CN110954481B - Optimized average polarization demodulation method for catheter polarization sensitive optical coherence tomography - Google Patents
Optimized average polarization demodulation method for catheter polarization sensitive optical coherence tomography Download PDFInfo
- Publication number
- CN110954481B CN110954481B CN201911107624.2A CN201911107624A CN110954481B CN 110954481 B CN110954481 B CN 110954481B CN 201911107624 A CN201911107624 A CN 201911107624A CN 110954481 B CN110954481 B CN 110954481B
- Authority
- CN
- China
- Prior art keywords
- matrix
- polarization
- mueller matrix
- sample
- mueller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000012014 optical coherence tomography Methods 0.000 title claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims abstract description 115
- 238000005259 measurement Methods 0.000 claims abstract description 13
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 8
- 230000009466 transformation Effects 0.000 claims abstract description 7
- 238000012935 Averaging Methods 0.000 claims description 16
- 230000000694 effects Effects 0.000 claims description 12
- 230000028161 membrane depolarization Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 2
- 210000001519 tissue Anatomy 0.000 description 11
- 239000000835 fiber Substances 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 206010034203 Pectus Carinatum Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 210000000282 nail Anatomy 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/23—Bi-refringence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Signal Processing (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种导管偏振敏感光学相干层析成像优化平均偏振解调方法,包括下列步骤:分别调节系统中的所有三环偏振控制器,使参考光与输入光偏振在两个平衡探测器(H、V通道)上达到平衡;样品穆勒矩阵获取;将获取的穆勒矩阵进行平均处理;选取样品特殊点作为参考点,利用平均后的穆勒矩阵计算测量矩阵;对测量矩阵进行穆勒矩阵分解,利用矩阵相似关系求相位延迟量;对极坐标下的相位延迟量进行坐标插值变换由极坐标转换成笛卡尔坐标,得出导管偏振敏感光学相干层析成像系统样品的相位延迟量图像,即偏振图像。
The invention relates to a method for optimizing the average polarization demodulation of catheter polarization-sensitive optical coherence tomography, comprising the following steps: respectively adjusting all three-ring polarization controllers in the system, so that reference light and input light are polarized in two balanced detectors ( H and V channels) to reach equilibrium; sample Mueller matrix acquisition; average the acquired Mueller matrix; select the special point of the sample as a reference point, and use the averaged Mueller matrix to calculate the measurement matrix; Matrix decomposition, using the matrix similarity relationship to calculate the phase retardation; coordinate interpolation transformation of the phase retardation in polar coordinates to convert from polar coordinates to Cartesian coordinates to obtain the phase retardation image of the catheter polarization-sensitive optical coherence tomography system sample , the polarized image.
Description
所属技术领域Technical field
本发明涉及一种导管光学相干层析成像方法。特别是涉及一种对导管偏振敏感光学相干层析成像偏振解调平均去噪方法。The invention relates to a catheter optical coherence tomography method. In particular, it relates to a polarization demodulation averaging denoising method for catheter polarization-sensitive optical coherence tomography.
背景技术Background technique
导管OCT成像技术是目前图像分辨率最高的血管成像方法,尤其是导管PS-OCT成像技术,能够解决动脉粥样硬化斑块的稳定性难以在体、实时、快速判断的医学难题,能够提高动脉粥样硬化类疾病的防治效果。然而现有OCT系统在分辨率上已经达到了可能判断组织斑块性质的水平,但在组织穿透能力、图像清晰度和组织斑块类型判断的准确性上仍有不足,采用PS-OCT技术,改善相关技术性能是OCT系统发展的关键方向。Catheter OCT imaging technology is the vascular imaging method with the highest image resolution at present, especially the catheter PS-OCT imaging technology, which can solve the medical problem that the stability of atherosclerotic plaque is difficult to judge in vivo, real-time and quickly, and can improve the arterial stability. Prevention and treatment of atherosclerotic diseases. However, the resolution of the existing OCT system has reached the level that it is possible to judge the nature of tissue plaques, but it is still insufficient in terms of tissue penetration ability, image clarity and the accuracy of tissue plaque type judgment. PS-OCT technology is used. , improving the performance of related technologies is the key direction of OCT system development.
尽管导管OCT在斑块识别与诊断方面取得巨大进步,但依然需要新技术产生进一步提高对斑块形态和成分在体检测的准确性。相关研究表明组织中含有纤维结构,例如间质胶原或层状动脉平滑肌细胞表现出双折射效应。脂质组织表现出强烈的消偏效应。目前传统OCT仅提供组织散射的强度信息,无法测量到组织的双折射效应和消偏效应等偏振特性。如开发可检测偏振特性的导管Polarization sensitive OCT(PS-OCT)系统,将进一步提高动脉粥样性斑块性质和结构诊断准确率,正确指导血运重建。天津大学丁振扬等人提出了采用相似穆勒矩阵偏振解算方法(201811088259.0),该方法可有效解调出生物组织的偏振信息,但该方法缺少平均过程,对消偏、信噪比下降等问题难以有效克服。Although catheter OCT has made great progress in plaque identification and diagnosis, new technologies are still needed to further improve the accuracy of in vivo detection of plaque morphology and composition. Related studies have shown that tissues containing fibrous structures, such as interstitial collagen or lamellar arterial smooth muscle cells, exhibit birefringence effects. Lipid tissue exhibits a strong depolarization effect. At present, traditional OCT only provides the intensity information of tissue scattering, and cannot measure the polarization properties of tissue such as birefringence effect and depolarization effect. For example, the development of a catheter Polarization sensitive OCT (PS-OCT) system that can detect polarization characteristics will further improve the diagnostic accuracy of the nature and structure of atherosclerotic plaques, and correctly guide revascularization. Tianjin University Ding Zhenyang et al. proposed a similar Mueller matrix polarization solution method (201811088259.0), which can effectively demodulate the polarization information of biological tissues, but this method lacks the averaging process, and has problems such as depolarization and signal-to-noise ratio decline. difficult to overcome effectively.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是,提供一种能够实现导管的PS-OCT图像的偏振解调的偏振解调平均去噪方法。技术方案如下:The technical problem to be solved by the present invention is to provide a polarization demodulation average denoising method capable of realizing polarization demodulation of PS-OCT images of a catheter. The technical solution is as follows:
一种导管偏振敏感光学相干层析成像优化平均偏振解调方法,包括下列步骤:A method for optimizing average polarization demodulation for catheter polarization-sensitive optical coherence tomography, comprising the following steps:
(1)分别调节系统中的所有三环偏振控制器,使参考光与输入光偏振在两个平衡探测器(H、V通道)上达到平衡;(1) Adjust all three-ring polarization controllers in the system respectively, so that the polarization of the reference light and the input light are balanced on the two balanced detectors (H and V channels);
(2)样品穆勒矩阵获取,用S(z)表示,方法如下:(2) The sample Mueller matrix is obtained, represented by S(z), and the method is as follows:
扫描样品,在两个平衡探测器直接采集到的携带样品信息的信号,分别经过数值色散补偿、插值傅里叶变换得到信号H、V,经过自相关寻峰取得分割阈值,将信号分割成四部分H1,H2,V1,V2;取样品同一个Z位置点对应的四个部分的值组成像素点复信号的琼斯矩阵利用琼斯矩阵转换穆勒矩阵公式将之转换成穆勒矩阵S(z);The sample is scanned, and the signals carrying the sample information directly collected by the two balanced detectors are respectively subjected to numerical dispersion compensation and interpolation Fourier transform to obtain the signals H and V. Parts H 1 , H 2 , V 1 , V 2 ; take the values of the four parts corresponding to the same Z position point of the sample to form the Jones matrix of the complex signal of the pixel point Convert it to the Mueller matrix S(z) using the Jones matrix transformation Mueller matrix formula;
(3)将获取的穆勒矩阵进行平均处理,方法如下:(3) The obtained Mueller matrix is averaged, and the method is as follows:
z位置处的穆勒矩阵表示为:The Mueller matrix at the z position is expressed as:
利用移动平均窗口,与周围点进行平均,平均后的穆勒矩阵表示为:Using the moving average window and averaging with surrounding points, the averaged Mueller matrix is expressed as:
其中I为所选的平均窗口包含的区域,t指代区域中所有的点,N为窗口所包含的点数,s为平均窗口的中心点,平均过程即窗口内的平均值代替中心位置处的值,移动平均窗口处理所有数据点得到所有数据点平均后的穆勒矩阵,代替原穆勒矩阵进行计算;in I is the area contained in the selected average window, t refers to all points in the area, N is the number of points contained in the window, and s is the center point of the average window. The average process is that the average value in the window replaces the value at the center position. , the moving average window processes all data points to obtain the averaged Mueller matrix of all data points, and replaces the original Mueller matrix for calculation;
(4)选取样品特殊点作为参考点,利用平均后的穆勒矩阵计算测量矩阵,方法如下:(4) Select the special point of the sample as the reference point, and use the averaged Mueller matrix to calculate the measurement matrix. The method is as follows:
确定导管外表面或样品表面为参考点,取这些点平均后的穆勒矩阵写作将和做运算得到样品在z处的测量矩阵M(zref,z):Determine the outer surface of the catheter or the surface of the sample as the reference point, and take the Mueller matrix after averaging these points to write Will and Do the operation to get the measurement matrix M(z ref ,z) of the sample at z:
MST是样品往返穆勒矩阵,Mout表示系统输出光路的穆勒矩阵,Qref表示参考光的等效穆勒矩阵;M ST is the sample round-trip Mueller matrix, M out is the Mueller matrix of the system output optical path, Q ref is the equivalent Mueller matrix of the reference light;
(5)对测量矩阵进行穆勒矩阵分解,利用矩阵相似关系求相位延迟量,方法如下:(5) Perform the Mueller matrix decomposition on the measurement matrix, and use the matrix similarity relationship to obtain the phase delay. The method is as follows:
将测量矩阵M(zref,z)进行Lu-Chipman法矩阵分解,消除消偏和双衰减效应得到只包含双折射的穆勒矩阵:The measurement matrix M(z ref ,z) is decomposed by the Lu-Chipman method, and the depolarization and double attenuation effects are eliminated to obtain the Mueller matrix containing only birefringence:
其中MR(zref,z),和是只包含双折射成分的穆勒矩阵,对应于M(zref,z),MST(z),Mout和Qref;where M R (z ref ,z), and is the Mueller matrix containing only birefringent components, corresponding to M(z ref ,z), M ST (z), M out and Q ref ;
利用矩阵相似关系,由只包含双折射的测量穆勒矩阵计算得到在极坐标下的相位延迟量R,公式如下:Using the matrix similarity relationship, the phase retardation R in polar coordinates is calculated from the measured Mueller matrix containing only birefringence. The formula is as follows:
tr()表示矩阵的迹;tr() represents the trace of the matrix;
(6)对极坐标下的相位延迟量进行坐标插值变换由极坐标转换成笛卡尔坐标,得出导管偏振敏感光学相干层析成像系统样品的相位延迟量图像,即偏振图像。(6) Perform coordinate interpolation transformation on the phase retardation in polar coordinates, convert polar coordinates into Cartesian coordinates, and obtain the phase retardation image of the sample of the catheter polarization-sensitive optical coherence tomography system, that is, the polarization image.
本方法在以前基于穆勒矩阵相似的偏振解调方法上在测量穆勒矩阵加入移动窗平均方法,可显著提升偏振解调信号的信噪比,提高偏振特征图的对比度。比较基于相似琼斯矩阵方法中全局相位平均和复数域平均,本方法的平均过程完全采用实数运算,运算简单高效。In this method, the moving window averaging method is added to the measured Mueller matrix in the previous polarization demodulation method based on the similar Mueller matrix, which can significantly improve the signal-to-noise ratio of the polarization demodulated signal and improve the contrast of the polarization characteristic map. Compared with the global phase average and the complex domain average based on the similarity Jones matrix method, the average process of this method completely adopts the real number operation, and the operation is simple and efficient.
附图说明Description of drawings
图1本发明中的导管偏振敏感光学相干层析成像系统的结构示意图1 is a schematic structural diagram of the catheter polarization-sensitive optical coherence tomography system in the present invention
图2本发明的一种对导管偏振敏感光学相干层析成像偏振解调平均去噪方法的流程图。FIG. 2 is a flow chart of a method of the present invention for polarization demodulation and averaging denoising for catheter polarization-sensitive optical coherence tomography.
图3鸡胸肉组织的偏振解调结果Figure 3. Polarization demodulation results of chicken breast tissue
(a)强度图像 (b)未平均的相似穆勒矩阵方法处理的双折射相位延迟(a) Intensity image (b) Birefringence phase retardation processed by the unaveraged similar Mueller matrix method
(c)采用优化平均相似穆勒矩阵方法处理的双折射相位延迟(c) Birefringence phase retardation processed by the optimized average similar Mueller matrix method
图4猪心肌组织偏振解调结果Figure 4. Polarization demodulation results of porcine myocardial tissue
(a)强度图像 (b)未平均的相似穆勒矩阵方法处理的双折射相位延迟(a) Intensity image (b) Unaveraged birefringent phase retardation processed by the Mueller-like matrix method
(c)采用优化平均相似穆勒矩阵方法处理的双折射相位延迟(c) Birefringence phase retardation processed by the optimized average similar Mueller matrix method
图5,人体指甲组织偏振解调结果Figure 5. The polarization demodulation results of human fingernail tissue
(a)强度图像 (b)未平均的相似穆勒矩阵方法处理的双折射相位延迟(a) Intensity image (b) Unaveraged birefringent phase retardation processed by the Mueller-like matrix method
(c)采用优化平均相似穆勒矩阵方法处理的双折射相位延迟(c) Birefringence phase retardation processed by the optimized average similar Mueller matrix method
具体实施方式Detailed ways
下面结合实施例和附图对本发明的一种对导管偏振敏感光学相干层析成像偏振解调平均去噪方法做出详细说明。In the following, a detailed description will be given of a polarization demodulation averaging denoising method for catheter polarization-sensitive optical coherence tomography of the present invention with reference to the embodiments and the accompanying drawings.
本发明的一种对导管偏振敏感光学相干层析成像偏振解调平均去噪方法,利用穆勒矩阵表征系统和样品的偏振特征,通过矩阵分解消除了系统和样品的消偏和双衰减效应。通过对穆勒矩阵的平均减弱了噪声,通过推导样品传输矩阵和PS-OCT信号矩阵的内在联系,即两矩阵相似且相似矩阵的迹是相等的这一条件,得到样品双折射相位延迟,实现了导管PS-OCT图像的偏振解调。The invention provides a polarization demodulation average denoising method for catheter polarization-sensitive optical coherence tomography, which utilizes the Mueller matrix to characterize the polarization characteristics of the system and the sample, and eliminates the depolarization and double attenuation effects of the system and the sample through matrix decomposition. By averaging the Mueller matrix, the noise is reduced, and by deriving the intrinsic relationship between the sample transmission matrix and the PS-OCT signal matrix, that is, the two matrices are similar and the traces of the similar matrices are equal, the birefringence phase delay of the sample is obtained. Polarization demodulation of PS-OCT images of catheters.
本发明的一种对导管偏振敏感光学相干层析成像偏振解调平均去噪方法,用于如图1所示的导管偏振敏感光学相干层析成像(PS-OCT)系统,其工作原理是:A polarization demodulation average denoising method for catheter polarization-sensitive optical coherence tomography of the present invention is used in the catheter polarization-sensitive optical coherence tomography (PS-OCT) system as shown in Figure 1, and its working principle is:
导管PS-OCT系统的扫描光源1的出射光由1:99光纤耦合器2的1端口进入,并以1:99的比例分别从2、3端口分配到样品臂和参考臂。1:99光纤耦合器2的2端口的出射光进入样品臂,进入样品臂的光束入射到三环偏振控制器3后入射到长为18.5米的保偏光纤4,进入到环形器6的1端口,光从环形器6的2端口出射,出射光经过旋转机构8进入到成像导管11,经过样品反射后的光从成像导管11返回到环形器6中,并通过环形器6的3端口出射。1:99光纤耦合器2的3端口的出射光进入参考臂,进入参考臂的光入射到长为18.5米的单模光纤5,出射光进入环形器7的1端口,从2端口出射进入反射式光纤延迟线10,反射光通过环形器7的2端口入射,从3端口出射到三环偏振控制器9。样品臂经过环形器6的3端口的出射光和参考臂经过三环偏振控制器9的出射光分别从光纤耦合器12的1、2端口入射到50:50的光纤耦合器12中发生干涉,并以50:50的比例分别从3、4端口进入到三环偏振控制器13和三环偏振控制器14,出射光分别入射到偏振分束器15、16,光纤分束器15的出射光分别从端口1、2入射到平衡探测器17、18,偏振分束器16的出射光分别从端口1、2入射到平衡探测器17、18,平衡探测器17、18的电信号被采集卡19接收,传输到计算机20中。The outgoing light of the
光源采用快速扫描光源,系统中采用保偏光纤产生正交偏振态的延迟,通过偏振分束器进行偏振分集采集,保偏光纤长度取决于其双折射产生相位延迟等于普通OCT成像深度的一半。这种方法保证了系统可以在一幅图像中同时呈现正交两种输入偏振态的偏振分集成像,为后续消除导管旋转引入的系统双折射变化提供可能。The light source adopts a fast scanning light source. The polarization maintaining fiber is used in the system to generate the retardation of the orthogonal polarization state, and the polarization diversity acquisition is performed through a polarization beam splitter. The length of the polarization maintaining fiber depends on its birefringence to generate a phase delay equal to half of the ordinary OCT imaging depth. This method ensures that the system can simultaneously present a polarization-divided integrated image of two orthogonal input polarization states in one image, which makes it possible to eliminate the birefringence change of the system caused by the rotation of the catheter subsequently.
如图2所示,本发明的一种对导管偏振敏感光学相干层析成像偏振解调平均去噪方法,包括如下步骤:As shown in FIG. 2 , a polarization demodulation averaging denoising method for catheter polarization-sensitive optical coherence tomography of the present invention includes the following steps:
1、参考光与输入光偏振调整1. Polarization adjustment of reference light and input light
首先调节系统,分别调节三环偏振控制器9、三环偏振控制器13和三环偏振控制器14使得参考光在两个平衡探测器17、18(H、V通道)上的光强相等,然后调节三环偏振控制器3使得输入光在两个平衡探测器17、18(H、V通道)上的光强也相等。First, adjust the system, adjust the three-
2、样品穆勒矩阵获取2. Sample Mueller matrix acquisition
调节完系统后开始扫描样品,在两个平衡探测器17、18直接采集到的携带样品信息的信号,分别经过数值色散补偿、插值傅里叶变换得到信号H、V,经过自相关寻峰取得分割阈值,将信号分割成四部分H1,H2,V1,V2。将整个样品看成由一个个孤立的点组成,取样品同一个点处对应的四个部分的值组成像素点复信号的琼斯矩阵,z位置处点的琼斯矩阵写做利用琼斯矩阵转换穆勒矩阵公式将之转换成穆勒矩阵S(z)。After adjusting the system, start to scan the sample. The signals carrying the sample information directly collected by the two
3、将获取的穆勒矩阵进行平均处理3. Average the obtained Mueller matrix
z位置处的穆勒矩阵可以表示为:The Mueller matrix at the z position can be expressed as:
利用移动平均窗口,与周围点进行平均,平均后的穆勒矩阵表示为:Using the moving average window and averaging with surrounding points, the averaged Mueller matrix is expressed as:
其中I为所选的平均窗口包含的区域,t指代区域中所有的点,N为窗口所包含的点数,s为平均窗口的中心点,平均过程即窗口内的平均值代替中心位置处的值。移动平均窗口处理所有数据点得到所有数据点平均后的穆勒矩阵,代替原穆勒矩阵进行计算。in I is the area contained in the selected average window, t refers to all points in the area, N is the number of points contained in the window, and s is the center point of the average window. The average process is that the average value in the window replaces the value at the center position. . The moving average window processes all data points to obtain the averaged Mueller matrix of all data points, and replaces the original Mueller matrix for calculation.
4、选取样品特殊点作为参考点,利用平均后的穆勒矩阵计算测量矩阵4. Select the special point of the sample as the reference point, and use the averaged Mueller matrix to calculate the measurement matrix
设MST是样品往返穆勒矩阵,Min,Mout表示系统光路的穆勒矩阵,Qin,Qref表示输入光和参考光的等效穆勒矩阵,则z位置处的平均穆勒矩阵可以表示为:Let M ST be the sample round-trip Mueller matrix, M in , M out denote the Mueller matrix of the optical path of the system, Q in , Q ref denote the equivalent Mueller matrix of the input light and reference light, then the average Mueller matrix at the z position It can be expressed as:
确定导管外表面或样品表面为参考点,取这些点平均后的穆勒矩阵写作则有Determine the outer surface of the catheter or the surface of the sample as the reference point, and take the Mueller matrix after averaging these points to write then there are
将和分别做运算得到样品在z处的测量矩阵M(zref,z):Will and Do the operations separately to get the measurement matrix M(z ref , z) of the sample at z:
5、对测量矩阵进行穆勒矩阵分解,利用矩阵相似关系求相位延迟量5. Perform Mueller matrix decomposition on the measurement matrix, and use the matrix similarity relationship to find the phase delay
由于本发明的最终目的是求相位延迟量,而穆勒矩阵中包含有关于消偏和双衰减效应的部分,因此要进行矩阵分解,去除关于消偏和双衰减效应的部分。Since the ultimate purpose of the present invention is to find the phase delay, and the Mueller matrix contains parts related to depolarization and double attenuation effects, matrix decomposition is performed to remove the parts related to depolarization and double attenuation effects.
对4*4的穆勒矩阵M进行Lu-Chipman法分解成如下形式:The 4*4 Mueller matrix M is decomposed into the following form by the Lu-Chipman method:
M=MΔMRMD (13)M=M Δ M R M D (13)
其中MΔ为退偏矩阵,MR为双折射矩阵,MD为双衰减矩阵,只取其中的MR。Among them, M Δ is a depolarization matrix, MR is a birefringence matrix, and MD is a double attenuation matrix, and only MR is taken.
将测量矩阵M(zref,z)进行矩阵分解,消除消偏和双衰减效应得到只包含双折射的穆勒矩阵:Perform matrix decomposition on the measurement matrix M(z ref ,z) to eliminate the depolarization and double attenuation effects to obtain a Mueller matrix containing only birefringence:
其中MR(zref,z),和是只包含双折射成分的穆勒矩阵,对应于M(zref,z),MST(z),Mout和Qref。where M R (z ref ,z), and is the Mueller matrix containing only birefringent components, corresponding to M(z ref ,z), M ST (z), M out and Q ref .
利用矩阵相似关系,通过公式由只包含双折射的测量穆勒矩阵计算得到在极坐标下的相位延迟量R,公式如下:Using the matrix similarity relationship, the phase retardation R in polar coordinates is calculated from the measured Mueller matrix containing only birefringence. The formula is as follows:
tr()表示矩阵的迹。tr() represents the trace of the matrix.
6、将相位延迟量由极坐标转换成笛卡尔坐标6. Convert the phase delay from polar coordinates to Cartesian coordinates
对极坐标下的相位延迟量进行坐标插值变换由极坐标转换成笛卡尔坐标,最终得出导管偏振敏感光学相干层析成像系统样品的相位延迟量图像,即偏振图像。The phase retardation in polar coordinates is transformed from polar coordinates to Cartesian coordinates by coordinate interpolation, and finally the phase retardation image of the sample of the catheter polarization-sensitive optical coherence tomography system is obtained, that is, the polarization image.
所述的坐标插值变换是由于在PS-OCT系统的数据采集过程中,是对深度信息A-Scan和横向信息B-Scan进行成像,最终成像结果输出的是极坐标图像,但实际需求是管腔内的图像,所以需要把处理后的极坐标图像处理成为笛卡尔坐标下的PS-OCT图像。The coordinate interpolation transformation described is because in the data acquisition process of the PS-OCT system, the depth information A-Scan and the lateral information B-Scan are imaged, and the final imaging result outputs a polar coordinate image, but the actual demand is to Therefore, the processed polar coordinate image needs to be processed into a PS-OCT image in Cartesian coordinates.
如图3-5所示,为本发明所用的对导管偏振敏感光学相干层析成像偏振解调平均去噪方法效果图,左边为强度图像,中间为传统穆勒矩阵算法下的偏振图像,右边为平均穆勒矩阵算法下的偏振图像。第一行为鸡胸肉图像处理结果,第二行为猪心肌图像处理结果,第三行为指甲图像处理结果。As shown in Figure 3-5, it is the effect diagram of the polarization demodulation average denoising method for catheter polarization-sensitive optical coherence tomography used in the present invention. The left is the intensity image, the middle is the polarization image under the traditional Mueller matrix algorithm, and the right is the polarization image. is the polarization image under the average Mueller matrix algorithm. The first row is the image processing result of chicken breast, the second row is the image processing result of pig myocardium, and the third row is the image processing result of nail.
本发明使得PS-OCT系统能够完整表达样品的双折射信息,提高血管内微观病变的分析能力,较传统OCT强度图像获得动脉粥样硬化斑块更多特征信息,通过对组织偏振信息的提取和解读,获得额外的血管内微观病变分析的能力,同时通过平均减弱噪声,使得双折射图像具有更高的清晰度。本发明利用穆勒矩阵表征系统和样品的偏振特征,通过矩阵分解消除了系统和样品的消偏和双衰减效应。通过对穆勒矩阵的平均减弱了噪声,通过推导样品传输矩阵和PS-OCT信号矩阵的内在联系,即两矩阵相似且相似矩阵的迹是相等的这一条件,得到样品双折射相位延迟,实现了导管的PS-OCT图像的偏振解调。The invention enables the PS-OCT system to fully express the birefringence information of the sample, improves the analysis ability of microscopic lesions in blood vessels, and obtains more characteristic information of atherosclerotic plaques than traditional OCT intensity images. Interpretation, gaining additional capability for intravascular microscopic lesion analysis, while attenuating noise through averaging, resulting in higher definition of birefringent images. The invention utilizes the Mueller matrix to characterize the polarization characteristics of the system and the sample, and eliminates the depolarization and double attenuation effects of the system and the sample through matrix decomposition. By averaging the Mueller matrix, the noise is reduced, and by deriving the intrinsic relationship between the sample transmission matrix and the PS-OCT signal matrix, that is, the two matrices are similar and the traces of the similar matrices are equal, the birefringence phase delay of the sample is obtained. Polarization demodulation of PS-OCT images of catheters.
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。Although the present invention has been described above in conjunction with the accompanying drawings, the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative rather than restrictive. Under the inspiration of the present invention, many modifications can be made without departing from the spirit of the present invention, which all belong to the protection of the present invention.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911107624.2A CN110954481B (en) | 2019-11-13 | 2019-11-13 | Optimized average polarization demodulation method for catheter polarization sensitive optical coherence tomography |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911107624.2A CN110954481B (en) | 2019-11-13 | 2019-11-13 | Optimized average polarization demodulation method for catheter polarization sensitive optical coherence tomography |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110954481A CN110954481A (en) | 2020-04-03 |
| CN110954481B true CN110954481B (en) | 2022-07-01 |
Family
ID=69977337
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911107624.2A Active CN110954481B (en) | 2019-11-13 | 2019-11-13 | Optimized average polarization demodulation method for catheter polarization sensitive optical coherence tomography |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110954481B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111965114B (en) * | 2020-08-15 | 2023-08-29 | 天津大学 | A local birefringence demodulation method for catheter polarization-sensitive optical coherence tomography |
| CN112450874B (en) * | 2020-11-20 | 2023-12-08 | 爱博诺德(北京)医疗科技股份有限公司 | Tear distribution detection method and device |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103411890A (en) * | 2013-07-18 | 2013-11-27 | 华中科技大学 | Rotating compensator type ellipsometer system error assessment and elimination method thereof |
| CN109164048A (en) * | 2018-09-18 | 2019-01-08 | 天津大学 | The Polarization-Sensitive optical coherent chromatographic imaging of a kind of pair of conduit polarizes demodulation method |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3971363B2 (en) * | 2003-10-07 | 2007-09-05 | 株式会社東芝 | Exposure apparatus and method for measuring Mueller matrix of optical system of exposure apparatus |
| US8208996B2 (en) * | 2008-03-24 | 2012-06-26 | Carl Zeiss Meditec, Inc. | Imaging of polarization scrambling tissue |
| FR3018914B1 (en) * | 2014-03-18 | 2016-05-06 | Centre Nat Rech Scient | DEVICE AND METHOD FOR POLARIMETRIC CHARACTERIZATION DEPORTEE |
-
2019
- 2019-11-13 CN CN201911107624.2A patent/CN110954481B/en active Active
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103411890A (en) * | 2013-07-18 | 2013-11-27 | 华中科技大学 | Rotating compensator type ellipsometer system error assessment and elimination method thereof |
| CN109164048A (en) * | 2018-09-18 | 2019-01-08 | 天津大学 | The Polarization-Sensitive optical coherent chromatographic imaging of a kind of pair of conduit polarizes demodulation method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110954481A (en) | 2020-04-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109164048B (en) | Polarization demodulation method for polarization-sensitive optical coherence tomography of catheter | |
| Kume et al. | Assessment of coronary intima-media thickness by optical coherence tomography comparison with intravascular ultrasound | |
| CN110584613B (en) | A catheter polarization-sensitive optical coherence tomography system and demodulation method | |
| Schmitt et al. | Subsurface imaging of living skin with optical coherence microscopy | |
| US7995814B2 (en) | Dynamic motion contrast and transverse flow estimation using optical coherence tomography | |
| JP5787255B2 (en) | Program for correcting measurement data of PS-OCT and PS-OCT system equipped with the program | |
| US7742173B2 (en) | Methods, arrangements and systems for polarization-sensitive optical frequency domain imaging of a sample | |
| CN109171659B (en) | Optical fiber type sweep-frequency polarization sensitive OCT imaging method and system based on North matrix | |
| WO2017133083A1 (en) | Angiography method and system based on splitting full space of modulation spectrum and angle-based combination | |
| CN111965114B (en) | A local birefringence demodulation method for catheter polarization-sensitive optical coherence tomography | |
| CN105342568B (en) | The optical coherence angiographic method and system of joint phase and amplitude | |
| CN107595250A (en) | The blood flow imaging method and system of contrast is mixed with figure based on motion | |
| CN110742584A (en) | Polarization resolving method for catheter polarization sensitive optical coherence tomography demodulation method | |
| CN110954481B (en) | Optimized average polarization demodulation method for catheter polarization sensitive optical coherence tomography | |
| CN111568373A (en) | A Repeated Scanning OCTA Capillary Network Imaging Method | |
| CN108245130B (en) | Optical coherence tomography angiography device and method | |
| CN105996999A (en) | Method and system for measuring depth resolution attenuation coefficient of sample based on OCT | |
| CN105748040B (en) | Stereochemical structure function imaging system | |
| Gong et al. | Jones matrix‐based speckle‐decorrelation angiography using polarization‐sensitive optical coherence tomography | |
| Yasuno | Multi-contrast Jones-matrix optical coherence tomography—the concept, principle, implementation, and applications | |
| CN110731755A (en) | Polarization leveling method of catheter polarization-sensitive optical coherence tomography system | |
| CN113888478B (en) | An optimized depolarization method for polarization-sensitive coherence tomography of intravascular catheters | |
| WO2018161384A1 (en) | Oct system for respiratory tract | |
| Ding et al. | Probe fusion all-optic OCT-PAM dual-mode imaging system for biomedical imaging | |
| CN110742582A (en) | Binary image segmentation method for catheter polarization-sensitive optical coherence tomography |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |