CN110838541B - Magnetoresistive device and method of forming same - Google Patents
Magnetoresistive device and method of forming same Download PDFInfo
- Publication number
- CN110838541B CN110838541B CN201810936272.0A CN201810936272A CN110838541B CN 110838541 B CN110838541 B CN 110838541B CN 201810936272 A CN201810936272 A CN 201810936272A CN 110838541 B CN110838541 B CN 110838541B
- Authority
- CN
- China
- Prior art keywords
- layer
- material layer
- conductive structure
- magnetoresistive
- magnetoresistive device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 123
- 239000010410 layer Substances 0.000 claims abstract description 336
- 239000000463 material Substances 0.000 claims abstract description 157
- 230000004888 barrier function Effects 0.000 claims abstract description 95
- 230000008569 process Effects 0.000 claims abstract description 95
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 229910052751 metal Inorganic materials 0.000 claims abstract description 27
- 239000002184 metal Substances 0.000 claims abstract description 27
- 239000011241 protective layer Substances 0.000 claims abstract description 24
- 238000000059 patterning Methods 0.000 claims description 38
- 239000007769 metal material Substances 0.000 claims description 28
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 27
- 230000001681 protective effect Effects 0.000 claims description 22
- 239000010936 titanium Substances 0.000 claims description 21
- 238000001312 dry etching Methods 0.000 claims description 20
- 238000002161 passivation Methods 0.000 claims description 19
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 19
- 229910052715 tantalum Inorganic materials 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 17
- 238000000576 coating method Methods 0.000 claims description 17
- 239000006117 anti-reflective coating Substances 0.000 claims description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- MAKDTFFYCIMFQP-UHFFFAOYSA-N titanium tungsten Chemical compound [Ti].[W] MAKDTFFYCIMFQP-UHFFFAOYSA-N 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 10
- 238000001039 wet etching Methods 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 229910016570 AlCu Inorganic materials 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 5
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- 238000005229 chemical vapour deposition Methods 0.000 description 29
- 238000005240 physical vapour deposition Methods 0.000 description 23
- 238000005530 etching Methods 0.000 description 14
- 229920002120 photoresistant polymer Polymers 0.000 description 14
- 238000000231 atomic layer deposition Methods 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 238000004549 pulsed laser deposition Methods 0.000 description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 9
- 239000012790 adhesive layer Substances 0.000 description 8
- 239000010949 copper Substances 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000004380 ashing Methods 0.000 description 6
- 239000005368 silicate glass Substances 0.000 description 6
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 5
- 239000005380 borophosphosilicate glass Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 239000011229 interlayer Substances 0.000 description 5
- 239000005360 phosphosilicate glass Substances 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- SHMWNGFNWYELHA-UHFFFAOYSA-N iridium manganese Chemical compound [Mn].[Ir] SHMWNGFNWYELHA-UHFFFAOYSA-N 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 150000004760 silicates Chemical class 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- ZDZZPLGHBXACDA-UHFFFAOYSA-N [B].[Fe].[Co] Chemical compound [B].[Fe].[Co] ZDZZPLGHBXACDA-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- IGOJMROYPFZEOR-UHFFFAOYSA-N manganese platinum Chemical compound [Mn].[Pt] IGOJMROYPFZEOR-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum silicon copper Chemical compound 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Hall/Mr Elements (AREA)
Abstract
本发明提供一种磁阻装置及其形成方法,该磁阻装置包含磁阻、保护层、第一导电结构、以及第二导电结构。磁阻设置于衬底之上,并且保护层形成于部分磁阻上。第一导电结构设置于保护层结构上,包含下阻挡层和设置于下阻挡层上的金属层。第二导电结构设置于衬底之上并部分覆盖磁阻,且第二导电结构包含上述下阻挡层和上述金属层。本发明利用在磁阻材料层上形成保护材料层,接着将磁阻材料层和保护材料层一起图案化,保护层只有形成在磁阻上,未覆盖其他区域。因此,在后续的工艺中,保护层不再会从磁阻的图案边缘裂开,这避免了磁阻的图案边缘发生局部剥离的问题,进而提升磁阻装置的制造良品率。
The invention provides a magneto-resistive device and a forming method thereof. The magneto-resistive device includes a magneto-resistor, a protection layer, a first conductive structure, and a second conductive structure. The magnetoresistance is disposed on the substrate, and the protection layer is formed on part of the magnetoresistance. The first conductive structure is disposed on the protective layer structure, and includes a lower barrier layer and a metal layer disposed on the lower barrier layer. The second conductive structure is disposed on the substrate and partially covers the magnetoresistance, and the second conductive structure includes the lower barrier layer and the metal layer. In the present invention, a protection material layer is formed on the magnetoresistance material layer, and then the magnetoresistance material layer and the protection material layer are patterned together, and the protection layer is only formed on the magnetoresistance without covering other areas. Therefore, in the subsequent process, the protection layer will no longer be cracked from the edge of the magnetoresistive pattern, which avoids the problem of partial peeling of the edge of the magnetoresistive pattern, thereby improving the manufacturing yield of the magnetoresistive device.
Description
技术领域technical field
本发明是有关于磁阻装置,且特别是有关于磁阻装置的导电结构及其制造方法。The present invention relates to magneto-resistive devices, and more particularly to conductive structures of magneto-resistive devices and methods of manufacturing the same.
背景技术Background technique
磁阻装置已广泛地使用于各种电子产品中,举例而言,诸如个人电脑、手机、以及数字相机等。磁阻装置包含由磁阻材料构成的磁阻,而磁阻的磁矩排列方向会受到外加磁场改变,使得磁阻的电阻值发生改变。常见的磁阻包含异向性磁阻(anisotropicmagnetoresistor,AMR)、巨磁阻(giant magnetoresistor,GMR)、以及穿隧磁阻(tunnelingmagnetoresistor,TMR)。举例异向性磁阻(AMR),一般其磁矩的排列方向会平行于磁阻的长度方向;当磁矩的排列方向与流通于磁阻的电流方向平行时,磁阻具有最大的电阻值;当磁矩的排列方向与流通于磁阻的电流方向垂直时,磁阻具有最小的电阻值。Magnetoresistive devices have been widely used in various electronic products, such as personal computers, mobile phones, and digital cameras, for example. The magneto-resistive device includes a magneto-resistor made of magneto-resistive material, and the alignment direction of the magnetic moments of the magneto-resistor will be changed by an external magnetic field, so that the resistance value of the magneto-resistor will change. Common magnetoresistances include anisotropic magnetoresistor (AMR), giant magnetoresistor (GMR), and tunneling magnetoresistor (TMR). For example, in anisotropic magnetoresistance (AMR), the arrangement direction of its magnetic moment is generally parallel to the length direction of the magnetoresistance; when the arrangement direction of the magnetic moment is parallel to the direction of the current flowing through the magnetoresistance, the magnetoresistance has the maximum resistance value ; When the alignment direction of the magnetic moments is perpendicular to the direction of the current flowing through the magnetoresistance, the magnetoresistance has the minimum resistance value.
举例包含异向性磁阻AMR的磁阻装置,其电连接一般是在AMR上形成导电结构的接线,而对于用于感测磁场方向与大小的应用,则会在AMR上形成具有类似理发店招牌(BarBer Pole)图案的BBP导电结构,理想的设计是使流通于AMR的电流方向在介于BBP导电结构之间是沿BBP导电结构之间的最短距离。一般设计是使BBP导电结构的长度方向与AMR的长度方向呈夹角45度,使AMR的电阻值对于外加磁场的变化呈最佳的线性反应。An example of a magnetoresistive device including an anisotropic magnetoresistive AMR, its electrical connection is generally a wiring that forms a conductive structure on the AMR, and for applications used to sense the direction and magnitude of a magnetic field, a barbershop-like structure will be formed on the AMR. The BBP conductive structure of the signboard (BarBer Pole) pattern is ideally designed so that the direction of the current flowing through the AMR is between the BBP conductive structures and along the shortest distance between the BBP conductive structures. The general design is to make the length direction of the BBP conductive structure form an angle of 45 degrees with the length direction of the AMR, so that the resistance of the AMR responds optimally to changes in the external magnetic field.
目前在磁阻装置的制造过程中,导电结构的工艺仍有诸多挑战,特别是降低对磁阻元件的伤害。因此,磁阻装置的形成方法仍有待进一步改善。At present, in the manufacturing process of the magnetoresistive device, there are still many challenges in the process of the conductive structure, especially to reduce the damage to the magnetoresistive element. Therefore, the method for forming the magnetoresistive device still needs to be further improved.
发明内容Contents of the invention
本发明的一些实施例提供磁阻装置,此磁阻装置包含设置于衬底之上的磁阻、保护层、第一导电结构以及第二导电结构。磁阻设置于衬底之上。保护层设置于部分磁阻之上。第一导电结构设置于保护层之上,且包含下阻挡层和设置于下阻挡层上的金属层。第二导电结构设置于衬底之上且部分覆盖保护层,并且包含下阻挡层和设置于下阻挡层上的金属层。Some embodiments of the present invention provide a magneto-resistive device including a magneto-resistor disposed on a substrate, a protection layer, a first conductive structure, and a second conductive structure. The magnetoresistance is disposed on the substrate. The protection layer is disposed on the part of the magnetoresistance. The first conductive structure is disposed on the passivation layer and includes a lower barrier layer and a metal layer disposed on the lower barrier layer. The second conductive structure is disposed on the substrate and partially covers the protective layer, and includes a lower barrier layer and a metal layer disposed on the lower barrier layer.
本发明的一些实施例提供磁阻装置的形成方法,此方法包含在衬底之上依序形成磁阻材料层和保护材料层,对保护材料层和磁阻材料层执行第一图案化工艺,以分别形成保护层与磁阻,在衬底上依序形成第一阻挡材料层和金属材料层,以覆盖保护层和磁阻,以及对金属材料层和第一阻挡材料层执行第二图案化工艺,以分别形成于保护层之上的第一导电结构的金属层和下阻挡层。在第二图案化工艺期间,保护层保护底下的磁阻。此方法还包含对保护层执行湿法腐蚀工艺,移除保护层未被第一导电结构覆盖的部分。Some embodiments of the present invention provide a method for forming a magnetoresistive device, the method comprising sequentially forming a magnetoresistive material layer and a protective material layer on a substrate, performing a first patterning process on the protective material layer and the magnetoresistive material layer, To form the protection layer and the magnetoresistance respectively, sequentially form a first barrier material layer and a metal material layer on the substrate to cover the protection layer and the magnetoresistance, and perform a second patterning on the metal material layer and the first barrier material layer process to respectively form the metal layer and the lower barrier layer of the first conductive structure on the passivation layer. During the second patterning process, the protective layer protects the underlying magnetoresistance. The method also includes performing a wet etching process on the protection layer to remove a portion of the protection layer not covered by the first conductive structure.
本发明利用在磁阻材料层上形成保护材料层,接着将磁阻材料层和保护材料层一起图案化,保护层只有形成在磁阻上,未覆盖其他区域。因此,在后续的工艺中,保护层不再会从磁阻的图案边缘裂开,这避免了磁阻的图案边缘发生局部剥离的问题,进而提升磁阻装置的制造良品率。In the present invention, a protection material layer is formed on the magnetoresistance material layer, and then the magnetoresistance material layer and the protection material layer are patterned together, and the protection layer is only formed on the magnetoresistance without covering other areas. Therefore, in the subsequent process, the protective layer will no longer be cracked from the edge of the magnetoresistive pattern, which avoids the problem of partial peeling of the edge of the magnetoresistive pattern, thereby improving the manufacturing yield of the magnetoresistive device.
为让本发明的特征和优点能更明显易懂,下文特举出一些实施例,并配合所附图式,作详细说明如下。In order to make the features and advantages of the present invention more comprehensible, some embodiments are specifically cited below, together with the accompanying drawings, for a detailed description as follows.
附图说明Description of drawings
藉由以下详细描述和范例配合所附图式,可以更加理解本发明实施例。为了使图式清楚显示,图式中各个不同的元件可能未依照比例绘制,其中:Embodiments of the present invention can be better understood by referring to the following detailed description and examples together with the accompanying drawings. For clarity of the drawings, various elements in the drawings may not be drawn to scale, wherein:
图1A-图1D是根据一些范例,显示磁阻装置在各个不同工艺阶段的剖面示意图。1A-1D are schematic cross-sectional views showing magnetoresistive devices in different process stages according to some examples.
图2A和图2B是根据另一些范例,显示磁阻装置在各个不同工艺阶段的剖面示意图。2A and 2B are schematic cross-sectional views showing magnetoresistive devices in different process stages according to other examples.
