[go: up one dir, main page]

CN110838541B - Magnetoresistive device and method of forming same - Google Patents

Magnetoresistive device and method of forming same Download PDF

Info

Publication number
CN110838541B
CN110838541B CN201810936272.0A CN201810936272A CN110838541B CN 110838541 B CN110838541 B CN 110838541B CN 201810936272 A CN201810936272 A CN 201810936272A CN 110838541 B CN110838541 B CN 110838541B
Authority
CN
China
Prior art keywords
layer
material layer
conductive structure
magnetoresistive
magnetoresistive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810936272.0A
Other languages
Chinese (zh)
Other versions
CN110838541A (en
Inventor
巫建勋
李建辉
萧智仁
陈永祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vanguard International Semiconductor Corp
Original Assignee
Vanguard International Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard International Semiconductor Corp filed Critical Vanguard International Semiconductor Corp
Priority to CN201810936272.0A priority Critical patent/CN110838541B/en
Publication of CN110838541A publication Critical patent/CN110838541A/en
Application granted granted Critical
Publication of CN110838541B publication Critical patent/CN110838541B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本发明提供一种磁阻装置及其形成方法,该磁阻装置包含磁阻、保护层、第一导电结构、以及第二导电结构。磁阻设置于衬底之上,并且保护层形成于部分磁阻上。第一导电结构设置于保护层结构上,包含下阻挡层和设置于下阻挡层上的金属层。第二导电结构设置于衬底之上并部分覆盖磁阻,且第二导电结构包含上述下阻挡层和上述金属层。本发明利用在磁阻材料层上形成保护材料层,接着将磁阻材料层和保护材料层一起图案化,保护层只有形成在磁阻上,未覆盖其他区域。因此,在后续的工艺中,保护层不再会从磁阻的图案边缘裂开,这避免了磁阻的图案边缘发生局部剥离的问题,进而提升磁阻装置的制造良品率。

Figure 201810936272

The invention provides a magneto-resistive device and a forming method thereof. The magneto-resistive device includes a magneto-resistor, a protection layer, a first conductive structure, and a second conductive structure. The magnetoresistance is disposed on the substrate, and the protection layer is formed on part of the magnetoresistance. The first conductive structure is disposed on the protective layer structure, and includes a lower barrier layer and a metal layer disposed on the lower barrier layer. The second conductive structure is disposed on the substrate and partially covers the magnetoresistance, and the second conductive structure includes the lower barrier layer and the metal layer. In the present invention, a protection material layer is formed on the magnetoresistance material layer, and then the magnetoresistance material layer and the protection material layer are patterned together, and the protection layer is only formed on the magnetoresistance without covering other areas. Therefore, in the subsequent process, the protection layer will no longer be cracked from the edge of the magnetoresistive pattern, which avoids the problem of partial peeling of the edge of the magnetoresistive pattern, thereby improving the manufacturing yield of the magnetoresistive device.

Figure 201810936272

Description

磁阻装置及其形成方法Magnetoresistive device and method of forming same

技术领域technical field

本发明是有关于磁阻装置,且特别是有关于磁阻装置的导电结构及其制造方法。The present invention relates to magneto-resistive devices, and more particularly to conductive structures of magneto-resistive devices and methods of manufacturing the same.

背景技术Background technique

磁阻装置已广泛地使用于各种电子产品中,举例而言,诸如个人电脑、手机、以及数字相机等。磁阻装置包含由磁阻材料构成的磁阻,而磁阻的磁矩排列方向会受到外加磁场改变,使得磁阻的电阻值发生改变。常见的磁阻包含异向性磁阻(anisotropicmagnetoresistor,AMR)、巨磁阻(giant magnetoresistor,GMR)、以及穿隧磁阻(tunnelingmagnetoresistor,TMR)。举例异向性磁阻(AMR),一般其磁矩的排列方向会平行于磁阻的长度方向;当磁矩的排列方向与流通于磁阻的电流方向平行时,磁阻具有最大的电阻值;当磁矩的排列方向与流通于磁阻的电流方向垂直时,磁阻具有最小的电阻值。Magnetoresistive devices have been widely used in various electronic products, such as personal computers, mobile phones, and digital cameras, for example. The magneto-resistive device includes a magneto-resistor made of magneto-resistive material, and the alignment direction of the magnetic moments of the magneto-resistor will be changed by an external magnetic field, so that the resistance value of the magneto-resistor will change. Common magnetoresistances include anisotropic magnetoresistor (AMR), giant magnetoresistor (GMR), and tunneling magnetoresistor (TMR). For example, in anisotropic magnetoresistance (AMR), the arrangement direction of its magnetic moment is generally parallel to the length direction of the magnetoresistance; when the arrangement direction of the magnetic moment is parallel to the direction of the current flowing through the magnetoresistance, the magnetoresistance has the maximum resistance value ; When the alignment direction of the magnetic moments is perpendicular to the direction of the current flowing through the magnetoresistance, the magnetoresistance has the minimum resistance value.

举例包含异向性磁阻AMR的磁阻装置,其电连接一般是在AMR上形成导电结构的接线,而对于用于感测磁场方向与大小的应用,则会在AMR上形成具有类似理发店招牌(BarBer Pole)图案的BBP导电结构,理想的设计是使流通于AMR的电流方向在介于BBP导电结构之间是沿BBP导电结构之间的最短距离。一般设计是使BBP导电结构的长度方向与AMR的长度方向呈夹角45度,使AMR的电阻值对于外加磁场的变化呈最佳的线性反应。An example of a magnetoresistive device including an anisotropic magnetoresistive AMR, its electrical connection is generally a wiring that forms a conductive structure on the AMR, and for applications used to sense the direction and magnitude of a magnetic field, a barbershop-like structure will be formed on the AMR. The BBP conductive structure of the signboard (BarBer Pole) pattern is ideally designed so that the direction of the current flowing through the AMR is between the BBP conductive structures and along the shortest distance between the BBP conductive structures. The general design is to make the length direction of the BBP conductive structure form an angle of 45 degrees with the length direction of the AMR, so that the resistance of the AMR responds optimally to changes in the external magnetic field.

目前在磁阻装置的制造过程中,导电结构的工艺仍有诸多挑战,特别是降低对磁阻元件的伤害。因此,磁阻装置的形成方法仍有待进一步改善。At present, in the manufacturing process of the magnetoresistive device, there are still many challenges in the process of the conductive structure, especially to reduce the damage to the magnetoresistive element. Therefore, the method for forming the magnetoresistive device still needs to be further improved.

发明内容Contents of the invention

本发明的一些实施例提供磁阻装置,此磁阻装置包含设置于衬底之上的磁阻、保护层、第一导电结构以及第二导电结构。磁阻设置于衬底之上。保护层设置于部分磁阻之上。第一导电结构设置于保护层之上,且包含下阻挡层和设置于下阻挡层上的金属层。第二导电结构设置于衬底之上且部分覆盖保护层,并且包含下阻挡层和设置于下阻挡层上的金属层。Some embodiments of the present invention provide a magneto-resistive device including a magneto-resistor disposed on a substrate, a protection layer, a first conductive structure, and a second conductive structure. The magnetoresistance is disposed on the substrate. The protection layer is disposed on the part of the magnetoresistance. The first conductive structure is disposed on the passivation layer and includes a lower barrier layer and a metal layer disposed on the lower barrier layer. The second conductive structure is disposed on the substrate and partially covers the protective layer, and includes a lower barrier layer and a metal layer disposed on the lower barrier layer.

本发明的一些实施例提供磁阻装置的形成方法,此方法包含在衬底之上依序形成磁阻材料层和保护材料层,对保护材料层和磁阻材料层执行第一图案化工艺,以分别形成保护层与磁阻,在衬底上依序形成第一阻挡材料层和金属材料层,以覆盖保护层和磁阻,以及对金属材料层和第一阻挡材料层执行第二图案化工艺,以分别形成于保护层之上的第一导电结构的金属层和下阻挡层。在第二图案化工艺期间,保护层保护底下的磁阻。此方法还包含对保护层执行湿法腐蚀工艺,移除保护层未被第一导电结构覆盖的部分。Some embodiments of the present invention provide a method for forming a magnetoresistive device, the method comprising sequentially forming a magnetoresistive material layer and a protective material layer on a substrate, performing a first patterning process on the protective material layer and the magnetoresistive material layer, To form the protection layer and the magnetoresistance respectively, sequentially form a first barrier material layer and a metal material layer on the substrate to cover the protection layer and the magnetoresistance, and perform a second patterning on the metal material layer and the first barrier material layer process to respectively form the metal layer and the lower barrier layer of the first conductive structure on the passivation layer. During the second patterning process, the protective layer protects the underlying magnetoresistance. The method also includes performing a wet etching process on the protection layer to remove a portion of the protection layer not covered by the first conductive structure.

本发明利用在磁阻材料层上形成保护材料层,接着将磁阻材料层和保护材料层一起图案化,保护层只有形成在磁阻上,未覆盖其他区域。因此,在后续的工艺中,保护层不再会从磁阻的图案边缘裂开,这避免了磁阻的图案边缘发生局部剥离的问题,进而提升磁阻装置的制造良品率。In the present invention, a protection material layer is formed on the magnetoresistance material layer, and then the magnetoresistance material layer and the protection material layer are patterned together, and the protection layer is only formed on the magnetoresistance without covering other areas. Therefore, in the subsequent process, the protective layer will no longer be cracked from the edge of the magnetoresistive pattern, which avoids the problem of partial peeling of the edge of the magnetoresistive pattern, thereby improving the manufacturing yield of the magnetoresistive device.

为让本发明的特征和优点能更明显易懂,下文特举出一些实施例,并配合所附图式,作详细说明如下。In order to make the features and advantages of the present invention more comprehensible, some embodiments are specifically cited below, together with the accompanying drawings, for a detailed description as follows.

附图说明Description of drawings

藉由以下详细描述和范例配合所附图式,可以更加理解本发明实施例。为了使图式清楚显示,图式中各个不同的元件可能未依照比例绘制,其中:Embodiments of the present invention can be better understood by referring to the following detailed description and examples together with the accompanying drawings. For clarity of the drawings, various elements in the drawings may not be drawn to scale, wherein:

图1A-图1D是根据一些范例,显示磁阻装置在各个不同工艺阶段的剖面示意图。1A-1D are schematic cross-sectional views showing magnetoresistive devices in different process stages according to some examples.

图2A和图2B是根据另一些范例,显示磁阻装置在各个不同工艺阶段的剖面示意图。2A and 2B are schematic cross-sectional views showing magnetoresistive devices in different process stages according to other examples.

图3A-图3I是根据本发明的一些实施例,显示磁阻装置在各个不同工艺阶段的剖面示意图。3A-3I are schematic cross-sectional views showing magnetoresistive devices at different process stages according to some embodiments of the present invention.

附图标记:Reference signs:

50A~装置区;50A~device area;

50B~感测区;50B~sensing area;

100、200、300~磁阻装置;100, 200, 300~magnetic resistance device;

102、302~衬底;102, 302 ~ substrate;

104、316'~磁阻;104, 316'~reluctance;

106、320~第一阻挡材料层;106, 320~the first barrier material layer;

106'、320A、320B~下阻挡层;106', 320A, 320B~lower barrier layer;

108、322~金属材料层;108, 322~metal material layer;

108'、322A、322B~金属层;108', 322A, 322B~metal layer;

110、324~第二阻挡材料层;110, 324~second barrier material layer;

110'、324A、324B~上阻挡层;110', 324A, 324B~upper barrier layer;

112、112'、326、326A、326B~抗反射涂层;112, 112', 326, 326A, 326B~anti-reflection coating;

114、327~图案化光刻胶层;114, 327~patterned photoresist layer;

116~图案化导电结构;116~patterned conductive structure;

202~黏着层;202~adhesive layer;

304~主动元件;304~active components;

306~层间介电层;306~interlayer dielectric layer;

308~接触件;308~contact piece;

310~金属间介电层;310~intermetallic dielectric layer;

312~金属线;312~metal wire;

314~引线孔;314~lead hole;

316~磁阻材料层;316~magnetic resistance material layer;

318~保护材料层;318~protective material layer;

318'、318'A、318'B~保护层;318', 318'A, 318'B~protective layer;

328A~第一导电结构;328A~the first conductive structure;

328B~第二导电结构;328B~second conductive structure;

329~凹陷;329 ~ sunken;

330~钝化层;330~passivation layer;

332~开口;332~opening;

350~第一图案化工艺;350~the first patterning process;

360~第二图案化工艺;360~the second patterning process;

D1~深度;D1~depth;

G~栅极结构;G~Gate structure;

S~距离;S ~ distance;

S/D~源极/漏极区。S/D ~ source/drain region.

具体实施方式Detailed ways

以下揭露提供了许多的范例或实施例,用于实施所提供的磁阻装置的不同元件。各元件和其配置的具体范例描述如下,以简化本发明实施例的说明。当然,这些仅仅是范例,并非用以限定本发明实施例。举例而言,叙述中若提及第一元件形成在第二元件之上,可能包含第一和第二元件直接接触的实施例,也可能包含额外的元件形成在第一和第二元件之间,使得它们不直接接触的实施例。此外,本发明实施例可能在不同的范例中重复参考数字及/或字母。如此重复是为了简明和清楚,而非用以表示所讨论的不同实施例之间的关系。The following disclosure provides a number of examples or embodiments for implementing different elements of the provided magnetoresistive device. Specific examples of each element and its configuration are described below to simplify the description of the embodiments of the present invention. Of course, these are just examples, not intended to limit the embodiments of the present invention. For example, if the description mentions that a first element is formed on a second element, it may include an embodiment in which the first and second elements are in direct contact, or may include an additional element formed between the first and second elements , so that they are not in direct contact with the example. In addition, the embodiments of the present invention may repeat reference numerals and/or letters in different examples. This repetition is for brevity and clarity rather than to show the relationship between the various embodiments discussed.

以下描述实施例的一些变化。在不同图式和说明的实施例中,相似的元件符号被用来标示相似的元件。可以理解的是,在方法的前、中、后可以提供额外的步骤,且一些所叙述的步骤可在该方法的其他实施例被取代或删除。Some variations of the embodiment are described below. In the different drawings and described embodiments, like reference numerals are used to designate like elements. It is understood that additional steps may be provided before, during, and after the method, and that some recited steps may be substituted or deleted in other embodiments of the method.

图1A-图1D是根据一些范例,显示图1D所示磁阻装置100在各个不同工艺阶段的剖面示意图。请参考图1D,磁阻装置100包含衬底102、磁阻104、以及图案化导电结构116。在此范例中,衬底102可包含主动元件(未显示)设置于其中、以及金属间介电层(未显示)形成于衬底102的上部且位于主动元件之上。主动元件经由内连线结构与导电结构116和磁阻104电性连结。磁阻104设置于衬底102的金属间介电层之上。图案化导电结构116设置于磁阻104的部分之上,用以改变于图案化导电结构116之间的流通于磁阻的电流方向,使得磁阻104的电阻值对于外加磁场的变化呈线性反应。图案化导电结构116包含依序堆迭于磁阻104之上的下阻挡(barrier)层106'、金属层108'、上阻挡层110'、以及抗反射涂层112'。以下说明图1D的磁阻装置100的形成方法。1A-1D are schematic cross-sectional views showing the magnetoresistive device 100 shown in FIG. 1D in different process stages according to some examples. Please refer to FIG. 1D , the magnetoresistive device 100 includes a substrate 102 , a magnetoresistor 104 , and a patterned conductive structure 116 . In this example, the substrate 102 may include an active device (not shown) disposed therein, and an intermetal dielectric layer (not shown) is formed on the upper portion of the substrate 102 over the active device. The active device is electrically connected to the conductive structure 116 and the magnetoresistor 104 via the interconnect structure. The magnetoresistor 104 is disposed on the IMD layer of the substrate 102 . The patterned conductive structure 116 is disposed on the part of the magnetoresistor 104 to change the direction of the current flowing through the magnetoresistor between the patterned conductive structures 116, so that the resistance value of the magnetoresistor 104 responds linearly to the change of the applied magnetic field. . The patterned conductive structure 116 includes a lower barrier layer 106 ′, a metal layer 108 ′, an upper barrier layer 110 ′, and an anti-reflection coating 112 ′ stacked on the magnetoresistor 104 in sequence. The method for forming the magnetoresistive device 100 of FIG. 1D will be described below.

请参考图1A,提供衬底102,并且在衬底102之上形成磁阻材料层。在此范例中,磁阻材料层可以是由包含镍铁(NiFe)、钴铁(CoFe)、钴铁棚(CoFeB)、铂锰(PtMn)、钌(Ru)、铱锰(IrMn)、铜(cu)、钽(Ta)等材料的堆迭结构。Referring to FIG. 1A , a substrate 102 is provided, and a magnetoresistive material layer is formed on the substrate 102 . In this example, the magnetoresistive material layer may be made of nickel iron (NiFe), cobalt iron (CoFe), cobalt iron boron (CoFeB), platinum manganese (PtMn), ruthenium (Ru), iridium manganese (IrMn), copper (cu), tantalum (Ta) and other materials stacked structure.

接着,对磁阻材料层执行图案化工艺,以形成图案化磁阻104,例如异向性磁阻(AMR)或是巨磁阻(GMR)。在此范例中,图案化工艺包含在磁阻材料层之上形成图案化光刻胶层(未显示),对磁阻材料层执行干法腐蚀工艺,移除磁阻材料层未被图案化遮罩层覆盖的部分,接着移除图案化光刻胶层。为了完全移除磁阻材料层未被图案化光刻胶层覆盖的部分,一般干法腐蚀工艺会过腐蚀至衬底102的金属间介电层使形成深度D1的高低差,例如约500埃

Figure BDA0001767915410000051
至约
Figure BDA0001767915410000052
的范围内。Next, a patterning process is performed on the magnetoresistive material layer to form a patterned magnetoresistor 104 , such as an anisotropic magnetoresistance (AMR) or a giant magnetoresistance (GMR). In this example, the patterning process includes forming a patterned photoresist layer (not shown) over the magnetoresistive material layer, performing a dry etching process on the magnetoresistive material layer, and removing the magnetoresistive material layer not masked by the patterning. The portion covered by the mask layer is then removed from the patterned photoresist layer. In order to completely remove the portion of the magnetoresistive material layer not covered by the patterned photoresist layer, a general dry etching process will over-etch the intermetal dielectric layer of the substrate 102 to form a height difference of depth D1, for example, about 500 angstroms.
Figure BDA0001767915410000051
to about
Figure BDA0001767915410000052
In the range.

请参考图1B,在衬底102之上依序形成第一阻挡材料层106、金属材料层108、第二阻挡材料层110、以及抗反射涂层112,且覆盖磁阻104。在此范例中。第一阻挡材料层106的材料可包含钛钨(TiW)、氮化钛(TiN)或钛(Ti),金属材料层108的材料包含铝铜(AlCu)合金,且第二阻挡材料层110的材料包含氮化钛(TiN)。Referring to FIG. 1B , a first barrier material layer 106 , a metal material layer 108 , a second barrier material layer 110 , and an anti-reflective coating 112 are sequentially formed on the substrate 102 to cover the magnetoresistor 104 . In this example. The material of the first barrier material layer 106 may comprise titanium tungsten (TiW), titanium nitride (TiN) or titanium (Ti), the material of the metal material layer 108 comprises aluminum copper (AlCu) alloy, and the material of the second barrier material layer 110 The material includes titanium nitride (TiN).

请参考图1B,对抗反射涂层112、第二阻挡材料层110、和金属材料层108执行图案化工艺。图案化工艺的步骤包含在抗反射涂层112之上形成图案化光刻胶层114。Referring to FIG. 1B , a patterning process is performed on the antireflection coating 112 , the second barrier material layer 110 , and the metal material layer 108 . The step of the patterning process includes forming a patterned photoresist layer 114 over the anti-reflective coating 112 .

图案化工艺的步骤还包含对抗反射涂层112、第二阻挡材料层110、和金属材料层108一起执行干法腐蚀工艺,移除抗反射涂层112、第二阻挡材料层110、和金属材料层108未被图案化光刻胶层114覆盖的部分。在腐蚀工艺中,第一阻挡材料层106的腐蚀速率低于金属材料层108的腐蚀速率,所以第一阻挡材料层106作为腐蚀金属材料层108的腐蚀停止层,以保护下方的磁阻104避免受到腐蚀的伤害。请参考图1C,在干法腐蚀工艺之后,形成了图案化抗反射涂层112'、图案化上阻挡层110'、和图案化金属层108'。图案化工艺还包含通过灰化(ashing)工艺移除图案化光刻胶层114。The step of the patterning process also includes the anti-reflection coating 112, the second barrier material layer 110, and the metal material layer 108 performing a dry etching process together to remove the anti-reflection coating 112, the second barrier material layer 110, and the metal material Portions of layer 108 not covered by patterned photoresist layer 114 . In the etching process, the corrosion rate of the first barrier material layer 106 is lower than the corrosion rate of the metal material layer 108, so the first barrier material layer 106 is used as a corrosion stop layer for corroding the metal material layer 108 to protect the magnetoresistance 104 below from Damaged by Corrosion. Referring to FIG. 1C , after the dry etching process, a patterned anti-reflective coating 112 ′, a patterned upper barrier layer 110 ′, and a patterned metal layer 108 ′ are formed. The patterning process further includes removing the patterned photoresist layer 114 through an ashing process.

接着,为了避免对于磁阻104的伤害,运用湿法腐蚀工艺移除未被抗反射涂层112'、上阻挡层110'和金属层108'覆盖的部分第一阻挡材料层106,形成下阻挡层106'之后就完成了导电结构116,请参考图1D。Next, in order to avoid damage to the magnetoresistor 104, a wet etching process is used to remove the part of the first barrier material layer 106 not covered by the anti-reflection coating 112', the upper barrier layer 110' and the metal layer 108' to form a lower barrier The conductive structure 116 is completed after the layer 106', please refer to FIG. 1D.

值得注意的是,一般磁阻104的干法腐蚀工艺会过腐蚀至衬底102的金属间介电层使形成深度D1的高低差,而且第一阻挡材料层106与磁阻104之间的黏着力大于磁阻104与衬底102的金属间介电层之间的黏着力。所以在图案化光刻胶层114灰化(ashing)工艺中,第一阻挡材料层106因高温产生的形变应力,会倾向从磁阻104的图案边缘高低差处以局部方式裂开来将应力释放,造成磁阻104的图案边缘被局部裂开的第一阻挡材料层106黏起而与衬底102的金属间介电层分离,导致后续的湿法腐蚀工艺在移除部分的第一阻挡材料层106时,磁阻104的图案边缘发生局部剥离(peel),例如,在图1D所标示的区域A。因此,造成磁阻装置100的制造良品率降低与损害可靠度风险。It is worth noting that the general dry etching process of the magnetoresistor 104 will over-etch the intermetallic dielectric layer of the substrate 102 to form a height difference of the depth D1, and the adhesion between the first barrier material layer 106 and the magnetoresistor 104 The force is greater than the adhesion force between the magnetoresistive 104 and the IMD layer of the substrate 102 . Therefore, in the ashing process of the patterned photoresist layer 114, the deformation stress of the first barrier material layer 106 due to high temperature tends to be partially cracked from the height difference of the pattern edge of the magnetoresistor 104 to release the stress. , causing the edge of the pattern of the magnetoresistor 104 to be stuck by the partially cracked first barrier material layer 106 and separated from the intermetallic dielectric layer of the substrate 102, causing the subsequent wet etching process to remove part of the first barrier material layer 106, local peeling occurs at the edge of the pattern of the magnetoresistor 104, for example, in the region A indicated in FIG. 1D. Therefore, the manufacturing yield of the magnetoresistive device 100 is lowered and the reliability is damaged.

图2A和图2B是根据另一些范例,显示图2B所示磁阻装置200在各个不同工艺阶段的剖面示意图,其中相同于前述图1A-图1D的范例的部件是使用相同的标号并省略其说明。图2A和图2B所示的实施例与前述图1A-图1D的范例的差别在于,图2A和图2B的磁阻装置200还包含磁阻104与衬底102的金属间介电层之间存有含钽(Ta)的黏着层202。图2A和图2B的范例的磁阻104是在磁阻材料下先垫黏着层202于衬底102的金属间介电层之间,使增加磁阻104与衬底102的金属间介电层之间的黏着力,以解决前述的磁阻104的剥离问题。2A and FIG. 2B are schematic cross-sectional views showing the magnetoresistive device 200 shown in FIG. 2B at different process stages according to other examples, wherein the components that are the same as those in the aforementioned examples of FIGS. 1A-1D use the same reference numerals and omit them. illustrate. The difference between the embodiment shown in FIG. 2A and FIG. 2B and the aforementioned examples in FIG. 1A-FIG. 1D is that the magnetoresistive device 200 in FIG. 2A and FIG. There is an adhesive layer 202 containing tantalum (Ta). The magnetoresistance 104 of the example of FIG. 2A and FIG. 2B is to pad the adhesive layer 202 between the intermetal dielectric layer of the substrate 102 under the magnetoresistance material, so that the magnetoresistance 104 and the intermetal dielectric layer of the substrate 102 are increased. The adhesive force between them can solve the above-mentioned peeling problem of the magnetoresistor 104 .

请参考图2A,在衬底102的金属间介电层之上形成黏着材料层,举例钽(Ta),然后在黏着材料层之上形成磁阻材料层。对磁阻材料层和黏着材料层执行图案化工艺,以形成图案化磁阻104和图案化黏着层202。接着,执行与前述图1A-图1D所述相同或相似的工艺步骤,以形成图2B所示的磁阻装置200。Referring to FIG. 2A , an adhesive material layer, such as tantalum (Ta), is formed on the intermetallic dielectric layer of the substrate 102 , and then a magnetoresistive material layer is formed on the adhesive material layer. A patterning process is performed on the magnetoresistive material layer and the adhesive material layer to form the patterned magnetoresistor 104 and the patterned adhesive layer 202 . Next, the same or similar process steps as those described above in FIGS. 1A-1D are performed to form the magnetoresistive device 200 shown in FIG. 2B .

因黏着层202会增强磁阻104与衬底102的金属间介电层之间的黏着力,尽管经过前述的图案化光刻胶层114灰化(ashing)工艺,黏着层202能阻止第一阻挡材料层106从磁阻104的图案边缘高低差处以局部方式裂开来。因此,在后续的湿法腐蚀工艺在移除部分的第一阻挡材料层106,不会再发生磁阻104的图案边缘局部剥离(peel)。例如,在图2B标示的区域A,这避免了图1D所述区域A的磁阻104局部剥离问题。Since the adhesive layer 202 will enhance the adhesion between the magnetoresistor 104 and the intermetal dielectric layer of the substrate 102, the adhesive layer 202 can prevent the first The barrier material layer 106 is split from the pattern edge elevation difference of the magnetoresistor 104 in a localized manner. Therefore, when the subsequent wet etching process removes part of the first barrier material layer 106 , local peeling of the pattern edge of the magnetoresistor 104 will not occur again. For example, in the region A indicated in FIG. 2B , this avoids the local peeling problem of the magnetoresistor 104 in the region A described in FIG. 1D .

在此范例中,例如以钽为黏着层材料,为了避免黏着层202的钽原子扩散至磁阻104中,造成磁阻104的磁阻比(MR%)降低,因此在形成黏着层202与磁阻104之后的工艺温度被限制在300℃以下。举例而言,在图1A-图1D的范例中,形成抗反射涂层112的化学气相沉积(chemical vapor deposition,CVD)工艺温度约300℃至约400℃范围内的温度,然而在图2A和图2B的范例中,形成抗反射涂层112的化学气相沉积(CVD)工艺执行于约250℃至约300℃的温度。较低温度的化学气相沉积(CVD)具有较低沉积速率和较差的厚度均匀度,并且造成较多的不期望颗粒(particle)表现,这降低磁阻装置200的生产效率和生产良品率。此外,限制工艺温度低于300℃会导致磁阻104后续无法通过高温退火来提升磁阻比(MR%)。In this example, for example, tantalum is used as the material of the adhesive layer. In order to prevent the tantalum atoms of the adhesive layer 202 from diffusing into the magnetoresistor 104, the magnetoresistance ratio (MR%) of the magnetoresistor 104 is reduced. The process temperature after the resistor 104 is limited to below 300°C. For example, in the example of FIG. 1A-FIG. 1D, the chemical vapor deposition (chemical vapor deposition, CVD) process temperature of the anti-reflective coating 112 is formed at a temperature in the range of about 300° C. to about 400° C., but in FIGS. In the example of FIG. 2B , the chemical vapor deposition (CVD) process for forming the anti-reflective coating 112 is performed at a temperature of about 250° C. to about 300° C. Lower temperature chemical vapor deposition (CVD) has a lower deposition rate and poorer thickness uniformity, and causes more undesirable particle appearance, which reduces the production efficiency and production yield of the magnetoresistive device 200 . In addition, limiting the process temperature to be lower than 300° C. will result in that the magnetoresistor 104 cannot be subsequently annealed at a high temperature to increase the magnetoresistance ratio (MR%).

图3A-图3I是根据本发明的一些实施例,显示图3I所示的磁阻装置300在各个不同工艺阶段的剖面示意图。在不使用黏着材料层介于磁阻材料与金属间介电层之间的情况下,图3A-图3I的实施例是在磁阻材料层的图案化之前形成保护材料层在磁阻材料层之上,接着将保护材料层和磁阻材料层一起图案化,避免了干法腐蚀磁阻材料层所产生的高低差而导致第一阻挡材料层的形变应力问题,以解决图1A-图1D所述的磁阻的剥离问题。3A-3I are schematic cross-sectional views showing the magnetoresistive device 300 shown in FIG. 3I in different process stages according to some embodiments of the present invention. In the case of not using an adhesive material layer between the magnetoresistive material and the intermetallic dielectric layer, the embodiments of FIGS. 3A-3I form a protective material layer on the magnetoresistive material layer before patterning the magnetoresistive material layer. On top of that, the protective material layer and the magnetoresistive material layer are patterned together, which avoids the deformation stress problem of the first barrier material layer caused by the height difference caused by the dry corrosion of the magnetoresistive material layer, so as to solve the problem of Fig. 1A-Fig. 1D The peeling problem of the magnetoresistance.

请参考图3A,提供衬底302。衬底302可以是可用来形成磁阻装置于其上的任何衬底。在一些实施例中,衬底302可以是硅衬底、硅锗(SiGe)衬底、整体的半导体(bulksemiconductor)衬底、化合物半导体(compound semiconductor)衬底、绝缘层上覆硅(silicon on insulator,SOI)衬底或类似衬底。Referring to FIG. 3A , a substrate 302 is provided. Substrate 302 may be any substrate on which a magnetoresistive device may be formed. In some embodiments, the substrate 302 may be a silicon substrate, a silicon germanium (SiGe) substrate, a bulk semiconductor substrate, a compound semiconductor substrate, or a silicon on insulator substrate. , SOI) substrates or similar substrates.

在一些实施例中,衬底302包含装置区50A和感测区50B。主动元件304形成于衬底302的装置区50A中。在一实施例中,主动元件304可以是三极管、二极管或类似主动元件。举例而言,主动元件304是场效应三极管(field effect transistor,FET),其包含栅极结构G和源极/漏极区S/D。In some embodiments, substrate 302 includes device region 50A and sense region 50B. Active device 304 is formed in device region 50A of substrate 302 . In one embodiment, the active element 304 may be a triode, a diode or similar active elements. For example, the active device 304 is a field effect transistor (FET), which includes a gate structure G and a source/drain region S/D.

接着,在衬底302之上形成内连线结构。内连线结构包含层间介电层306、接触件(contact)308、金属间介电层310、金属线312和引线孔314。Next, an interconnection structure is formed on the substrate 302 . The interconnect structure includes an ILD layer 306 , a contact 308 , an IMD layer 310 , metal lines 312 and vias 314 .

层间介电层306形成于衬底302之上且覆盖主动元件304。在一些实施例中,层间介电层306的材料可包含或者是磷硅酸盐玻璃(phosphosilicate glass,PSG)、硼磷硅酸盐玻璃(borophosphosilicate glass,BPSG)、未掺杂的硅酸盐玻璃(undoped silicate glass,USG)、氟化硅酸盐玻璃(fluorinated silicate glass,FSG)、类似材料、前述的多层或前述的组合,并且可通过化学气相沉积(chemical vapor deposition,CVD),例如等离子增强化学气相沉积(plasma-enhanced CVD,PECVD),形成层间介电层306。An interlayer dielectric layer 306 is formed on the substrate 302 and covers the active device 304 . In some embodiments, the material of the interlayer dielectric layer 306 may include or be phosphosilicate glass (phosphosilicate glass, PSG), borophosphosilicate glass (borophosphosilicate glass, BPSG), undoped silicate Glass (undoped silicate glass, USG), fluorinated silicate glass (fluorinated silicate glass, FSG), similar materials, multiple layers of the foregoing or combinations of the foregoing, and may be deposited by chemical vapor deposition (chemical vapor deposition, CVD), e.g. Plasma-enhanced chemical vapor deposition (plasma-enhanced CVD, PECVD) to form an interlayer dielectric layer 306 .

接触件308穿过层间介电层306,以电连接主动元件304。尽管图3A显示接触件308连接至主动元件304的源极/漏极区S/D,然而在其他实施例中,接触件308可连接至主动元件304的栅极结构G。在一些实施例中,接触件308的材料可包含或者是导电材料,例如;钨(W)、镍(Ni)、钛(Ti)、钽(Ta)、铝(Al)、铜(Cu)、氮化钛(TiN)、氮化钽(TaN)、类似材料、前述的多层或前述的组合,并且可通过腐蚀工艺和沉积工艺形成接触件308。沉积工艺可以包含化学气相沉积(CVD)、原子层沉积(atomic layer deposition,ALD)或物理气相沉积(physical vapor deposition,PVD)。物理气相沉积(PVD)可以是溅射(sputtering)或脉冲激光沉积(pulsed laser deposition,PLD)。The contact 308 passes through the interlayer dielectric layer 306 to electrically connect the active device 304 . Although FIG. 3A shows that the contact 308 is connected to the source/drain region S/D of the active device 304 , in other embodiments, the contact 308 may be connected to the gate structure G of the active device 304 . In some embodiments, the material of the contact 308 may include or be a conductive material such as; tungsten (W), nickel (Ni), titanium (Ti), tantalum (Ta), aluminum (Al), copper (Cu), Titanium nitride (TiN), tantalum nitride (TaN), similar materials, multiple layers of the foregoing, or combinations of the foregoing, and the contact 308 may be formed by an etching process and a deposition process. The deposition process can include chemical vapor deposition (CVD), atomic layer deposition (atomic layer deposition, ALD), or physical vapor deposition (physical vapor deposition, PVD). Physical vapor deposition (PVD) can be sputtering or pulsed laser deposition (PLD).

金属间介电层310形成于层间介电层306之上。在一些实施例中,金属间介电层310的材料可包含或者是氧化硅、氮化硅、氮氧化硅、碳化硅、碳氮化硅、碳氧化硅、磷硅酸盐玻璃(PSG)、硼磷硅酸盐玻璃(BPSG)、未掺杂的硅酸盐玻璃(USG)、氟化硅酸盐玻璃(FSG)、类似材料、前述的多层或前述的组合,并且可通过化学气相沉积(CVD),例如等离子增强化学气相沉积(PECVD),形成金属间介电层310。An IMD layer 310 is formed on the ILD layer 306 . In some embodiments, the material of the intermetal dielectric layer 310 may include or be silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon carbonitride, silicon oxycarbide, phosphosilicate glass (PSG), Borophosphosilicate glass (BPSG), undoped silicate glass (USG), fluorinated silicate glass (FSG), similar materials, multiple layers of the foregoing, or combinations of the foregoing, and may be deposited by chemical vapor (CVD), such as plasma enhanced chemical vapor deposition (PECVD), to form the IMD layer 310 .

金属线312和引线孔314形成于金属间介电层310中且电连接接触件308。尽管图3A显示一层的金属间介电层310和其中的金属线312和引线孔314,然而在其他实施例中,可形成多层的金属间介电层310和位于每一层金属间介电层310中的金属线312和引线孔314。在一些实施例中,金属线312和引线孔314的材料可包含或者是导电材料,例如;钨(W)、镍(Ni)、钛(Ti)、钽(Ta)、铝(Al)、铜(Cu)、氮化钛(TiN)、氮化钽(TaN)、类似材料、前述的多层或前述的组合,并且可通过单镶嵌(single damascene)或双镶嵌(dual damascene)工艺形成金属线312和引线孔314。Metal lines 312 and lead holes 314 are formed in the IMD layer 310 and electrically connect the contacts 308 . Although FIG. 3A shows a layer of intermetal dielectric layer 310 with metal lines 312 and lead holes 314 therein, in other embodiments, multiple layers of intermetal dielectric layer 310 and the intermetal dielectric layer located in each layer may be formed. Metal lines 312 and lead holes 314 in the electrical layer 310 . In some embodiments, the material of the metal line 312 and the lead hole 314 may include or be a conductive material, such as; tungsten (W), nickel (Ni), titanium (Ti), tantalum (Ta), aluminum (Al), copper (Cu), titanium nitride (TiN), tantalum nitride (TaN), similar materials, multiple layers of the foregoing, or combinations of the foregoing, and metal lines can be formed by a single damascene or dual damascene process 312 and lead hole 314.

继续参考图3A,在金属间介电层310之上形成磁阻材料层316。在一些实施例中,金属间介电层310与磁阻材料层316之间不存有含钽(Ta)的黏着层。在一些实施例中,磁阻材料层316可包含或者是镍铁(NiFe)、钴铁(CoFe)、钴铁硼(CoFeB)、铜(Cu)、铂锰(PtMn)、铱锰(IrMn)、钌(Ru)等类似材料、前述的多层、前述的组合、或其他适合用于构成异向性磁阻(AMR)或巨磁阻(GMR)的堆迭结构,并且可通过化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、类似方法或前述的组合,在金属间介电层310之上形成。Continuing to refer to FIG. 3A , a magnetoresistive material layer 316 is formed over the IMD layer 310 . In some embodiments, there is no adhesion layer containing tantalum (Ta) between the IMD layer 310 and the magnetoresistive material layer 316 . In some embodiments, the magnetoresistive material layer 316 may comprise or be nickel iron (NiFe), cobalt iron (CoFe), cobalt iron boron (CoFeB), copper (Cu), platinum manganese (PtMn), iridium manganese (IrMn) , ruthenium (Ru) and other similar materials, the aforementioned multilayers, combinations of the aforementioned, or other stacked structures suitable for forming anisotropic magnetoresistance (AMR) or giant magnetoresistance (GMR), and can be deposited by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), similar methods, or a combination of the foregoing, are formed on the IMD layer 310 .

请参考图3B,在磁阻材料层316上形成保护材料层318。在一些实施例中,保护材料层318的厚度可在约300A至约1500A的范围内。在一些实施例中,保护材料层318可包含或者是钛钨(TiW)、钛(Ti)、氮化钛(TiN)、类似材料或前述的组合,并且可通过物理气相沉积(PVD)、原子层沉积(ALD)、类似方法或前述的组合,形成保护材料层318。物理气相沉积(PVD)可以是溅射或脉冲激光沉积(PLD)。在一实施例中,保护材料层318包含钛钨(TiW),其中钛及钨的重量比例为约1:9。Referring to FIG. 3B , a protective material layer 318 is formed on the magnetoresistive material layer 316 . In some embodiments, the protective material layer 318 may have a thickness in the range of about 300A to about 1500A. In some embodiments, the protective material layer 318 may include or be titanium tungsten (TiW), titanium (Ti), titanium nitride (TiN), similar materials, or combinations thereof, and may be formed by physical vapor deposition (PVD), atomic Layer deposition (ALD), similar methods, or a combination of the foregoing, forms protective material layer 318 . Physical vapor deposition (PVD) can be sputtering or pulsed laser deposition (PLD). In one embodiment, the protective material layer 318 includes titanium tungsten (TiW), wherein the weight ratio of titanium and tungsten is about 1:9.

接着,对保护材料层318和磁阻材料层316执行第一图案化工艺350。请参考图3C,在第一图案化工艺350之后,保护材料层318和磁阻材料层316分别形成位于衬底302的感测区50B中的图案化保护层318'和图案化磁阻316'。Next, a first patterning process 350 is performed on the protective material layer 318 and the magnetoresistive material layer 316 . Referring to FIG. 3C, after the first patterning process 350, the protective material layer 318 and the magnetoresistive material layer 316 respectively form a patterned protective layer 318' and a patterned magnetoresistive layer 316' located in the sensing region 50B of the substrate 302. .

在一些实施例中,第一图案化工艺350的步骤包含在图3B所示的保护材料层318之上形成光刻胶图案化遮罩层(未显示),例如图案化光刻胶层或图案化硬遮罩层,对保护材料层318和磁阻材料层316一起执行干法腐蚀工艺,移除未被图案化遮罩层覆盖的保护材料层318和磁阻材料层316,以形成保护层318'和磁阻316',接着移除保护层318'之上的图案化遮罩层,例如通过灰化(ashing)工艺或剥除(strip)工艺。在一些实施例中,其中图案化遮罩层为图案化光刻胶层,可在腐蚀机内原位(in-situ)执行干法腐蚀工艺与灰化(ashing)工艺。在一些实施例中,第一图案化工艺350的干法腐蚀工艺可以是反应性离子腐蚀(reactive ion etch,RIE)、电子回旋共振式(electron cyclotron resonance,ERC)腐蚀、感应耦合式等离子(inductively-coupled plasma,ICP)腐蚀、中子束腐蚀(neutralbeam etch,NBE)、离子束腐蚀(ion bean etch,IBE)类似干法腐蚀工艺或前述离子腐蚀(reactive ion etch,RIE)的组合。In some embodiments, the step of the first patterning process 350 includes forming a photoresist patterned mask layer (not shown), such as a patterned photoresist layer or pattern, over the protective material layer 318 shown in FIG. 3B harden the mask layer, perform a dry etching process on the protective material layer 318 and the magnetoresistive material layer 316 together, remove the protective material layer 318 and the magnetoresistive material layer 316 not covered by the patterned mask layer, to form a protective layer 318 ′ and the magnetoresistor 316 ′, and then remove the patterned mask layer on the passivation layer 318 ′, such as by an ashing process or a stripping process. In some embodiments, where the patterned mask layer is a patterned photoresist layer, the dry etching process and the ashing process may be performed in-situ in an etcher. In some embodiments, the dry etching process of the first patterning process 350 may be reactive ion etch (reactive ion etch, RIE), electron cyclotron resonance (electron cyclotron resonance, ERC) etching, inductively coupled plasma (inductively -coupled plasma (ICP) etching, neutron beam etching (neutral beam etch, NBE), ion beam etching (ion bean etch, IBE) similar to dry etching processes or a combination of the aforementioned reactive ion etching (RIE).

在一些实施例中,为了完全移除未被图案化遮罩层覆盖部分的保护材料层318和磁阻材料层316,干法腐蚀工艺会或过腐蚀金属间介电层310至深度D1,如图3C所示。In some embodiments, in order to completely remove the protective material layer 318 and the magnetoresistive material layer 316 not covered by the patterned mask layer, the dry etching process will or over-etch the intermetal dielectric layer 310 to a depth D1, such as Figure 3C.

请参考图3D,在金属间介电层310之上形成第一阻挡材料层320,以覆盖保护层318'和磁阻316'。第一阻挡层320用以阻挡来自引线孔314材料的钨(W)原子扩散至后续形成在上方的金属材料层322(例如,铝铜(AlCu)合金)中。第一阻挡材料层320的厚度可在约250A至约750A的范围内。在一些实施例中,第一阻挡材料层320可包含或者是氮化钛(TiN)、钛(Ti)、氮化钽(TiN)、钽(Ta)、类似材料或前述的组合,并且可通过物理气相沉积(PVD)、原子层沉积(ALD)、类似方法或前述的组合,形成第一阻挡材料层320。物理气相沉积(PVD)可以是溅射或脉冲激光沉积(PLD)。Referring to FIG. 3D , a first barrier material layer 320 is formed on the IMD layer 310 to cover the passivation layer 318 ′ and the magnetoresistor 316 ′. The first barrier layer 320 is used to prevent tungsten (W) atoms from the material of the lead hole 314 from diffusing into the subsequently formed metal material layer 322 (eg, aluminum copper (AlCu) alloy). The thickness of the first barrier material layer 320 may range from about 250A to about 750A. In some embodiments, the first barrier material layer 320 may comprise or be titanium nitride (TiN), titanium (Ti), tantalum nitride (TiN), tantalum (Ta), similar materials, or combinations thereof, and may be passed through The first barrier material layer 320 is formed by physical vapor deposition (PVD), atomic layer deposition (ALD), similar methods or a combination thereof. Physical vapor deposition (PVD) can be sputtering or pulsed laser deposition (PLD).

接着,在第一阻挡材料层320之上形成金属材料层322。在一些实施例中,金属材料层322的厚度可在约3000A至约8000A的范围内。在一些实施例中,金属材料层322可包含或者是铝铜(AlCu)、铝硅铜(AlSiCu)或类似材料,并且可通过物理气相沉积(PVD)、原子层沉积(ALD)、电镀(electroplating)、类似方法或前述的组合形成金属材料322。物理气相沉积(PVD)可以是溅射或脉冲激光沉积(PLD)。Next, a metal material layer 322 is formed on the first barrier material layer 320 . In some embodiments, the thickness of the metallic material layer 322 may range from about 3000A to about 8000A. In some embodiments, the metal material layer 322 may include or be aluminum copper (AlCu), aluminum silicon copper (AlSiCu) or similar materials, and may be formed by physical vapor deposition (PVD), atomic layer deposition (ALD), electroplating (electroplating) ), a similar method or a combination of the foregoing to form the metal material 322. Physical vapor deposition (PVD) can be sputtering or pulsed laser deposition (PLD).

接着,在金属材料层322之上形成第二阻挡材料层324。第二阻挡材料层324用以防止金属材料层322氧化。在一些实施例中,第二阻挡材料层324的厚度可在约500A至约1000A的范围内。在一些实施例中,第二阻挡材料层324可包含或者是氮化钛(TiN)、钛(Ti)、氮化钽(TiN)、钽(Ta)、类似材料或前述的组合,并且可通过化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、类似方法或前述的组合,形成第二阻挡材料层324。物理气相沉积(PVD)可以是溅射或脉冲激光沉积(PLD)。第二阻挡材料层324的材料可与第一阻挡材料层320的材料相同或不同。Next, a second barrier material layer 324 is formed on the metal material layer 322 . The second barrier material layer 324 is used to prevent the metal material layer 322 from being oxidized. In some embodiments, the thickness of the second barrier material layer 324 may range from about 500A to about 1000A. In some embodiments, the second barrier material layer 324 may comprise or be titanium nitride (TiN), titanium (Ti), tantalum nitride (TiN), tantalum (Ta), similar materials, or combinations thereof, and may be formed by The second barrier material layer 324 is formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), similar methods or a combination thereof. Physical vapor deposition (PVD) can be sputtering or pulsed laser deposition (PLD). The material of the second barrier material layer 324 may be the same as or different from that of the first barrier material layer 320 .

接着,在第二阻挡材料层324之上形成抗反射涂层326。在一些实施例中,抗反射涂层326的厚度可在约250A至约500A的范围内。在一些实施例中,抗反射涂层326的材料可包含或者是氧化硅(SiO2)、氮化硅(SiN)、氮氧化硅(SiON)、碳化硅(SiC)、碳氮化硅(SiCN)、氧碳化硅(SiOC)、类似材料或前述的组合,并且可通过化学气相沉积(CVD),例如等离子增强化学气相沉积(PECVD),形成抗反射涂层326。Next, an anti-reflective coating 326 is formed over the second barrier material layer 324 . In some embodiments, the thickness of the antireflective coating 326 may range from about 250A to about 500A. In some embodiments, the material of the anti-reflective coating 326 may include or be silicon oxide (SiO 2 ), silicon nitride (SiN), silicon oxynitride (SiON), silicon carbide (SiC), silicon carbonitride (SiCN ), silicon oxycarbide (SiOC), similar materials, or combinations thereof, and the antireflective coating 326 may be formed by chemical vapor deposition (CVD), such as plasma enhanced chemical vapor deposition (PECVD).

在图3D的实施例中,因为无使用黏着材料层,例如钽(Ta),因此形成抗反射涂层326的化学气相沉积(CVD)可执行于高温例如约300℃至约400℃的温度的范围内。使用较高温度执行的化学气相沉积(CVD)来形成抗反射涂层326,不仅导致较高沉积速率和较佳的厚度均匀度,并且有着较少的不期望颗粒(particle)表现,进而提升磁阻装置的生产效率和生产良品率。In the embodiment of FIG. 3D, since no adhesive material layer, such as tantalum (Ta), is used, the chemical vapor deposition (CVD) to form the anti-reflective coating 326 may be performed at a high temperature, such as a temperature of about 300° C. to about 400° C. within range. Using chemical vapor deposition (CVD) performed at a higher temperature to form the anti-reflective coating 326 not only results in a higher deposition rate and better thickness uniformity, but also has less undesirable particle performance, thereby improving magnetic properties. The production efficiency and production yield of the resistance device.

接着,对抗反射涂层326、第二阻挡材料层324、金属材料层322和第一阻挡材料层320层执行第二图案化工艺360以形成第一导电结构328A与第一导电结构328B。以下,详细说明第二图案化工艺360。Next, a second patterning process 360 is performed on the antireflection coating 326 , the second barrier material layer 324 , the metal material layer 322 and the first barrier material layer 320 to form the first conductive structure 328A and the first conductive structure 328B. Hereinafter, the second patterning process 360 will be described in detail.

请参考图3E,第二图案化工艺360的步骤包含在抗反射涂层326上形成图案化光刻胶层327。Referring to FIG. 3E , the step of the second patterning process 360 includes forming a patterned photoresist layer 327 on the anti-reflection coating 326 .

第二图案化工艺360的步骤还包含对抗反射涂层326、第二阻挡材料层324、金属材料层322和第一阻挡材料层320一起执行干法腐蚀工艺,移除未被图案化光刻胶层327覆盖的抗反射涂层326、第二阻挡材料层324、金属材料层322和第一阻挡材料层320。在一些实施例中,第二图案化工艺360的干法腐蚀工艺可以是反应性离子腐蚀(RIE)、电子回旋共振式(ERC)腐蚀、感应耦合式等离子(ICP)腐蚀、中子束腐蚀(NBE)、类似干法腐蚀工艺、或前述的阻合。在第二图案化工艺360的干法腐蚀工艺期间,保护层318'作用为保护下方的磁阻316'以避免受到干法腐蚀的损伤。The step of the second patterning process 360 also includes performing a dry etching process together with the antireflection coating 326, the second barrier material layer 324, the metal material layer 322 and the first barrier material layer 320 to remove the unpatterned photoresist Layer 327 covers antireflective coating 326 , second barrier material layer 324 , metallic material layer 322 and first barrier material layer 320 . In some embodiments, the dry etching process of the second patterning process 360 may be reactive ion etching (RIE), electron cyclotron resonance (ERC) etching, inductively coupled plasma (ICP) etching, neutron beam etching ( NBE), a similar dry etching process, or the aforementioned resistance. During the dry etching process of the second patterning process 360, the protection layer 318' functions to protect the underlying magnetoresistor 316' from being damaged by the dry etching.

在一些实施例中,例如保护层318'为钛钨(TiW)、第一、第二阻挡材料层320、324为氮化钛(TiN)、金属材料层322为铝铜(AlCu)合金、抗反射涂层326为氮化硅。因为保护层318'的钛钨(TiW)腐蚀速率低于第一阻挡材料层320的氮化钛(TiN)腐蚀速率,使保护层318'的钛钨(TiW)对第一阻挡材料层320的氮化钛(TiN)具有高腐蚀选择比约4至10倍的范围内。因此,第二图案化工艺360的腐蚀工艺一般采用终点模式(endpoint mode)检测对于金属材料层322的腐蚀完成,然后采用时间模式(time mode)进行第一阻挡材料层320的腐蚀,利用保护层318'的钛钨(TiW)对第一阻挡材料层320的氮化钛(TiN)高腐蚀选择比保护下方的磁阻316',避免磁阻316'受到腐蚀损害。In some embodiments, for example, the protective layer 318' is titanium tungsten (TiW), the first and second barrier material layers 320, 324 are titanium nitride (TiN), the metal material layer 322 is aluminum copper (AlCu) alloy, anti- Reflective coating 326 is silicon nitride. Because the corrosion rate of titanium tungsten (TiW) of the protection layer 318' is lower than the corrosion rate of titanium nitride (TiN) of the first barrier material layer 320, the titanium tungsten (TiW) of the protection layer 318' has an effect on the corrosion rate of the first barrier material layer 320 Titanium nitride (TiN) has a high etch selectivity in the range of about 4 to 10 times. Therefore, the etching process of the second patterning process 360 generally adopts the endpoint mode (endpoint mode) to detect the completion of the corrosion of the metal material layer 322, and then adopts the time mode (time mode) to perform the etching of the first barrier material layer 320, using the protective layer The high corrosion selectivity of titanium tungsten (TiW) of 318 ′ to titanium nitride (TiN) of the first barrier material layer 320 protects the underlying magnetoresistor 316 ′, preventing the magnetoresistor 316 ′ from being corroded.

在一些实施例中,例如保护层318'为氮化钛(TiN)、第一、第二阻挡材料层320、324为氮化钛(TiN)、金属材料层322为铝铜(AlCu)合金、抗反射涂层326为氮化硅。因为保护层318'腐蚀速率与第一阻挡材料层320的腐蚀速率相同,故在此实施例中,可使保护层318'的氮化钛(TiN)具有较厚的厚度,例如为第一阻挡材料层厚度的2至3倍范围内,以确保在第一阻挡材料层320腐蚀完全后,保护层318'仍有残留足够厚度可避免腐蚀损伤到磁阻316'。In some embodiments, for example, the protection layer 318' is titanium nitride (TiN), the first and second barrier material layers 320, 324 are titanium nitride (TiN), the metal material layer 322 is aluminum copper (AlCu) alloy, Anti-reflective coating 326 is silicon nitride. Because the corrosion rate of the protective layer 318' is the same as that of the first barrier material layer 320, in this embodiment, the titanium nitride (TiN) of the protective layer 318' can be made thicker, for example, as the first barrier material layer 320. The thickness of the material layer is in the range of 2 to 3 times, so as to ensure that after the first barrier material layer 320 is corroded completely, the protective layer 318 ′ still has enough thickness to avoid corrosion damage to the magnetoresistor 316 ′.

请参考图3F,在第二图案化工艺360的干法腐蚀工艺之后,形成第一导电结构328A位于感测区50B,第一导电结构328A包含图案化抗反射涂层326A、图案化上阻挡层324A、图案化金属层322A和图案化下阻挡层320'于部分的保护层318'之上。Please refer to FIG. 3F, after the dry etching process of the second patterning process 360, a first conductive structure 328A is formed in the sensing region 50B, the first conductive structure 328A includes a patterned anti-reflection coating 326A, a patterned upper barrier layer 324A, the patterned metal layer 322A and the patterned lower barrier layer 320' are on a portion of the passivation layer 318'.

此外,在第二图案化工艺360的干法腐蚀工艺之后,形成第二导电结构328B位于装置区50A,第二导电结构328B包含图案化抗反射涂层326B、图案化上阻挡层324B、图案化金属层322B和图案化下阻挡层320B于金属间介电层310之上。其中下阻挡层320B与金属间介电层310中的引线孔314接触并且电连接。再者,第二导电结构328B延伸至感测区50B部分覆盖保护层318'和磁阻316',以与磁阻316'形成电连接。In addition, after the dry etching process of the second patterning process 360, a second conductive structure 328B is formed in the device region 50A, and the second conductive structure 328B includes a patterned anti-reflective coating 326B, a patterned upper barrier layer 324B, a patterned The metal layer 322B and the patterned lower barrier layer 320B are on the IMD layer 310 . The lower barrier layer 320B is in contact with and electrically connected to the lead hole 314 in the intermetal dielectric layer 310 . Moreover, the second conductive structure 328B extends to the sensing region 50B to partially cover the protective layer 318 ′ and the magnetoresistor 316 ′, so as to form an electrical connection with the magnetoresistor 316 ′.

在第二图案化工艺360的干法腐蚀工艺之后,保护层318'仍完全覆盖磁阻316'的上表面,如图3F所示。After the dry etching process of the second patterning process 360 , the protective layer 318 ′ still completely covers the upper surface of the magnetoresistor 316 ′, as shown in FIG. 3F .

第二图案化工艺360的步骤还包含移除图案化光刻胶层327,例如通过灰化(ashing)工艺,如图3G所示。在一些实施例中,可在干法腐蚀机台内原位(in-situ)执行第二图案化工艺360的腐蚀工艺与灰化工艺。The step of the second patterning process 360 also includes removing the patterned photoresist layer 327 , such as by an ashing process, as shown in FIG. 3G . In some embodiments, the etching process and the ashing process of the second patterning process 360 may be performed in-situ in a dry etching tool.

值得注意的是,在第一图案化工艺350的腐蚀工艺之后,保护层318'对于磁阻316'的应力(stress)已经释放,且只有形成在磁阻316'上,未覆盖其他区域(例如,金属间介电层310的上表面)。再者,经过第二图案化工艺360形成第一导电结构328A与第二导电结构328B后,导电结构对于保护层318'的应力(stress)已经释放。因此,不会发生如图1A-图1D的范例所述的保护层318'从磁阻316'的图案边缘裂开而造成磁阻316'的图案边缘发生局部剥离(peel)的问题。It should be noted that after the etching process of the first patterning process 350, the stress of the protection layer 318' on the magnetoresistor 316' has been released, and it is only formed on the magnetoresistor 316' without covering other areas (such as , the upper surface of the intermetal dielectric layer 310). Moreover, after the first conductive structure 328A and the second conductive structure 328B are formed through the second patterning process 360 , the stress of the conductive structures on the protection layer 318 ′ has been released. Therefore, the problem of partial peeling of the pattern edge of the magnetoresistor 316 ′ caused by the protection layer 318 ′ being cracked from the pattern edge of the magnetoresistor 316 ′ as described in the example of FIGS. 1A-1D does not occur.

在第二图案化工艺360之后,接着将磁阻316'上保护层318'未被第一导电结构328A与第二导电结构328B覆盖的部分去除,留下保护层318'A和318'B(也可称为剩余部分318'A和318'B),请参考图3H。在一些实施例中,此去除可以通过湿法腐蚀工艺来执行。After the second patterning process 360, the portion of the protective layer 318' on the magnetoresistor 316' that is not covered by the first conductive structure 328A and the second conductive structure 328B is removed, leaving the protective layers 318'A and 318'B ( Also referred to as remaining portions 318'A and 318'B), please refer to FIG. 3H. In some embodiments, this removal may be performed by a wet etch process.

在一些实施例中,例如使用钛钨(TiW)或氮化钛(TiN)为保护层318',并湿法腐蚀工艺的腐蚀剂可使用含过氧化氢(H2O2)的溶液,这可避免伤害磁阻316'。保护层318'经湿法腐蚀工艺后形成保护层318'A和318'B,并由于湿法腐蚀工艺是等向性的(isotropic),所以会形成具有侧向侧蚀内缩距离S的凹陷319。In some embodiments, for example, titanium tungsten (TiW) or titanium nitride (TiN) is used as the protective layer 318 ′, and the etchant of the wet etching process can use a solution containing hydrogen peroxide (H 2 O 2 ), which can Avoid damaging the reluctance 316'. The protection layer 318' is subjected to a wet etching process to form the protection layers 318'A and 318'B, and since the wet etching process is isotropic, a depression with a lateral side etching retraction distance S will be formed. 319.

参考图3I,在金属间介电层310之上形成钝化层330。钝化层330覆盖第一和第二图案化导电结构328A和328B与磁阻316'。在一些实施例中,钝化层330的材料可包含或者是氧化硅、氮化硅、氮氧化硅、类似材料或前述的组合,并且可通过化学气相沉积(CVD),或例如等离子增强化学气相沉积(PECVD)以形成钝化层330。之后,腐蚀钝化层330于第二图案化导电结构328B上形成开口332,便完成磁阻装置300的制作。Referring to FIG. 3I , a passivation layer 330 is formed over the intermetal dielectric layer 310 . A passivation layer 330 covers the first and second patterned conductive structures 328A and 328B and the magnetoresistor 316'. In some embodiments, the material of the passivation layer 330 may include or be silicon oxide, silicon nitride, silicon oxynitride, similar materials, or combinations thereof, and may be deposited by chemical vapor deposition (CVD), or, for example, plasma-enhanced chemical vapor deposition. deposition (PECVD) to form passivation layer 330 . Afterwards, the passivation layer 330 is etched to form an opening 332 on the second patterned conductive structure 328B, and the fabrication of the magnetoresistive device 300 is completed.

在图3A-图3I的实施例中,因磁阻316'与金属间介电层310之间并无钽(Ta)的黏着层。因此,形成钝化层330的化学气相沉积(CVD)可执行于较高的温度,例如约400℃至约450℃的温度的范围内。使用较高温度执行的化学气相沉积来形成钝化层330,不仅得致较高沉积速率和较佳的厚度均匀度,并且有着较少的不期望颗粒(particle)表现,进而提升磁阻装置的生产效率和生产良品率。In the embodiment of FIGS. 3A-3I , there is no adhesion layer of tantalum (Ta) between the magnetoresistor 316 ′ and the IMD layer 310 . Accordingly, chemical vapor deposition (CVD) to form the passivation layer 330 may be performed at a higher temperature, for example, within a temperature range of about 400°C to about 450°C. The use of higher temperature chemical vapor deposition to form the passivation layer 330 not only results in a higher deposition rate and better thickness uniformity, but also has fewer undesirable particles, thereby improving the performance of the magnetoresistive device. Production efficiency and production yield.

再者,于完成钝层开口332之后,或可对磁阻装置300执行高温退火,例如退火温度在350℃至约450℃范围内的温度,以改善磁阻316'的特性,例如包含提高磁阻比(MR%)与降低片电阻(Rsq)。Moreover, after the passivation layer opening 332 is completed, high temperature annealing may be performed on the magnetoresistive device 300, for example, the annealing temperature is in the range of 350° C. Resistance ratio (MR%) and reduced sheet resistance (Rsq).

在本发明实施例中,磁阻装置300包含设置于衬底302之上的金属间介电层310、磁阻316'、保护层318'A、以及第一导电结构328A。磁阻316'设置于衬底302的感测区50B中且在金属间介电层310之上。保护层318'A形成于部分磁阻316'之上。第一导电结构328A设置于保护层318'A之上。第一导电结构328A用以改变于相邻的第一导电结构328A之间流通于磁阻316'的电流方向,使磁阻值对于外加磁场的变化呈线性反应。尽管在图3I显示两个第一导电结构328A形成于磁阻316'之上,但第一导电结构328A的数量可基于设计需求调整,而不限于图示实施例。In the embodiment of the present invention, the magnetoresistive device 300 includes an intermetallic dielectric layer 310 disposed on the substrate 302 , a magnetoresistor 316 ′, a protection layer 318 ′A, and a first conductive structure 328A. The magnetoresistor 316 ′ is disposed in the sensing region 50B of the substrate 302 and above the IMD layer 310 . A passivation layer 318'A is formed over a portion of the magnetoresistor 316'. The first conductive structure 328A is disposed on the passivation layer 318'A. The first conductive structure 328A is used to change the direction of the current flowing through the magnetic resistance 316 ′ between the adjacent first conductive structures 328A, so that the magnetic resistance value responds linearly to the change of the applied magnetic field. Although it is shown in FIG. 3I that two first conductive structures 328A are formed on the magnetoresistor 316 ′, the number of the first conductive structures 328A can be adjusted based on design requirements, and is not limited to the illustrated embodiment.

在一些实施例中,第一图案化导电结构328A包含依序堆迭于保护层318'A之上的下阻挡层320A、金属层322A、上阻挡层324A和抗反射涂层326A。In some embodiments, the first patterned conductive structure 328A includes a lower barrier layer 320A, a metal layer 322A, an upper barrier layer 324A, and an anti-reflection coating 326A stacked on the passivation layer 318 ′A in sequence.

在一些实施例中,磁阻装置300还包含第二导电结构328B,其与第一导电结构328A横向隔开且设置于衬底302的装置区50A中。第二导电结构328B更延伸至感测区50B覆盖保护层318'B和磁阻316'的边缘,且与磁阻316'形成电连接。第二图案化导电结构328B包含依序堆迭于金属间介电层310之上的下阻挡层320B、金属层322B、上阻挡层324B和抗反射涂层326B。再者,金属间介电层310中的引线孔314接触且电连接至第二导电结构328B的下阻挡层320B。In some embodiments, the magnetoresistive device 300 further includes a second conductive structure 328B laterally spaced from the first conductive structure 328A and disposed in the device region 50A of the substrate 302 . The second conductive structure 328B further extends to the sensing region 50B to cover the protective layer 318 ′B and the edge of the magnetoresistor 316 ′, and forms an electrical connection with the magnetoresistor 316 ′. The second patterned conductive structure 328B includes a lower barrier layer 320B, a metal layer 322B, an upper barrier layer 324B and an anti-reflection coating 326B stacked on the IMD layer 310 in sequence. Moreover, the lead hole 314 in the IMD layer 310 contacts and is electrically connected to the lower barrier layer 320B of the second conductive structure 328B.

在一些实施例中,其中引线孔314的材料是钨(W),而下阻挡层320B的材料是氮化钽(TiN)。氮化钽(TiN)相较于其他材料(例如,钛钨(TiW))具有对钨原子较佳的阻挡能力。因此,氮化钽(TiN)下阻挡层320B可较佳地避免钨原子扩散至上方的金属层322B,以提升磁阻装置300的可靠性。In some embodiments, the material of the lead hole 314 is tungsten (W), and the material of the lower barrier layer 320B is tantalum nitride (TiN). Compared with other materials such as titanium tungsten (TiW), tantalum nitride (TiN) has a better blocking ability for tungsten atoms. Therefore, the tantalum nitride (TiN) lower barrier layer 320B can preferably prevent the tungsten atoms from diffusing to the upper metal layer 322B, so as to improve the reliability of the magnetoresistive device 300 .

综上所述,本发明实施例利用在磁阻材料层上形成保护材料层,接着将磁阻材料层和保护材料层一起图案化,保护层只有形成在磁阻上,未覆盖其他区域(例如,金属间介电层310的表面)。因此,在后续的工艺中,保护层不再会从磁阻的图案边缘裂开,这避免了磁阻的图案边缘发生局部剥离(peel)的问题,进而提升磁阻装置的制造良品率。In summary, the embodiments of the present invention utilize the formation of a protective material layer on the magnetoresistive material layer, and then pattern the magnetoresistive material layer and the protective material layer together. The protective layer is only formed on the magnetoresistive material layer and does not cover other areas (such as , the surface of the intermetal dielectric layer 310). Therefore, in the subsequent process, the protective layer will no longer be cracked from the edge of the magnetoresistive pattern, which avoids the problem of local peeling (peel) at the edge of the magnetoresistive pattern, thereby improving the manufacturing yield of the magnetoresistive device.

此外,在一些实施例中,由于磁阻与金属间介电层之间不存有含钽的黏着层,所以工艺温度不会被限制于300℃以下。使用较高温度执行的化学气相沉积不仅导致较高薄膜沉积速率和较佳的厚度均匀度,并且有着较少的不期望颗粒(particle)表现,进而提升磁阻装置的生产效率和生产良品率。再者,在形成磁阻装置之后,可对磁阻装置进行高温退火,进一步提升磁阻的特性。Furthermore, in some embodiments, the process temperature is not limited below 300° C. due to the absence of a tantalum-containing adhesion layer between the magnetoresistor and the IMD layer. Chemical vapor deposition performed at a higher temperature not only results in a higher film deposition rate and better thickness uniformity, but also has fewer undesirable particles, thereby improving the production efficiency and production yield of the magnetoresistive device. Furthermore, after forming the magnetoresistive device, high-temperature annealing can be performed on the magnetoresistive device to further improve the characteristics of the magnetoresistance.

以上概述数个实施例,以便在本发明所属技术领域中技术人员可以更理解本发明实施例的观点。在本发明所属技术领域中技术人员应该理解,他们能以本发明实施例为基础,设计或修改其他工艺和结构,以达到与在此介绍的实施例相同的目的及/或优势。在本发明所属技术领域中技术人员也应该理解到,此类等效的工艺和结构并无悖离本发明的精神与范围,且他们能在不违背本发明的精神和范围之下,做各式各样的改变、取代和替换。Several embodiments are summarized above, so that those skilled in the art to which the present invention belongs can better understand the viewpoints of the embodiments of the present invention. Those skilled in the technical field of the present invention should understand that they can design or modify other processes and structures based on the embodiments of the present invention, so as to achieve the same purpose and/or advantages as the embodiments introduced here. Those skilled in the technical field of the present invention should also understand that such equivalent processes and structures do not depart from the spirit and scope of the present invention, and they can make various modifications without departing from the spirit and scope of the present invention. Various changes, substitutions and substitutions.

Claims (17)

1.一种磁阻装置,其特征在于,包括:1. A magnetic resistance device, characterized in that, comprising: 一磁阻,设置于一衬底之上;a magnetoresistor disposed on a substrate; 一保护层,形成于部分的该磁阻之上;以及a protective layer formed over a portion of the magnetoresistance; and 一第一导电结构,设置于该保护层之上,该第一导电结构包括:A first conductive structure, disposed on the protective layer, the first conductive structure includes: 一下阻挡层的第一部分和设置于该下阻挡层的该第一部分上的一金属层的一第一部分;以及a first portion of the lower barrier layer and a first portion of a metal layer disposed on the first portion of the lower barrier layer; and 一第二导电结构,设置于该衬底之上,并部分覆盖该磁阻,该第二导电结构包括:A second conductive structure is disposed on the substrate and partially covers the magnetoresistor, the second conductive structure includes: 该下阻挡层的一第二部分和设置于该下阻挡层的该第二部分上的该金属层的一第二部分;以及a second portion of the lower barrier layer and a second portion of the metal layer disposed on the second portion of the lower barrier layer; and 一金属间介电层,设置该衬底之上,其中该磁阻与该第二导电结构设置于该金属间介电层之上,且该金属间介电层中的一引线孔与该第二导电结构电连接。An intermetallic dielectric layer disposed on the substrate, wherein the magnetic resistance and the second conductive structure are disposed on the intermetallic dielectric layer, and a lead hole in the intermetallic dielectric layer is connected to the first The two conductive structures are electrically connected. 2.如权利要求1所述的磁阻装置,其特征在于,该保护层的材料包含钛钨TiW、钛Ti或氮化钛TiN。2 . The magnetoresistive device according to claim 1 , wherein the protection layer is made of titanium tungsten (TiW), titanium Ti or titanium nitride TiN. 3.如权利要求1所述的磁阻装置,其特征在于,该下阻挡层的材料包含氮化钛TiN、钛Ti、氮化钽TaN或钽Ta。3. The magnetoresistive device as claimed in claim 1, wherein the material of the lower barrier layer comprises titanium nitride TiN, titanium Ti, tantalum nitride TaN or tantalum Ta. 4.如权利要求1所述的磁阻装置,其特征在于,该保护层更设置于该第二导电结构与该磁阻之间。4. The magnetoresistive device according to claim 1, wherein the protection layer is further disposed between the second conductive structure and the magnetoresistor. 5.如权利要求1所述的磁阻装置,其特征在于,该第一导电结构更包括:5. The magnetoresistive device according to claim 1, wherein the first conductive structure further comprises: 一上阻挡层和一抗反射涂层,依序堆迭于该第一导电结构的该金属层之上。An upper barrier layer and an anti-reflection coating are sequentially stacked on the metal layer of the first conductive structure. 6.如权利要求1所述的磁阻装置,其特征在于,该第二导电结构更包括:6. The magnetoresistive device according to claim 1, wherein the second conductive structure further comprises: 一上阻挡层和一抗反射涂层,依序堆迭于该第二导电结构的该金属层之上。An upper barrier layer and an anti-reflection coating are sequentially stacked on the metal layer of the second conductive structure. 7.一种磁阻装置的形成方法,其特征在于,包括:7. A method for forming a magnetoresistive device, comprising: 在一衬底之上依序形成一磁阻材料层和一保护材料层;sequentially forming a magnetoresistive material layer and a protective material layer on a substrate; 对该保护材料层和该磁阻材料层执行一第一图案化工艺,以分别形成一保护层和一磁阻;performing a first patterning process on the protective material layer and the magnetoresistive material layer to respectively form a protective layer and a magnetoresistance; 在该衬底上依序形成一第一阻挡材料层和一金属材料层,以覆盖该保护层和该磁阻;sequentially forming a first barrier material layer and a metal material layer on the substrate to cover the protection layer and the magnetoresistance; 对该金属材料层和该第一阻挡材料层执行一第二图案化工艺,以分别形成在该保护层之上的一第一导电结构的一金属层和一下阻挡层,其中在该第二图案化工艺期间,该保护层保护底下的该磁阻;以及performing a second patterning process on the metal material layer and the first barrier material layer to respectively form a metal layer and a lower barrier layer of a first conductive structure on the protection layer, wherein the second pattern During the oxidation process, the protective layer protects the underlying magnetoresistance; and 对该保护层执行一湿法腐蚀工艺,移除该保护层未被该第一导电结构覆盖的部分。A wet etching process is performed on the passivation layer to remove the portion of the passivation layer not covered by the first conductive structure. 8.如权利要求7所述的磁阻装置的形成方法,其特征在于,该第一图案化工艺包含对该保护材料层与该磁阻材料层一起执行的一干法腐蚀。8 . The method for forming a magnetoresistive device according to claim 7 , wherein the first patterning process comprises performing a dry etching on the protective material layer and the magnetoresistive material layer. 9.如权利要求7所述的磁阻装置的形成方法,其特征在于,该保护材料层包含钛钨TiW、钛Ti或氮化钛TiN。9. The method for forming a magnetoresistive device according to claim 7, wherein the protective material layer comprises titanium tungsten TiW, titanium Ti or titanium nitride TiN. 10.如权利要求7所述的磁阻装置的形成方法,其特征在于,该湿法腐蚀工艺使用的腐蚀剂为含过氧化氢H2O2的溶液。10 . The method for forming a magnetoresistive device according to claim 7 , wherein the etchant used in the wet etching process is a solution containing hydrogen peroxide H 2 O 2 . 11.如权利要求7所述的磁阻装置的形成方法,其特征在于,该第一阻挡材料层包含氮化钛TiN、钛Ti、氮化钽TaN或钽Ta。11. The method for forming a magnetoresistive device according to claim 7, wherein the first barrier material layer comprises titanium nitride TiN, titanium Ti, tantalum nitride TaN or tantalum Ta. 12.如权利要求7所述的磁阻装置的形成方法,其特征在于,该金属材料层包含铝铜AlCu合金、铝Al或铝硅铜AlCuSi合金。12 . The method for forming a magnetoresistive device according to claim 7 , wherein the metal material layer comprises aluminum-copper-AlCu alloy, aluminum-Al or aluminum-silicon-copper-AlCuSi alloy. 13.如权利要求7所述的磁阻装置的形成方法,其特征在于,更包括:13. The method for forming a magnetoresistive device according to claim 7, further comprising: 在该金属材料层之上依序形成一第二阻挡材料层和一抗反射涂层;sequentially forming a second barrier material layer and an anti-reflective coating layer on the metal material layer; 其中该第二阻挡材料层包含氮化钛TiN、钛Ti、氮化钽TaN或钽Ta;Wherein the second barrier material layer comprises titanium nitride TiN, titanium Ti, tantalum nitride TaN or tantalum Ta; 其中该抗反射涂层包含氮化硅SiN或氮氧化硅SiON;Wherein the anti-reflection coating comprises silicon nitride SiN or silicon oxynitride SiON; 其中该第二图案化工艺更执行于该第二阻挡材料层和该抗反射涂层,以分别形成该第一导电结构的一上阻挡层和一抗反射涂层。Wherein the second patterning process is further performed on the second barrier material layer and the anti-reflection coating to respectively form an upper barrier layer and an anti-reflection coating of the first conductive structure. 14.如权利要求7所述的磁阻装置的形成方法,其特征在于,更包括:14. The method for forming a magnetoresistive device according to claim 7, further comprising: 在形成该磁阻材料层之前,在该衬底之上形成一金属间介电层,其中该磁阻材料层形成于该金属间介电层之上。Before forming the magnetoresistance material layer, an intermetal dielectric layer is formed on the substrate, wherein the magnetoresistance material layer is formed on the intermetal dielectric layer. 15.如权利要求14所述的磁阻装置的形成方法,其特征在于,在该第二图案化工艺之后,该金属材料层和该第一阻挡材料层更分别形成于该金属间介电层之上的一第二导电结构的该金属层和该下阻挡层;15. The method for forming a magnetoresistive device according to claim 14, wherein after the second patterning process, the metal material layer and the first barrier material layer are further respectively formed on the intermetal dielectric layer the metal layer and the lower barrier layer of a second conductive structure above; 其中该第二导电结构有部分覆盖该保护层上。Wherein the second conductive structure partially covers the protection layer. 16.如权利要求15所述的磁阻装置的形成方法,其特征在于,在该湿法腐蚀工艺之后,留下该保护层被该第二导电结构覆盖的部分未移除。16 . The method for forming a magnetoresistive device as claimed in claim 15 , wherein after the wet etching process, the portion of the protection layer covered by the second conductive structure remains unremoved. 17.如权利要求15所述的磁阻装置的形成方法,其特征在于,该金属间介电层中的一引线孔与该第二导电结构的该下阻挡层电连接。17. The method for forming a magnetoresistive device as claimed in claim 15, wherein a lead hole in the intermetal dielectric layer is electrically connected to the lower barrier layer of the second conductive structure.
CN201810936272.0A 2018-08-16 2018-08-16 Magnetoresistive device and method of forming same Active CN110838541B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810936272.0A CN110838541B (en) 2018-08-16 2018-08-16 Magnetoresistive device and method of forming same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810936272.0A CN110838541B (en) 2018-08-16 2018-08-16 Magnetoresistive device and method of forming same

Publications (2)

Publication Number Publication Date
CN110838541A CN110838541A (en) 2020-02-25
CN110838541B true CN110838541B (en) 2023-05-05

Family

ID=69573342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810936272.0A Active CN110838541B (en) 2018-08-16 2018-08-16 Magnetoresistive device and method of forming same

Country Status (1)

Country Link
CN (1) CN110838541B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014288A1 (en) * 1990-03-07 1991-09-19 Santa Barbara Research Center Magnetoresistor structure and operating method
JP2009123818A (en) * 2007-11-13 2009-06-04 Mitsubishi Electric Corp Method for manufacturing magnetic sensor device
CN104253210A (en) * 2013-06-27 2014-12-31 上海矽睿科技有限公司 Manufacturing process of magnetic sensing device
CN104422906A (en) * 2013-08-29 2015-03-18 上海矽睿科技有限公司 Magnetic sensor and preparation technology thereof
CN108288612A (en) * 2017-01-09 2018-07-17 世界先进积体电路股份有限公司 Electrical contact structure and method for forming the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261453A (en) * 2005-03-17 2006-09-28 Fujitsu Ltd Magnetoresistive element and manufacturing method thereof
JP2011134977A (en) * 2009-12-25 2011-07-07 Renesas Electronics Corp Semiconductor device and method of manufacturing semiconductor device
JP2011253985A (en) * 2010-06-03 2011-12-15 Renesas Electronics Corp Semiconductor device and method for manufacturing the same
TWI573301B (en) * 2014-05-22 2017-03-01 宇能電科技股份有限公司 Anisotropic magnetoresistive device and method for fabricating the same
US9793470B2 (en) * 2015-02-04 2017-10-17 Everspin Technologies, Inc. Magnetoresistive stack/structure and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014288A1 (en) * 1990-03-07 1991-09-19 Santa Barbara Research Center Magnetoresistor structure and operating method
JP2009123818A (en) * 2007-11-13 2009-06-04 Mitsubishi Electric Corp Method for manufacturing magnetic sensor device
CN104253210A (en) * 2013-06-27 2014-12-31 上海矽睿科技有限公司 Manufacturing process of magnetic sensing device
CN104422906A (en) * 2013-08-29 2015-03-18 上海矽睿科技有限公司 Magnetic sensor and preparation technology thereof
CN108288612A (en) * 2017-01-09 2018-07-17 世界先进积体电路股份有限公司 Electrical contact structure and method for forming the same

Also Published As

Publication number Publication date
CN110838541A (en) 2020-02-25

Similar Documents

Publication Publication Date Title
US11502245B2 (en) Magnetoresistive random access memory cell and fabricating the same
US10937956B2 (en) Magnetoresistive random access memory structure and method of forming the same
US12127489B2 (en) Integrated circuit structure
TWI640090B (en) Semiconductor memory device and method for manufacturing same
CN111564468B (en) Semiconductor element and manufacturing method thereof
TW201724444A (en) Semiconductor structure and method of forming the same
US10266950B2 (en) Process for NiFe fluxgate device
CN113725354A (en) Semiconductor device and method for manufacturing the same
US11785785B2 (en) Semiconductor device and method for fabricating the same
TWI678820B (en) Magnetoresistive devices and methods for forming the same
TW202123501A (en) Semiconductor device and method for fabricating the same
CN111969104A (en) Semiconductor element and manufacturing method thereof
CN108288612B (en) Electrical contact structure and method for forming the same
US20140322828A1 (en) Method for Manufacturing Magnetoresistance Component
US11121307B2 (en) Semiconductor device and method for fabricating the same
CN110838541B (en) Magnetoresistive device and method of forming same
CN116133510A (en) Method for manufacturing semiconductor element
CN112750942B (en) Magnetoresistive device and method of forming the same
TWI698034B (en) Magnetoresistive device and method for forming the same
US11366182B2 (en) Magnetoresistive devices and methods for forming the same
US20220013715A1 (en) Semiconductor device and method for fabricating the same
CN115440880A (en) Magnetoresistive random access memory device and method of making the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant