals Su, Sv, and Sw. In addition, the generation of the drive signals Su, Sv, and Sw is often performed by switching the sine wave control and the rectangular wave control according to the operating conditions of the PM motor. In this control method, the operation is generally controlled by sine wave control (PWM control) using a sine wave pattern with high motor efficiency in the operation range of medium/low speed rotation, and in the operation range of high speed rotation and high torque by using Rectangular wave control of a rectangular wave pattern with high output voltage and high output is used for operation control.

在此,正弦波图案是指通过振幅的峰值不超过三角波的顶点的大小的三相电压指令值Vu、Vv、Vw的三角波比较而生成的驱动信号Su、Sv、Sw的图案。另外,矩形波图案是指三相电压指令值Vu、Vv、Vw分别在电角度的1个周期中与三角波交叉2次、Hi(高)期间和Low(低)期间在电角度的1个周期中各生成1次的驱动信号Su、Sv、Sw的图案。而且,在驱动信号Su、Sv、Sw的图案中有过调制图案,该过调制图案是通过比形成正弦波图案的振幅大、比形成矩形波图案的振幅小的三相电压指令值Vu、Vv、Vw生成的驱动信号Su、Sv、Sw的图案。Here, the sine wave pattern refers to a pattern of drive signals Su, Sv, and Sw generated by comparing triangular waves of three-phase voltage command values Vu, Vv, and Vw whose amplitude peaks do not exceed the magnitude of the apex of the triangular wave. In addition, the rectangular wave pattern means that the three-phase voltage command values Vu, Vv, Vw intersect the triangular wave twice in one cycle of the electrical angle, respectively, and the Hi (high) period and the Low (low) period are in one cycle of the electrical angle. A pattern of drive signals Su, Sv, and Sw that are generated once each. Further, among the patterns of the drive signals Su, Sv, and Sw, there is an overmodulation pattern obtained by passing the three-phase voltage command values Vu and Vv larger than the amplitude of the sine wave pattern and smaller than the amplitude of the rectangular wave pattern. , the pattern of the drive signals Su, Sv, and Sw generated by Vw.

然而,在正弦波控制和矩形波控制中,即使是同一电压相位,矩形波控制与正弦波控制相比所输出的转矩也较大,通过简单的切换动作进行切换时也会发生转矩变动,这是不理想的。关于该问题,在下述[专利文献1]中,将切换时的正弦波的相位和振幅设定为切换初始值,另外将输出与切换时同等的转矩的矩形波的相位设定为切换目标值,并且将无限大的振幅设定为切换目标值,在进行控制模式的切换时,使电压波形的相位和振幅从切换初始值向切换目标值同时且连续地变更。然后,在电压波形成为了切换目标值时切换为矩形波控制,从而抑制切换时的转矩变动。However, even in the sine wave control and the rectangular wave control, the output torque of the rectangular wave control is larger than that of the sine wave control, even if the voltage phase is the same, and torque fluctuation occurs when switching is performed by a simple switching operation. , which is not ideal. Regarding this problem, in the following [Patent Document 1], the phase and amplitude of the sine wave at the time of switching are set as the switching initial values, and the phase of the rectangular wave that outputs the same torque as that at the time of switching is set as the switching target When switching the control mode, the phase and amplitude of the voltage waveform are simultaneously and continuously changed from the switching initial value to the switching target value. Then, when the voltage waveform reaches the switching target value, the control is switched to the rectangular wave control, thereby suppressing the torque fluctuation at the time of switching.

现有技术文献prior art literature

专利文献Patent Literature

专利文献1:特开平11-285288号公报Patent Document 1: Japanese Patent Laid-Open No. 11-285288

发明内容SUMMARY OF THE INVENTION

发明要解决的问题Invention to solve problem

然而,在[专利文献1]所记载的发明中,在从切换初始值向切换目标值的转移期间中无法进行基于指令值的转矩控制,因此在转移期间中有可能发生转矩变动。另外,在转移期间中转矩指令值发生了变化的情况下,有可能无法应对该转矩指令值的变化而在刚切换后发生转矩变动。另外,在转移期间中逆变器的电源电压或PM电机的旋转速度发生了变化的情况下,也有可能无法应对这些变化而在转移期间中发生转矩变动。而且,有在转移期间中无法再次切换因此响应性不良的问题。However, in the invention described in [Patent Document 1], torque control based on the command value cannot be performed during the transition period from the switching initial value to the switching target value, so torque fluctuation may occur during the transition period. In addition, when the torque command value changes during the transition period, there is a possibility that the torque fluctuation may occur immediately after the switching without being able to cope with the change in the torque command value. In addition, when the power supply voltage of the inverter or the rotational speed of the PM motor changes during the transition period, there is a possibility that torque fluctuations may occur during the transition period without being able to cope with these changes. Furthermore, there is a problem that the responsiveness is not good because switching cannot be performed again during the transition period.

本发明是鉴于上述情况而完成的,其目的在于提供在控制模式切换时也能进行基于指令值的转矩控制、抑制切换时的转矩变动并且响应性优异的电机控制装置和电机控制方法。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a motor control device and a motor control method that can perform torque control based on a command value even when switching control modes, suppress torque fluctuations during switching, and have excellent responsiveness.

用于解决问题的方案solution to the problem

(1)通过提供电机控制装置100从而解决上述问题,(1) By providing the motor control device 100 to solve the above problems,

电机控制装置100具有:逆变器20,其使3相交流的驱动电流Iu、Iv、Iw流过PM电机10;驱动电流检测部12u、12v,其取得上述驱动电流Iu、Iv、(Iw)的值;角度检测部14,其取得上述PM电机10的电角度θ;3相/dq转换部22,其基于上述电角度θ将上述驱动电流检测部12u、12v取得的上述驱动电流Iu、Iv、(Iw)转换为d轴反馈电流值Id、q轴反馈电流值Iq;正弦波控制部40,其基于来自外部的转矩指令值T*设定d轴电流指令值Id*、q轴电流指令值Iq*,生成正弦波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;矩形波控制部50,其基于来自外部的转矩指令值T*设定电压相位θv和电压指令值|Va|,生成矩形波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;切换部24,其将上述d轴电压指令值Vd、q轴电压指令值Vq的生成在上述正弦波控制部40与上述矩形波控制部50之间进行切换;dq/3相转换部32,其将上述d轴电压指令值Vd、q轴电压指令值Vq转换为三相电压指令值Vu、Vv、Vw;以及驱动信号生成部36,其将上述三相电压指令值Vu、Vv、Vw与规定的周期的三角波进行比较而生成对上述逆变器20进行开关的驱动信号Su、Sv、Sw,上述电机控制装置100的特征在于,The motor control device 100 includes an inverter 20 that allows three-phase AC drive currents Iu, Iv, and Iw to flow through the PM motor 10, and drive current detectors 12u, 12v that obtain the drive currents Iu, Iv, (Iw) The angle detection unit 14 obtains the electrical angle θ of the PM motor 10; the 3-phase/dq conversion unit 22 obtains the drive currents Iu, Iv obtained by the drive current detection units 12u, 12v based on the electrical angle θ , (Iw) are converted into the d-axis feedback current value Id and the q-axis feedback current value Iq; the sine wave control unit 40 sets the d-axis current command value Id * and the q-axis current based on the external torque command value T * The command value Iq * generates the d-axis voltage command value Vd and the q-axis voltage command value Vq in the sine wave control mode; the rectangular wave control unit 50 sets the voltage phase θv and the voltage based on the external torque command value T * The command value |Va| generates the d-axis voltage command value Vd and the q-axis voltage command value Vq in the rectangular wave control mode; the switching unit 24 generates the above-mentioned d-axis voltage command value Vd and q-axis voltage command value Vq in the The sine wave control unit 40 and the rectangular wave control unit 50 are switched; the dq/3-phase conversion unit 32 converts the d-axis voltage command value Vd and the q-axis voltage command value Vq into a three-phase voltage command value Vu , Vv, Vw; and a drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave of a predetermined period to generate drive signals Su, Sv, Sw, the motor control device 100 described above is characterized in that:

还具有在通过上述切换部24进行控制模式的切换时动作的模式转移部80,It also has a mode transition unit 80 that operates when the control mode is switched by the above-described switching unit 24,

上述模式转移部80The above-mentioned mode transition unit 80

取得对正弦波控制模式时的d轴电压指令值Vd”、q轴电压指令值Vq”进行极坐标转换而得到的电压相位θv和电压指令值|Va|作为初始电压相位θv1和转移电压指令值|Va’|的初始值,在从正弦波控制模式向矩形波控制模式切换时,将上述电压相位θv和电压指令值|Va|输出到上述矩形波控制部50,并且取得上述驱动信号Su、Sv、Sw成为矩形波图案的矩形波形成电压值|Va1|,使上述转移电压指令值|Va’|从上述初始值向矩形波形成电压值|Va1|连续地增大并输出到上述矩形波控制部50,使上述矩形波控制部50基于上述转移电压指令值|Va’|生成d轴电压指令值Vd、q轴电压指令值Vq。The voltage phase θv and the voltage command value |Va| obtained by polar coordinate conversion of the d-axis voltage command value Vd" and q-axis voltage command value Vq" in the sine wave control mode are obtained as the initial voltage phase θv1 and the transition voltage command value As the initial value of |Va'|, when switching from the sine wave control mode to the rectangular wave control mode, the voltage phase θv and the voltage command value |Va| are output to the rectangular wave control unit 50, and the drive signals Su, Sv and Sw become the rectangular wave forming voltage value |Va1| of the rectangular wave pattern, and the transition voltage command value |Va'| is continuously increased from the initial value to the rectangular wave forming voltage value |Va1| The control unit 50 causes the rectangular wave control unit 50 to generate the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the transition voltage command value |Va'|.

(2)通过提供电机控制装置100从而解决上述问题,(2) By providing the motor control device 100 to solve the above problems,

电机控制装置100具有:逆变器20,其使3相交流的驱动电流Iu、Iv、Iw流过PM电机10;驱动电流检测部12u、12v,其取得上述驱动电流Iu、Iv、(Iw)的值;角度检测部14,其取得上述PM电机10的电角度θ;3相/dq转换部22,其基于上述电角度θ将上述驱动电流检测部12u、12v取得的上述驱动电流Iu、Iv、(Iw)转换为d轴反馈电流值Id、q轴反馈电流值Iq;正弦波控制部40,其基于来自外部的转矩指令值T*设定d轴电流指令值Id*、q轴电流指令值Iq*,生成正弦波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;矩形波控制部50,其基于来自外部的转矩指令值T*设定电压相位θv和电压指令值|Va|,生成矩形波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;切换部24,其将上述d轴电压指令值Vd、q轴电压指令值Vq的生成在上述正弦波控制部40与上述矩形波控制部50之间进行切换;dq/3相转换部32,其将上述d轴电压指令值Vd、q轴电压指令值Vq转换为三相电压指令值Vu、Vv、Vw;以及驱动信号生成部36,其将上述三相电压指令值Vu、Vv、Vw与规定的周期的三角波进行比较而生成对上述逆变器20进行开关的驱动信号Su、Sv、Sw,上述电机控制装置100的特征在于,The motor control device 100 includes an inverter 20 that allows three-phase AC drive currents Iu, Iv, and Iw to flow through the PM motor 10, and drive current detectors 12u, 12v that obtain the drive currents Iu, Iv, (Iw) The angle detection unit 14 obtains the electrical angle θ of the PM motor 10; the 3-phase/dq conversion unit 22 obtains the drive currents Iu, Iv obtained by the drive current detection units 12u, 12v based on the electrical angle θ , (Iw) are converted into the d-axis feedback current value Id and the q-axis feedback current value Iq; the sine wave control unit 40 sets the d-axis current command value Id * and the q-axis current based on the external torque command value T * The command value Iq * generates the d-axis voltage command value Vd and the q-axis voltage command value Vq in the sine wave control mode; the rectangular wave control unit 50 sets the voltage phase θv and the voltage based on the external torque command value T * The command value |Va| generates the d-axis voltage command value Vd and the q-axis voltage command value Vq in the rectangular wave control mode; the switching unit 24 generates the above-mentioned d-axis voltage command value Vd and q-axis voltage command value Vq in the The sine wave control unit 40 and the rectangular wave control unit 50 are switched; the dq/3-phase conversion unit 32 converts the d-axis voltage command value Vd and the q-axis voltage command value Vq into a three-phase voltage command value Vu , Vv, Vw; and a drive signal generation unit 36 that compares the three-phase voltage command values Vu, Vv, Vw with a triangular wave of a predetermined period to generate drive signals Su, Sv, Sw, the motor control device 100 described above is characterized in that:

还具有在通过上述切换部24进行控制模式的切换时动作的模式转移部80,It also has a mode transition unit 80 that operates when the control mode is switched by the above-described switching unit 24,

上述模式转移部80The above-mentioned mode transition unit 80

在矩形波控制模式时将上述矩形波控制部50输出的d轴电压指令值Vd、q轴电压指令值Vq作为d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1输出到上述正弦波控制部40,并且基于上述d轴反馈电流值Id、q轴反馈电流值Iq算出用于算出d轴电流指令值的初始值Id*1和q轴电流指令值的初始值Iq*1的转移数据Ifb,将该转移数据Ifb输出到上述正弦波控制部40,In the rectangular wave control mode, the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the rectangular wave control unit 50 are output as the initial value Vd1 of the d-axis voltage command value and the initial value Vq1 of the q-axis voltage command value to The sine wave control unit 40 calculates the initial value Id * 1 for calculating the d-axis current command value and the initial value Iq * 1 for the q-axis current command value based on the d-axis feedback current value Id and the q-axis feedback current value Iq. and output the transition data Ifb to the above-mentioned sine wave control unit 40,

在刚从矩形波控制模式向正弦波控制模式切换后,基于上述d轴电压指令值的初始值Vd1、上述q轴电压指令值的初始值Vq1、上述d轴电流指令值的初始值Id*1、上述q轴电流指令值的初始值Iq*1生成切换时d轴电压指令值Vd、切换时q轴电压指令值Vq并将其输出到上述dq/3相转换部32。Immediately after switching from the rectangular wave control mode to the sine wave control mode, based on the initial value Vd1 of the d-axis voltage command value, the initial value Vq1 of the q-axis voltage command value, and the initial value Id * 1 of the d-axis current command value . The initial value Iq * 1 of the q-axis current command value generates the switching d-axis voltage command value Vd and the switching q-axis voltage command value Vq, and outputs them to the dq/3-phase conversion unit 32 .

(3)通过提供上述(2)所记载的电机控制装置100从而解决上述问题,上述电机控制装置100的特征在于,(3) The above problem is solved by providing the motor control device 100 described in (2) above, wherein the motor control device 100 is characterized in that:

上述模式转移部80The above-mentioned mode transition unit 80

在从矩形波控制模式向正弦波控制模式切换时,取得上述矩形波控制部50输出的电压指令值|Va|作为转移电压指令值|Va’|的初始值,并且取得上述驱动信号Su、Sv、Sw成为正弦波图案或者过调制图案的正弦波模式转移电压值|Va2|,一边使上述矩形波控制模式继续一边使上述转移电压指令值|Va’|从上述初始值连续地减少到上述正弦波模式转移电压值|Va2|并输出到上述矩形波控制部50,使上述矩形波控制部50基于上述转移电压指令值|Va’|生成d轴电压指令值Vd、q轴电压指令值Vq,其后,上述切换部24切换为通过上述正弦波控制部40进行的控制模式。When switching from the rectangular wave control mode to the sine wave control mode, the voltage command value |Va| output from the rectangular wave control unit 50 is acquired as the initial value of the transition voltage command value |Va'|, and the drive signals Su and Sv are acquired Sw becomes the sine wave mode transition voltage value |Va2| of the sine wave pattern or the overmodulation pattern, and the transition voltage command value |Va'| The wave mode transition voltage value |Va2| is output to the rectangular wave control unit 50, and the rectangular wave control unit 50 generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the transition voltage command value |Va'| After that, the switching unit 24 switches to the control mode performed by the sine wave control unit 40 .

(4)通过提供电机控制装置100从而解决上述问题,电机控制装置100具有:逆变器20,其使3相交流的驱动电流Iu、Iv、Iw流过PM电机10;驱动电流检测部12u、12v,其取得上述驱动电流Iu、Iv、(Iw)的值;角度检测部14,其取得上述PM电机10的电角度θ;3相/dq转换部22,其基于上述电角度θ将上述驱动电流检测部12u、12v取得的上述驱动电流Iu、Iv、(Iw)转换为d轴反馈电流值Id、q轴反馈电流值Iq;正弦波控制部40,其基于来自外部的转矩指令值T*设定d轴电流指令值Id*、q轴电流指令值Iq*,生成正弦波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;矩形波控制部50,其基于来自外部的转矩指令值T*设定电压相位θv和电压指令值|Va|,生成矩形波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;切换部24,其将上述d轴电压指令值Vd、q轴电压指令值Vq的生成在上述正弦波控制部40与上述矩形波控制部50之间进行切换;dq/3相转换部32,其将上述d轴电压指令值Vd、q轴电压指令值Vq转换为三相电压指令值Vu、Vv、Vw;以及驱动信号生成部36,其将上述三相电压指令值Vu、Vv、Vw与规定的周期的三角波进行比较而生成对上述逆变器20进行开关的驱动信号Su、Sv、Sw,上述电机控制装置100的特征在于,(4) The above-mentioned problems are solved by providing the motor control device 100, which includes the inverter 20 that causes the three-phase AC drive currents Iu, Iv, and Iw to flow through the PM motor 10, and the drive current detection units 12u, 12v, which obtains the values of the above-mentioned drive currents Iu, Iv, (Iw); the angle detection unit 14, which obtains the electrical angle θ of the above-mentioned PM motor 10; The above-mentioned drive currents Iu, Iv, (Iw) acquired by the current detection units 12u and 12v are converted into the d-axis feedback current value Id and the q-axis feedback current value Iq; the sine wave control unit 40 is based on the external torque command value T * Set the d-axis current command value Id * and the q-axis current command value Iq * , and generate the d-axis voltage command value Vd and q-axis voltage command value Vq in the sine wave control mode; The torque command value T * sets the voltage phase θv and the voltage command value |Va|, and generates the d-axis voltage command value Vd and the q-axis voltage command value Vq in the rectangular wave control mode; The generation of the voltage command value Vd and the q-axis voltage command value Vq is switched between the sine wave control unit 40 and the rectangular wave control unit 50; the dq/3-phase conversion unit 32 converts the d-axis voltage command value Vd, The q-axis voltage command value Vq is converted into three-phase voltage command values Vu, Vv, and Vw; and the drive signal generation unit 36 compares the three-phase voltage command values Vu, Vv, and Vw with a triangular wave of a predetermined period to generate a pair of The drive signals Su, Sv, and Sw for switching the inverter 20 and the motor control device 100 are characterized in that:

还具有在通过上述切换部24进行控制模式的切换时动作的模式转移部80,It also has a mode transition unit 80 that operates when the control mode is switched by the above-described switching unit 24,

上述模式转移部80The above-mentioned mode transition unit 80

取得对正弦波控制模式时的d轴电压指令值Vd”、q轴电压指令值Vq”进行极坐标转换而得到的电压相位θv和电压指令值|Va|作为初始电压相位θv1和转移电压指令值|Va’|的初始值,在从正弦波控制模式向矩形波控制模式切换时,将上述电压相位θv和电压指令值|Va|输出到上述矩形波控制部50,并且取得上述驱动信号Su、Sv、Sw成为矩形波图案的矩形波形成电压值|Va1|,使上述转移电压指令值|Va’|从上述初始值向矩形波形成电压值|Va1|连续地增大并输出到上述矩形波控制部50,使上述矩形波控制部50基于上述转移电压指令值|Va’|生成d轴电压指令值Vd、q轴电压指令值Vq,The voltage phase θv and the voltage command value |Va| obtained by polar coordinate conversion of the d-axis voltage command value Vd" and q-axis voltage command value Vq" in the sine wave control mode are obtained as the initial voltage phase θv1 and the transition voltage command value As the initial value of |Va'|, when switching from the sine wave control mode to the rectangular wave control mode, the voltage phase θv and the voltage command value |Va| are output to the rectangular wave control unit 50, and the drive signals Su, Sv and Sw become the rectangular wave forming voltage value |Va1| of the rectangular wave pattern, and the transition voltage command value |Va'| is continuously increased from the initial value to the rectangular wave forming voltage value |Va1| The control unit 50 causes the rectangular wave control unit 50 to generate the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the transition voltage command value |Va'|

在矩形波控制模式时将上述矩形波控制部50输出的d轴电压指令值Vd、q轴电压指令值Vq作为d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1输出到上述正弦波控制部40,并且基于上述d轴反馈电流值Id、q轴反馈电流值Iq算出用于算出d轴电流指令值的初始值Id*1和q轴电流指令值的初始值Iq*1的转移数据Ifb,将该转移数据Ifb输出到上述正弦波控制部40,In the rectangular wave control mode, the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the rectangular wave control unit 50 are output as the initial value Vd1 of the d-axis voltage command value and the initial value Vq1 of the q-axis voltage command value to The sine wave control unit 40 calculates the initial value Id * 1 for calculating the d-axis current command value and the initial value Iq * 1 for the q-axis current command value based on the d-axis feedback current value Id and the q-axis feedback current value Iq. and output the transition data Ifb to the above-mentioned sine wave control unit 40,

在从矩形波控制模式向正弦波控制模式切换时,取得上述矩形波控制部50输出的电压指令值|Va|作为转移电压指令值|Va’|的初始值,并且取得上述驱动信号Su、Sv、Sw成为正弦波图案或者过调制图案的正弦波模式转移电压值|Va2|,一边使上述矩形波控制模式继续一边使上述转移电压指令值|Va’|从上述初始值连续地减少到上述正弦波模式转移电压值|Va2|并输出到上述矩形波控制部50,使上述矩形波控制部50基于上述转移电压指令值|Va’|生成d轴电压指令值Vd、q轴电压指令值Vq,其后,上述切换部24切换为通过上述正弦波控制部40进行的正弦波控制模式,When switching from the rectangular wave control mode to the sine wave control mode, the voltage command value |Va| output from the rectangular wave control unit 50 is acquired as the initial value of the transition voltage command value |Va'|, and the drive signals Su and Sv are acquired Sw becomes the sine wave mode transition voltage value |Va2| of the sine wave pattern or the overmodulation pattern, and the transition voltage command value |Va'| The wave mode transition voltage value |Va2| is output to the rectangular wave control unit 50, and the rectangular wave control unit 50 generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the transition voltage command value |Va'| After that, the switching unit 24 switches to the sine wave control mode performed by the sine wave control unit 40,

在刚向上述正弦波控制模式切换后,基于上述d轴电压指令值的初始值Vd1、上述q轴电压指令值的初始值Vq1、上述d轴电流指令值的初始值Id*1、上述q轴电流指令值的初始值Iq*1,生成切换时d轴电压指令值Vd、切换时q轴电压指令值Vq并将其输出到上述dq/3相转换部32。Immediately after switching to the sine wave control mode, based on the initial value Vd1 of the d-axis voltage command value, the initial value Vq1 of the q-axis voltage command value, the initial value Id * 1 of the d-axis current command value, and the q-axis The initial value Iq * 1 of the current command value generates the d-axis voltage command value Vd at the time of switching and the q-axis voltage command value Vq at the time of switching, and outputs them to the dq/3-phase conversion unit 32 .

(5)通过提供上述(1)至(4)中的任意一项所记载的电机控制装置100从而解决上述问题,上述电机控制装置100的特征在于,上述三角波的下降沿的中央位置与上述三相电压指令值Vu、Vv、Vw的上升沿的零点位置交叉,而且将上述三角波的频率维持为上述三相电压指令值Vu、Vv、Vw的频率的3的奇数整数倍。(5) The above problems are solved by providing the motor control device 100 according to any one of the above (1) to (4), wherein the motor control device 100 is characterized in that the center position of the falling edge of the triangular wave is different from the three The zero positions of the rising edges of the phase voltage command values Vu, Vv, Vw cross, and the frequency of the triangular wave is maintained at an odd integer multiple of 3 of the frequency of the three phase voltage command values Vu, Vv, Vw.

(6)通过提供电机控制方法从而解决上述问题,上述电机控制方法是电机控制装置100的电机控制方法,上述电机控制装置100具有:逆变器20,其使3相交流的驱动电流Iu、Iv、Iw流过PM电机10;驱动电流检测部12u、12v,其取得上述驱动电流Iu、Iv、(Iw)的值;角度检测部14,其取得上述PM电机10的电角度θ;3相/dq转换部22,其基于上述电角度θ将上述驱动电流检测部12u、12v取得的上述驱动电流Iu、Iv、(Iw)转换为d轴反馈电流值Id、q轴反馈电流值Iq;正弦波控制部40,其基于来自外部的转矩指令值T*设定d轴电流指令值Id*、q轴电流指令值Iq*,生成正弦波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;矩形波控制部50,其基于来自外部的转矩指令值T*设定电压相位θv和电压指令值|Va|,生成矩形波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;切换部24,其将上述d轴电压指令值Vd、q轴电压指令值Vq的生成在上述正弦波控制部40与上述矩形波控制部50之间进行切换;dq/3相转换部32,其将上述d轴电压指令值Vd、q轴电压指令值Vq转换为三相电压指令值Vu、Vv、Vw;驱动信号生成部36,其将上述三相电压指令值Vu、Vv、Vw与规定的周期的三角波进行比较而生成对上述逆变器20进行开关的驱动信号Su、Sv、Sw;以及模式转移部80,其在通过上述切换部24进行控制模式的切换时动作,上述电机控制方法的特征在于,(6) The above-mentioned problems are solved by providing a motor control method, which is a motor control method of the motor control device 100 including the inverter 20 that makes the three-phase AC drive currents Iu and Iv , Iw flow through the PM motor 10; the drive current detection units 12u, 12v, which obtain the values of the above-mentioned drive currents Iu, Iv, (Iw); the angle detection unit 14, which obtains the electrical angle θ of the above-mentioned PM motor 10; The dq conversion unit 22 converts the drive currents Iu, Iv, (Iw) acquired by the drive current detection units 12u, 12v into d-axis feedback current values Id and q-axis feedback current values Iq based on the electrical angle θ; sine waves The control unit 40 sets the d-axis current command value Id * and the q-axis current command value Iq * based on the external torque command value T * , and generates the d-axis voltage command value Vd and the q-axis voltage in the sine wave control mode Command value Vq; the rectangular wave control unit 50 generates the d-axis voltage command value Vd and the q-axis in the rectangular wave control mode by setting the voltage phase θv and the voltage command value |Va| based on the external torque command value T * voltage command value Vq; switching unit 24 that switches the generation of the d-axis voltage command value Vd and q-axis voltage command value Vq between the sine wave control unit 40 and the rectangular wave control unit 50; dq/3 phase The conversion unit 32 converts the d-axis voltage command values Vd and q-axis voltage command values Vq into three-phase voltage command values Vu, Vv, and Vw, and the drive signal generation unit 36 converts the three-phase voltage command values Vu, Vv , Vw is compared with a triangular wave of a predetermined period to generate drive signals Su, Sv, Sw for switching the inverter 20; and a mode transition unit 80, which operates when the switching unit 24 switches the control mode, The above motor control method is characterized in that,

上述模式转移部80进行The mode transition unit 80 described above performs

取得对正弦波控制模式时的d轴电压指令值Vd”、q轴电压指令值Vq”进行极坐标转换而得到的电压相位θv和电压指令值|Va|作为初始电压相位θv1和转移电压指令值|Va’|的初始值的步骤,并且The voltage phase θv and the voltage command value |Va| obtained by polar coordinate conversion of the d-axis voltage command value Vd" and q-axis voltage command value Vq" in the sine wave control mode are obtained as the initial voltage phase θv1 and the transition voltage command value steps of the initial value of |Va'|, and

在从正弦波控制模式向矩形波控制模式切换时进行如下步骤:Perform the following steps when switching from sine wave control mode to square wave control mode:

将上述初始电压相位θv1和转移电压指令值|Va’|的初始值输出到上述矩形波控制部50;outputting the initial value of the initial voltage phase θv1 and the transition voltage command value |Va'| to the rectangular wave control unit 50;

取得上述驱动信号Su、Sv、Sw成为矩形波图案的矩形波形成电压值|Va1|;以及obtaining the rectangular wave forming voltage value |Va1| at which the driving signals Su, Sv, and Sw form a rectangular wave pattern; and

使上述转移电压指令值|Va’|从上述初始值向矩形波形成电压值|Va1|连续地增大并输出到上述矩形波控制部50,使上述矩形波控制部50基于上述转移电压指令值|Va’|生成d轴电压指令值Vd、q轴电压指令值Vq。The transition voltage command value |Va'| is continuously increased from the initial value to the rectangular wave-forming voltage value |Va1| and output to the rectangular wave control unit 50 , and the rectangular wave control unit 50 is based on the transition voltage command value |Va'| The d-axis voltage command value Vd and the q-axis voltage command value Vq are generated.

(7)通过提供电机控制方法从而解决上述问题,上述电机控制方法是电机控制装置100的电机控制方法,上述电机控制装置100具有:逆变器20,其使3相交流的驱动电流Iu、Iv、Iw流过PM电机10;驱动电流检测部12u、12v,其取得上述驱动电流Iu、Iv、(Iw)的值;角度检测部14,其取得上述PM电机10的电角度θ;3相/dq转换部22,其基于上述电角度θ将上述驱动电流检测部12u、12v取得的上述驱动电流Iu、Iv、(Iw)转换为d轴反馈电流值Id、q轴反馈电流值Iq;正弦波控制部40,其基于来自外部的转矩指令值T*设定d轴电流指令值Id*、q轴电流指令值Iq*,生成正弦波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;矩形波控制部50,其基于来自外部的转矩指令值T*设定电压相位θv和电压指令值|Va|,生成矩形波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;切换部24,其将上述d轴电压指令值Vd、q轴电压指令值Vq的生成在上述正弦波控制部40与上述矩形波控制部50之间进行切换;dq/3相转换部32,其将上述d轴电压指令值Vd、q轴电压指令值Vq转换为三相电压指令值Vu、Vv、Vw;驱动信号生成部36,其将上述三相电压指令值Vu、Vv、Vw与规定的周期的三角波进行比较而生成对上述逆变器20进行开关的驱动信号Su、Sv、Sw;以及模式转移部80,其在通过上述切换部24进行控制模式的切换时动作,上述电机控制方法的特征在于,(7) The above-mentioned problems are solved by providing a motor control method, which is a motor control method of the motor control device 100 including the inverter 20 that makes the three-phase AC drive currents Iu and Iv , Iw flow through the PM motor 10; the drive current detection units 12u, 12v, which obtain the values of the above-mentioned drive currents Iu, Iv, (Iw); the angle detection unit 14, which obtains the electrical angle θ of the above-mentioned PM motor 10; The dq conversion unit 22 converts the drive currents Iu, Iv, (Iw) acquired by the drive current detection units 12u, 12v into d-axis feedback current values Id and q-axis feedback current values Iq based on the electrical angle θ; sine waves The control unit 40 sets the d-axis current command value Id * and the q-axis current command value Iq * based on the external torque command value T * , and generates the d-axis voltage command value Vd and the q-axis voltage in the sine wave control mode Command value Vq; the rectangular wave control unit 50 generates the d-axis voltage command value Vd and the q-axis in the rectangular wave control mode by setting the voltage phase θv and the voltage command value |Va| based on the external torque command value T * voltage command value Vq; switching unit 24 that switches the generation of the d-axis voltage command value Vd and q-axis voltage command value Vq between the sine wave control unit 40 and the rectangular wave control unit 50; dq/3 phase The conversion unit 32 converts the d-axis voltage command values Vd and q-axis voltage command values Vq into three-phase voltage command values Vu, Vv, and Vw, and the drive signal generation unit 36 converts the three-phase voltage command values Vu, Vv , Vw is compared with a triangular wave of a predetermined period to generate drive signals Su, Sv, Sw for switching the inverter 20; and a mode transition unit 80, which operates when the switching unit 24 switches the control mode, The above motor control method is characterized in that,

上述模式转移部80进行如下步骤:The above-mentioned mode transfer unit 80 performs the following steps:

在矩形波控制模式时将上述矩形波控制部50输出的d轴电压指令值Vd、q轴电压指令值Vq作为d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1输出到上述正弦波控制部40,并且基于上述d轴反馈电流值Id、q轴反馈电流值Iq算出用于算出d轴电流指令值的初始值Id*1和q轴电流指令值的初始值Iq*1的转移数据Ifb,将该转移数据Ifb输出到上述正弦波控制部40,In the rectangular wave control mode, the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the rectangular wave control unit 50 are output as the initial value Vd1 of the d-axis voltage command value and the initial value Vq1 of the q-axis voltage command value to The sine wave control unit 40 calculates the initial value Id * 1 for calculating the d-axis current command value and the initial value Iq * 1 for the q-axis current command value based on the d-axis feedback current value Id and the q-axis feedback current value Iq. and output the transition data Ifb to the above-mentioned sine wave control unit 40,

上述模式转移部80还具有如下步骤:在刚从矩形波控制部模式向正弦波控制模式切换后,基于上述d轴电压指令值的初始值Vd1、上述q轴电压指令值的初始值Vq1、上述d轴电流指令值的初始值Id*1、上述q轴电流指令值的初始值Iq*1,生成切换时d轴电压指令值Vd、切换时q轴电压指令值Vq并将其输出到上述dq/3相转换部32。The mode transition unit 80 further includes a step of, immediately after switching from the rectangular wave control unit mode to the sine wave control mode, based on the initial value Vd1 of the d-axis voltage command value, the initial value Vq1 of the q-axis voltage command value, the above The initial value Id * 1 of the d-axis current command value and the initial value Iq * 1 of the above-mentioned q-axis current command value are generated and output to the above-mentioned dq /3-phase conversion unit 32 .

(8)通过提供上述(7)所记载的电机控制方法从而解决上述问题,上述电机控制方法的特征在于,(8) The above problem is solved by providing the motor control method described in the above (7), wherein the motor control method is characterized by:

上述模式转移部80还具有如下步骤:The above-mentioned mode transfer part 80 also has the following steps:

在从矩形波控制模式向正弦波控制模式切换时,取得上述矩形波控制部50输出的电压指令值|Va|作为转移电压指令值的初始值|Va’|;When switching from the rectangular wave control mode to the sine wave control mode, the voltage command value |Va| output from the rectangular wave control unit 50 is obtained as the initial value |Va'| of the transition voltage command value;

取得上述驱动信号Su、Sv、Sw成为正弦波图案或者过调制图案的正弦波模式转移电压值|Va2|;obtaining the sine wave mode transition voltage value |Va2| in which the drive signals Su, Sv, and Sw become a sine wave pattern or an overmodulation pattern;

一边使上述矩形波控制模式继续一边使上述转移电压指令值|Va’|从上述初始值连续地减少到上述正弦波模式转移电压值|Va2|并输出到上述矩形波控制部50;continuously reducing the transition voltage command value |Va'| from the initial value to the sine wave mode transition voltage value |Va2| while continuing the rectangular wave control mode, and outputting it to the rectangular wave control unit 50;

使上述矩形波控制部50基于上述转移电压指令值|Va’|生成d轴电压指令值Vd、q轴电压指令值Vq;以及causing the rectangular wave control unit 50 to generate a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the transition voltage command value |Va'|; and

上述切换部24切换为通过上述正弦波控制部40进行的控制模式。The switching unit 24 switches to the control mode performed by the sine wave control unit 40 .

(9)通过提供电机控制方法从而解决上述问题,上述电机控制方法是电机控制装置100的电机控制方法,上述电机控制装置100具有:逆变器20,其使3相交流的驱动电流Iu、Iv、Iw流过PM电机10;驱动电流检测部12u、12v,其取得上述驱动电流Iu、Iv、(Iw)的值;角度检测部14,其取得上述PM电机10的电角度θ;3相/dq转换部22,其基于上述电角度θ将上述驱动电流检测部12u、12v取得的上述驱动电流Iu、Iv、(Iw)转换为d轴反馈电流值Id、q轴反馈电流值Iq;正弦波控制部40,其基于来自外部的转矩指令值T*设定d轴电流指令值Id*、q轴电流指令值Iq*,生成正弦波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;矩形波控制部50,其基于来自外部的转矩指令值T*设定电压相位θv和电压指令值|Va|,生成矩形波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;切换部24,其将上述d轴电压指令值Vd、q轴电压指令值Vq的生成在上述正弦波控制部40与上述矩形波控制部50之间进行切换;dq/3相转换部32,其将上述d轴电压指令值Vd、q轴电压指令值Vq转换为三相电压指令值Vu、Vv、Vw;驱动信号生成部36,其将上述三相电压指令值Vu、Vv、Vw与规定的周期的三角波进行比较而生成对上述逆变器20进行开关的驱动信号Su、Sv、Sw;以及模式转移部80,其在通过上述切换部24进行控制模式的切换时动作,上述电机控制方法的特征在于,(9) The above-mentioned problems are solved by providing a motor control method, which is a motor control method of the motor control device 100 including the inverter 20 that makes the three-phase AC drive currents Iu and Iv , Iw flow through the PM motor 10; the drive current detection units 12u, 12v, which obtain the values of the above-mentioned drive currents Iu, Iv, (Iw); the angle detection unit 14, which obtains the electrical angle θ of the above-mentioned PM motor 10; The dq conversion unit 22 converts the drive currents Iu, Iv, (Iw) acquired by the drive current detection units 12u, 12v into d-axis feedback current values Id and q-axis feedback current values Iq based on the electrical angle θ; sine waves The control unit 40 sets the d-axis current command value Id * and the q-axis current command value Iq * based on the external torque command value T * , and generates the d-axis voltage command value Vd and the q-axis voltage in the sine wave control mode Command value Vq; the rectangular wave control unit 50 generates the d-axis voltage command value Vd and the q-axis in the rectangular wave control mode by setting the voltage phase θv and the voltage command value |Va| based on the external torque command value T * voltage command value Vq; switching unit 24 that switches the generation of the d-axis voltage command value Vd and q-axis voltage command value Vq between the sine wave control unit 40 and the rectangular wave control unit 50; dq/3 phase The conversion unit 32 converts the d-axis voltage command values Vd and q-axis voltage command values Vq into three-phase voltage command values Vu, Vv, and Vw, and the drive signal generation unit 36 converts the three-phase voltage command values Vu, Vv , Vw is compared with a triangular wave of a predetermined period to generate drive signals Su, Sv, Sw for switching the inverter 20; and a mode transition unit 80, which operates when the switching unit 24 switches the control mode, The above motor control method is characterized in that,

上述模式转移部80进行The mode transition unit 80 described above performs

取得对正弦波控制模式时的d轴电压指令值Vd”、q轴电压指令值Vq”进行极坐标转换而得到的电压相位θv和电压指令值|Va|作为初始电压相位θv1和转移电压指令值|Va’|的初始值的步骤,并且The voltage phase θv and the voltage command value |Va| obtained by polar coordinate conversion of the d-axis voltage command value Vd" and q-axis voltage command value Vq" in the sine wave control mode are obtained as the initial voltage phase θv1 and the transition voltage command value steps of the initial value of |Va'|, and

在从正弦波控制模式向矩形波控制模式切换时进行如下步骤:Perform the following steps when switching from sine wave control mode to square wave control mode:

将上述初始电压相位θv1和转移电压指令值|Va’|的初始值输出到上述矩形波控制部50;outputting the initial value of the initial voltage phase θv1 and the transition voltage command value |Va'| to the rectangular wave control unit 50;

取得上述驱动信号Su、Sv、Sw成为矩形波图案的矩形波形成电压值|Va1|;以及obtaining the rectangular wave forming voltage value |Va1| at which the driving signals Su, Sv, and Sw form a rectangular wave pattern; and

使上述转移电压指令值|Va’|从上述初始值向矩形波形成电压值|Va1|连续地增大并输出到上述矩形波控制部50,使上述矩形波控制部50基于上述转移电压指令值|Va’|生成d轴电压指令值Vd、q轴电压指令值Vq,The transition voltage command value |Va'| is continuously increased from the initial value to the rectangular wave-forming voltage value |Va1| and output to the rectangular wave control unit 50 , and the rectangular wave control unit 50 is based on the transition voltage command value |Va'| generates the d-axis voltage command value Vd and the q-axis voltage command value Vq,

在矩形波控制模式时,进行如下步骤:将上述矩形波控制部50输出的d轴电压指令值Vd、q轴电压指令值Vq作为d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1输出到上述正弦波控制部40,并且基于上述d轴反馈电流值Id、q轴反馈电流值Iq算出用于算出d轴电流指令值的初始值Id*1和q轴电流指令值的初始值Iq*1的转移数据Ifb,将该转移数据Ifb输出到上述正弦波控制部40,In the rectangular wave control mode, the following steps are performed: the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the rectangular wave control unit 50 are used as the initial value Vd1 of the d-axis voltage command value, and the q-axis voltage command value Vd1 and the q-axis voltage command value. The initial value Vq1 is output to the sine wave control unit 40, and based on the d-axis feedback current value Id and the q-axis feedback current value Iq, the initial value Id * 1 for calculating the d-axis current command value and the difference between the q-axis current command value and the d-axis current command value are calculated. The transition data Ifb of the initial value Iq * 1 is output to the above-mentioned sine wave control unit 40,

上述模式转移部80还具有如下步骤:The above-mentioned mode transfer part 80 also has the following steps:

在从矩形波控制模式向正弦波控制模式切换时,取得上述矩形波控制部50输出的电压指令值|Va|作为转移电压指令值的初始值|Va’|;When switching from the rectangular wave control mode to the sine wave control mode, the voltage command value |Va| output from the rectangular wave control unit 50 is obtained as the initial value |Va'| of the transition voltage command value;

取得上述驱动信号Su、Sv、Sw成为正弦波图案或者过调制图案的正弦波模式转移电压值|Va2|;obtaining the sine wave mode transition voltage value |Va2| in which the drive signals Su, Sv, and Sw become a sine wave pattern or an overmodulation pattern;

一边使上述矩形波控制模式继续一边使上述转移电压指令值|Va’|从上述初始值连续地减少到上述正弦波模式转移电压值|Va2|并将其输出到上述矩形波控制部50;continuously decreasing the transition voltage command value |Va'| from the initial value to the sine wave mode transition voltage value |Va2| while continuing the rectangular wave control mode, and outputting it to the rectangular wave control unit 50;

使上述矩形波控制部50基于上述转移电压指令值|Va’|生成d轴电压指令值Vd、q轴电压指令值Vq;causing the rectangular wave control unit 50 to generate a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the transition voltage command value |Va'|;

上述切换部24切换为通过上述正弦波控制部40进行的正弦波控制模式;以及The above-mentioned switching unit 24 is switched to the sine wave control mode by the above-mentioned sine wave control unit 40; and

在刚向上述正弦波控制模式切换后,基于上述d轴电压指令值的初始值Vd1、上述q轴电压指令值的初始值Vq1、上述d轴电流指令值的初始值Id*1、上述q轴电流指令值的初始值Iq*1,生成切换时d轴电压指令值Vd、切换时q轴电压指令值Vq并将其输出到上述dq/3相转换部32。Immediately after switching to the sine wave control mode, based on the initial value Vd1 of the d-axis voltage command value, the initial value Vq1 of the q-axis voltage command value, the initial value Id * 1 of the d-axis current command value, and the q-axis The initial value Iq * 1 of the current command value generates the d-axis voltage command value Vd at the time of switching and the q-axis voltage command value Vq at the time of switching, and outputs them to the dq/3-phase conversion unit 32 .

(10)通过提供上述(6)至(9)中的任意一项所记载的电机控制方法从而解决上述问题,上述电机控制方法的特征在于,上述三角波的下降沿的中央位置与上述三相电压指令值Vu、Vv、Vw的上升沿的零点位置交叉,而且将上述三角波的频率维持为上述三相电压指令值Vu、Vv、Vw的频率的3的奇数整数倍。(10) The above problem is solved by providing the motor control method according to any one of the above (6) to (9), wherein the motor control method is characterized in that the center position of the falling edge of the triangular wave is related to the three-phase voltage. The zero positions of the rising edges of the command values Vu, Vv, Vw cross, and the frequency of the triangular wave is maintained at an odd integer multiple of 3 of the frequency of the three-phase voltage command values Vu, Vv, Vw.

发明效果Invention effect

本发明的电机控制装置和电机控制方法在控制模式切换时一边进行基于矩形波控制模式的转矩控制,一边使驱动信号在正弦波图案(过调制图案)与矩形波图案之间连续地变化。由此,能进行转矩变动少的顺畅的控制模式的切换。另外,在转移期间中也能进行再次切换,响应性高。另外,在转移期间进行基于矩形波控制模式的转矩控制,因此在转移期间中转矩指令值或电源电压、PM电机的旋转速度发生了变化的情况下,也能随时反映这些变化,在进行控制模式的切换时不会造成转矩变动。The motor control device and motor control method of the present invention continuously change the drive signal between a sine wave pattern (overmodulation pattern) and a rectangular wave pattern while performing torque control based on the rectangular wave control mode when the control mode is switched. As a result, it is possible to perform smooth switching of control modes with less torque fluctuation. In addition, switching can be performed again during the transition period, and the responsiveness is high. In addition, torque control based on the rectangular wave control mode is performed during the transition period. Therefore, even if the torque command value, power supply voltage, or rotational speed of the PM motor changes during the transition period, these changes can be reflected at any time. There is no torque fluctuation when switching the control mode.

附图说明Description of drawings

图1是本发明的电机控制装置的框图。FIG. 1 is a block diagram of a motor control device of the present invention.

图2是说明电机的运转状况和控制模式的切换的图。FIG. 2 is a diagram illustrating an operation state of a motor and switching of a control mode.

图3是说明本发明的电机控制装置的三角波与三相电压指令值Vu的位置关系的图。3 is a diagram illustrating a positional relationship between a triangular wave and a three-phase voltage command value Vu in the motor control device of the present invention.

图4是示出本发明的电机控制方法的向矩形波控制模式转移时的动作的流程图。4 is a flowchart showing the operation when transitioning to the rectangular wave control mode in the motor control method of the present invention.

图5是示出本发明的电机控制方法的向正弦波控制模式转移时的动作的流程图。FIG. 5 is a flowchart showing the operation at the time of transition to the sine wave control mode in the motor control method of the present invention.

图6是说明本发明的电机控制装置和电机控制方法的三角波的图。6 is a diagram illustrating a triangular wave of the motor control device and the motor control method of the present invention.

具体实施方式Detailed ways

基于附图来说明本发明的电机控制装置100和电机控制方法的实施方式。在此,图1是本发明的电机控制装置100的框图。首先,本发明的电机控制装置100用于控制PM电机(永磁电机)10的动作,具有:逆变器20,其使3相交流的驱动电流Iu、Iv、Iw流过该PM电机10;驱动电流检测部12u、12v,其取得该驱动电流Iu、Iv、(Iw)的值;角度检测部14,其取得PM电机10的电角度θ;3相/dq转换部22,其将驱动电流检测部12u、12v取得的驱动电流Iu、Iv、(Iw)转换为d轴反馈电流值Id、q轴反馈电流值Iq;正弦波控制部40,其基于从外部(系统的上位的控制部等)指示的转矩指令值T*设定d轴电流指令值Id*、q轴电流指令值Iq*,生成正弦波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;矩形波控制部50,其同样地基于从外部指示的转矩指令值T*设定电压相位θv和电压指令值|Va|,生成矩形波控制模式下的d轴电压指令值Vd、q轴电压指令值Vq;切换部24,其将PM电机10的控制在正弦波控制部40与矩形波控制部50之间进行切换;dq/3相转换部32,其将从正弦波控制部40或矩形波控制部50输出的d轴电压指令值Vd、q轴电压指令值Vq转换为U相、V相、W相的三相电压指令值Vu、Vv、Vw;驱动信号生成部36,其将该三相电压指令值Vu、Vv、Vw与规定的周期的三角波进行比较而生成对逆变器20进行开关的驱动信号Su、Sv、Sw;以及模式转移部80,其在通过切换部24切换控制模式时进行规定的动作。Embodiments of the motor control device 100 and the motor control method of the present invention will be described based on the drawings. Here, FIG. 1 is a block diagram of a motor control device 100 of the present invention. First, the motor control device 100 of the present invention is used to control the operation of the PM motor (permanent magnet motor) 10, and includes an inverter 20 that allows three-phase AC drive currents Iu, Iv, and Iw to flow through the PM motor 10; The drive current detection units 12u, 12v obtain the values of the drive currents Iu, Iv, (Iw); the angle detection unit 14 obtains the electrical angle θ of the PM motor 10; the 3-phase/dq conversion unit 22 converts the drive current The drive currents Iu, Iv, (Iw) acquired by the detection units 12u and 12v are converted into the d-axis feedback current value Id and the q-axis feedback current value Iq; the sine wave control unit 40 is based on the ) indicates the torque command value T * set the d-axis current command value Id * , the q-axis current command value Iq * , and generate the d-axis voltage command value Vd and q-axis voltage command value Vq under the sine wave control mode; rectangular wave The control unit 50 similarly generates the d-axis voltage command value Vd and the q-axis voltage command value in the rectangular wave control mode based on the torque command value T * set voltage phase θv and the voltage command value |Va| Vq; switching section 24, which switches the control of PM motor 10 between sine wave control section 40 and rectangular wave control section 50; dq/3-phase conversion section 32, which switches control from sine wave control section 40 or rectangular wave control section 32 The d-axis voltage command value Vd and the q-axis voltage command value Vq output by the unit 50 are converted into three-phase voltage command values Vu, Vv, Vw of the U-phase, V-phase, and W-phase; The voltage command values Vu, Vv, Vw are compared with the triangular wave of a predetermined period to generate drive signals Su, Sv, Sw for switching the inverter 20; perform the prescribed action.

构成本发明的电机控制装置100的逆变器20根据从驱动信号生成部36输出的Hi-Low的驱动信号Su、Sv、Sw进行开关动作,将来自电池等公知的直流电源部18的直流电转换为基于驱动信号Su、Sv、Sw的3相的交流电压而输出。由此,相位各错开1/3周期(2/3π(rad))的3相的驱动电流Iu、Iv、Iw分别流过PM电机10的电枢绕组。The inverter 20 constituting the motor control device 100 of the present invention performs switching operations based on the Hi-Low drive signals Su, Sv, and Sw output from the drive signal generation unit 36, and converts the DC power from the known DC power supply unit 18 such as a battery. It outputs three-phase AC voltage based on drive signals Su, Sv, and Sw. As a result, the three-phase drive currents Iu, Iv, and Iw whose phases are shifted by 1/3 cycle (2/3π(rad)) respectively flow through the armature windings of the PM motor 10 .

另外,如上所述,PM电机10是在转子侧设置永磁体,并且在定子侧设置3相的电枢绕组,使上述的驱动电流Iu、Iv、Iw分别流过该3相的电枢绕组,从而使各电枢绕组的磁极和磁通连续地变化,使转子旋转。此外,作为PM电机10,优选使用将永磁体埋入于转子的IPM电机(Interior Permanent Magnet Motor:内部永磁电机)。In addition, as described above, the PM motor 10 is provided with permanent magnets on the rotor side and three-phase armature windings on the stator side, and the above-mentioned drive currents Iu, Iv, and Iw are respectively passed through the three-phase armature windings, Therefore, the magnetic pole and magnetic flux of each armature winding are continuously changed, and the rotor is rotated. In addition, as the PM motor 10 , an IPM motor (Interior Permanent Magnet Motor) in which permanent magnets are embedded in the rotor is preferably used.

另外,驱动电流检测部12u、12v能够使用能以非接触的方式取得通过逆变器20的开关动作而流过的驱动电流Iu、Iv、Iw的公知的电流传感器。此外,在本例中示出了取得驱动电流Iu、Iv、Iw中的2个驱动电流Iu、Iv并将其转换为d轴反馈电流值Id、q轴反馈电流值Iq的例子。The drive current detection units 12u and 12v can use known current sensors that can acquire the drive currents Iu, Iv, and Iw flowing through the switching operation of the inverter 20 in a non-contact manner. In addition, this example shows an example in which two of the drive currents Iu, Iv, and Iw are obtained and converted into the d-axis feedback current value Id and the q-axis feedback current value Iq.

另外,作为角度检测部14,能够使用能取得转子的角度的公知的角度传感器。其中使用旋转变压器旋转角传感器来取得PM电机10的电角度θ是特别优选的。此外,优选上述的电角度θ和驱动电流Iu、Iv的取得是以三角波的顶点和波谷这两个定时进行的,按三角波的每半个周期由电机控制装置100的各部使用。并且,角度检测部14所取得的电角度θ还输出到角速度运算部16,该角速度运算部16根据所输入的电角度θ算出电角速度ω(rad/s),将其输出到电机控制装置100的各部。In addition, as the angle detection part 14, a well-known angle sensor which can acquire the angle of a rotor can be used. Among them, it is particularly preferable to use a resolver rotation angle sensor to obtain the electrical angle θ of the PM motor 10 . In addition, it is preferable that the above-mentioned acquisition of the electrical angle θ and the drive currents Iu and Iv is performed at two timings, the apex and the trough of the triangular wave, and is used by each part of the motor control device 100 for every half cycle of the triangular wave. Further, the electrical angle θ acquired by the angle detection unit 14 is output to the angular velocity calculation unit 16 , and the angular velocity calculation unit 16 calculates the electrical angular velocity ω (rad/s) based on the input electrical angle θ, and outputs it to the motor control device 100 of each department.

另外,3相/dq转换部22基于角度检测部14取得的PM电机10的电角度θ(rad),进行针对驱动电流检测部12u、12v所取得的驱动电流Iu、Iv、(Iw)的值的3相2相转换和旋转坐标转换,将驱动电流Iu、Iv、(Iw)转换为d轴电流值(磁通部分电流值)Id和q轴电流值(转矩部分电流值)Iq。并且,将它们作为d轴反馈电流值Id、q轴反馈电流值Iq输出到切换部24。In addition, the 3-phase/dq conversion unit 22 performs values of the drive currents Iu, Iv, (Iw) acquired by the drive current detection units 12u and 12v based on the electrical angle θ(rad) of the PM motor 10 acquired by the angle detection unit 14 . The 3-phase 2-phase conversion and rotation coordinate conversion of the drive current Iu, Iv, (Iw) are converted into d-axis current value (magnetic flux part current value) Id and q-axis current value (torque part current value) Iq. Then, these are output to the switching unit 24 as the d-axis feedback current value Id and the q-axis feedback current value Iq.

切换部24是根据PM电机10的运转状况(转矩、转速)来切换d轴电压指令值Vd、q轴电压指令值Vq的生成方法的切换电路,当PM电机10在中/低速旋转的图2的区域A(正弦波控制区域A)内动作的情况下,通过由正弦波控制部40进行的正弦波控制模式使PM电机10动作。另外,当PM电机10在高旋转速度、高转矩的图2的区域B(矩形波控制区域B)内动作的情况下,将PM电机10的控制切换为矩形波控制部50而通过矩形波控制模式使其动作。此外,正弦波控制区域A与矩形波控制区域B的切换值(切换线C)根据直流电源部18的电压值而变化。优选该直流电源部18的每一电压值的切换值预先设定到未图示的存储器部等,切换部24适当地取得与直流电源部18的电压值相应的切换值来使用。另外,在没有一致的电压值的情况下,优选通过运算等根据前后的电压的切换值取得合适的切换值来使用。并且,在PM电机10的运转状况(转矩、转速)超过切换值的情况下,进行后述的各步骤,进行控制模式的切换。此外,优选对从正弦波控制模式向矩形波控制模式切换时的切换值和从矩形波控制模式向正弦波控制模式切换时的切换值赋予滞后(hysteresis)宽度,防止在切换值的边界处的频繁的切换动作。The switching unit 24 is a switching circuit for switching the generation method of the d-axis voltage command value Vd and the q-axis voltage command value Vq according to the operating conditions (torque, rotation speed) of the PM motor 10, and the diagram shows that when the PM motor 10 is rotating at medium/low speed. When operating in the area A (sine wave control area A) of 2, the PM motor 10 is operated by the sine wave control mode performed by the sine wave control unit 40 . In addition, when the PM motor 10 operates in the region B (square wave control region B) in FIG. 2 with high rotational speed and high torque, the control of the PM motor 10 is switched to the square wave control unit 50 to pass the square wave The control mode makes it act. In addition, the switching value (switching line C) between the sine wave control region A and the rectangular wave control region B changes according to the voltage value of the DC power supply unit 18 . The switching value for each voltage value of the DC power supply unit 18 is preferably preset in a memory unit or the like (not shown), and the switching unit 24 appropriately obtains and uses the switching value corresponding to the voltage value of the DC power supply unit 18 . In addition, when there is no consistent voltage value, it is preferable to obtain and use an appropriate switching value from the switching value of the preceding and following voltages by calculation or the like. Then, when the operating state (torque, rotational speed) of the PM motor 10 exceeds the switching value, each step described later is performed to switch the control mode. In addition, it is preferable to give a hysteresis width to the switching value at the time of switching from the sine wave control mode to the rectangular wave control mode and the switching value at the time of switching from the rectangular wave control mode to the sine wave control mode, so as to prevent the hysteresis at the boundary of the switching value. Frequent switching actions.

接下来,说明正弦波控制部40的构成和动作。此外,以下说明的正弦波控制部40的构成是本发明所优选的一个例子,因此并不限于下述的构成,也可以使用其它任意的正弦波控制机构。Next, the configuration and operation of the sine wave control unit 40 will be described. In addition, since the structure of the sine wave control part 40 demonstrated below is a preferable example of this invention, it is not limited to the following structure, and other arbitrary sine wave control means may be used.

首先,从上位系统的控制部等输出转矩指令值T*。该转矩指令值T*是PM电机10的作为动作目标的转矩。并且,该转矩指令值T*在切换部24所选择的是正弦波控制部40的情况下,输入到正弦波控制部40的电流指令值设定部402。另外,PM电机10的当前的转矩T从转矩计算部404输入到电流指令值设定部402。First, the torque command value T * is output from the control unit or the like of the upper system. This torque command value T * is the torque of the PM motor 10 as an operation target. Then, the torque command value T * is input to the current command value setting unit 402 of the sine wave control unit 40 when the sine wave control unit 40 is selected by the switching unit 24 . In addition, the current torque T of the PM motor 10 is input from the torque calculation unit 404 to the current command value setting unit 402 .

在此,转矩计算部404具有作为PM电机10的电机参数的感应电压常数

Figure BDA0002333800340000151
d轴电感Ld、q轴电感Lq等。此外,感应电压常数
Figure BDA0002333800340000152
d轴电感Ld、q轴电感Lq可以是预先设定的固定值,也可以是从例如数据表等适当地取得根据PM电机10的温度或动作状况预先设定的合适的值。并且,转矩计算部404基于这些值和后述的d轴反馈电流值Id、q轴反馈电流值Iq或从电流指令值生成部406输出的d轴电流指令值Id*、q轴电流指令值Iq*,并基于例如下式算出PM电机10的当前的转矩T。此外,在该例中,示出了基于d轴电流指令值Id*、q轴电流指令值Iq*算出转矩T的例子。Here, the torque calculation unit 404 has an induced voltage constant as a motor parameter of the PM motor 10
Figure BDA0002333800340000151
d-axis inductance Ld, q-axis inductance Lq, etc. In addition, the induced voltage constant
Figure BDA0002333800340000152
The d-axis inductance Ld and the q-axis inductance Lq may be preset fixed values, or may be appropriately obtained from, for example, a data table or the like and preset appropriate values in accordance with the temperature and operating conditions of the PM motor 10 . Then, the torque calculation unit 404 is based on these values and the d-axis feedback current value Id and the q-axis feedback current value Iq described later, or the d-axis current command value Id * and the q-axis current command value output from the current command value generating unit 406 . Iq * , and the current torque T of the PM motor 10 is calculated based on, for example, the following equation. In addition, this example shows an example in which the torque T is calculated based on the d-axis current command value Id * and the q-axis current command value Iq * .

Figure BDA0002333800340000153
Figure BDA0002333800340000153

P:PM电机的永磁体的极对数P: the number of pole pairs of the permanent magnets of the PM motor

Figure BDA0002333800340000154
感应电压常数
Figure BDA0002333800340000154
Induced voltage constant

Ld:d轴电感Ld: d-axis inductance

Lq:q轴电感Lq: q-axis inductance

并且,电流指令值设定部402基于转矩指令值T*和当前的转矩T设定使得转矩T成为转矩指令值T*那样的电流指令值Ia*,将其输出到电流指令值生成部406。此外,电流指令值Ia*也可以通过积分控制、比例控制等运算来算出。另外,也可以对电流指令值Ia*设定限制器值,该限制器值也可以是从表数据读出与电角速度ω和电源电压Vdc对应的值。另外,也可以仅设定限制器的最大值并使用该最大值。Then, the current command value setting unit 402 sets a current command value Ia * such that the torque T becomes the torque command value T * based on the torque command value T * and the current torque T, and outputs the current command value as the current command value. Generation unit 406 . In addition, the current command value Ia * may be calculated by operations such as integral control and proportional control. In addition, a limiter value may be set for the current command value Ia * , and the limiter value may be a value corresponding to the electrical angular velocity ω and the power supply voltage Vdc read out from the table data. Alternatively, only the maximum value of the limiter may be set and the maximum value may be used.

电流指令值生成部406例如从表数据等取得从电流指令值设定部402输入的电流指令值Ia*的电流相位角θi,基于这些电流指令值Ia*和电流相位角θi算出d轴电流指令值Id*、q轴电流指令值Iq*,将其输出到正弦波控制部40的电压指令值生成部416。此时,根据公知的运算式和上述的电机参数(

Figure BDA0002333800340000155
Ld、Lq)及电角速度ω、d轴电流指令值Id*、q轴电流指令值Iq*求出电机电压,调整d轴电流指令值Id*、q轴电流指令值Iq*使得该电机电压的大小不超过K×Vdc的值(K:电压利用率设定值),从而能在正弦波控制区域与矩形波控制区域之间设置过调制控制或弱磁通控制区域,能实现中高速动作区域内的输出的提高。另外,通过变更电压利用率K,能以任意的电压利用率设定d轴电流指令值Id*、q轴电流指令值Iq*。此外,优选通过基于上述的电机参数(
Figure BDA0002333800340000161
Ld、Lq)、来自角速度运算部16的电角速度ω、来自直流电源部18的电源电压Vdc等的公知的电压控制、比例控制、积分控制等来进行使用了电压利用率K的d轴电流指令值Id*、q轴电流指令值Iq*的调整。另外,也可以通过针对电流相位角θi的积分控制、比例控制等运算来算出。而且,也可以根据需要对d轴电流指令值Id*、q轴电流指令值Iq*设置电流限制器。The current command value generating unit 406 obtains, for example, from table data or the like, the current phase angle θi of the current command value Ia * input from the current command value setting unit 402, and calculates the d-axis current command based on the current command value Ia * and the current phase angle θi. The value Id * and the q-axis current command value Iq * are output to the voltage command value generating unit 416 of the sine wave control unit 40 . At this time, according to the known arithmetic expression and the above-mentioned motor parameters (
Figure BDA0002333800340000155
Ld, Lq) and electrical angular velocity ω, d-axis current command value Id * , q-axis current command value Iq * to obtain the motor voltage, adjust the d-axis current command value Id * , q-axis current command value Iq * so that the motor voltage The size does not exceed the value of K×Vdc (K: voltage utilization setting value), so that the over-modulation control or weak magnetic flux control area can be set between the sine wave control area and the rectangular wave control area, and the medium and high speed operation area can be realized. The internal output is improved. In addition, by changing the voltage utilization rate K, the d-axis current command value Id * and the q-axis current command value Iq * can be set at any voltage utilization rate. In addition, it is preferable to pass the motor parameters based on the above (
Figure BDA0002333800340000161
Ld, Lq), the electrical angular velocity ω from the angular velocity calculation unit 16, the power supply voltage Vdc from the DC power supply unit 18 and other well-known voltage control, proportional control, integral control, etc. to perform the d-axis current command using the voltage utilization rate K. Adjustment of value Id * and q-axis current command value Iq * . Alternatively, it may be calculated by calculation such as integral control and proportional control for the current phase angle θi. Furthermore, current limiters may be provided for the d-axis current command value Id * and the q-axis current command value Iq * as necessary.

在此,说明电压指令值生成部416所优选的一个例子。首先,输入到电压指令值生成部416的d轴电流指令值Id*、q轴电流指令值Iq*分支为两部分,其中一方输入到非干扰控制部414。并且,在非干扰控制部414中算出d轴电流指令值Id*、q轴电流指令值Iq*之间发生干扰的速度电动势成分,作为d轴电压指令值Vd’、q轴电压指令值Vq’输出到电流控制部410。另外,d轴电流指令值Id*、q轴电流指令值Iq*中的另一方在减法部412中被减去d轴反馈电流值Id、q轴反馈电流值Iq而成为变动成分ΔId、ΔIq,之后输入到电流控制部410。Here, a preferable example of the voltage command value generation unit 416 will be described. First, the d-axis current command value Id * and the q-axis current command value Iq * input to the voltage command value generation unit 416 are branched into two parts, and one of them is input to the non-disturbance control unit 414 . Then, the non-disturbance control unit 414 calculates the velocity electromotive force components that interfere between the d-axis current command value Id * and the q-axis current command value Iq * , as the d-axis voltage command value Vd' and the q-axis voltage command value Vq' output to the current control unit 410 . In addition, the other of the d-axis current command value Id * and the q-axis current command value Iq * is subtracted by the d-axis feedback current value Id and the q-axis feedback current value Iq in the subtraction unit 412 to become the fluctuation components ΔId and ΔIq, Then, it is input to the current control unit 410 .

电流控制部410例如具有电流积分控制部410a和电流比例控制部410b,输入到电流控制部410的变动成分ΔId、ΔIq分支为两部分而分别输入到电流积分控制部410a和电流比例控制部410b。并且,在电流积分控制部410a中实施公知的电流积分控制。另外,在电流比例控制部410b中实施公知的电流比例控制。并且,对电流积分控制部410a的输出加上来自非干扰控制部414的d轴电压指令值Vd’、q轴电压指令值Vq’,然后加上来自电流比例控制部410b的输出,而生成d轴电压指令值Vd、q轴电压指令值Vq。该d轴电压指令值Vd、q轴电压指令值Vq经由切换部24输出到控制信号生成部30。The current control unit 410 includes, for example, a current integral control unit 410a and a current proportional control unit 410b, and the fluctuation components ΔId and ΔIq input to the current control unit 410 are branched into two parts and input to the current integral control unit 410a and the current proportional control unit 410b, respectively. Then, known current integration control is implemented in the current integration control unit 410a. In addition, well-known current proportional control is implemented in the current proportional control part 410b. Then, the d-axis voltage command value Vd' and the q-axis voltage command value Vq' from the non-disturbance control unit 414 are added to the output of the current integration control unit 410a, and the output from the current proportional control unit 410b is added to generate d Shaft voltage command value Vd, q-axis voltage command value Vq. The d-axis voltage command value Vd and the q-axis voltage command value Vq are output to the control signal generating unit 30 via the switching unit 24 .

此外,优选在电流控制部410中设置限制器部,该限制器部进行限制,使得基于该d轴电压指令值Vd、q轴电压指令值Vq的三相电压指令值Vu、Vv、Vw不会到达成为逆变器20的输出极限的最大电压(成为1个脉冲的矩形波电压的电压)的附近。并且,优选该限制器部设置于加上来自电流比例控制部410b的输出之前的前级。另外,优选限制器部的限制电压按照后述的同步控制部420所设定的三角波的同步数来设定。In addition, it is preferable that the current control unit 410 is provided with a limiter unit that limits the three-phase voltage command values Vu, Vv, and Vw based on the d-axis voltage command value Vd and the q-axis voltage command value Vq. It reaches the vicinity of the maximum voltage which becomes the output limit of the inverter 20 (the voltage which becomes the rectangular wave voltage of one pulse). In addition, it is preferable that the limiter unit is provided in the preceding stage before adding the output from the current proportional control unit 410b. In addition, it is preferable to set the limit voltage of a limiter part according to the synchronization number of the triangular wave set by the synchronization control part 420 mentioned later.

另外,加上电流比例控制部410b的输出之前的前级的d轴电压指令值Vd”、q轴电压指令值Vq”输出到正弦波控制部40的极坐标转换部418,在该极坐标转换部418中被施加极坐标转换,取得电压相位θv和电压指令值|Va|。然后,极坐标转换部418将电压相位θv输出到同步控制部420和模式转移部80。另外,将电压指令值|Va|输出到线性校正部38和模式转移部80。In addition, the d-axis voltage command value Vd" and q-axis voltage command value Vq" of the previous stage before adding the output of the current proportional control unit 410b are output to the polar coordinate conversion unit 418 of the sine wave control unit 40, and the polar coordinate conversion Polar coordinate transformation is applied to the section 418 to obtain the voltage phase θv and the voltage command value |Va|. Then, the polar coordinate conversion unit 418 outputs the voltage phase θv to the synchronization control unit 420 and the mode transition unit 80 . In addition, the voltage command value |Va| is output to the linearity correction unit 38 and the mode transition unit 80 .

另外,正弦波控制部40的同步控制部420根据通过极坐标转换部418得到的电压相位θv、电角速度ω以及电角度θ,生成后述的三角波的载波设定信息Sc,将其输出到三角波生成部34。此外,在后面描述载波设定信息Sc。In addition, the synchronization control unit 420 of the sine wave control unit 40 generates carrier setting information Sc of the triangular wave described later based on the voltage phase θv, electrical angular velocity ω, and electrical angle θ obtained by the polar coordinate conversion unit 418, and outputs it to the triangular wave Generation unit 34 . In addition, the carrier setting information Sc will be described later.

接下来,说明矩形波控制部50的构成和动作。此外,以下说明的矩形波控制部50的构成是本发明所优选的一个例子,因此并不限于下述的构成,也可以使用其它任意的矩形波控制机构。Next, the configuration and operation of the rectangular wave control unit 50 will be described. In addition, since the structure of the square wave control part 50 demonstrated below is a preferable example of this invention, it is not limited to the following structure, and other arbitrary square wave control means may be used.

首先,当PM电机10超过图2的切换值(切换线C)而成为高旋转速度、高转矩的动作区域B内的动作状态时,切换部24将PM电机10的控制从正弦波控制部40切换为矩形波控制部50。此外,在后面描述此时的切换动作。由此,转矩指令值T*输入到矩形波控制部50的电压相位设定部502。另外,d轴反馈电流值Id、q轴反馈电流值Iq输入到矩形波控制部50的转矩计算部504。此外,转矩计算部504与正弦波控制部40的转矩计算部404同样地具有电机参数,根据这些电机参数和d轴反馈电流值Id、q轴反馈电流值Iq算出PM电机10的当前的转矩T,将其输出到电压相位设定部502。然后,电压相位设定部502根据转矩指令值T*和转矩T,通过积分控制、比例控制等生成使得PM电机10以目标转矩进行动作那样的电压相位θv。并且,将其输出到矩形波控制部50的电压指令值生成部516和同步控制部520。First, when the PM motor 10 exceeds the switching value (switching line C) in FIG. 2 and becomes the operating state within the high rotational speed and high torque operating region B, the switching unit 24 transfers the control of the PM motor 10 from the sine wave control unit 40 is switched to the rectangular wave control unit 50 . In addition, the switching operation at this time will be described later. Thereby, the torque command value T * is input to the voltage phase setting unit 502 of the rectangular wave control unit 50 . In addition, the d-axis feedback current value Id and the q-axis feedback current value Iq are input to the torque calculation unit 504 of the rectangular wave control unit 50 . Also, the torque calculation unit 504 has motor parameters similarly to the torque calculation unit 404 of the sine wave control unit 40 , and calculates the current current value of the PM motor 10 based on these motor parameters, the d-axis feedback current value Id, and the q-axis feedback current value Iq The torque T is output to the voltage phase setting unit 502 . Then, based on the torque command value T * and the torque T, the voltage phase setting unit 502 generates a voltage phase θv such that the PM motor 10 operates at the target torque by integral control, proportional control, or the like. Then, it is output to the voltage command value generation unit 516 and the synchronization control unit 520 of the rectangular wave control unit 50 .

同步控制部520根据电压相位θv、电角速度ω以及电角度θ生成用于设定三角波的载波设定信息Sc。此外,在后面描述载波设定信息Sc。另外,同步控制部520取得使得三角波与三相电压指令值Vu、Vv、Vw在三相电压指令值Vu、Vv、Vw的1个周期的期间内交叉2次、即使得通过三角波比较而生成的驱动信号Su、Sv、Sw成为1个脉冲的矩形波那样的电压指令值|Va|,将电压指令值|Va|输出到电压指令值生成部516。此外,优选由同步控制部520进行的电压指令值|Va|的设定是预先将电压指令值|Va|的值按三角波的每一同步数设定到数据表中,同步控制部520在决定三角波的同步数的同时选择并设定与该同步数对应的电压指令值|Va|。并且,同步控制部520将该电压指令值|Va|输出到电压指令值生成部516、线性校正部38。此外,优选形成该矩形波的电压指令值|Va|还用作后述的矩形波形成电压值|Va1|。The synchronization control unit 520 generates carrier setting information Sc for setting the triangular wave based on the voltage phase θv, the electrical angular velocity ω, and the electrical angle θ. In addition, the carrier setting information Sc will be described later. In addition, the synchronization control unit 520 obtains the triangular wave and the three-phase voltage command values Vu, Vv, Vw that cross twice within one cycle of the three-phase voltage command values Vu, Vv, Vw twice, that is, the triangular wave is compared and generated. The drive signals Su, Sv, and Sw have a voltage command value |Va| such as a one-pulse rectangular wave, and the voltage command value |Va| is output to the voltage command value generation unit 516 . In addition, it is preferable to set the voltage command value |Va| by the synchronization control unit 520 by setting the value of the voltage command value |Va| in the data table in advance for each synchronization number of the triangular wave, and the synchronization control unit 520 decides The voltage command value |Va| corresponding to the synchronization number of the triangular wave is selected and set at the same time. Then, the synchronization control unit 520 outputs the voltage command value |Va| to the voltage command value generation unit 516 and the linearity correction unit 38 . In addition, it is preferable that the voltage command value |Va| for forming the rectangular wave is also used as the rectangular wave forming voltage value |Va1| to be described later.

另外,电压指令值生成部516根据从电压相位设定部502输入的电压相位θv和从同步控制部520输入的电压指令值|Va|,生成d轴电压指令值Vd、q轴电压指令值Vq。Further, the voltage command value generation unit 516 generates a d-axis voltage command value Vd and a q-axis voltage command value Vq based on the voltage phase θv input from the voltage phase setting unit 502 and the voltage command value |Va| input from the synchronization control unit 520 .

此外,矩形波控制部50也可以具有对偏移等所致的变动成分进行校正的校正部70。在此,以下示出校正部70的一个例子。此外,以下说明的校正部70的构成是本发明所优选的一个例子,因此并不限于下述的构成。In addition, the rectangular wave control unit 50 may include a correction unit 70 that corrects fluctuation components due to offset or the like. Here, an example of the correction unit 70 is shown below. In addition, since the structure of the correction|amendment part 70 demonstrated below is a preferable example of this invention, it is not limited to the following structure.

本例所示的校正部70具有平滑部72、校正电流生成部74、校正电压生成部76以及电压指令值校正部78。并且,校正部70的平滑部72对经由切换部24输入的d轴反馈电流值Id、q轴反馈电流值Iq进行例如移动平均处理或平滑处理而分别将其平滑化。此外,在此的平滑处理是指对输入信号(d轴反馈电流值Id、q轴反馈电流值Iq)按每一任意的周期进行下述(1)式的处理从而将其平滑化的处理。The correction unit 70 shown in this example includes a smoothing unit 72 , a correction current generation unit 74 , a correction voltage generation unit 76 , and a voltage command value correction unit 78 . Then, the smoothing unit 72 of the correcting unit 70 performs, for example, moving average processing or smoothing processing on the d-axis feedback current value Id and the q-axis feedback current value Iq input via the switching unit 24 to smooth them, respectively. In addition, the smoothing process here refers to the process of smoothing the input signal (d-axis feedback current value Id, q-axis feedback current value Iq) by performing the processing of the following formula (1) for every arbitrary cycle.

C=B(1-K)+K×A····(1)C=B(1-K)+K×A・・・(1)

其中,A是输入值(d轴反馈电流值Id、q轴反馈电流值Iq),B是紧前的周期的平滑处理后的输出值,K是平滑常数,C是输出值(推定d轴电流指令值Id*、推定q轴电流指令值Iq*)。Here, A is an input value (d-axis feedback current value Id, q-axis feedback current value Iq), B is an output value after smoothing in the immediately preceding cycle, K is a smoothing constant, and C is an output value (estimated d-axis current value). Command value Id * , estimated q-axis current command value Iq * ).

通过该平滑化处理,生成由驱动电流Iu、Iv、Iw的偏移或振幅不平衡导致的变动成分被平滑化后的疑似性的推定d轴电流指令值Id*、推定q轴电流指令值Iq*。然后,这些推定d轴电流指令值Id*、q轴电流指令值Iq*输出到校正电流生成部74。Through this smoothing process, the suspected estimated d-axis current command value Id * and the estimated q-axis current command value Iq are generated after smoothing the fluctuation components caused by the offset or amplitude imbalance of the drive currents Iu, Iv, and Iw. * . Then, these estimated d-axis current command values Id * and q-axis current command values Iq * are output to the correction current generation unit 74 .

另外,d轴反馈电流值Id、q轴反馈电流值Iq分别输入到校正电流生成部74,校正电流生成部74从由平滑部72生成的推定d轴电流指令值Id*、推定q轴电流指令值Iq*分别减去d轴反馈电流值Id、q轴反馈电流值Iq。由此,生成作为变动成分的d轴校正电流ΔId、q轴校正电流ΔIq。并且,将这些d轴校正电流ΔId、q轴校正电流ΔIq输出到校正电压生成部76。此外,该d轴校正电流ΔId、q轴校正电流ΔIq是从偏移或振幅不平衡的成分(变动成分)被平滑化后的推定d轴电流指令值Id*、q轴电流指令值Iq*分别减去包含偏移或振幅不平衡的成分(变动成分)的d轴反馈电流值Id、q轴反馈电流值Iq而得到的,因此基本上成为变动成分的反相。Further, the d-axis feedback current value Id and the q-axis feedback current value Iq are respectively input to the correction current generation unit 74 , and the correction current generation unit 74 uses the estimated d-axis current command value Id * and the estimated q-axis current command generated by the smoothing unit 72 . The value Iq * is subtracted from the d-axis feedback current value Id and the q-axis feedback current value Iq, respectively. Thereby, the d-axis correction current ΔId and the q-axis correction current ΔIq are generated as fluctuation components. Then, the d-axis correction current ΔId and the q-axis correction current ΔIq are output to the correction voltage generating unit 76 . In addition, the d-axis correction current ΔId and the q-axis correction current ΔIq are estimated d-axis current command value Id * and q-axis current command value Iq * obtained by smoothing the components (variation components) of offset and amplitude imbalance, respectively. It is obtained by subtracting the d-axis feedback current value Id and the q-axis feedback current value Iq including components (variation components) of offset or amplitude imbalance, and therefore basically the inversion of the fluctuation components.

另外,校正电压生成部76根据从校正电流生成部74输入的d轴校正电流ΔId、q轴校正电流ΔIq,通过例如基于规定的校正增益(Kd、Kq)的比例控制等生成d轴校正电压ΔVd、q轴校正电压ΔVq,将其输出到电压指令值校正部78。In addition, the correction voltage generation unit 76 generates the d-axis correction voltage ΔVd by, for example, proportional control based on predetermined correction gains (Kd, Kq), based on the d-axis correction current ΔId and the q-axis correction current ΔIq input from the correction current generation unit 74 . and the q-axis correction voltage ΔVq, which is output to the voltage command value correction unit 78 .

电压指令值校正部78对从电压指令值生成部516输出的d轴电压指令值Vd、q轴电压指令值Vq分别加上从校正电压生成部76输入的d轴校正电压ΔVd、q轴校正电压ΔVq。因而,在由此生成的d轴电压指令值Vd、q轴电压指令值Vq中加入了产生于驱动电流Iu、Iv、Iw的偏移或振幅不平衡成分的相反的电压(d轴校正电压ΔVd、q轴校正电压ΔVq)。然后,这些d轴电压指令值Vd、q轴电压指令值Vq经由切换部24输入到控制信号生成部30。此外,由上述的校正部70校正后的d轴电压指令值Vd、q轴电压指令值Vq由于如上所述加入了偏移或振幅不平衡成分的相反的电压,所以由此驱动的PM电机10的偏移等被校正并消除。The voltage command value correction unit 78 adds the d-axis correction voltage ΔVd and the q-axis correction voltage input from the correction voltage generation unit 76 to the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the voltage command value generation unit 516 , respectively. ΔVq. Therefore, the d-axis voltage command value Vd and the q-axis voltage command value Vq thus generated are added with the opposite voltage (d-axis correction voltage ΔVd) caused by the offset or amplitude unbalance component of the drive currents Iu, Iv, and Iw. , q-axis correction voltage ΔVq). Then, the d-axis voltage command value Vd and the q-axis voltage command value Vq are input to the control signal generating unit 30 via the switching unit 24 . In addition, the d-axis voltage command value Vd and the q-axis voltage command value Vq corrected by the above-mentioned correction unit 70 have opposite voltages of offset and amplitude imbalance components added as described above, so the PM motor 10 driven by these offsets etc. are corrected and eliminated.

接下来,关于同步控制部420、520所输出的载波设定信息Sc进行说明。首先,该载波设定信息Sc用于将由三角波生成部34生成的三角波的频率维持为合适的状态。在此,载波设定信息Sc所设定的三角波是,如图3中的点A所示,三角波的下降沿的中央位置与三相电压指令值Vu、Vv、Vw的上升沿的零点位置交叉,而且三角波的频率成为三相电压指令值Vu、Vv、Vw的频率的3的奇数整数倍、即9、15、21、27倍等(以后,将该倍数称为同步数)。此外,三角波的同步数是根据电角速度ω来设定的。另外,在后面描述将三角波的频率设为三相电压指令值Vu、Vv、Vw的频率的3的奇数整数倍的原因。Next, the carrier setting information Sc output by the synchronization control units 420 and 520 will be described. First, the carrier setting information Sc is used to maintain the frequency of the triangular wave generated by the triangular wave generator 34 in an appropriate state. Here, the triangular wave set by the carrier setting information Sc is such that the center position of the falling edge of the triangular wave crosses the zero point position of the rising edge of the three-phase voltage command values Vu, Vv, and Vw, as indicated by point A in FIG. 3 . , and the frequency of the triangular wave is an odd integer multiple of 3, ie, 9, 15, 21, 27, etc., of the three-phase voltage command values Vu, Vv, and Vw frequencies (hereinafter, the multiples are referred to as synchronization numbers). In addition, the synchronization number of the triangular wave is set according to the electrical angular velocity ω. The reason why the frequency of the triangular wave is set to an odd integer multiple of 3 of the frequencies of the three-phase voltage command values Vu, Vv, and Vw will be described later.

此外,在本例中,作为在载波设定信息Sc的生成中使用的电压相位θv,使用的是根据(加上电流比例控制部410b的输出之前的)d轴、q轴电压指令值Vd”、Vq”求出的电压相位θv或者在(进行比例控制的)校正部70之前分支的电压相位θv。在此,在电压相位θv包含作为短期性振动成分的比例控制成分的情况下,三角波的周期(载波设定信息Sc)也根据该比例控制成分短期地振动。这会使通过三角波比较而生成的驱动信号Su、Sv、Sw变动,成为输出电压、电流、转矩的变动的重要因素。然而,在本例中如上所述使用不包含比例控制成分(短期性振动成分)的电压相位θv来设定载波设定信息Sc,因此,三角波和驱动信号Su、Sv、Sw稳定,由此能使输出电压、电流、转矩稳定化。另外,通过使用不包含比例控制成分的电压相位θv,能增大同步控制部420、520、电压相位设定部502等的控制增益,能实现它们的响应性的提高。In addition, in this example, as the voltage phase θv used in the generation of the carrier setting information Sc, the d-axis and q-axis voltage command value Vd" (before adding the output of the current proportional control unit 410b) is used. , Vq" obtained voltage phase θv or the voltage phase θv branched before the correction unit 70 (which performs proportional control). Here, when the voltage phase θv includes a proportional control component as a short-term vibration component, the period of the triangular wave (carrier setting information Sc) also oscillates for a short period in accordance with the proportional control component. This causes the drive signals Su, Sv, and Sw generated by the triangular wave comparison to fluctuate, which is an important factor for fluctuations in the output voltage, current, and torque. However, in this example, the carrier setting information Sc is set using the voltage phase θv that does not include the proportional control component (short-term vibration component) as described above. Therefore, the triangular wave and the drive signals Su, Sv, and Sw are stabilized. Stabilize output voltage, current, and torque. In addition, by using the voltage phase θv that does not include the proportional control component, the control gains of the synchronization control units 420 and 520 , the voltage phase setting unit 502 and the like can be increased, and their responsiveness can be improved.

并且,同步控制部420、520基于电压相位θv和电角度θ来设定如下的三角波的周期:三角波的中央位置与三相电压指令值Vu(Vv、Vw)的零点位置交叉,而且三角波的频率成为所设定的同步数(三相电压指令值Vu、Vv、Vw的频率的3的奇数整数倍)。另外,同步控制部420、520与电角速度ω的变化联动地使周期的设定信息变化,使三角波追随、维持上述的状态。而且,同步控制部420、520在电角速度ω超过预先设定的规定的值的情况下,将同步数降低1个级别来设定并输出载波设定信息Sc。另外,在电角速度ω低于预先设定的规定的值的情况下,将同步数提高1个级别来设定并输出载波设定信息Sc。此外,优选使同步数变化的电角速度ω的值是按每一同步数预先存储到数据表等,由同步控制部420、520根据所输入的电角速度ω从数据表取得对应的同步数来进行设定。此时,优选使对同步数进行提高或降低的电角速度ω具有滞后宽度。此外,与这些三角波的周期的变化联动地,上述的校正电压生成部76的校正增益(Kd、Kq)、平滑部72的时间常数、各控制的增益等被调整而被重新设定。Then, the synchronization control units 420 and 520 set the period of the triangular wave based on the voltage phase θv and the electrical angle θ such that the center position of the triangular wave crosses the zero point position of the three-phase voltage command values Vu (Vv, Vw), and the frequency of the triangular wave is It becomes the set number of synchronizations (odd integer multiples of 3 of the frequencies of the three-phase voltage command values Vu, Vv, Vw). In addition, the synchronization control units 420 and 520 change the period setting information in conjunction with the change of the electrical angular velocity ω, so that the triangular wave follows and maintains the above state. Then, when the electrical angular velocity ω exceeds a predetermined value set in advance, the synchronization control units 420 and 520 lower the number of synchronizations by one level to set and output the carrier setting information Sc. In addition, when the electrical angular velocity ω is lower than a predetermined value set in advance, the number of synchronizations is increased by one level, and the carrier setting information Sc is set and output. The value of the electrical angular velocity ω for changing the number of synchronizations is preferably stored in a data table or the like in advance for each number of synchronizations, and the synchronization control units 420 and 520 obtain the corresponding number of synchronizations from the data table based on the input electrical angular velocity ω. set up. In this case, it is preferable that the electrical angular velocity ω for increasing or decreasing the number of synchronizations has a hysteresis width. In addition, the above-mentioned correction gains (Kd, Kq) of the correction voltage generating unit 76, time constants of the smoothing unit 72, gains of each control, and the like are adjusted and reset in conjunction with changes in the cycles of these triangular waves.

接下来,说明控制信号生成部30所优选的一个例子。此外,以下说明的控制信号生成部30的构成是本发明所优选的一个例子,因此并不限于下述的构成,也可以使用其它任意的控制信号生成机构。Next, a preferable example of the control signal generation unit 30 will be described. In addition, since the structure of the control signal generation part 30 demonstrated below is a preferable example of this invention, it is not limited to the following structure, and other arbitrary control signal generation means may be used.

首先,从正弦波控制部40或矩形波控制部50输出的d轴电压指令值Vd、q轴电压指令值Vq输入到控制信号生成部30的dq/3相转换部32。此外,控制信号生成部30也可以在dq/3相转换部32的前级具有线性校正部38,该线性校正部38用于在矩形波控制时、过调制控制时对d轴电压指令值Vd、q轴电压指令值Vq及电压指令值|Va|与逆变器输出电压的基本波成分的非线性度进行校正。此外,优选该线性校正部38所使用的校正值是与例如调制率或电压指令值|Va|等对应地设定的。First, the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the sine wave control unit 40 or the rectangular wave control unit 50 are input to the dq/3-phase conversion unit 32 of the control signal generation unit 30 . In addition, the control signal generation unit 30 may include a linearity correction unit 38 in the preceding stage of the dq/3-phase conversion unit 32 for adjusting the d-axis voltage command value Vd during the rectangular wave control and the overmodulation control. , q-axis voltage command value Vq and voltage command value |Va| and the nonlinearity of the fundamental wave component of the inverter output voltage are corrected. In addition, it is preferable that the correction value used by the linearity correction unit 38 is set in accordance with, for example, the modulation factor, the voltage command value |Va|, or the like.

此外,在本例中,作为输入到线性校正部38的电压指令值|Va|,使用的是根据(加上电流比例控制部410b的输出之前的)d轴电压指令值Vd”、q轴电压指令值Vq”求出的电压指令值|Va|、或者比(进行比例控制的)校正部70靠前级的(不包含校正部70的d轴校正电压ΔVd、q轴校正电压ΔVq的短期性振动成分的)同步控制部520所输出的电压指令值|Va|(或者|Va’|)。在此,在电压指令值|Va|包含作为短期性振动成分的比例控制成分的情况下,校正值会由于该振动成分的影响而变动。由此,后级的三相电压指令值Vu、Vv、Vw、驱动信号Su、Sv、Sw也会变动,成为输出电压、电流、转矩的变动的重要因素。然而,在本例中如上所述以不包含比例控制成分的比较稳定的电压指令值|Va|为基础来设定校正值,因此能生成稳定的三相电压指令值Vu、Vv、Vw、驱动信号Su、Sv、Sw,能实现输出电压、电流、转矩的稳定化。另外,通过以不包含比例控制成分的电压指令值|Va|为基础来设定校正值,能增大电流比例控制部410b、校正电压生成部76的增益,能实现它们的响应性的提高。In this example, as the voltage command value |Va| input to the linearity correction unit 38, the d-axis voltage command value Vd″ and the q-axis voltage (before adding the output of the current proportional control unit 410b) are used. The voltage command value |Va| obtained from the command value Vq", or the short-term nature of the d-axis correction voltage ΔVd and q-axis correction voltage ΔVq that are higher than the correction unit 70 (which performs proportional control) (excluding the correction unit 70 's d-axis correction voltage ΔVd and q-axis correction voltage ΔVq The voltage command value |Va| (or |Va'|) output by the synchronization control unit 520 of the vibration component. Here, when the voltage command value |Va| includes a proportional control component that is a short-term vibration component, the correction value fluctuates due to the influence of the vibration component. As a result, the three-phase voltage command values Vu, Vv, Vw, and drive signals Su, Sv, and Sw of the subsequent stage also fluctuate, which are important factors for fluctuations in the output voltage, current, and torque. However, in this example, since the correction value is set based on the relatively stable voltage command value |Va| that does not include the proportional control component as described above, stable three-phase voltage command values Vu, Vv, Vw can be generated, driving Signals Su, Sv and Sw can stabilize the output voltage, current and torque. In addition, by setting the correction value based on the voltage command value |Va| not including the proportional control component, the gains of the current proportional control unit 410b and the correction voltage generation unit 76 can be increased, and their responsiveness can be improved.

另外,来自角度检测部14的电角度θ和来自角速度运算部16的电角速度ω输入到dq/3相转换部32,dq/3相转换部32基于该电角度θ和电角速度ω算出逆变器20进行开关动作的新的定时的预测电角度θ’,基于该预测电角度θ’将d轴电压指令值Vd、q轴电压指令值Vq转换为三相电压指令值Vu、Vv、Vw,并将其输出到驱动信号生成部36。In addition, the electrical angle θ from the angle detection unit 14 and the electrical angular velocity ω from the angular velocity calculation unit 16 are input to the dq/3-phase conversion unit 32 , and the dq/3-phase conversion unit 32 calculates an inversion based on the electrical angle θ and the electrical angular velocity ω The d-axis voltage command value Vd and the q-axis voltage command value Vq are converted into three-phase voltage command values Vu, Vv, Vw based on the predicted electrical angle θ' at a new timing when the controller 20 performs the switching operation, and output to the drive signal generation unit 36 .

驱动信号生成部36具有三角波生成部34,上述的载波设定信息Sc输入到该三角波生成部34,该三角波生成部34生成基于该载波设定信息Sc的周期性三角波。此外,此时的三角波根据来自同步控制部420、520的载波设定信息Sc而成为如下三角波:三角波的下降沿的中央位置与三相电压指令值Vu、Vv、Vw的上升沿的零点位置交叉,而且频率为三相电压指令值Vu、Vv、Vw的3的奇数整数倍。The drive signal generating unit 36 includes a triangular wave generating unit 34 to which the carrier setting information Sc described above is input, and the triangular wave generating unit 34 generates a periodic triangular wave based on the carrier setting information Sc. In addition, the triangular wave at this time is a triangular wave in which the center position of the falling edge of the triangular wave crosses the zero point position of the rising edge of the three-phase voltage command values Vu, Vv, Vw according to the carrier setting information Sc from the synchronization control units 420 and 520 , and the frequency is an odd integer multiple of 3 of the three-phase voltage command values Vu, Vv, and Vw.

然后,驱动信号生成部36将该三角波与三相电压指令值Vu、Vv、Vw分别进行三角波比较。此时,三角波的振幅会根据上述的载波设定信息Sc而增减。因而,通过与三角波的振幅成比例的换算系数来调整三相电压指令值Vu、Vv、Vw,使用该调整后的三相电压指令值Vu、Vv、Vw进行三角波比较。由此,生成Hi-Low的驱动信号Su、Sv、Sw。Then, the drive signal generation unit 36 compares the triangular wave with the three-phase voltage command values Vu, Vv, and Vw, respectively. At this time, the amplitude of the triangular wave is increased or decreased according to the above-mentioned carrier setting information Sc. Therefore, the three-phase voltage command values Vu, Vv, Vw are adjusted by a conversion factor proportional to the amplitude of the triangular wave, and the triangular wave comparison is performed using the adjusted three-phase voltage command values Vu, Vv, Vw. Thereby, Hi-Low drive signals Su, Sv, and Sw are generated.

逆变器20根据从驱动信号生成部36输出的驱动信号Su、Sv、Sw使内部的开关元件导通、截止,将来自直流电源部18的直流电转换为基于驱动信号Su、Sv、Sw的交流电压并输出。由此,相位各错开1/3周期(2/3π(rad))的交流的驱动电流Iu、Iv、Iw分别流过PM电机10的电枢绕组。从而,PM电机10以与转矩指令值T*相应的转矩进行旋转动作。The inverter 20 turns on and off internal switching elements according to the drive signals Su, Sv, and Sw output from the drive signal generation unit 36, and converts the DC power from the DC power supply unit 18 into AC based on the drive signals Su, Sv, and Sw. voltage and output. As a result, alternating current drive currents Iu, Iv, and Iw whose phases are shifted by 1/3 cycle (2/3π(rad)) respectively flow through the armature windings of the PM motor 10 . Therefore, the PM motor 10 rotates with the torque corresponding to the torque command value T * .

接下来,说明作为本发明的电机控制装置100和电机控制方法的特征部分的模式转移部80的动作。在此,图4是从正弦波控制模式向矩形波图案控制模式切换时的动作流程图。另外,图5是从矩形波控制模式向正弦波控制模式切换时的动作流程图。Next, the operation of the mode transition unit 80 which is a characteristic part of the motor control device 100 and the motor control method of the present invention will be described. Here, FIG. 4 is an operation flowchart when switching from the sine wave control mode to the rectangular wave pattern control mode. In addition, FIG. 5 is an operation flowchart at the time of switching from the rectangular wave control mode to the sine wave control mode.

首先,说明作为本发明的电机控制装置100和电机控制方法的第1方式的从矩形波控制模式向正弦波控制模式切换时的动作。首先,在正弦波控制模式中,正弦波控制部40生成基于转矩指令值T*的d轴电压指令值Vd、q轴电压指令值Vq,基于该d轴电压指令值Vd、q轴电压指令值Vq生成驱动信号Su、Sv、Sw。此时的驱动信号Su、Sv、Sw在正弦波控制部40能进行过调制控制或弱磁通控制的情况下,成为正弦波图案或者过调制图案。另外,在正弦波控制部40不具备过调制控制功能或弱磁通控制功能的情况下成为正弦波图案。然后,PM电机10由这些正弦波图案或者过调制图案的驱动信号Su、Sv、Sw进行动作控制(步骤S102)。First, the operation at the time of switching from the rectangular wave control mode to the sine wave control mode as the first aspect of the motor control device 100 and the motor control method of the present invention will be described. First, in the sine wave control mode, the sine wave control unit 40 generates the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the torque command value T * , and generates the d-axis voltage command value Vd and the q-axis voltage command based on the d-axis voltage command value Vd and the q-axis voltage command. The value Vq generates the drive signals Su, Sv, Sw. The drive signals Su, Sv, and Sw at this time have a sine wave pattern or an overmodulation pattern when the sine wave control unit 40 can perform overmodulation control or flux weakening control. In addition, when the sine wave control part 40 does not have an overmodulation control function or a magnetic flux weakening control function, it becomes a sine wave pattern. Then, the operation of the PM motor 10 is controlled by the drive signals Su, Sv, and Sw of the sine wave pattern or the overmodulation pattern (step S102 ).

另外,此时,正弦波控制部40的极坐标转换部418如上所述对加上电流控制部410的电流比例控制成分之前的d轴电压指令值Vd”、q轴电压指令值Vq”进行极坐标转换来算出电压相位θv和电压指令值|Va|。然后,模式转移部80分别取得该电压相位θv和电压指令值|Va|(步骤S104),将其设为初始电压相位θv1和转移电压指令值|Va’|的初始值(步骤S105)。此外,电压相位θv和电压指令值|Va|会随时变动,与此相伴地,初始电压相位θv1、转移电压指令值|Va’|的初始值也变化。此外,如上所述由于初始电压相位θv1和转移电压指令值|Va’|的初始值是根据不包含比例控制成分的d轴电压指令值Vd”、q轴电压指令值Vq”求出的,所以短期性变动少,能使后述的转移期间中的输出稳定化。In addition, at this time, the polar coordinate conversion unit 418 of the sine wave control unit 40 polarizes the d-axis voltage command value Vd" and the q-axis voltage command value Vq" before adding the current proportional control component of the current control unit 410 as described above. The coordinates are converted to calculate the voltage phase θv and the voltage command value |Va|. Then, the mode transition unit 80 obtains the voltage phase θv and the voltage command value |Va| respectively (step S104), and sets them as initial values of the initial voltage phase θv1 and the transition voltage command value |Va'| (step S105). In addition, the voltage phase θv and the voltage command value |Va| fluctuate from time to time, and the initial values of the initial voltage phase θv1 and the transition voltage command value |Va'| also change along with this. Further, as described above, since the initial values of the initial voltage phase θv1 and the transition voltage command value |Va'| are obtained from the d-axis voltage command value Vd" and q-axis voltage command value Vq" that do not include the proportional control component, the The short-term fluctuation is small, and the output during the transition period described later can be stabilized.

接下来,在由于来自外部的转矩指令值T*增大等致使PM电机10的运转状况(转矩、转速)超过切换值(切换线C)而成为了矩形波控制区域B的情况下(步骤S106:“是”),切换部24立即将d轴电压指令值Vd、q轴电压指令值Vq的生成部从正弦波控制部40切换为矩形波控制部50(步骤S108)。此外,在电机控制装置100具备后述的第2方式的情况下,控制部切换为矩形波控制部50,从而进行后述的步骤S203、S204,矩形波控制部50所输出的d轴电压指令值Vd、q轴电压指令值Vq作为d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1输出到正弦波控制部40,并且基于d轴反馈电流值Id、q轴反馈电流值Iq算出转移数据Ifb。Next, when the operating state (torque, rotation speed) of the PM motor 10 exceeds the switching value (switching line C) due to an increase in the torque command value T * from the outside, etc., and the rectangular wave control region B is established ( Step S106: YES), the switching unit 24 immediately switches the generators of the d-axis voltage command value Vd and the q-axis voltage command value Vq from the sine wave control unit 40 to the rectangular wave control unit 50 (step S108). In addition, when the motor control device 100 includes the second aspect to be described later, the control unit switches to the rectangular wave control unit 50, and steps S203 and S204 to be described later are performed, and the d-axis voltage command output from the rectangular wave control unit 50 is performed. The values Vd and the q-axis voltage command value Vq are output to the sine wave control unit 40 as the initial value Vd1 of the d-axis voltage command value and the initial value Vq1 of the q-axis voltage command value, and based on the d-axis feedback current value Id, the q-axis feedback current The value Iq calculates the transition data Ifb.

另外,此时,模式转移部80将初始电压相位θv1输出到矩形波控制部50的电压相位设定部502,并且将转移电压指令值|Va’|的初始值(=|Va|)输出到同步控制部520(步骤S110)。In addition, at this time, the mode transition unit 80 outputs the initial voltage phase θv1 to the voltage phase setting unit 502 of the rectangular wave control unit 50, and outputs the initial value (=|Va|) of the transition voltage command value |Va'| to The synchronization control unit 520 (step S110).

接下来,模式转移部80从同步控制部520取得使得驱动信号Su、Sv、Sw成为1个脉冲的矩形波图案那样的矩形波形成电压值|Va1|(步骤S112)。Next, the mode transition unit 80 acquires a rectangular wave forming voltage value |Va1| such as a rectangular wave pattern in which the drive signals Su, Sv, and Sw are one pulse from the synchronization control unit 520 (step S112).

接下来,模式转移部80例如基于预先设定的规定的时间常数使转移电压指令值|Va’|从初始值(=|Va|)连续地增大到矩形波形成电压值|Va1|并输出到同步控制部520(步骤S114~步骤S116)。Next, the mode transition unit 80 continuously increases the transition voltage command value |Va'| from the initial value (=|Va|) to the rectangular wave forming voltage value |Va1| based on, for example, a predetermined time constant set in advance, and outputs the output to the synchronization control unit 520 (step S114 to step S116).

此外,同步控制部520在从模式转移部80输入有转移电压指令值|Va’|的情况下,与转矩指令值T*无关地将该转移电压指令值|Va’|输出到电压指令值生成部516和切换部24。不过,初始电压相位θv1仅在向矩形波控制部50进行控制部切换时输出,之后成为与转矩指令值T*相应的电压相位θv。因而,步骤S114~步骤S116的转移期间内的d轴电压指令值Vd、q轴电压指令值Vq是基于电压相位θv和转移电压指令值|Va’|来生成。此外,转移电压指令值|Va’|的初始值是形成在正弦波控制部40中所使用的正弦波图案(或过调制图案)的电压指令值|Va|,另外,作为转移电压指令值|Va’|的最终值的矩形波形成电压值|Va1|是形成矩形波图案的电压指令值,因此在该转移期间中,是一边进行基于电压相位θv的转矩控制,驱动信号Su、Sv、Sw一边从正弦波图案或者过调制图案向矩形波图案连续地变化。In addition, when the transition voltage command value |Va'| is input from the mode transition unit 80, the synchronization control unit 520 outputs the transition voltage command value |Va'| to the voltage command value regardless of the torque command value T * The generating unit 516 and the switching unit 24 . However, the initial voltage phase θv1 is output only when the control unit is switched to the rectangular wave control unit 50 , and thereafter becomes the voltage phase θv corresponding to the torque command value T * . Therefore, the d-axis voltage command value Vd and the q-axis voltage command value Vq in the transition period from steps S114 to S116 are generated based on the voltage phase θv and the transition voltage command value |Va'|. In addition, the initial value of transition voltage command value |Va'| is the voltage command value |Va| forming the sine wave pattern (or overmodulation pattern) used in the sine wave control unit 40 , and is the transition voltage command value| The square wave forming voltage value |Va1| of the final value of Va'| is a voltage command value forming a square wave pattern. Therefore, in this transition period, torque control based on the voltage phase θv is performed, and the drive signals Su, Sv, Sw is continuously changed from a sine wave pattern or an overmodulation pattern to a rectangular wave pattern.

然后,在转移电压指令值|Va’|成为了矩形波形成电压值|Va1|以上的情况下(步骤S116:“是”),模式转移部80停止转移电压指令值|Va’|的输出,完全转移至由矩形波控制部50进行的矩形波控制模式(步骤S118)。由此,矩形波控制部50根据与转矩指令值T*相应的电压相位θv和矩形波形成电压值|Va1|,生成d轴电压指令值Vd、q轴电压指令值Vq,将其输出到控制信号生成部30侧。从而,PM电机10由矩形波图案的驱动信号Su、Sv、Sw进行动作控制。Then, when the transition voltage command value |Va'| is equal to or greater than the rectangular wave forming voltage value |Va1| (step S116: YES), the mode transition unit 80 stops the output of the transition voltage command value |Va'|, Completely shifts to the rectangular wave control mode by the rectangular wave control unit 50 (step S118). Accordingly, the rectangular wave control unit 50 generates the d-axis voltage command value Vd and the q-axis voltage command value Vq from the voltage phase θv corresponding to the torque command value T * and the rectangular wave forming voltage value |Va1|, and outputs them to The control signal generation unit 30 side. Accordingly, the operation of the PM motor 10 is controlled by the drive signals Su, Sv, and Sw of the rectangular wave pattern.

这样,在本发明的电机控制装置100和电机控制方法中,在从正弦波控制模式向矩形波控制模式切换时,一边进行基于电压相位θv的转矩控制,一边使驱动信号Su、Sv、Sw从正弦波图案(或者过调制图案)连续地变化为矩形波图案。因此,能进行转矩变动少的顺畅的控制模式的切换。As described above, in the motor control device 100 and the motor control method of the present invention, when switching from the sine wave control mode to the rectangular wave control mode, torque control based on the voltage phase θv is performed while the drive signals Su, Sv, and Sw are controlled. Continuously change from a sine wave pattern (or overmodulation pattern) to a square wave pattern. Therefore, it is possible to perform smooth switching of control modes with little torque fluctuation.

接下来,说明作为本发明的电机控制装置100和电机控制方法的第2方式的从矩形波控制模式向正弦波控制模式切换时的动作。首先,在矩形波控制模式中,矩形波控制部50生成基于转矩指令值T*的d轴电压指令值Vd、q轴电压指令值Vq,基于该d轴电压指令值Vd、q轴电压指令值Vq生成驱动信号Su、Sv、Sw。此时的驱动信号Su、Sv、Sw如上所述基本上为1个脉冲的矩形波图案。然后,PM电机10由该矩形波图案的驱动信号Su、Sv、Sw进行动作控制(步骤S202)。Next, the operation at the time of switching from the rectangular wave control mode to the sine wave control mode as the second aspect of the motor control device 100 and the motor control method of the present invention will be described. First, in the rectangular wave control mode, the rectangular wave control unit 50 generates the d-axis voltage command value Vd and the q-axis voltage command value Vq based on the torque command value T * , and generates the d-axis voltage command value Vd and the q-axis voltage command based on the d-axis voltage command value Vd and the q-axis voltage command. The value Vq generates the drive signals Su, Sv, Sw. The drive signals Su, Sv, and Sw at this time are basically a one-pulse rectangular wave pattern as described above. Then, the operation of the PM motor 10 is controlled by the drive signals Su, Sv, and Sw of the rectangular wave pattern (step S202).

在通过该矩形波控制部50进行控制时,矩形波控制部50输出的d轴电压指令值Vd、q轴电压指令值Vq作为d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1直接或者经由模式转移部80输出到正弦波控制部40的电压指令值生成部416(步骤S203)。然后,所输入的d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1被分别减去非干扰控制部414的d轴、q轴之间的干扰成分(d轴电压指令值Vd’、q轴电压指令值Vq’)后,输入到电流积分控制部410a而成为电流控制部410的积分值。不过,在矩形波控制模式时,该电流控制部410的积分值等不参与PM电机10的控制。此外,该初始值Vd1、Vq1根据矩形波控制部50所输出的d轴电压指令值Vd、q轴电压指令值Vq的变动而随时变化。When controlled by the rectangular wave control unit 50, the d-axis voltage command value Vd and the q-axis voltage command value Vq output by the rectangular wave control unit 50 are used as the initial value Vd1 of the d-axis voltage command value and the initial value of the q-axis voltage command value. The value Vq1 is output to the voltage command value generation unit 416 of the sine wave control unit 40 directly or via the mode transition unit 80 (step S203 ). Then, the input initial value Vd1 of the d-axis voltage command value and the initial value Vq1 of the q-axis voltage command value are respectively subtracted from the interference components between the d-axis and q-axis of the non-interference control unit 414 (the d-axis voltage command value After Vd' and the q-axis voltage command value Vq'), they are input to the current integration control unit 410a and become the integration value of the current control unit 410 . However, in the rectangular wave control mode, the integral value of the current control unit 410 and the like do not participate in the control of the PM motor 10 . In addition, the initial values Vd1 and Vq1 change from time to time in accordance with fluctuations in the d-axis voltage command value Vd and the q-axis voltage command value Vq output from the rectangular wave control unit 50 .

另外,此时,模式转移部80取得来自3相/dq转换部22的d轴反馈电流值Id、q轴反馈电流值Iq。然后,算出转移数据Ifb,该转移数据Ifb用于算出d轴电流指令值的初始值Id*1、q轴电流指令值的初始值Iq*1(步骤S204)。此外,该转移数据Ifb例如是使用d轴反馈电流值Id、q轴反馈电流值Iq并通过运算求出的电流指令值设定部402内部、电流指令值生成部406内部的积分控制部的积分值等,用于对在刚从矩形波控制部50向正弦波控制部40切换后电流指令值设定部402、电流指令值生成部406无法取得的数据进行补充。此外,在后述的转移期间内,也同样地进行该转移数据Ifb的取得。In addition, at this time, the mode transition unit 80 acquires the d-axis feedback current value Id and the q-axis feedback current value Iq from the three-phase/dq conversion unit 22 . Next, transition data Ifb for calculating the initial value Id * 1 of the d-axis current command value and the initial value Iq * 1 of the q-axis current command value is calculated (step S204). Note that the transition data Ifb is, for example, the integral of the integral control unit in the current command value setting unit 402 and the current command value generating unit 406 , which are obtained by calculation using the d-axis feedback current value Id and the q-axis feedback current value Iq. The value and the like are used to supplement data that cannot be acquired by the current command value setting unit 402 and the current command value generating unit 406 immediately after switching from the rectangular wave control unit 50 to the sine wave control unit 40 . In addition, the transfer data Ifb is acquired in the same manner during the transfer period to be described later.

接下来,在由于来自外部的转矩指令值T*减少等致使PM电机10的运转状况(转矩、转速)超过切换值(切换线C)而成为了正弦波控制区域A的情况下(步骤S206:“是”),模式转移部80取得此时同步控制部520输出的电压指令值|Va|。然后,将该电压指令值|Va|设为转移电压指令值|Va’|的初始值(步骤S208)。另外,模式转移部80取得使得驱动信号Su、Sv、Sw成为正弦波图案(或过调制图案)那样的正弦波模式转移电压值|Va2|(步骤S210)。此外,优选正弦波模式转移电压值|Va2|使用例如正弦波控制模式下的电压指令值|Va|的上限值(电流控制部410的限制器部的限制器值)等预先设定的固定值。Next, when the operating state (torque, rotation speed) of the PM motor 10 exceeds the switching value (switching line C) due to a decrease in the torque command value T * from the outside, etc., and the sine wave control region A is established (step S206: YES), the mode transition unit 80 acquires the voltage command value |Va| output by the synchronization control unit 520 at this time. Then, the voltage command value |Va| is set as the initial value of the transition voltage command value |Va'| (step S208). In addition, the mode transition unit 80 acquires the sine wave mode transition voltage value |Va2| such that the drive signals Su, Sv, and Sw have a sine wave pattern (or an overmodulation pattern) (step S210). In addition, it is preferable to use a predetermined fixed value such as the upper limit value of the voltage command value |Va| in the sine wave control mode (the limiter value of the limiter unit of the current control unit 410 ) and the like for the sine wave mode transition voltage value |Va2| value.

接下来,模式转移部80例如基于预先设定的规定的时间常数使转移电压指令值|Va’|从初始值(=|Va|)连续地减少到正弦波模式转移电压值|Va2|并输出到同步控制部520(步骤S212~步骤S216)。此外,在该转移期间中,矩形波控制部50所输出的初始值Vd1、Vq1也继续输出到正弦波控制部40(步骤S214),另外,转移数据Ifb随时被更新(步骤S215)。Next, the mode transition unit 80 continuously reduces the transition voltage command value |Va'| from the initial value (=|Va|) to the sine wave mode transition voltage value |Va2| based on, for example, a predetermined time constant set in advance, and outputs the output to the synchronization control unit 520 (steps S212 to S216). During this transition period, the initial values Vd1 and Vq1 output by the rectangular wave control unit 50 are continuously output to the sine wave control unit 40 (step S214 ), and the transition data Ifb is updated at any time (step S215 ).

此外,同步控制部520在与上述同样地从模式转移部80输入有转移电压指令值|Va’|的情况下,与转矩指令值T*无关地将该转移电压指令值|Va’|输出到电压指令值生成部516和切换部24。因而,步骤S212~步骤S216的转移期间内的d轴电压指令值Vd、q轴电压指令值Vq与上述同样地是基于电压相位θv和转移电压指令值|Va’|来生成。并且,转移电压指令值|Va’|的初始值(=|Va|)是矩形波控制时的电压指令值,另外,作为转移电压指令值|Va’|的最终值的正弦波模式转移电压值|Va2|是形成正弦波图案或者过调制图案的电压指令值,因此在该转移期间中,是一边进行基于电压相位θv的转矩控制,驱动信号Su、Sv、Sw一边从矩形波图案向过调制图案或正弦波图案连续地变化。另外,在该转移期间中转矩指令值T*或电源电压Vdc、电角速度ω发生了变化的情况下,这些变化也随时被反映到转矩控制和转移数据Ifb中。In addition, the synchronization control unit 520 outputs the transition voltage command value |Va'| regardless of the torque command value T * when the transition voltage command value |Va'| is input from the mode transition unit 80 in the same manner as described above. to the voltage command value generating unit 516 and the switching unit 24 . Therefore, the d-axis voltage command value Vd and the q-axis voltage command value Vq in the transition period from steps S212 to S216 are generated based on the voltage phase θv and the transition voltage command value |Va'| as described above. The initial value (=|Va|) of the transition voltage command value |Va'| is the voltage command value during the rectangular wave control, and the sine wave mode transition voltage value is the final value of the transition voltage command value |Va'| |Va2| is a voltage command value that forms a sine wave pattern or an overmodulation pattern. Therefore, in this transition period, torque control based on the voltage phase θv is performed, and the drive signals Su, Sv, and Sw change from the rectangular wave pattern to the overmodulation pattern. The modulation pattern or sine wave pattern changes continuously. In addition, when the torque command value T * , the power supply voltage Vdc, or the electrical angular velocity ω changes during the transition period, these changes are also reflected in the torque control and transition data Ifb at any time.

然后,在转移电压指令值|Va’|成为了正弦波模式转移电压值|Va2|以下的情况下(步骤S216:“是”),模式转移部80停止转移电压指令值|Va’|的输出,并且切换部24将d轴电压指令值Vd、q轴电压指令值Vq的生成部从矩形波控制部50切换为正弦波控制部40(步骤S218)。另外,此时,模式转移部80将转移数据Ifb输出到正弦波控制部40的电流指令值设定部402、电流指令值生成部406(步骤S220)。由此,电流指令值设定部402、电流指令值生成部406基于转移数据Ifb算出d轴电流指令值的初始值Id*1、q轴电流指令值的初始值Iq*1,将其输出到电压指令值生成部416。Then, when the transition voltage command value |Va'| is equal to or less than the sine wave mode transition voltage value |Va2| (step S216: YES), the mode transition unit 80 stops outputting the transition voltage command value |Va'| , and the switching unit 24 switches the generation unit of the d-axis voltage command value Vd and the q-axis voltage command value Vq from the rectangular wave control unit 50 to the sine wave control unit 40 (step S218 ). In addition, at this time, the mode transition unit 80 outputs the transition data Ifb to the current command value setting unit 402 and the current command value generating unit 406 of the sine wave control unit 40 (step S220 ). Accordingly, the current command value setting unit 402 and the current command value generating unit 406 calculate the initial value Id * 1 of the d-axis current command value and the initial value Iq * 1 of the q-axis current command value based on the transition data Ifb, and output them to Voltage command value generation unit 416 .

另外,d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1输入到电压指令值生成部416,成为d轴、q轴的电流积分控制的积分值,因此在刚向正弦波控制部40切换后,基于这些d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1、d轴电流指令值的初始值Id*1、q轴电流指令值的初始值Iq*1生成切换时d轴电压指令值Vd、切换时q轴电压指令值Vq,将其输出到控制信号生成部30侧(步骤S222)。由此,在刚向正弦波控制部40切换后,通过基于切换时d轴电压指令值Vd、切换时q轴电压指令值Vq的驱动信号Su、Sv、Sw进行PM电机10的控制。In addition, the initial value Vd1 of the d-axis voltage command value and the initial value Vq1 of the q-axis voltage command value are input to the voltage command value generation unit 416 and become the integral values of the current integration control of the d-axis and q-axis. After the control unit 40 is switched, based on the initial value Vd1 of the d-axis voltage command value, the initial value Vq1 of the q-axis voltage command value, the initial value Id * 1 of the d-axis current command value, and the initial value Iq * of the q-axis current command value 1. Generate the d-axis voltage command value Vd at the time of switching and the q-axis voltage command value Vq at the time of switching, and output them to the control signal generation unit 30 side (step S222). Accordingly, the PM motor 10 is controlled by the drive signals Su, Sv, and Sw based on the d-axis voltage command value Vd at the time of switching and the q-axis voltage command value Vq at the time of switching immediately after switching to the sine wave control unit 40 .

其后,电机控制装置100完全转移至由正弦波控制部40进行的正弦波控制模式(步骤S224)。由此,正弦波控制部40根据与转矩指令值T*相应的d轴电流指令值Id*、q轴电流指令值Iq*生成d轴电压指令值Vd、q轴电压指令值Vq,将其输出到控制信号生成部30侧。从而,PM电机10由正弦波图案或者过调制图案的驱动信号Su、Sv、Sw进行动作控制。After that, the motor control device 100 completely shifts to the sine wave control mode by the sine wave control unit 40 (step S224). Thereby, the sine wave control unit 40 generates the d-axis voltage command value Vd and the q-axis voltage command value Vq from the d-axis current command value Id * and the q-axis current command value Iq * corresponding to the torque command value T * , and uses them as It is output to the control signal generation unit 30 side. Therefore, the operation of the PM motor 10 is controlled by the drive signals Su, Sv, and Sw of the sine wave pattern or the overmodulation pattern.

这样,在本发明的电机控制装置100和电机控制方法中,在从矩形波控制模式向正弦波控制模式切换时,一边进行基于电压相位θv的转矩控制,一边使驱动信号Su、Sv、Sw从矩形波图案连续地变化为正弦波图案(或过调制图案),在成为了正弦波图案(或过调制图案)时,进行向正弦波控制模式的切换。另外,在刚向正弦波控制模式切换后,基于模式转移时的最后的值(d轴电压指令值的初始值Vd1、q轴电压指令值的初始值Vq1、d轴电流指令值的初始值Id*1、q轴电流指令值的初始值Iq*1)生成切换时d轴电压指令值Vd、q轴电压指令值Vq,进行PM电机10的动作控制。因此,能进行在控制部切换前后控制值是连续的且转矩变动少的顺畅的控制模式的切换。In this way, in the motor control device 100 and the motor control method of the present invention, when switching from the rectangular wave control mode to the sine wave control mode, torque control based on the voltage phase θv is performed while the drive signals Su, Sv, and Sw are controlled. The square wave pattern is continuously changed to the sine wave pattern (or overmodulation pattern), and when it becomes the sine wave pattern (or overmodulation pattern), switching to the sine wave control mode is performed. Also, immediately after switching to the sine wave control mode, based on the last values at the time of mode transition (initial value Vd1 of the d-axis voltage command value, initial value Vq1 of the q-axis voltage command value, and initial value Id of the d-axis current command value * 1. Initial value Iq of the q-axis current command value * 1) The d-axis voltage command value Vd and the q-axis voltage command value Vq at the time of switching are generated, and the operation control of the PM motor 10 is performed. Therefore, it is possible to perform a smooth switching of the control mode in which the control value is continuous and the torque fluctuation is small before and after the switching of the control unit.

另外,在本发明的电机控制装置100和电机控制方法中,在模式切换时的转移期间中基于转移电压指令值|Va’|由矩形波控制部50进行控制。因而,在转移期间中PM电机10的运转状况发生了变化而需要再次切换的情况下,也能直接转移至再次切换动作。特别是在具备第1方式和第2方式这两种方式的电机控制装置100中,例如在从正弦波控制模式向矩形波控制模式切换的切换动作中发生了向正弦波控制模式的再次切换的情况下,能直接转移至步骤S208~步骤S216,在经过了由矩形波控制部50进行的转移动作后,通过步骤S218~步骤S224进行向正弦波控制模式的切换。另外,在从矩形波控制模式向正弦波控制模式切换的切换动作中发生了向矩形波控制模式的再次切换的情况下,能在直接转移至步骤S110~步骤S116之后,通过矩形波控制部50继续进行矩形波控制模式下的控制。这样,在本发明的电机控制装置100和电机控制方法中,除了在转移期间中能应对控制模式的再次切换以外,在转移期间中也能通过基于转矩指令值T*的电压相位θv进行转矩控制,因此能进行响应性优异的动作控制。In addition, in the motor control device 100 and the motor control method of the present invention, the rectangular wave control unit 50 performs control based on the transition voltage command value |Va'| in the transition period at the time of mode switching. Therefore, even when the operating condition of the PM motor 10 has changed during the transition period and it is necessary to switch again, it is possible to directly transition to the re-switching operation. In particular, in the motor control device 100 having both the first and second modes, for example, during the switching operation of switching from the sine wave control mode to the rectangular wave control mode, switching to the sine wave control mode occurs again. In this case, it is possible to directly transfer to step S208 to step S216, and after the transfer operation by the rectangular wave control unit 50, the switching to the sine wave control mode is performed in step S218 to step S224. In addition, when switching to the rectangular wave control mode occurs again during the switching operation from the rectangular wave control mode to the sine wave control mode, it is possible to directly transfer to steps S110 to S116, and then the rectangular wave control unit 50 Continue to control in the rectangular wave control mode. In this way, in the motor control device 100 and the motor control method of the present invention, in addition to being able to cope with re-switching of the control mode during the transition period, the rotation can also be performed by the voltage phase θv based on the torque command value T * during the transition period. Because of torque control, motion control with excellent responsiveness can be performed.

此外,在电机控制装置100的正弦波控制部40支持过调制控制或弱磁通控制并且在过调制图案的控制区域内能输出与矩形波控制部50同等的矩形波形成电压值|Va1|的电压的情况下,即在正弦波模式转移电压值|Va2|与矩形波形成电压值|Va1|大致相等的情况下,也可以省略上述的步骤S208~步骤S216的控制。在这种情况下,在刚从矩形波控制模式向正弦波控制模式切换后,生成切换时d轴电压指令值Vd、切换时q轴电压指令值Vq,能进行转矩变动少的顺畅的控制模式的切换。In addition, the sine wave control unit 40 of the motor control device 100 supports overmodulation control or flux weakening control and can output a rectangular wave forming voltage value |Va1| equivalent to that of the rectangular wave control unit 50 in the control region of the overmodulation pattern. In the case of voltage, that is, when the sine wave mode transition voltage value |Va2| is substantially equal to the rectangular wave forming voltage value |Va1|, the above-described control of steps S208 to S216 may be omitted. In this case, immediately after switching from the rectangular wave control mode to the sine wave control mode, the d-axis voltage command value Vd at the time of switching and the q-axis voltage command value Vq at the time of switching are generated, and smooth control with little torque fluctuation can be performed. mode switching.

接下来,关于本发明的电机控制装置100和电机控制方法的三角波进行说明。本发明所使用的三角波如上所述是如下三角波:三角波的下降沿的中央位置与三相电压指令值Vu、Vv、Vw的上升沿的零点位置交叉,而且其频率设为三相电压指令值Vu、Vv、Vw的频率的3的奇数整数倍。首先,在三角波的频率不是三相电压指令值Vu、Vv、Vw的频率的3的整数倍的情况下,驱动信号Su、Sv、Sw的波形在U相、V相、W相中分别成为不同的波形,无法顺利地控制PM电机10。因而,三角波的频率设为三相电压指令值Vu、Vv、Vw的频率的3的整数倍。Next, the triangular wave of the motor control device 100 and the motor control method of the present invention will be described. As described above, the triangular wave used in the present invention is a triangular wave in which the center position of the falling edge of the triangular wave crosses the zero point position of the rising edge of the three-phase voltage command values Vu, Vv, and Vw, and its frequency is set to the three-phase voltage command value Vu Odd integer multiples of 3 for the frequencies of , Vv, and Vw. First, when the frequency of the triangular wave is not an integral multiple of 3 of the frequencies of the three-phase voltage command values Vu, Vv, and Vw, the waveforms of the drive signals Su, Sv, and Sw are different for the U-phase, V-phase, and W-phase, respectively. waveform, the PM motor 10 cannot be controlled smoothly. Therefore, the frequency of the triangular wave is an integer multiple of 3 of the frequency of the three-phase voltage command values Vu, Vv, and Vw.

接下来,说明设为3的奇数整数倍的原因。在此,在图6的(a1)中示出与将三角波的频率设为三相电压指令值Vu(Vv、Vw)的6倍(3的偶数整数倍)时的三相电压指令值Vu、Vv进行三角波比较的示意图。另外,在图6的(a2)、(a3)中示出通过该三角波比较而生成的驱动信号Su、Sv。而且,在图6的(a4)中示出此时的U相-V相之间的输出线间电压Vuv。另外,在图6的(b1)中示出与将三角波的频率设为三相电压指令值Vu(Vv、Vw)的9倍(3的奇数整数倍)时的三相电压指令值Vu、Vv进行三角波比较的示意图。另外,在图6的(b2)、(b3)中示出通过该三角波比较而生成的驱动信号Su、Sv。而且,在图6的(b4)中示出此时的U相-V相之间的输出线间电压Vuv。Next, the reason for making it an odd integer multiple of 3 will be described. Here, FIG. 6( a1 ) shows the three-phase voltage command value Vu, the three-phase voltage command value Vu, the three-phase voltage command value Vu, the three-phase voltage command value Vu when the frequency of the triangular wave is 6 times the three-phase voltage command value Vu (Vv, Vw) (even integer multiple of 3), and the Schematic diagram of Vv for triangular wave comparison. In addition, the drive signals Su and Sv generated by the triangular wave comparison are shown in (a2) and (a3) of FIG. 6 . Furthermore, the output line-to-line voltage Vuv between the U-phase and the V-phase at this time is shown in (a4) of FIG. 6 . In addition, FIG. 6( b1 ) shows the three-phase voltage command values Vu and Vv when the frequency of the triangular wave is nine times (an odd integer multiple of 3) the three-phase voltage command value Vu (Vv, Vw) Schematic diagram of performing a triangle wave comparison. In addition, the drive signals Su and Sv generated by the triangular wave comparison are shown in (b2) and (b3) of FIG. 6 . Furthermore, the output line-to-line voltage Vuv between the U-phase and the V-phase at this time is shown in (b4) of FIG. 6 .

首先,在将三角波的频率设为三相电压指令值Vu、Vv、Vw的3的偶数整数倍的情况下,在图6的(a1)的用单点划线示出的部位,三相电压指令值Vu的零点位置和三角波的中央位置在双方均为下降沿的区域内交叉。在这种情况下,根据三相电压指令值Vu、Vv、Vw的振幅的不同,三相电压指令值Vu、Vv、Vw与三角波的斜率有可能部分地近似(两者重叠)。并且在这种情况下,在驱动信号Su、Sv、Sw从正弦波图案(过调制图案)变化为矩形波图案时有可能发生不连续或急剧的变化,这会成为转矩变动的原因。First, when the frequency of the triangular wave is set to an even integer multiple of 3 of the three-phase voltage command values Vu, Vv, and Vw, the three-phase voltage at the portion shown by the one-dot chain line in (a1) of FIG. The zero point position of the command value Vu and the center position of the triangular wave cross in a region where both are falling edges. In this case, depending on the amplitude of the three-phase voltage command values Vu, Vv, Vw, the three-phase voltage command values Vu, Vv, Vw and the slope of the triangular wave may be partially approximated (they overlap). In this case, when the drive signals Su, Sv, and Sw change from a sine wave pattern (overmodulation pattern) to a rectangular wave pattern, discontinuous or abrupt changes may occur, which may cause torque fluctuations.

然而,在将三角波的频率设为三相电压指令值Vu、Vv、Vw的3的奇数整数倍的情况下,如图6的(b1)的用单点划线示出的那样,三相电压指令值Vu的下降沿区域内的零点位置交叉在三角波的上升沿的中央位置处。即,在3的奇数整数倍的情况下,基本上三相电压指令值Vu、Vv、Vw的下降沿区域的零点位置交叉在三角波的上升沿区域内,三相电压指令值Vu、Vv、Vw的上升沿区域内的零点位置交叉在三角波的下降沿区域内。因此,能良好地维持驱动信号Su、Sv、Sw的连续性,能生成稳定的驱动信号Su、Sv、Sw。However, when the frequency of the triangular wave is an odd integer multiple of 3 of the three-phase voltage command values Vu, Vv, and Vw, as shown by the one-dot chain line in FIG. 6( b1 ), the three-phase voltage The zero point position within the falling edge region of the command value Vu crosses at the center position of the rising edge of the triangular wave. That is, in the case of an odd integer multiple of 3, basically, the zero-point positions of the falling edge regions of the three-phase voltage command values Vu, Vv, and Vw cross the rising edge region of the triangular wave, and the three-phase voltage command values Vu, Vv, Vw The zero position in the rising edge region of , crosses in the falling edge region of the triangular wave. Therefore, the continuity of the drive signals Su, Sv, and Sw can be well maintained, and the stable drive signals Su, Sv, and Sw can be generated.

另外,在将三角波的频率设为三相电压指令值Vu、Vv、Vw的3的偶数整数倍的情况下,例如在图6的(a4)中,输出线间电压Vuv的波形成为上下不对称。在像这样无法确保输出线间电压的波形的对称性的情况下,有可能在驱动电流Iu、Iv、Iw中产生偏移成分或变形,作为PM电机10的控制信号是不理想的。In addition, when the frequency of the triangular wave is an even integer multiple of 3 of the three-phase voltage command values Vu, Vv, and Vw, for example, in (a4) of FIG. 6 , the waveform of the output line voltage Vuv becomes vertically asymmetrical . If the symmetry of the waveform of the voltage between the output lines cannot be ensured as described above, there is a possibility that an offset component or deformation may occur in the drive currents Iu, Iv, and Iw, which is not ideal as a control signal for the PM motor 10 .

然而,在将三角波的频率设为三相电压指令值Vu、Vv、Vw的3的奇数整数倍的情况下,如图6的(b4)所示,输出线间电压Vuv的波形在上下和左右成为对称。同样地输出线间电压Vvw、Vwu也具备对称性,能进行PM电机10的稳定的控制。However, when the frequency of the triangular wave is an odd integer multiple of 3 of the three-phase voltage command values Vu, Vv, and Vw, as shown in (b4) of FIG. 6 , the waveform of the output line-to-line voltage Vuv is vertical and horizontal become symmetrical. Similarly, the output line-to-line voltages Vvw and Vwu also have symmetry, and the PM motor 10 can be stably controlled.

如上所示,本发明的电机控制装置100和电机控制方法在从正弦波控制模式向矩形波控制模式切换时,将正弦波控制模式时的最后的电压相位θv作为初始电压相位θv1输出到电压相位设定部502,一边进行基于电压相位θv的转矩控制,一边使转移电压指令值|Va’|从正弦波控制模式时的最后的电压指令值|Va|连续地增加到矩形波形成电压值|Va1|。由此,生成的驱动信号Su、Sv、Sw在维持了切换时的连续性的状态下从正弦波图案(或过调制图案)向矩形波图案连续地变化。因此,能进行转矩变动少的顺畅的控制模式的切换。As described above, when the motor control device 100 and the motor control method of the present invention are switched from the sine wave control mode to the rectangular wave control mode, the last voltage phase θv in the sine wave control mode is output to the voltage phase as the initial voltage phase θv1 The setting unit 502 continuously increases the transition voltage command value |Va'| from the last voltage command value |Va| in the sine wave control mode to the rectangular wave forming voltage value while performing torque control based on the voltage phase θv |Va1|. As a result, the generated drive signals Su, Sv, and Sw are continuously changed from a sine wave pattern (or an overmodulation pattern) to a rectangular wave pattern while maintaining the continuity at the time of switching. Therefore, it is possible to perform smooth switching of control modes with little torque fluctuation.

另外,在从矩形波控制模式向正弦波控制模式切换时,在刚切换后生成基于矩形波控制模式时的最后的d轴电压指令值Vd、最后的q轴电压指令值Vq以及最后的d轴反馈电流值Id、最后的q轴反馈电流值Iq的切换时d轴电压指令值Vd、切换时q轴电压指令值Vq,将其输出到控制信号生成部30。由此,生成的驱动信号Su、Sv、Sw被维持切换时的连续性,能进行转矩变动少的顺畅的控制模式的切换。In addition, when switching from the rectangular wave control mode to the sine wave control mode, the last d-axis voltage command value Vd, the last q-axis voltage command value Vq, and the last d-axis voltage in the rectangular wave control mode are generated immediately after switching. The feedback current value Id and the last q-axis feedback current value Iq are output to the control signal generation unit 30 as the switching d-axis voltage command value Vd and the switching q-axis voltage command value Vq. As a result, the generated drive signals Su, Sv, and Sw are maintained in continuity at the time of switching, and a smooth control mode switching with little torque fluctuation can be performed.

而且,在从矩形波控制模式向正弦波控制模式切换时使转移电压指令值|Va’|从矩形波控制模式时的最后的电压指令值|Va|连续地减少到正弦波模式转移电压值|Va2|并输出的构成中,驱动信号Su、Sv、Sw从矩形波图案向正弦波图案(或过调制图案)连续地变化,在向正弦波图案(或过调制图案)的转移完成的时点切换为正弦波控制部40。并且,在刚切换后输出上述的切换时d轴电压指令值Vd、切换时q轴电压指令值Vq,其后,完全转移至正弦波控制模式。由此,在正弦波控制部40不具备过调制控制功能的情况下,也能维持切换时的驱动信号Su、Sv、Sw的连续性,能进行转矩变动少的顺畅的控制模式的切换。Then, when switching from the rectangular wave control mode to the sine wave control mode, the transition voltage command value |Va'| is continuously reduced from the last voltage command value |Va| in the rectangular wave control mode to the sine wave mode transition voltage value| In the configuration in which Va2| is output in parallel, the drive signals Su, Sv, and Sw are continuously changed from the rectangular wave pattern to the sine wave pattern (or overmodulation pattern), and the transition to the sine wave pattern (or overmodulation pattern) is completed at the point of time. Switch to the sine wave control unit 40 . Then, the d-axis voltage command value Vd at the time of switching and the q-axis voltage command value Vq at the time of switching are outputted immediately after the switching, and then completely transition to the sine wave control mode. Thus, even when the sine wave control unit 40 does not have the overmodulation control function, the continuity of the drive signals Su, Sv, and Sw at the time of switching can be maintained, and smooth control mode switching with less torque fluctuation can be performed.

再者,本发明的电机控制装置100和电机控制方法在切换时的转移期间中也通过基于转矩指令值T*的电压相位θv进行转矩控制。由此,在转移期间中转矩指令值T*或电源电压Vdc、电角速度ω发生了变化的情况下,这些变化也被随时反映到转矩控制,能进行转矩变动少的响应性优异的动作控制。另外,转移期间中的控制是矩形波控制部50进行的,因此在转移期间中需要进行控制模式的再次切换的情况下,也能直接转移至再次切换动作。Furthermore, the motor control device 100 and the motor control method of the present invention also perform torque control by the voltage phase θv based on the torque command value T * in the transition period at the time of switching. As a result, when the torque command value T * , the power supply voltage Vdc, or the electrical angular velocity ω changes during the transition period, these changes are also reflected in the torque control at any time, and it is possible to perform a torque control with less torque fluctuation and excellent responsiveness. Action control. In addition, since the control during the transition period is performed by the rectangular wave control unit 50, when it is necessary to switch the control mode again during the transition period, it is possible to directly switch to the re-switching operation.

而且,在本发明的电机控制装置100和电机控制方法中,作为三角波,使用如下三角波:下降沿的中央位置与三相电压指令值Vu、Vv、Vw的上升沿的零点位置交叉,而且频率为三相电压指令值Vu、Vv、Vw的频率的3的奇数整数倍。在该构成中,三相电压指令值Vu、Vv、Vw的下降沿区域的零点位置交叉在三角波的上升沿区域内,三相电压指令值Vu、Vv、Vw的上升沿区域的零点位置交叉在三角波的下降沿区域内。因此,驱动信号Su、Sv、Sw从正弦波图案(过调制图案)向矩形波图案变化时的连续性被良好地维持,能生成稳定的驱动信号Su、Sv、Sw。另外,输出线间电压Vuv、Vvw、Vwu具备对称性,能进行PM电机10的稳定的控制。Furthermore, in the motor control device 100 and the motor control method of the present invention, as the triangular wave, a triangular wave is used in which the center position of the falling edge crosses the zero point position of the rising edge of the three-phase voltage command values Vu, Vv, and Vw, and the frequency is The frequency of the three-phase voltage command values Vu, Vv, and Vw is an odd integer multiple of 3. In this configuration, the zero-point positions of the falling edge regions of the three-phase voltage command values Vu, Vv, and Vw cross the rising edge region of the triangular wave, and the zero-point positions of the rising edge regions of the three-phase voltage command values Vu, Vv, and Vw intersect at the rising edge region of the triangular wave. within the falling edge region of the triangle wave. Therefore, the continuity when the drive signals Su, Sv, and Sw change from the sine wave pattern (overmodulation pattern) to the rectangular wave pattern is well maintained, and the stable drive signals Su, Sv, and Sw can be generated. In addition, the output line-to-line voltages Vuv, Vvw, and Vwu have symmetry, and it is possible to perform stable control of the PM motor 10 .

此外,本例所示的电机控制装置100和电机控制方法是一个例子,控制信号生成部30、正弦波控制部40、矩形波控制部50等各部的构成、动作、各步骤的构成等能在不脱离本发明的宗旨的范围内进行变更来实施。In addition, the motor control device 100 and the motor control method shown in this example are just examples, and the configuration, operation, configuration of each step, etc. of the control signal generation unit 30 , the sine wave control unit 40 , and the rectangular wave control unit 50 can be described in It can be implemented with changes within the scope of not departing from the gist of the present invention.

附图标记说明Description of reference numerals

10:PM电机10: PM motor

12u、12v:驱动电流检测部12u, 12v: drive current detection part

14:角度检测部14: Angle detection part

20:逆变器20: Inverter

22:3相/dq转换部22: 3-phase/dq conversion section

24:切换部24: Switching section

32:dq/3相转换部32: dq/3-phase conversion section

36:驱动信号生成部36: Drive signal generation section

40:正弦波控制部40: Sine wave control unit

50:矩形波控制部50: Rectangular wave control unit

80:模式转移部80: Mode Transfer Department

100:电机控制装置100: Motor control device

θ:电角度θ: electrical angle

θv:电压相位θv: voltage phase

θv1:初始电压相位θv1: initial voltage phase

Id:d轴反馈电流值Id: d-axis feedback current value

Iq:q轴反馈电流值Iq: q-axis feedback current value

Id*:d轴电流指令值Id * : d-axis current command value

Iq*:q轴电流指令值Iq * : q-axis current command value

Iu、Iv、Iw:驱动电流Iu, Iv, Iw: drive current

Ifb:转移数据Ifb: transfer data

|Va|:电压指令值|Va|: Voltage command value

|Va1|:矩形波形成电压值|Va1|: Rectangular wave forming voltage value

|Va2|:正弦波模式转移电压值|Va2|: Sine wave mode transfer voltage value

|Va’|:转移电压指令值|Va’|: Transfer voltage command value

Vd:d轴电压指令值Vd: d-axis voltage command value

Vq:q轴电压指令值Vq: q-axis voltage command value

Vu、Vv、Vw:电压指令值(3相)Vu, Vv, Vw: Voltage command value (3-phase)

T*:转矩指令值T * : Torque command value

Su、Sv、Sw:驱动信号。Su, Sv, Sw: drive signals.

Claims (10)

1. A motor control device has:
an inverter that causes a 3-phase alternating drive current to flow through the PM motor;
a drive current detection unit that obtains a value of the drive current;
an angle detection unit that acquires an electrical angle of the PM motor;
a 3-phase/dq conversion unit that converts the drive current acquired by the drive current detection unit into a d-axis feedback current value and a q-axis feedback current value based on the electrical angle;
a sine wave control unit that sets a d-axis current command value and a q-axis current command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a sine wave control mode;
a rectangular wave control unit that sets a voltage phase and a voltage command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a rectangular wave control mode;
a switching unit that switches generation of the d-axis voltage command value and the q-axis voltage command value between the sinusoidal wave control unit and the rectangular wave control unit;
a dq/3 phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into three-phase voltage command values; and
a drive signal generating unit that generates a drive signal for switching the inverter by comparing the three-phase voltage command value with a triangular wave having a predetermined period,
further comprises a mode shifting unit which operates when the control mode is switched by the switching unit,
the mode shift section
The method includes the steps of obtaining a voltage phase and a voltage command value obtained by polar-coordinate conversion of a d-axis voltage command value and a q-axis voltage command value in a sine wave control mode as initial values of an initial voltage phase and a transition voltage command value, outputting the voltage phase and the voltage command value to the rectangular wave control unit when switching from the sine wave control mode to a rectangular wave control mode, obtaining a rectangular wave forming voltage value in which the drive signal has a rectangular wave pattern, increasing the transition voltage command value continuously from the initial value to the rectangular wave forming voltage value, and outputting the increased rectangular wave forming voltage value to the rectangular wave control unit, and causing the rectangular wave control unit to generate the d-axis voltage command value and the q-axis voltage command value based on the transition voltage command value.
2. A motor control device has:
an inverter that causes a 3-phase alternating drive current to flow through the PM motor;
a drive current detection unit that obtains a value of the drive current;
an angle detection unit that acquires an electrical angle of the PM motor;
a 3-phase/dq conversion unit that converts the drive current acquired by the drive current detection unit into a d-axis feedback current value and a q-axis feedback current value based on the electrical angle;
a sine wave control unit that sets a d-axis current command value and a q-axis current command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a sine wave control mode;
a rectangular wave control unit that sets a voltage phase and a voltage command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a rectangular wave control mode;
a switching unit that switches generation of the d-axis voltage command value and the q-axis voltage command value between the sinusoidal wave control unit and the rectangular wave control unit;
a dq/3 phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into three-phase voltage command values; and
a drive signal generating unit that generates a drive signal for switching the inverter by comparing the three-phase voltage command value with a triangular wave having a predetermined period,
further comprises a mode shifting unit which operates when the control mode is switched by the switching unit,
the mode shift section
In the rectangular wave control mode, the d-axis voltage command value and the q-axis voltage command value outputted from the rectangular wave control unit are outputted to the sine wave control unit as an initial value of the d-axis voltage command value and an initial value of the q-axis voltage command value, and transition data for calculating the initial value of the d-axis current command value and the initial value of the q-axis current command value is calculated based on the d-axis feedback current value and the q-axis feedback current value and outputted to the sine wave control unit,
immediately after switching from the rectangular wave control mode to the sine wave control mode, a switching-time d-axis voltage command value and a switching-time q-axis voltage command value are generated based on the initial value of the d-axis voltage command value, the initial value of the q-axis voltage command value, the initial value of the d-axis current command value, and the initial value of the q-axis current command value, and output to the dq/3 phase conversion unit.
3. The motor control apparatus according to claim 2,
the mode shift section
When switching from the rectangular wave control mode to the sinusoidal wave control mode, the voltage command value output by the rectangular wave control unit is acquired as an initial value of a transition voltage command value, and a sinusoidal wave mode transition voltage value at which the drive signal becomes a sinusoidal wave pattern or an overmodulation pattern is acquired, the transition voltage command value is continuously reduced from the initial value to the sinusoidal wave mode transition voltage value while continuing the rectangular wave control mode and is output to the rectangular wave control unit, the rectangular wave control unit is caused to generate a d-axis voltage command value and a q-axis voltage command value based on the transition voltage command value, and thereafter, the switching unit switches to the control mode by the sinusoidal wave control unit.
4. A motor control device has:
an inverter that causes a 3-phase alternating drive current to flow through the PM motor;
a drive current detection unit that obtains a value of the drive current;
an angle detection unit that acquires an electrical angle of the PM motor;
a 3-phase/dq conversion unit that converts the drive current acquired by the drive current detection unit into a d-axis feedback current value and a q-axis feedback current value based on the electrical angle;
a sine wave control unit that sets a d-axis current command value and a q-axis current command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a sine wave control mode;
a rectangular wave control unit that sets a voltage phase and a voltage command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a rectangular wave control mode;
a switching unit that switches generation of the d-axis voltage command value and the q-axis voltage command value between the sinusoidal wave control unit and the rectangular wave control unit;
a dq/3 phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into three-phase voltage command values; and
a drive signal generating unit that generates a drive signal for switching the inverter by comparing the three-phase voltage command value with a triangular wave having a predetermined period,
further comprises a mode shifting unit which operates when the control mode is switched by the switching unit,
the mode shift section
Acquiring a voltage phase and a voltage command value obtained by polar-coordinate conversion of a d-axis voltage command value and a q-axis voltage command value in a sine wave control mode as initial values of an initial voltage phase and a transition voltage command value, outputting the voltage phase and the voltage command value to the rectangular wave control unit when switching from the sine wave control mode to a rectangular wave control mode, acquiring a rectangular wave forming voltage value in which the drive signal has a rectangular wave pattern, continuously increasing the transition voltage command value from the initial value to the rectangular wave forming voltage value, and outputting the increased transition voltage command value to the rectangular wave control unit, and causing the rectangular wave control unit to generate a d-axis voltage command value and a q-axis voltage command value based on the transition voltage command value,
in the rectangular wave control mode, the d-axis voltage command value and the q-axis voltage command value outputted from the rectangular wave control unit are outputted to the sine wave control unit as an initial value of the d-axis voltage command value and an initial value of the q-axis voltage command value, and transition data for calculating the initial value of the d-axis current command value and the initial value of the q-axis current command value is calculated based on the d-axis feedback current value and the q-axis feedback current value and outputted to the sine wave control unit,
when switching from the rectangular wave control mode to the sinusoidal wave control mode, acquiring a voltage command value output by the rectangular wave control unit as an initial value of a transition voltage command value, and acquiring a sinusoidal wave mode transition voltage value at which the drive signal becomes a sinusoidal wave pattern or an overmodulation pattern, continuously decreasing the transition voltage command value from the initial value to the sinusoidal wave mode transition voltage value while continuing the rectangular wave control mode, and outputting the decreased transition voltage command value to the rectangular wave control unit, causing the rectangular wave control unit to generate a d-axis voltage command value and a q-axis voltage command value based on the transition voltage command value, and thereafter, causing the switching unit to switch to the sinusoidal wave control mode by the sinusoidal wave control unit,
immediately after switching to the sinusoidal wave control mode, a switching-time d-axis voltage command value and a switching-time q-axis voltage command value are generated based on the initial value of the d-axis voltage command value, the initial value of the q-axis voltage command value, the initial value of the d-axis current command value, and the initial value of the q-axis current command value, and are output to the dq/3 phase conversion unit.
5. The motor control apparatus according to any one of claims 1 to 4,
the center position of the falling edge of the triangular wave intersects the zero point position of the rising edge of the three-phase voltage command value,
and maintaining the frequency of the triangular wave as an odd integer multiple of 3 of the frequency of the three-phase voltage command value.
6. A motor control method is a motor control method of a motor control device, the motor control device includes:
an inverter that causes a 3-phase alternating drive current to flow through the PM motor;
a drive current detection unit that obtains a value of the drive current;
an angle detection unit that acquires an electrical angle of the PM motor;
a 3-phase/dq conversion unit that converts the drive current acquired by the drive current detection unit into a d-axis feedback current value and a q-axis feedback current value based on the electrical angle;
a sine wave control unit that sets a d-axis current command value and a q-axis current command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a sine wave control mode;
a rectangular wave control unit that sets a voltage phase and a voltage command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a rectangular wave control mode;
a switching unit that switches generation of the d-axis voltage command value and the q-axis voltage command value between the sinusoidal wave control unit and the rectangular wave control unit;
a dq/3 phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into three-phase voltage command values;
a drive signal generation unit that compares the three-phase voltage command value with a triangular wave having a predetermined period to generate a drive signal for switching the inverter; and
a mode switching unit that operates when the control mode is switched by the switching unit, wherein the motor control method is characterized in that,
the mode shift section performs
A step of obtaining a voltage phase and a voltage command value obtained by polar-coordinate conversion of a d-axis voltage command value and a q-axis voltage command value in the sine wave control mode as initial values of an initial voltage phase and a transition voltage command value, and
when the sine wave control mode is switched to the rectangular wave control mode, the following steps are carried out:
outputting the initial voltage phase and the initial value of the transition voltage command value to the rectangular wave control unit;
obtaining a rectangular wave forming voltage value at which the driving signal is a rectangular wave pattern; and
the transfer voltage command value is continuously increased from the initial value to a rectangular-wave-shaped voltage value and is output to the rectangular-wave control unit, and the rectangular-wave control unit generates a d-axis voltage command value and a q-axis voltage command value based on the transfer voltage command value.
7. A motor control method is a motor control method of a motor control device, the motor control device includes:
an inverter that causes a 3-phase alternating drive current to flow through the PM motor;
a drive current detection unit that obtains a value of the drive current;
an angle detection unit that acquires an electrical angle of the PM motor;
a 3-phase/dq conversion unit that converts the drive current acquired by the drive current detection unit into a d-axis feedback current value and a q-axis feedback current value based on the electrical angle;
a sine wave control unit that sets a d-axis current command value and a q-axis current command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a sine wave control mode;
a rectangular wave control unit that sets a voltage phase and a voltage command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a rectangular wave control mode;
a switching unit that switches generation of the d-axis voltage command value and the q-axis voltage command value between the sinusoidal wave control unit and the rectangular wave control unit;
a dq/3 phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into three-phase voltage command values;
a drive signal generation unit that compares the three-phase voltage command value with a triangular wave having a predetermined period to generate a drive signal for switching the inverter; and
a mode switching unit that operates when the control mode is switched by the switching unit, wherein the motor control method is characterized in that,
the mode shift unit performs the following steps:
in the rectangular wave control mode, the d-axis voltage command value and the q-axis voltage command value outputted from the rectangular wave control unit are outputted to the sine wave control unit as an initial value of the d-axis voltage command value and an initial value of the q-axis voltage command value, and transition data for calculating the initial value of the d-axis current command value and the initial value of the q-axis current command value is calculated based on the d-axis feedback current value and the q-axis feedback current value and outputted to the sine wave control unit,
the mode shift unit further includes: immediately after switching from the rectangular wave control unit mode to the sine wave control mode, a switching-time d-axis voltage command value and a switching-time q-axis voltage command value are generated based on the initial value of the d-axis voltage command value, the initial value of the q-axis voltage command value, the initial value of the d-axis current command value, and the initial value of the q-axis current command value, and output to the dq/3 phase conversion unit.
8. The motor control method according to claim 7,
the mode shift unit further includes:
acquiring a voltage command value output by the rectangular wave control unit as an initial value of a transition voltage command value when switching from a rectangular wave control mode to a sine wave control mode;
acquiring a sine wave pattern transfer voltage value of the driving signal which becomes a sine wave pattern or an overmodulation pattern;
continuously reducing the transition voltage command value from the initial value to the sine wave mode transition voltage value while continuing the rectangular wave control mode, and outputting the reduced transition voltage command value to the rectangular wave control unit;
causing the rectangular wave control unit to generate a d-axis voltage command value and a q-axis voltage command value based on the transition voltage command value; and
the switching unit switches to a control mode by the sine wave control unit.
9. A motor control method is a motor control method of a motor control device, the motor control device includes:
an inverter that causes a 3-phase alternating drive current to flow through the PM motor;
a drive current detection unit that obtains a value of the drive current;
an angle detection unit that acquires an electrical angle of the PM motor;
a 3-phase/dq conversion unit that converts the drive current acquired by the drive current detection unit into a d-axis feedback current value and a q-axis feedback current value based on the electrical angle;
a sine wave control unit that sets a d-axis current command value and a q-axis current command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a sine wave control mode;
a rectangular wave control unit that sets a voltage phase and a voltage command value based on an external torque command value and generates a d-axis voltage command value and a q-axis voltage command value in a rectangular wave control mode;
a switching unit that switches generation of the d-axis voltage command value and the q-axis voltage command value between the sinusoidal wave control unit and the rectangular wave control unit;
a dq/3 phase conversion unit that converts the d-axis voltage command value and the q-axis voltage command value into three-phase voltage command values;
a drive signal generation unit that compares the three-phase voltage command value with a triangular wave having a predetermined period to generate a drive signal for switching the inverter; and
a mode switching unit that operates when the control mode is switched by the switching unit, wherein the motor control method is characterized in that,
the mode shift section performs
A step of obtaining a voltage phase and a voltage command value obtained by polar-coordinate conversion of a d-axis voltage command value and a q-axis voltage command value in the sine wave control mode as initial values of an initial voltage phase and a transition voltage command value, and
when the sine wave control mode is switched to the rectangular wave control mode, the following steps are carried out:
outputting the initial voltage phase and the initial value of the transition voltage command value to the rectangular wave control unit;
obtaining a rectangular wave forming voltage value at which the driving signal is a rectangular wave pattern; and
continuously increasing the transition voltage command value from the initial value to a rectangular-wave-shaped voltage value and outputting the increased value to the rectangular-wave control unit, and causing the rectangular-wave control unit to generate a d-axis voltage command value and a q-axis voltage command value based on the transition voltage command value,
in the rectangular wave control mode, the following steps are carried out: outputting the d-axis voltage command value and the q-axis voltage command value outputted from the rectangular wave control unit to the sine wave control unit as an initial value of the d-axis voltage command value and an initial value of the q-axis voltage command value, calculating transition data for calculating the initial value of the d-axis current command value and the initial value of the q-axis current command value based on the d-axis feedback current value and the q-axis feedback current value, and outputting the transition data to the sine wave control unit,
the mode shift unit further includes:
acquiring a voltage command value output by the rectangular wave control unit as an initial value of a transition voltage command value when switching from a rectangular wave control mode to a sine wave control mode;
acquiring a sine wave pattern transfer voltage value of the driving signal which becomes a sine wave pattern or an overmodulation pattern;
continuously reducing the transition voltage command value from the initial value to the sine wave mode transition voltage value while continuing the rectangular wave control mode, and outputting the reduced transition voltage command value to the rectangular wave control unit;
causing the rectangular wave control unit to generate a d-axis voltage command value and a q-axis voltage command value based on the transition voltage command value;
the switching unit switches to a sine wave control mode by the sine wave control unit; and
immediately after switching to the sinusoidal wave control mode, a switching-time d-axis voltage command value and a switching-time q-axis voltage command value are generated based on the initial value of the d-axis voltage command value, the initial value of the q-axis voltage command value, the initial value of the d-axis current command value, and the initial value of the q-axis current command value, and are output to the dq/3 phase conversion unit.
10. The motor control method according to any one of claims 6 to 9,
the center position of the falling edge of the triangular wave intersects the zero point position of the rising edge of the three-phase voltage command value,
and maintaining the frequency of the triangular wave as an odd integer multiple of 3 of the frequency of the three-phase voltage command value.
CN201880042412.8A 2017-11-02 2018-10-01 Motor control device and motor control method Pending CN110800206A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-212503 2017-11-02
JP2017212503A JP6951945B2 (en) 2017-11-02 2017-11-02 Motor control device and motor control method
PCT/JP2018/036636 WO2019087644A1 (en) 2017-11-02 2018-10-01 Motor control device and motor control method

Publications (1)

Publication Number Publication Date
CN110800206A true CN110800206A (en) 2020-02-14

Family

ID=66331773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880042412.8A Pending CN110800206A (en) 2017-11-02 2018-10-01 Motor control device and motor control method

Country Status (4)

Country Link
JP (1) JP6951945B2 (en)
CN (1) CN110800206A (en)
DE (1) DE112018005734T5 (en)
WO (1) WO2019087644A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994560B (en) * 2019-12-16 2022-10-11 山东大学 Vector control algorithm for square wave motor
KR20250035235A (en) * 2023-09-05 2025-03-12 삼성전자주식회사 Home appliance device including motor and method for controlling the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285288A (en) * 1998-03-26 1999-10-15 Toyota Motor Corp Motor control device and motor control method
JP2000050686A (en) * 1998-07-29 2000-02-18 Toyota Motor Corp AC motor drive control device
JP2010178444A (en) * 2009-01-28 2010-08-12 Toyota Motor Corp Rotating electrical machine control system
JP2010183661A (en) * 2009-02-03 2010-08-19 Toyota Motor Corp Rotating electrical machine control system
CN101953065A (en) * 2008-02-19 2011-01-19 丰田自动车株式会社 Motor drive control device
JP2011115033A (en) * 2009-11-30 2011-06-09 Aisin Aw Co Ltd Control device of motor drive unit
JP2013005618A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Inverter control device and vehicle
CN103648832A (en) * 2011-07-14 2014-03-19 丰田自动车株式会社 Vehicle driving device
JP2014082865A (en) * 2012-10-16 2014-05-08 Mitsubishi Heavy Ind Ltd Motor system, motor controller, program and motor control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285288A (en) * 1998-03-26 1999-10-15 Toyota Motor Corp Motor control device and motor control method
JP2000050686A (en) * 1998-07-29 2000-02-18 Toyota Motor Corp AC motor drive control device
CN101953065A (en) * 2008-02-19 2011-01-19 丰田自动车株式会社 Motor drive control device
JP2010178444A (en) * 2009-01-28 2010-08-12 Toyota Motor Corp Rotating electrical machine control system
JP2010183661A (en) * 2009-02-03 2010-08-19 Toyota Motor Corp Rotating electrical machine control system
JP2011115033A (en) * 2009-11-30 2011-06-09 Aisin Aw Co Ltd Control device of motor drive unit
JP2013005618A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Inverter control device and vehicle
CN103648832A (en) * 2011-07-14 2014-03-19 丰田自动车株式会社 Vehicle driving device
JP2014082865A (en) * 2012-10-16 2014-05-08 Mitsubishi Heavy Ind Ltd Motor system, motor controller, program and motor control method

Also Published As

Publication number Publication date
WO2019087644A1 (en) 2019-05-09
JP6951945B2 (en) 2021-10-20
DE112018005734T5 (en) 2020-07-23
JP2019088050A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
US8829829B2 (en) Apparatus for calculating rotational position of rotary machine
CN100514826C (en) Motor drive control apparatus, motor drive control method
US9013137B2 (en) Apparatus for calculating rotational position of rotary machine
CN108156837B (en) Control device for AC rotating electrical machine and electric power steering device
TWI654827B (en) Converter control device and motor driving system
US9935568B2 (en) Control apparatus of rotary electric machine
JP6428491B2 (en) Control device for rotating electrical machine
JP6459783B2 (en) Control device for rotating electrical machine
CN105610380B (en) Method and apparatus for controlling a motor in six-step mode
JP2007259538A (en) Electric drive controller and electric drive control method
JP2012235659A (en) Controller of rotary machine
CN109104134B (en) Control device for AC rotating machine
JP7094859B2 (en) Motor control device and motor control method
JP6015346B2 (en) Control device and control method for three-phase AC motor
CN110800206A (en) Motor control device and motor control method
CN110247610A (en) Control device of electric motor
JP2013141345A (en) Motor control device and air conditioner
JP6400231B2 (en) Control device for rotating electrical machine
JP2017205017A (en) Motor controller for air conditioner and air conditioner
JP7042568B2 (en) Motor control device and motor control method
JP2012151998A (en) Control device for power converter
JP6464924B2 (en) Control device for rotating electrical machine
JP2010063336A (en) Controller for rotary machine
JP2020137385A (en) Power conversion device
Wang et al. A new high frequency injection method based on duty cycle shifting without maximum voltage magnitude loss

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20230523