图3A-图3I是根据本发明的一些实施例,显示磁阻装置在各个不同工艺阶段的剖面示意图。3A-3I are schematic cross-sectional views showing magnetoresistive devices at different process stages according to some embodiments of the present invention.
附图标记:Reference signs:
50A~装置区;50A~device area;
50B~感测区;50B~sensing area;
100、200、300~磁阻装置;100, 200, 300~magnetic resistance device;
102、302~衬底;102, 302 ~ substrate;
104、316'~磁阻;104, 316'~reluctance;
106、320~第一阻挡材料层;106, 320~the first barrier material layer;
106'、320A、320B~下阻挡层;106', 320A, 320B~lower barrier layer;
108、322~金属材料层;108, 322~metal material layer;
108'、322A、322B~金属层;108', 322A, 322B~metal layer;
110、324~第二阻挡材料层;110, 324~second barrier material layer;
110'、324A、324B~上阻挡层;110', 324A, 324B~upper barrier layer;
112、112'、326、326A、326B~抗反射涂层;112, 112', 326, 326A, 326B~anti-reflection coating;
114、327~图案化光刻胶层;114, 327~patterned photoresist layer;
116~图案化导电结构;116~patterned conductive structure;
202~黏着层;202~adhesive layer;
304~主动元件;304~active components;
306~层间介电层;306~interlayer dielectric layer;
308~接触件;308~contact piece;
310~金属间介电层;310~intermetallic dielectric layer;
312~金属线;312~metal wire;
314~引线孔;314~lead hole;
316~磁阻材料层;316~magnetic resistance material layer;
318~保护材料层;318~protective material layer;
318'、318'A、318'B~保护层;318', 318'A, 318'B~protective layer;
328A~第一导电结构;328A~the first conductive structure;
328B~第二导电结构;328B~second conductive structure;
329~凹陷;329 ~ sunken;
330~钝化层;330~passivation layer;
332~开口;332~opening;
350~第一图案化工艺;350~the first patterning process;
360~第二图案化工艺;360~the second patterning process;
D1~深度;D1~depth;
G~栅极结构;G~Gate structure;
S~距离;S ~ distance;
S/D~源极/漏极区。S/D ~ source/drain region.
具体实施方式Detailed ways
以下揭露提供了许多的范例或实施例,用于实施所提供的磁阻装置的不同元件。各元件和其配置的具体范例描述如下,以简化本发明实施例的说明。当然,这些仅仅是范例,并非用以限定本发明实施例。举例而言,叙述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接触的实施例,也可能包含额外的元件形成在第一和第二元件之间,使得它们不直接接触的实施例。此外,本发明实施例可能在不同的范例中重复参考数字及/或字母。如此重复是为了简明和清楚,而非用以表示所讨论的不同实施例之间的关系。The following disclosure provides a number of examples or embodiments for implementing different elements of the provided magnetoresistive device. Specific examples of each element and its configuration are described below to simplify the description of the embodiments of the present invention. Of course, these are just examples, not intended to limit the embodiments of the present invention. For example, if the description mentions that a first element is formed on a second element, it may include an embodiment in which the first and second elements are in direct contact, or may include an additional element formed between the first and second elements , so that they are not in direct contact with the example. In addition, the embodiments of the present invention may repeat reference numerals and/or letters in different examples. This repetition is for brevity and clarity rather than to show the relationship between the various embodiments discussed.
以下描述实施例的一些变化。在不同图式和说明的实施例中,相似的元件符号被用来标示相似的元件。可以理解的是,在方法的前、中、后可以提供额外的步骤,且一些所叙述的步骤可在该方法的其他实施例被取代或删除。Some variations of the embodiment are described below. In the different drawings and described embodiments, like reference numerals are used to designate like elements. It is understood that additional steps may be provided before, during, and after the method, and that some recited steps may be substituted or deleted in other embodiments of the method.
图1A-图1D是根据一些范例,显示图1D所示磁阻装置100在各个不同工艺阶段的剖面示意图。请参考图1D,磁阻装置100包含衬底102、磁阻104、以及图案化导电结构116。在此范例中,衬底102可包含主动元件(未显示)设置于其中、以及金属间介电层(未显示)形成于衬底102的上部且位于主动元件之上。主动元件经由内连线结构与导电结构116和磁阻104电性连结。磁阻104设置于衬底102的金属间介电层之上。图案化导电结构116设置于磁阻104的部分之上,用以改变于图案化导电结构116之间的流通于磁阻的电流方向,使得磁阻104的电阻值对于外加磁场的变化呈线性反应。图案化导电结构116包含依序堆迭于磁阻104之上的下阻挡(barrier)层106'、金属层108'、上阻挡层110'、以及抗反射涂层112'。以下说明图1D的磁阻装置100的形成方法。1A-1D are schematic cross-sectional views showing the
请参考图1A,提供衬底102,并且在衬底102之上形成磁阻材料层。在此范例中,磁阻材料层可以是由包含镍铁(NiFe)、钴铁(CoFe)、钴铁棚(CoFeB)、铂锰(PtMn)、钌(Ru)、铱锰(IrMn)、铜(cu)、钽(Ta)等材料的堆迭结构。Referring to FIG. 1A , a
接着,对磁阻材料层执行图案化工艺,以形成图案化磁阻104,例如异向性磁阻(AMR)或是巨磁阻(GMR)。在此范例中,图案化工艺包含在磁阻材料层之上形成图案化光刻胶层(未显示),对磁阻材料层执行干法腐蚀工艺,移除磁阻材料层未被图案化遮罩层覆盖的部分,接着移除图案化光刻胶层。为了完全移除磁阻材料层未被图案化光刻胶层覆盖的部分,一般干法腐蚀工艺会过腐蚀至衬底102的金属间介电层使形成深度D1的高低差,例如约500埃至约的范围内。Next, a patterning process is performed on the magnetoresistive material layer to form a
请参考图1B,在衬底102之上依序形成第一阻挡材料层106、金属材料层108、第二阻挡材料层110、以及抗反射涂层112,且覆盖磁阻104。在此范例中。第一阻挡材料层106的材料可包含钛钨(TiW)、氮化钛(TiN)或钛(Ti),金属材料层108的材料包含铝铜(AlCu)合金,且第二阻挡材料层110的材料包含氮化钛(TiN)。Referring to FIG. 1B , a first
请参考图1B,对抗反射涂层112、第二阻挡材料层110、和金属材料层108执行图案化工艺。图案化工艺的步骤包含在抗反射涂层112之上形成图案化光刻胶层114。Referring to FIG. 1B , a patterning process is performed on the
图案化工艺的步骤还包含对抗反射涂层112、第二阻挡材料层110、和金属材料层108一起执行干法腐蚀工艺,移除抗反射涂层112、第二阻挡材料层110、和金属材料层108未被图案化光刻胶层114覆盖的部分。在腐蚀工艺中,第一阻挡材料层106的腐蚀速率低于金属材料层108的腐蚀速率,所以第一阻挡材料层106作为腐蚀金属材料层108的腐蚀停止层,以保护下方的磁阻104避免受到腐蚀的伤害。请参考图1C,在干法腐蚀工艺之后,形成了图案化抗反射涂层112'、图案化上阻挡层110'、和图案化金属层108'。图案化工艺还包含通过灰化(ashing)工艺移除图案化光刻胶层114。The step of the patterning process also includes the
接着,为了避免对于磁阻104的伤害,运用湿法腐蚀工艺移除未被抗反射涂层112'、上阻挡层110'和金属层108'覆盖的部分第一阻挡材料层106,形成下阻挡层106'之后就完成了导电结构116,请参考图1D。Next, in order to avoid damage to the
值得注意的是,一般磁阻104的干法腐蚀工艺会过腐蚀至衬底102的金属间介电层使形成深度D1的高低差,而且第一阻挡材料层106与磁阻104之间的黏着力大于磁阻104与衬底102的金属间介电层之间的黏着力。所以在图案化光刻胶层114灰化(ashing)工艺中,第一阻挡材料层106因高温产生的形变应力,会倾向从磁阻104的图案边缘高低差处以局部方式裂开来将应力释放,造成磁阻104的图案边缘被局部裂开的第一阻挡材料层106黏起而与衬底102的金属间介电层分离,导致后续的湿法腐蚀工艺在移除部分的第一阻挡材料层106时,磁阻104的图案边缘发生局部剥离(peel),例如,在图1D所标示的区域A。因此,造成磁阻装置100的制造良品率降低与损害可靠度风险。It is worth noting that the general dry etching process of the
图2A和图2B是根据另一些范例,显示图2B所示磁阻装置200在各个不同工艺阶段的剖面示意图,其中相同于前述图1A-图1D的范例的部件是使用相同的标号并省略其说明。图2A和图2B所示的实施例与前述图1A-图1D的范例的差别在于,图2A和图2B的磁阻装置200还包含磁阻104与衬底102的金属间介电层之间存有含钽(Ta)的黏着层202。图2A和图2B的范例的磁阻104是在磁阻材料下先垫黏着层202于衬底102的金属间介电层之间,使增加磁阻104与衬底102的金属间介电层之间的黏着力,以解决前述的磁阻104的剥离问题。2A and FIG. 2B are schematic cross-sectional views showing the
请参考图2A,在衬底102的金属间介电层之上形成黏着材料层,举例钽(Ta),然后在黏着材料层之上形成磁阻材料层。对磁阻材料层和黏着材料层执行图案化工艺,以形成图案化磁阻104和图案化黏着层202。接着,执行与前述图1A-图1D所述相同或相似的工艺步骤,以形成图2B所示的磁阻装置200。Referring to FIG. 2A , an adhesive material layer, such as tantalum (Ta), is formed on the intermetallic dielectric layer of the
因黏着层202会增强磁阻104与衬底102的金属间介电层之间的黏着力,尽管经过前述的图案化光刻胶层114灰化(ashing)工艺,黏着层202能阻止第一阻挡材料层106从磁阻104的图案边缘高低差处以局部方式裂开来。因此,在后续的湿法腐蚀工艺在移除部分的第一阻挡材料层106,不会再发生磁阻104的图案边缘局部剥离(peel)。例如,在图2B标示的区域A,这避免了图1D所述区域A的磁阻104局部剥离问题。Since the
在此范例中,例如以钽为黏着层材料,为了避免黏着层202的钽原子扩散至磁阻104中,造成磁阻104的磁阻比(MR%)降低,因此在形成黏着层202与磁阻104之后的工艺温度被限制在300℃以下。举例而言,在图1A-图1D的范例中,形成抗反射涂层112的化学气相沉积(chemical vapor deposition,CVD)工艺温度约300℃至约400℃范围内的温度,然而在图2A和图2B的范例中,形成抗反射涂层112的化学气相沉积(CVD)工艺执行于约250℃至约300℃的温度。较低温度的化学气相沉积(CVD)具有较低沉积速率和较差的厚度均匀度,并且造成较多的不期望颗粒(particle)表现,这降低磁阻装置200的生产效率和生产良品率。此外,限制工艺温度低于300℃会导致磁阻104后续无法通过高温退火来提升磁阻比(MR%)。In this example, for example, tantalum is used as the material of the adhesive layer. In order to prevent the tantalum atoms of the
图3A-图3I是根据本发明的一些实施例,显示图3I所示的磁阻装置300在各个不同工艺阶段的剖面示意图。在不使用黏着材料层介于磁阻材料与金属间介电层之间的情况下,图3A-图3I的实施例是在磁阻材料层的图案化之前形成保护材料层在磁阻材料层之上,接着将保护材料层和磁阻材料层一起图案化,避免了干法腐蚀磁阻材料层所产生的高低差而导致第一阻挡材料层的形变应力问题,以解决图1A-图1D所述的磁阻的剥离问题。3A-3I are schematic cross-sectional views showing the
请参考图3A,提供衬底302。衬底302可以是可用来形成磁阻装置于其上的任何衬底。在一些实施例中,衬底302可以是硅衬底、硅锗(SiGe)衬底、整体的半导体(bulksemiconductor)衬底、化合物半导体(compound semiconductor)衬底、绝缘层上覆硅(silicon on insulator,SOI)衬底或类似衬底。Referring to FIG. 3A , a
在一些实施例中,衬底302包含装置区50A和感测区50B。主动元件304形成于衬底302的装置区50A中。在一实施例中,主动元件304可以是三极管、二极管或类似主动元件。举例而言,主动元件304是场效应三极管(field effect transistor,FET),其包含栅极结构G和源极/漏极区S/D。In some embodiments,
接着,在衬底302之上形成内连线结构。内连线结构包含层间介电层306、接触件(contact)308、金属间介电层310、金属线312和引线孔314。Next, an interconnection structure is formed on the
层间介电层306形成于衬底302之上且覆盖主动元件304。在一些实施例中,层间介电层306的材料可包含或者是磷硅酸盐玻璃(phosphosilicate glass,PSG)、硼磷硅酸盐玻璃(borophosphosilicate glass,BPSG)、未掺杂的硅酸盐玻璃(undoped silicate glass,USG)、氟化硅酸盐玻璃(fluorinated silicate glass,FSG)、类似材料、前述的多层或前述的组合,并且可通过化学气相沉积(chemical vapor deposition,CVD),例如等离子增强化学气相沉积(plasma-enhanced CVD,PECVD),形成层间介电层306。An
接触件308穿过层间介电层306,以电连接主动元件304。尽管图3A显示接触件308连接至主动元件304的源极/漏极区S/D,然而在其他实施例中,接触件308可连接至主动元件304的栅极结构G。在一些实施例中,接触件308的材料可包含或者是导电材料,例如;钨(W)、镍(Ni)、钛(Ti)、钽(Ta)、铝(Al)、铜(Cu)、氮化钛(TiN)、氮化钽(TaN)、类似材料、前述的多层或前述的组合,并且可通过腐蚀工艺和沉积工艺形成接触件308。沉积工艺可以包含化学气相沉积(CVD)、原子层沉积(atomic layer deposition,ALD)或物理气相沉积(physical vapor deposition,PVD)。物理气相沉积(PVD)可以是溅射(sputtering)或脉冲激光沉积(pulsed laser deposition,PLD)。The
金属间介电层310形成于层间介电层306之上。在一些实施例中,金属间介电层310的材料可包含或者是氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氧化硅、磷硅酸盐玻璃(PSG)、硼磷硅酸盐玻璃(BPSG)、未掺杂的硅酸盐玻璃(USG)、氟化硅酸盐玻璃(FSG)、类似材料、前述的多层或前述的组合,并且可通过化学气相沉积(CVD),例如等离子增强化学气相沉积(PECVD),形成金属间介电层310。An
金属线312和引线孔314形成于金属间介电层310中且电连接接触件308。尽管图3A显示一层的金属间介电层310和其中的金属线312和引线孔314,然而在其他实施例中,可形成多层的金属间介电层310和位于每一层金属间介电层310中的金属线312和引线孔314。在一些实施例中,金属线312和引线孔314的材料可包含或者是导电材料,例如;钨(W)、镍(Ni)、钛(Ti)、钽(Ta)、铝(Al)、铜(Cu)、氮化钛(TiN)、氮化钽(TaN)、类似材料、前述的多层或前述的组合,并且可通过单镶嵌(single damascene)或双镶嵌(dual damascene)工艺形成金属线312和引线孔314。
继续参考图3A,在金属间介电层310之上形成磁阻材料层316。在一些实施例中,金属间介电层310与磁阻材料层316之间不存有含钽(Ta)的黏着层。在一些实施例中,磁阻材料层316可包含或者是镍铁(NiFe)、钴铁(CoFe)、钴铁硼(CoFeB)、铜(Cu)、铂锰(PtMn)、铱锰(IrMn)、钌(Ru)等类似材料、前述的多层、前述的组合、或其他适合用于构成异向性磁阻(AMR)或巨磁阻(GMR)的堆迭结构,并且可通过化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、类似方法或前述的组合,在金属间介电层310之上形成。Continuing to refer to FIG. 3A , a
请参考图3B,在磁阻材料层316上形成保护材料层318。在一些实施例中,保护材料层318的厚度可在约300A至约1500A的范围内。在一些实施例中,保护材料层318可包含或者是钛钨(TiW)、钛(Ti)、氮化钛(TiN)、类似材料或前述的组合,并且可通过物理气相沉积(PVD)、原子层沉积(ALD)、类似方法或前述的组合,形成保护材料层318。物理气相沉积(PVD)可以是溅射或脉冲激光沉积(PLD)。在一实施例中,保护材料层318包含钛钨(TiW),其中钛及钨的重量比例为约1:9。Referring to FIG. 3B , a
接着,对保护材料层318和磁阻材料层316执行第一图案化工艺350。请参考图3C,在第一图案化工艺350之后,保护材料层318和磁阻材料层316分别形成位于衬底302的感测区50B中的图案化保护层318'和图案化磁阻316'。Next, a
在一些实施例中,第一图案化工艺350的步骤包含在图3B所示的保护材料层318之上形成光刻胶图案化遮罩层(未显示),例如图案化光刻胶层或图案化硬遮罩层,对保护材料层318和磁阻材料层316一起执行干法腐蚀工艺,移除未被图案化遮罩层覆盖的保护材料层318和磁阻材料层316,以形成保护层318'和磁阻316',接着移除保护层318'之上的图案化遮罩层,例如通过灰化(ashing)工艺或剥除(strip)工艺。在一些实施例中,其中图案化遮罩层为图案化光刻胶层,可在腐蚀机内原位(in-situ)执行干法腐蚀工艺与灰化(ashing)工艺。在一些实施例中,第一图案化工艺350的干法腐蚀工艺可以是反应性离子腐蚀(reactive ion etch,RIE)、电子回旋共振式(electron cyclotron resonance,ERC)腐蚀、感应耦合式等离子(inductively-coupled plasma,ICP)腐蚀、中子束腐蚀(neutralbeam etch,NBE)、离子束腐蚀(ion bean etch,IBE)类似干法腐蚀工艺或前述离子腐蚀(reactive ion etch,RIE)的组合。In some embodiments, the step of the
在一些实施例中,为了完全移除未被图案化遮罩层覆盖部分的保护材料层318和磁阻材料层316,干法腐蚀工艺会或过腐蚀金属间介电层310至深度D1,如图3C所示。In some embodiments, in order to completely remove the
请参考图3D,在金属间介电层310之上形成第一阻挡材料层320,以覆盖保护层318'和磁阻316'。第一阻挡层320用以阻挡来自引线孔314材料的钨(W)原子扩散至后续形成在上方的金属材料层322(例如,铝铜(AlCu)合金)中。第一阻挡材料层320的厚度可在约250A至约750A的范围内。在一些实施例中,第一阻挡材料层320可包含或者是氮化钛(TiN)、钛(Ti)、氮化钽(TiN)、钽(Ta)、类似材料或前述的组合,并且可通过物理气相沉积(PVD)、原子层沉积(ALD)、类似方法或前述的组合,形成第一阻挡材料层320。物理气相沉积(PVD)可以是溅射或脉冲激光沉积(PLD)。Referring to FIG. 3D , a first
接着,在第一阻挡材料层320之上形成金属材料层322。在一些实施例中,金属材料层322的厚度可在约3000A至约8000A的范围内。在一些实施例中,金属材料层322可包含或者是铝铜(AlCu)、铝硅铜(AlSiCu)或类似材料,并且可通过物理气相沉积(PVD)、原子层沉积(ALD)、电镀(electroplating)、类似方法或前述的组合形成金属材料322。物理气相沉积(PVD)可以是溅射或脉冲激光沉积(PLD)。Next, a
接着,在金属材料层322之上形成第二阻挡材料层324。第二阻挡材料层324用以防止金属材料层322氧化。在一些实施例中,第二阻挡材料层324的厚度可在约500A至约1000A的范围内。在一些实施例中,第二阻挡材料层324可包含或者是氮化钛(TiN)、钛(Ti)、氮化钽(TiN)、钽(Ta)、类似材料或前述的组合,并且可通过化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、类似方法或前述的组合,形成第二阻挡材料层324。物理气相沉积(PVD)可以是溅射或脉冲激光沉积(PLD)。第二阻挡材料层324的材料可与第一阻挡材料层320的材料相同或不同。Next, a second
接着,在第二阻挡材料层324之上形成抗反射涂层326。在一些实施例中,抗反射涂层326的厚度可在约250A至约500A的范围内。在一些实施例中,抗反射涂层326的材料可包含或者是氧化硅(SiO2)、氮化硅(SiN)、氮氧化硅(SiON)、碳化硅(SiC)、碳氮化硅(SiCN)、氧碳化硅(SiOC)、类似材料或前述的组合,并且可通过化学气相沉积(CVD),例如等离子增强化学气相沉积(PECVD),形成抗反射涂层326。Next, an
在图3D的实施例中,因为无使用黏着材料层,例如钽(Ta),因此形成抗反射涂层326的化学气相沉积(CVD)可执行于高温例如约300℃至约400℃的温度的范围内。使用较高温度执行的化学气相沉积(CVD)来形成抗反射涂层326,不仅导致较高沉积速率和较佳的厚度均匀度,并且有着较少的不期望颗粒(particle)表现,进而提升磁阻装置的生产效率和生产良品率。In the embodiment of FIG. 3D, since no adhesive material layer, such as tantalum (Ta), is used, the chemical vapor deposition (CVD) to form the
接着,对抗反射涂层326、第二阻挡材料层324、金属材料层322和第一阻挡材料层320层执行第二图案化工艺360以形成第一导电结构328A与第一导电结构328B。以下,详细说明第二图案化工艺360。Next, a
请参考图3E,第二图案化工艺360的步骤包含在抗反射涂层326上形成图案化光刻胶层327。Referring to FIG. 3E , the step of the
第二图案化工艺360的步骤还包含对抗反射涂层326、第二阻挡材料层324、金属材料层322和第一阻挡材料层320一起执行干法腐蚀工艺,移除未被图案化光刻胶层327覆盖的抗反射涂层326、第二阻挡材料层324、金属材料层322和第一阻挡材料层320。在一些实施例中,第二图案化工艺360的干法腐蚀工艺可以是反应性离子腐蚀(RIE)、电子回旋共振式(ERC)腐蚀、感应耦合式等离子(ICP)腐蚀、中子束腐蚀(NBE)、类似干法腐蚀工艺、或前述的阻合。在第二图案化工艺360的干法腐蚀工艺期间,保护层318'作用为保护下方的磁阻316'以避免受到干法腐蚀的损伤。The step of the
在一些实施例中,例如保护层318'为钛钨(TiW)、第一、第二阻挡材料层320、324为氮化钛(TiN)、金属材料层322为铝铜(AlCu)合金、抗反射涂层326为氮化硅。因为保护层318'的钛钨(TiW)腐蚀速率低于第一阻挡材料层320的氮化钛(TiN)腐蚀速率,使保护层318'的钛钨(TiW)对第一阻挡材料层320的氮化钛(TiN)具有高腐蚀选择比约4至10倍的范围内。因此,第二图案化工艺360的腐蚀工艺一般采用终点模式(endpoint mode)检测对于金属材料层322的腐蚀完成,然后采用时间模式(time mode)进行第一阻挡材料层320的腐蚀,利用保护层318'的钛钨(TiW)对第一阻挡材料层320的氮化钛(TiN)高腐蚀选择比保护下方的磁阻316',避免磁阻316'受到腐蚀损害。In some embodiments, for example, the protective layer 318' is titanium tungsten (TiW), the first and second barrier material layers 320, 324 are titanium nitride (TiN), the
在一些实施例中,例如保护层318'为氮化钛(TiN)、第一、第二阻挡材料层320、324为氮化钛(TiN)、金属材料层322为铝铜(AlCu)合金、抗反射涂层326为氮化硅。因为保护层318'腐蚀速率与第一阻挡材料层320的腐蚀速率相同,故在此实施例中,可使保护层318'的氮化钛(TiN)具有较厚的厚度,例如为第一阻挡材料层厚度的2至3倍范围内,以确保在第一阻挡材料层320腐蚀完全后,保护层318'仍有残留足够厚度可避免腐蚀损伤到磁阻316'。In some embodiments, for example, the protection layer 318' is titanium nitride (TiN), the first and second barrier material layers 320, 324 are titanium nitride (TiN), the
请参考图3F,在第二图案化工艺360的干法腐蚀工艺之后,形成第一导电结构328A位于感测区50B,第一导电结构328A包含图案化抗反射涂层326A、图案化上阻挡层324A、图案化金属层322A和图案化下阻挡层320'于部分的保护层318'之上。Please refer to FIG. 3F, after the dry etching process of the
此外,在第二图案化工艺360的干法腐蚀工艺之后,形成第二导电结构328B位于装置区50A,第二导电结构328B包含图案化抗反射涂层326B、图案化上阻挡层324B、图案化金属层322B和图案化下阻挡层320B于金属间介电层310之上。其中下阻挡层320B与金属间介电层310中的引线孔314接触并且电连接。再者,第二导电结构328B延伸至感测区50B部分覆盖保护层318'和磁阻316',以与磁阻316'形成电连接。In addition, after the dry etching process of the
在第二图案化工艺360的干法腐蚀工艺之后,保护层318'仍完全覆盖磁阻316'的上表面,如图3F所示。After the dry etching process of the
第二图案化工艺360的步骤还包含移除图案化光刻胶层327,例如通过灰化(ashing)工艺,如图3G所示。在一些实施例中,可在干法腐蚀机台内原位(in-situ)执行第二图案化工艺360的腐蚀工艺与灰化工艺。The step of the
值得注意的是,在第一图案化工艺350的腐蚀工艺之后,保护层318'对于磁阻316'的应力(stress)已经释放,且只有形成在磁阻316'上,未覆盖其他区域(例如,金属间介电层310的上表面)。再者,经过第二图案化工艺360形成第一导电结构328A与第二导电结构328B后,导电结构对于保护层318'的应力(stress)已经释放。因此,不会发生如图1A-图1D的范例所述的保护层318'从磁阻316'的图案边缘裂开而造成磁阻316'的图案边缘发生局部剥离(peel)的问题。It should be noted that after the etching process of the
在第二图案化工艺360之后,接着将磁阻316'上保护层318'未被第一导电结构328A与第二导电结构328B覆盖的部分去除,留下保护层318'A和318'B(也可称为剩余部分318'A和318'B),请参考图3H。在一些实施例中,此去除可以通过湿法腐蚀工艺来执行。After the
在一些实施例中,例如使用钛钨(TiW)或氮化钛(TiN)为保护层318',并湿法腐蚀工艺的腐蚀剂可使用含过氧化氢(H2O2)的溶液,这可避免伤害磁阻316'。保护层318'经湿法腐蚀工艺后形成保护层318'A和318'B,并由于湿法腐蚀工艺是等向性的(isotropic),所以会形成具有侧向侧蚀内缩距离S的凹陷319。In some embodiments, for example, titanium tungsten (TiW) or titanium nitride (TiN) is used as the
参考图3I,在金属间介电层310之上形成钝化层330。钝化层330覆盖第一和第二图案化导电结构328A和328B与磁阻316'。在一些实施例中,钝化层330的材料可包含或者是氧化硅、氮化硅、氮氧化硅、类似材料或前述的组合,并且可通过化学气相沉积(CVD),或例如等离子增强化学气相沉积(PECVD)以形成钝化层330。之后,腐蚀钝化层330于第二图案化导电结构328B上形成开口332,便完成磁阻装置300的制作。Referring to FIG. 3I , a
在图3A-图3I的实施例中,因磁阻316'与金属间介电层310之间并无钽(Ta)的黏着层。因此,形成钝化层330的化学气相沉积(CVD)可执行于较高的温度,例如约400℃至约450℃的温度的范围内。使用较高温度执行的化学气相沉积来形成钝化层330,不仅得致较高沉积速率和较佳的厚度均匀度,并且有着较少的不期望颗粒(particle)表现,进而提升磁阻装置的生产效率和生产良品率。In the embodiment of FIGS. 3A-3I , there is no adhesion layer of tantalum (Ta) between the magnetoresistor 316 ′ and the
再者,于完成钝层开口332之后,或可对磁阻装置300执行高温退火,例如退火温度在350℃至约450℃范围内的温度,以改善磁阻316'的特性,例如包含提高磁阻比(MR%)与降低片电阻(Rsq)。Moreover, after the
在本发明实施例中,磁阻装置300包含设置于衬底302之上的金属间介电层310、磁阻316'、保护层318'A、以及第一导电结构328A。磁阻316'设置于衬底302的感测区50B中且在金属间介电层310之上。保护层318'A形成于部分磁阻316'之上。第一导电结构328A设置于保护层318'A之上。第一导电结构328A用以改变于相邻的第一导电结构328A之间流通于磁阻316'的电流方向,使磁阻值对于外加磁场的变化呈线性反应。尽管在图3I显示两个第一导电结构328A形成于磁阻316'之上,但第一导电结构328A的数量可基于设计需求调整,而不限于图示实施例。In the embodiment of the present invention, the
在一些实施例中,第一图案化导电结构328A包含依序堆迭于保护层318'A之上的下阻挡层320A、金属层322A、上阻挡层324A和抗反射涂层326A。In some embodiments, the first patterned
在一些实施例中,磁阻装置300还包含第二导电结构328B,其与第一导电结构328A横向隔开且设置于衬底302的装置区50A中。第二导电结构328B更延伸至感测区50B覆盖保护层318'B和磁阻316'的边缘,且与磁阻316'形成电连接。第二图案化导电结构328B包含依序堆迭于金属间介电层310之上的下阻挡层320B、金属层322B、上阻挡层324B和抗反射涂层326B。再者,金属间介电层310中的引线孔314接触且电连接至第二导电结构328B的下阻挡层320B。In some embodiments, the
在一些实施例中,其中引线孔314的材料是钨(W),而下阻挡层320B的材料是氮化钽(TiN)。氮化钽(TiN)相较于其他材料(例如,钛钨(TiW))具有对钨原子较佳的阻挡能力。因此,氮化钽(TiN)下阻挡层320B可较佳地避免钨原子扩散至上方的金属层322B,以提升磁阻装置300的可靠性。In some embodiments, the material of the
综上所述,本发明实施例利用在磁阻材料层上形成保护材料层,接着将磁阻材料层和保护材料层一起图案化,保护层只有形成在磁阻上,未覆盖其他区域(例如,金属间介电层310的表面)。因此,在后续的工艺中,保护层不再会从磁阻的图案边缘裂开,这避免了磁阻的图案边缘发生局部剥离(peel)的问题,进而提升磁阻装置的制造良品率。In summary, the embodiments of the present invention utilize the formation of a protective material layer on the magnetoresistive material layer, and then pattern the magnetoresistive material layer and the protective material layer together. The protective layer is only formed on the magnetoresistive material layer and does not cover other areas (such as , the surface of the intermetal dielectric layer 310). Therefore, in the subsequent process, the protective layer will no longer be cracked from the edge of the magnetoresistive pattern, which avoids the problem of local peeling (peel) at the edge of the magnetoresistive pattern, thereby improving the manufacturing yield of the magnetoresistive device.
此外,在一些实施例中,由于磁阻与金属间介电层之间不存有含钽的黏着层,所以工艺温度不会被限制于300℃以下。使用较高温度执行的化学气相沉积不仅导致较高薄膜沉积速率和较佳的厚度均匀度,并且有着较少的不期望颗粒(particle)表现,进而提升磁阻装置的生产效率和生产良品率。再者,在形成磁阻装置之后,可对磁阻装置进行高温退火,进一步提升磁阻的特性。Furthermore, in some embodiments, the process temperature is not limited below 300° C. due to the absence of a tantalum-containing adhesion layer between the magnetoresistor and the IMD layer. Chemical vapor deposition performed at a higher temperature not only results in a higher film deposition rate and better thickness uniformity, but also has fewer undesirable particles, thereby improving the production efficiency and production yield of the magnetoresistive device. Furthermore, after forming the magnetoresistive device, high-temperature annealing can be performed on the magnetoresistive device to further improve the characteristics of the magnetoresistance.
以上概述数个实施例,以便在本发明所属技术领域中技术人员可以更理解本发明实施例的观点。在本发明所属技术领域中技术人员应该理解,他们能以本发明实施例为基础,设计或修改其他工艺和结构,以达到与在此介绍的实施例相同的目的及/或优势。在本发明所属技术领域中技术人员也应该理解到,此类等效的工艺和结构并无悖离本发明的精神与范围,且他们能在不违背本发明的精神和范围之下,做各式各样的改变、取代和替换。Several embodiments are summarized above, so that those skilled in the art to which the present invention belongs can better understand the viewpoints of the embodiments of the present invention. Those skilled in the technical field of the present invention should understand that they can design or modify other processes and structures based on the embodiments of the present invention, so as to achieve the same purpose and/or advantages as the embodiments introduced here. Those skilled in the technical field of the present invention should also understand that such equivalent processes and structures do not depart from the spirit and scope of the present invention, and they can make various modifications without departing from the spirit and scope of the present invention. Various changes, substitutions and substitutions.
Claims (17)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810936272.0A CN110838541B (en) | 2018-08-16 | 2018-08-16 | Magnetoresistive device and method of forming same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810936272.0A CN110838541B (en) | 2018-08-16 | 2018-08-16 | Magnetoresistive device and method of forming same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110838541A CN110838541A (en) | 2020-02-25 |
| CN110838541B true CN110838541B (en) | 2023-05-05 |
Family
ID=69573342
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810936272.0A Active CN110838541B (en) | 2018-08-16 | 2018-08-16 | Magnetoresistive device and method of forming same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110838541B (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991014288A1 (en) * | 1990-03-07 | 1991-09-19 | Santa Barbara Research Center | Magnetoresistor structure and operating method |
| JP2009123818A (en) * | 2007-11-13 | 2009-06-04 | Mitsubishi Electric Corp | Method for manufacturing magnetic sensor device |
| CN104253210A (en) * | 2013-06-27 | 2014-12-31 | 上海矽睿科技有限公司 | Manufacturing process of magnetic sensing device |
| CN104422906A (en) * | 2013-08-29 | 2015-03-18 | 上海矽睿科技有限公司 | Magnetic sensor and preparation technology thereof |
| CN108288612A (en) * | 2017-01-09 | 2018-07-17 | 世界先进积体电路股份有限公司 | Electrical contact structure and method for forming the same |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006261453A (en) * | 2005-03-17 | 2006-09-28 | Fujitsu Ltd | Magnetoresistive element and manufacturing method thereof |
| JP2011134977A (en) * | 2009-12-25 | 2011-07-07 | Renesas Electronics Corp | Semiconductor device and method of manufacturing semiconductor device |
| JP2011253985A (en) * | 2010-06-03 | 2011-12-15 | Renesas Electronics Corp | Semiconductor device and method for manufacturing the same |
| TWI573301B (en) * | 2014-05-22 | 2017-03-01 | 宇能電科技股份有限公司 | Anisotropic magnetoresistive device and method for fabricating the same |
| US9793470B2 (en) * | 2015-02-04 | 2017-10-17 | Everspin Technologies, Inc. | Magnetoresistive stack/structure and method of manufacturing same |
-
2018
- 2018-08-16 CN CN201810936272.0A patent/CN110838541B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1991014288A1 (en) * | 1990-03-07 | 1991-09-19 | Santa Barbara Research Center | Magnetoresistor structure and operating method |
| JP2009123818A (en) * | 2007-11-13 | 2009-06-04 | Mitsubishi Electric Corp | Method for manufacturing magnetic sensor device |
| CN104253210A (en) * | 2013-06-27 | 2014-12-31 | 上海矽睿科技有限公司 | Manufacturing process of magnetic sensing device |
| CN104422906A (en) * | 2013-08-29 | 2015-03-18 | 上海矽睿科技有限公司 | Magnetic sensor and preparation technology thereof |
| CN108288612A (en) * | 2017-01-09 | 2018-07-17 | 世界先进积体电路股份有限公司 | Electrical contact structure and method for forming the same |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110838541A (en) | 2020-02-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11502245B2 (en) | Magnetoresistive random access memory cell and fabricating the same | |
| US10937956B2 (en) | Magnetoresistive random access memory structure and method of forming the same | |
| US12127489B2 (en) | Integrated circuit structure | |
| TWI640090B (en) | Semiconductor memory device and method for manufacturing same | |
| CN111564468B (en) | Semiconductor element and manufacturing method thereof | |
| TW201724444A (en) | Semiconductor structure and method of forming the same | |
| US10266950B2 (en) | Process for NiFe fluxgate device | |
| CN113725354A (en) | Semiconductor device and method for manufacturing the same | |
| US11785785B2 (en) | Semiconductor device and method for fabricating the same | |
| TWI678820B (en) | Magnetoresistive devices and methods for forming the same | |
| TW202123501A (en) | Semiconductor device and method for fabricating the same | |
| CN111969104A (en) | Semiconductor element and manufacturing method thereof | |
| CN108288612B (en) | Electrical contact structure and method for forming the same | |
| US20140322828A1 (en) | Method for Manufacturing Magnetoresistance Component | |
| US11121307B2 (en) | Semiconductor device and method for fabricating the same | |
| CN110838541B (en) | Magnetoresistive device and method of forming same | |
| CN116133510A (en) | Method for manufacturing semiconductor element | |
| CN112750942B (en) | Magnetoresistive device and method of forming the same | |
| TWI698034B (en) | Magnetoresistive device and method for forming the same | |
| US11366182B2 (en) | Magnetoresistive devices and methods for forming the same | |
| US20220013715A1 (en) | Semiconductor device and method for fabricating the same | |
| CN115440880A (en) | Magnetoresistive random access memory device and method of making the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |