CN110970435B - Semiconductor device and method of forming the same - Google Patents
Semiconductor device and method of forming the same Download PDFInfo
- Publication number
- CN110970435B CN110970435B CN201811161707.5A CN201811161707A CN110970435B CN 110970435 B CN110970435 B CN 110970435B CN 201811161707 A CN201811161707 A CN 201811161707A CN 110970435 B CN110970435 B CN 110970435B
- Authority
- CN
- China
- Prior art keywords
- substrate
- depth position
- isolation
- trench
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000004065 semiconductor Substances 0.000 title claims abstract description 44
- 238000002955 isolation Methods 0.000 claims abstract description 198
- 239000000758 substrate Substances 0.000 claims abstract description 146
- 239000010410 layer Substances 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 29
- 238000005530 etching Methods 0.000 claims description 18
- 230000001681 protective effect Effects 0.000 claims description 12
- 238000005468 ion implantation Methods 0.000 claims description 10
- 239000011241 protective layer Substances 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 150000002500 ions Chemical class 0.000 claims description 6
- 238000001312 dry etching Methods 0.000 claims description 3
- 239000007943 implant Substances 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 238000003860 storage Methods 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 7
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B99/00—Subject matter not provided for in other groups of this subclass
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Memories (AREA)
- Element Separation (AREA)
Abstract
本发明提供了一种半导体器件及其形成方法,首先形成沟槽隔离结构于所述衬底中,由于所述沟槽隔离结构具有相连接的第一隔离部及位于所述第一隔离部下方的第二隔离部,并且所述第二隔离部在垂直于高度方向上的横向宽度尺寸大于所述第一隔离部在垂直于高度方向上的横向宽度尺寸,以使所述第二隔离部相对于所述第一隔离部横向凸出,从而减小了泄漏区域的面积,从而增加了泄漏通路上的等效电阻,从而减小了漏电流,提高了半导体器件的存储性能,进一步,所述源区从所述衬底的顶面延伸至第一深度位置及第二深度位置之间,进一步减小了泄漏区域的面积,达到更好的减小漏电流的作用。
The present invention provides a semiconductor device and a method for forming the same. First, a trench isolation structure is formed in the substrate. Since the trench isolation structure has a first isolation portion connected to each other and a second isolation portion located below the first isolation portion, and the lateral width dimension of the second isolation portion in a direction perpendicular to the height is greater than the lateral width dimension of the first isolation portion in a direction perpendicular to the height, the second isolation portion protrudes laterally relative to the first isolation portion, thereby reducing the area of a leakage region, thereby increasing the equivalent resistance on the leakage path, thereby reducing leakage current and improving the storage performance of the semiconductor device. Furthermore, the source region extends from the top surface of the substrate to between a first depth position and a second depth position, further reducing the area of the leakage region and achieving a better effect of reducing leakage current.
Description
技术领域Technical Field
本发明涉及半导体制造领域,尤其涉及一种半导体器件及其形成方法。The present invention relates to the field of semiconductor manufacturing, and in particular to a semiconductor device and a method for forming the same.
背景技术Background Art
目前,现有的集成电路存储器通常可以包括若干个晶体管,为了缩小集成电路存储器的面积以达到最大的集成化,通常采用沟槽型的晶体管结构,而沟槽型的晶体管结构在使用时,沟槽隔离结构与存储晶体管的栅极结构之间构成泄漏区域,存储晶体管的源漏区之间的电子可能会迁移至所述泄漏区域内,从而产生漏电流,导致集成电路存储器的存储性能下降,并且泄漏区域的面积越大,泄漏通路上的等效电阻越小,从而产生的漏电流就会越大,集成电路存储器的存储能力越差,如何减小漏电流成为亟待解决的问题。At present, the existing integrated circuit memory may generally include a plurality of transistors. In order to reduce the area of the integrated circuit memory to achieve maximum integration, a trench-type transistor structure is generally adopted. When the trench-type transistor structure is in use, a leakage region is formed between the trench isolation structure and the gate structure of the storage transistor. Electrons between the source and drain regions of the storage transistor may migrate into the leakage region, thereby generating leakage current, causing the storage performance of the integrated circuit memory to decrease. Moreover, the larger the area of the leakage region, the smaller the equivalent resistance on the leakage path, and thus the larger the leakage current generated, and the worse the storage capacity of the integrated circuit memory. How to reduce the leakage current has become a problem to be solved urgently.
发明内容Summary of the invention
本发明的目的在于提供一种半导体器件及其形成方法,以提高现有的半导体器件的存储性能。The object of the present invention is to provide a semiconductor device and a method for forming the same, so as to improve the storage performance of the existing semiconductor device.
为了达到上述目的,本发明提供了一种半导体器件,包括:In order to achieve the above object, the present invention provides a semiconductor device, comprising:
所述半导体器件包括衬底及形成于所述衬底中的沟槽隔离结构,所述沟槽隔离结构界定出多个有源区于所述衬底中;The semiconductor device includes a substrate and a trench isolation structure formed in the substrate, wherein the trench isolation structure defines a plurality of active regions in the substrate;
其中,所述沟槽隔离结构包括第一隔离部和第二隔离部,所述第一隔离部从所述衬底的顶面往所述衬底的内部延伸至第一深度位置,所述第二隔离部从所述第一隔离部的下方延伸至第二深度位置并与所述第一隔离部连接,并且所述第二隔离部在垂直于高度方向上的横向宽度尺寸大于所述第一隔离部在垂直于高度方向上的横向宽度尺寸,以使所述第二隔离部相对于所述第一隔离部以朝向所述有源区的方向横向凸出;The trench isolation structure includes a first isolation portion and a second isolation portion, wherein the first isolation portion extends from the top surface of the substrate to the inside of the substrate to a first depth position, and the second isolation portion extends from the bottom of the first isolation portion to a second depth position and is connected to the first isolation portion, and the lateral width dimension of the second isolation portion in a direction perpendicular to the height direction is greater than the lateral width dimension of the first isolation portion in a direction perpendicular to the height direction, so that the second isolation portion protrudes laterally relative to the first isolation portion in a direction toward the active area;
所述有源区包括源区及漏区,且所述源区从所述衬底的顶面延伸至第一深度位置及第二深度位置之间,以使所述源区更下沉于所述漏区。The active region includes a source region and a drain region, and the source region extends from the top surface of the substrate to between a first depth position and a second depth position, so that the source region is further sunken into the drain region.
可选的,所述源区与所述漏区之间的衬底中形成有栅极结构,所述栅极结构从所述衬底的顶面往所述衬底的内部延伸至第三深度位置,所述第二隔离部位于所述衬底的第一深度位置和第二深度位置之间,所述第三深度位置高于所述第二深度位置并低于所述第一深度位置,以使所述第二隔离部和所述栅极结构之间的间隔尺寸小于所述第一隔离部和所述栅极结构之间的间隔尺寸。Optionally, a gate structure is formed in the substrate between the source region and the drain region, and the gate structure extends from the top surface of the substrate to the interior of the substrate to a third depth position, and the second isolation portion is located between the first depth position and the second depth position of the substrate, and the third depth position is higher than the second depth position and lower than the first depth position, so that the spacing dimension between the second isolation portion and the gate structure is smaller than the spacing dimension between the first isolation portion and the gate structure.
可选的,所述源区和所述漏区分别从所述衬底的顶面往所述衬底的内部延伸第四深度位置及第五深度位置,所述第四深度位置低于所述第一深度位置并高于所述第三深度位置,以使所述栅极结构更下沉于所述源区,所述第五深度位置高于所述第一深度位置,以使所述源区更下沉于所述漏区。Optionally, the source region and the drain region extend from the top surface of the substrate to a fourth depth position and a fifth depth position respectively into the interior of the substrate, the fourth depth position being lower than the first depth position and higher than the third depth position so that the gate structure is further sunken into the source region, and the fifth depth position being higher than the first depth position so that the source region is further sunken into the drain region.
可选的,所述沟槽隔离结构的所述第二隔离部呈弧形。Optionally, the second isolation portion of the trench isolation structure is arc-shaped.
可选的,所述沟槽隔离结构包括填充于一隔离沟槽中的隔离材料层,所述隔离材料层包括氧化硅、游离氧化硅或硅碳氧化物中的一种或多种。Optionally, the trench isolation structure includes an isolation material layer filled in an isolation trench, and the isolation material layer includes one or more of silicon oxide, free silicon oxide or silicon carbide oxide.
可选的,所述半导体器件应用于集成电路存储器,所述有源区用于构成所述集成电路存储器中的晶体管。Optionally, the semiconductor device is applied to an integrated circuit memory, and the active area is used to constitute a transistor in the integrated circuit memory.
本发明还提供了一种半导体器件的形成方法,包括:The present invention also provides a method for forming a semiconductor device, comprising:
提供一衬底,所述衬底中形成有至少一个隔离沟槽,所述隔离沟槽包括第一沟槽部和第二沟槽部,所述第一沟槽部从所述衬底的顶面向所述衬底的内部延伸至第一深度位置,所述第二沟槽部从所述第一沟槽部的下方延伸至第二深度位置并与所述第一沟槽部连通,并且所述第二沟槽部在垂直于高度方向上的横向宽度尺寸大于所述第一沟槽部在垂直于高度方向上的横向宽度尺寸;以及,A substrate is provided, wherein at least one isolation trench is formed in the substrate, wherein the isolation trench includes a first trench portion and a second trench portion, wherein the first trench portion extends from the top surface of the substrate to the inside of the substrate to a first depth position, and the second trench portion extends from below the first trench portion to a second depth position and is connected to the first trench portion, and the lateral width dimension of the second trench portion in a direction perpendicular to the height direction is greater than the lateral width dimension of the first trench portion in a direction perpendicular to the height direction; and,
填充隔离材料层于所述隔离沟槽中,以构成沟槽隔离结构,所述沟槽隔离结构中对应所述第一沟槽部的部分构成第一隔离部,所述沟槽隔离结构中对应所述第二沟槽部的部分构成第二隔离部,并且所述第二隔离部相对于所述第一隔离部横向凸出;Filling an isolation material layer in the isolation trench to form a trench isolation structure, wherein a portion of the trench isolation structure corresponding to the first trench portion constitutes a first isolation portion, and a portion of the trench isolation structure corresponding to the second trench portion constitutes a second isolation portion, and the second isolation portion protrudes laterally relative to the first isolation portion;
形成有源区于所述衬底中,所述源区包括源区和漏区,且所述源区从所述衬底的顶面延伸至第一深度位置及第二深度位置之间,以使所述源区更下沉于所述漏区。An active region is formed in the substrate, the source region includes a source region and a drain region, and the source region extends from the top surface of the substrate to between a first depth position and a second depth position so that the source region is further sunken into the drain region.
可选的,形成所述隔离沟槽的步骤包括:Optionally, the step of forming the isolation trench includes:
执行第一刻蚀工艺刻蚀所述衬底以形成所述隔离沟槽的所述第一沟槽部;Performing a first etching process to etch the substrate to form the first trench portion of the isolation trench;
形成一保护层于所述第一沟槽部的侧壁上;以及,forming a protection layer on the sidewalls of the first groove portion; and,
对所述第一沟槽部下方的衬底执行第二刻蚀工艺,所述第二刻蚀工艺沿着横向和纵向同时刻蚀所述第一沟槽部下方的衬底,以形成所述隔离沟槽的所述第二沟槽部。A second etching process is performed on the substrate below the first trench portion, wherein the second etching process etches the substrate below the first trench portion simultaneously in a lateral direction and a longitudinal direction to form the second trench portion of the isolation trench.
可选的,所述第一刻蚀工艺为各向异性干法刻蚀,所述第二刻蚀工艺为各向同性湿法刻蚀。Optionally, the first etching process is anisotropic dry etching, and the second etching process is isotropic wet etching.
可选的,形成所述保护层的步骤包括:Optionally, the step of forming the protective layer includes:
形成保护材料层于所述衬底上,所述保护材料层覆盖所述衬底并延伸覆盖所述第一沟槽部的侧壁及底壁;以及,forming a protective material layer on the substrate, wherein the protective material layer covers the substrate and extends to cover the sidewalls and bottom wall of the first groove portion; and,
去除所述保护材料层覆盖所述衬底的部分及覆盖所述第一沟槽部的底壁的部分,保留所述保护材料层覆盖所述第一沟槽部侧壁的部分,以形成所述保护层。The portion of the protective material layer covering the substrate and the portion covering the bottom wall of the first groove portion is removed, and the portion of the protective material layer covering the side wall of the first groove portion is retained to form the protective layer.
可选的,所述衬底中定义有用于形成源区的第一区域及用于形成漏区的第二区域,形成所述有源区的步骤包括:Optionally, a first region for forming a source region and a second region for forming a drain region are defined in the substrate, and the step of forming the active region includes:
对所述衬底执行第一离子注入工艺,以形成第一导电类型的第一掺杂区于所述衬底中,所述第一掺杂区从所述衬底的顶面向所述衬底的内部延伸至第四深度位置,所述第四深度位置位于所述第一深度位置及所述第二深度位置之间,且位于所述第一区域中的所述第一掺杂区构成所述源区;以及,Performing a first ion implantation process on the substrate to form a first doped region of a first conductivity type in the substrate, wherein the first doped region extends from the top surface of the substrate to the inside of the substrate to a fourth depth position, the fourth depth position is between the first depth position and the second depth position, and the first doped region located in the first region constitutes the source region; and
对所述第二区域的衬底执行第二离子注入工艺,以注入第二导电类型离子在所述第一掺杂区中,所述第二导电类型离子从所述第一掺杂区的底部边界往所述衬底的顶面延伸至第五深度位置,以使所述第一掺杂区从所述底部边界至所述第五深度位置之间的部分形成第二导电类型的第二掺杂区,以及所述第一掺杂区中从所述第五深度位置至所述衬底顶面的部分构成第一导电类型的漏区,所述第五深度位置高于所述第一深度位置,以使所述源区更下沉于所述漏区。A second ion implantation process is performed on the substrate of the second area to implant second conductive type ions in the first doping region, wherein the second conductive type ions extend from the bottom boundary of the first doping region to the top surface of the substrate to a fifth depth position, so that the portion of the first doping region from the bottom boundary to the fifth depth position forms a second doping region of the second conductive type, and the portion of the first doping region from the fifth depth position to the top surface of the substrate constitutes a drain region of the first conductive type, and the fifth depth position is higher than the first depth position, so that the source region is further sunken into the drain region.
可选的,对所述衬底执行第一离子注入工艺之后,在对所述第二区域的衬底执行第二离子注入工艺之前,所述半导体器件的形成方法还包括:Optionally, after performing the first ion implantation process on the substrate and before performing the second ion implantation process on the substrate in the second region, the method for forming the semiconductor device further includes:
刻蚀所述第一区域与所述第二区域之间的衬底以形成栅极沟槽,所述栅极沟槽从所述衬底的顶面向所述衬底的内部延伸至第三深度位置;Etching the substrate between the first region and the second region to form a gate trench, wherein the gate trench extends from the top surface of the substrate to the inside of the substrate to a third depth position;
形成栅极结构于所述栅极沟槽中,所述第三深度位置低于所述第四深度位置并高于所述第二深度位置,以使所述栅极结构更下沉于所述源区。A gate structure is formed in the gate trench, wherein the third depth position is lower than the fourth depth position and higher than the second depth position, so that the gate structure is further sunken into the source region.
在本发明提供的半导体器件及其形成方法中,首先形成沟槽隔离结构于所述衬底中,通过所述沟槽隔离结构界定出有源区,由于所述沟槽隔离结构具有相连接的第一隔离部及位于所述第一隔离部下方的第二隔离部,并且所述第二隔离部在垂直于高度方向上的横向宽度尺寸大于所述第一隔离部在垂直于高度方向上的横向宽度尺寸,以使所述第二隔离部相对于所述第一隔离部横向凸出,从而减小了泄漏区域的面积,从而增加了泄漏通路上的等效电阻,从而减小了漏电流,提高了半导体器件的存储性能,进一步,所述源区从所述衬底的顶面延伸至第一深度位置及第二深度位置之间,进一步减小了泄漏区域的面积,达到更好的减小漏电流的作用,且所述源区更下沉于所述漏区,以调节沟道长度保证半导体器件的沟道不发生改变,对器件的导通性能影响很小。In the semiconductor device and the formation method thereof provided by the present invention, a trench isolation structure is first formed in the substrate, and an active area is defined by the trench isolation structure. Since the trench isolation structure has a first isolation portion connected to each other and a second isolation portion located below the first isolation portion, and the lateral width dimension of the second isolation portion in a direction perpendicular to the height is greater than the lateral width dimension of the first isolation portion in a direction perpendicular to the height, the second isolation portion protrudes laterally relative to the first isolation portion, thereby reducing the area of the leakage region, thereby increasing the equivalent resistance on the leakage path, thereby reducing the leakage current and improving the storage performance of the semiconductor device. Furthermore, the source region extends from the top surface of the substrate to between the first depth position and the second depth position, further reducing the area of the leakage region, achieving a better effect of reducing the leakage current, and the source region is further sunken in the drain region to adjust the channel length to ensure that the channel of the semiconductor device does not change, and has little effect on the conduction performance of the device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为一种半导体器件;FIG1 is a semiconductor device;
图2为本发明实施例提供的半导体器件的形成方法的流程图;2 is a flow chart of a method for forming a semiconductor device according to an embodiment of the present invention;
图3-图12为本发明实施例提供的采用所述半导体器件的形成方法形成的半导体结构的剖面示意图;3 to 12 are cross-sectional schematic diagrams of a semiconductor structure formed by the method for forming a semiconductor device provided by an embodiment of the present invention;
其中,附图标记如下:The reference numerals are as follows:
1’-衬底; 111’-漏区;112’-漏区;1’-substrate; 111’-drain region; 112’-drain region;
2’-沟槽隔离结构; 21’-隔离沟槽;2’-trench isolation structure; 21’-isolation trench;
3’-栅极结构;3’-gate structure;
W’-泄露区域; W-泄露区域W’-leakage area; W-leakage area
1-衬底; 11-第一掺杂区;111-源区;112-漏区;1-substrate; 11-first doping region; 111-source region; 112-drain region;
2-沟槽隔离结构; 21-隔离沟槽;211-第一沟槽部;212-第二沟槽部;22-第一隔离部;23-第二隔离部;2-trench isolation structure; 21-isolation trench; 211-first trench portion; 212-second trench portion; 22-first isolation portion; 23-second isolation portion;
3-栅极结构; 31-栅极沟槽;32-栅介质层;33-栅电极层;34-绝缘层;3-gate structure; 31-gate trench; 32-gate dielectric layer; 33-gate electrode layer; 34-insulating layer;
41-保护材料层; 4-保护层;41-protective material layer; 4-protective layer;
H1-第一深度值;H1 - first depth value;
H2-第二深度值;H2 - second depth value;
H3-第三深度值;H3 - third depth value;
H4-第四深度值;H4 - fourth depth value;
H5-第五深度值;H5 - fifth depth value;
h-第二隔离部在垂直于高度方向上的横向宽度尺寸;h-the lateral width dimension of the second isolation portion in the direction perpendicular to the height;
h’-第一隔离部在垂直于高度方向上的横向宽度尺寸。h’: the lateral width dimension of the first isolating portion in the direction perpendicular to the height.
具体实施方式DETAILED DESCRIPTION
图1为一种半导体器件,其包括衬底1’及形成于所述衬底1’中的沟槽隔离结构2’,所述沟槽隔离结构2’用于界定出有源区,所述沟槽隔离结构2’包括形成于隔离沟槽21’中的隔离材料层,每个所述有源区中形成有源区111’、漏区112’及栅极结构3’,所述栅极结构3’位于所述源区111’及漏区112’之间以构成晶体管。如图1所示,所述沟槽隔离结构2’从所述衬底1’的顶面延伸至所述衬底1’的内部,且整个所述沟槽隔离结构2’的横向宽度尺寸大致相同,导致所述沟槽隔离结构2’与所述栅极结构3’之间的泄漏区域W’的面积非常大,当所述晶体管在使用时,电子从所述源区111’沿U型的沟道区迁移至所述漏区112’,由于泄漏面积非常大,电子也容易迁移至所述泄漏区域W’中形成漏电流(如图1中所示的箭头),影响器件的存储性能。Figure 1 shows a semiconductor device, which includes a substrate 1' and a trench isolation structure 2' formed in the substrate 1'. The trench isolation structure 2' is used to define an active area. The trench isolation structure 2' includes an isolation material layer formed in an isolation trench 21'. An active area 111', a drain area 112' and a gate structure 3' are formed in each of the active areas. The gate structure 3' is located between the source area 111' and the drain area 112' to form a transistor. As shown in FIG1 , the trench isolation structure 2’ extends from the top surface of the substrate 1’ to the interior of the substrate 1’, and the lateral width dimensions of the entire trench isolation structure 2’ are substantially the same, resulting in a very large area of the leakage region W’ between the trench isolation structure 2’ and the gate structure 3’. When the transistor is in use, electrons migrate from the source region 111’ along the U-shaped channel region to the drain region 112’. Since the leakage area is very large, electrons are also easily migrated to the leakage region W’ to form a leakage current (as shown by the arrow in FIG1 ), affecting the storage performance of the device.
基于此,本发明提供了一种半导体器件及其形成方法,首先形成沟槽隔离结构于所述衬底中,通过所述沟槽隔离结构界定出有源区,由于所述沟槽隔离结构具有相连接的第一隔离部及位于所述第一隔离部下方的第二隔离部,并且所述第二隔离部在垂直于高度方向上的横向宽度尺寸大于所述第一隔离部在垂直于高度方向上的横向宽度尺寸,以使所述第二隔离部相对于所述第一隔离部横向凸出,从而减小了泄漏区域的面积,从而增加了泄漏通路上的等效电阻,从而减小了漏电流,提高了半导体器件的存储性能,进一步,所述源区从所述衬底的顶面延伸至第一深度位置及第二深度位置之间,进一步减小了泄漏区域的面积,达到更好的减小漏电流的作用,且所述源区更下沉于所述漏区,以调节沟道长度保证半导体器件的沟道不发生改变,对器件的导通性能影响很小。Based on this, the present invention provides a semiconductor device and a method for forming the same. First, a trench isolation structure is formed in the substrate, and an active area is defined by the trench isolation structure. Since the trench isolation structure has a first isolation portion connected to each other and a second isolation portion located below the first isolation portion, and the lateral width dimension of the second isolation portion in a direction perpendicular to the height is greater than the lateral width dimension of the first isolation portion in a direction perpendicular to the height, the second isolation portion protrudes laterally relative to the first isolation portion, thereby reducing the area of the leakage region, thereby increasing the equivalent resistance on the leakage path, thereby reducing the leakage current and improving the storage performance of the semiconductor device. Furthermore, the source region extends from the top surface of the substrate to between the first depth position and the second depth position, further reducing the area of the leakage region, achieving a better effect of reducing the leakage current, and the source region is further sunken into the drain region to adjust the channel length to ensure that the channel of the semiconductor device does not change, and has little effect on the conduction performance of the device.
下面将结合示意图对本发明的具体实施方式进行更详细的描述。根据下列描述,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The specific implementation of the present invention will be described in more detail below in conjunction with the schematic diagram. The advantages and features of the present invention will become clearer based on the following description. It should be noted that the drawings are all in a very simplified form and are not in exact proportions, and are only used to facilitate and clearly assist in explaining the purpose of the embodiments of the present invention.
请参阅图10或图11所示,本实施例提供了一种半导体器件,所述半导体器件包括衬底1及形成于所述衬底1中的沟槽隔离结构2,所述沟槽隔离结构2界定出多个有源区于所述衬底1中;其中,所述沟槽隔离结构2包括第一隔离部22和第二隔离部23,所述第一隔离部22从所述衬底1的顶面往所述衬底1的内部延伸至第一深度位置(即从所述衬底1顶面往衬底1内部延伸第一深度值H1的位置),所述第二隔离部23从所述第一隔离部22的下方延伸至第二深度位置(即从所述衬底1顶面往衬底1内部延伸第二深度值H2的位置)并与所述第一隔离部22连接,并且所述第二隔离部23在垂直于高度方向上的横向宽度尺寸h’大于所述第一隔离部22在垂直于高度方向上的横向宽度尺寸h,以使所述第二隔离部23相对于所述第一隔离部22以朝向所述有源区的方向横向凸出;所述有源区包括源区111及漏区112,且所述源区111从所述衬底1的顶面延伸至第一深度位置及第二深度位置之间,以使所述源区111更下沉于所述漏区112。Please refer to FIG. 10 or FIG. 11 , the present embodiment provides a semiconductor device, the semiconductor device comprising a substrate 1 and a trench isolation structure 2 formed in the substrate 1, the trench isolation structure 2 defining a plurality of active regions in the substrate 1; wherein the trench isolation structure 2 comprises a first isolation portion 22 and a second isolation portion 23, the first isolation portion 22 extending from the top surface of the substrate 1 to the inside of the substrate 1 to a first depth position (i.e., a position extending from the top surface of the substrate 1 to the inside of the substrate 1 at a first depth value H1), and the second isolation portion 23 extending from below the first isolation portion 22 to a second depth position (i.e., The second isolation portion 23 extends from the top surface of the substrate 1 to the inside of the substrate 1 to a position of a second depth value H2) and is connected to the first isolation portion 22, and the lateral width dimension h' of the second isolation portion 23 in the direction perpendicular to the height is greater than the lateral width dimension h of the first isolation portion 22 in the direction perpendicular to the height, so that the second isolation portion 23 protrudes laterally relative to the first isolation portion 22 in the direction toward the active area; the active area includes a source region 111 and a drain region 112, and the source region 111 extends from the top surface of the substrate 1 to between the first depth position and the second depth position, so that the source region 111 is further sunken into the drain region 112.
具体的,所述沟槽隔离结构2用于隔离相邻的有源区,所述沟槽隔离结构2包括形成于一隔离沟槽21中的隔离材料层,所述隔离沟槽21从所述衬底1的顶面向所述衬底1的内部延伸至第二深度位置,所述隔离材料层填充于所述隔离沟槽21中,并且,所述隔离材料层不高于所述隔离沟槽21的顶部开口。可选的,所述隔离材料层包括氧化硅、游离氧化硅或硅碳氧化物中的一种或多种。Specifically, the trench isolation structure 2 is used to isolate adjacent active areas, and the trench isolation structure 2 includes an isolation material layer formed in an isolation trench 21, the isolation trench 21 extends from the top surface of the substrate 1 to the inside of the substrate 1 to a second depth position, the isolation material layer is filled in the isolation trench 21, and the isolation material layer is not higher than the top opening of the isolation trench 21. Optionally, the isolation material layer includes one or more of silicon oxide, free silicon oxide or silicon carbide oxide.
进一步,所述源区111与所述漏区112之间的衬底1中形成有栅极结构3,所述栅极结构3从所述衬底1的顶面往所述衬底1的内部延伸至第三深度位置(即从所述衬底1顶面往衬底1内部延伸第三深度值H3的位置),所述第二隔离部23位于所述衬底1的第一深度位置和第二深度位置之间,所述第三深度位置高于所述第二深度位置并低于所述第一深度位置,即,所述栅极结构3的底部是位于所述第一深度位置和第二深度位置之间的。Furthermore, a gate structure 3 is formed in the substrate 1 between the source region 111 and the drain region 112, and the gate structure 3 extends from the top surface of the substrate 1 to the inside of the substrate 1 to a third depth position (i.e., a position of a third depth value H3 extending from the top surface of the substrate 1 to the inside of the substrate 1), and the second isolation portion 23 is located between the first depth position and the second depth position of the substrate 1, and the third depth position is higher than the second depth position and lower than the first depth position, that is, the bottom of the gate structure 3 is located between the first depth position and the second depth position.
本实施例中,所述隔离沟槽21的底部相对于其顶部横向凸出,即所述隔离沟槽21底部在垂直于高度方向上的横向宽度尺寸大于其顶部的横向宽度尺寸,所述隔离沟槽21顶部至底部之间填充的所述隔离材料层构成所述第一隔离部22,所述隔离沟槽21底部填充的隔离材料层构成所述第二隔离部23,使形成的所述沟槽隔离结构2的底部也横向凸出,以使所述第二隔离部23和所述栅极结构3之间的间隔尺寸小于所述第一隔离部22和所述栅极结构3之间的间隔尺寸,以减小泄露区域W的面积。进一步,所述沟槽隔离结构2的所述第二隔离部23呈弧形,所述隔离沟槽21向外凸出的部分也呈弧形,以使所述沟槽隔离结构形成的工艺更简单。由于所述沟槽隔离结构2的所述第二隔离部23相对于所述第一隔离部22横向凸出,使所述沟槽隔离结构2与有源区中栅极结构3之间的泄漏区域W的面积减小了,从而减小了泄漏通道上的等效电阻,进而可以减小漏电流,提高了器件的存储性能。In this embodiment, the bottom of the isolation trench 21 is laterally protruding relative to the top thereof, that is, the lateral width dimension of the bottom of the isolation trench 21 in the direction perpendicular to the height is greater than the lateral width dimension of the top thereof, the isolation material layer filled between the top and the bottom of the isolation trench 21 constitutes the first isolation portion 22, and the isolation material layer filled at the bottom of the isolation trench 21 constitutes the second isolation portion 23, so that the bottom of the formed trench isolation structure 2 is also laterally protruding, so that the spacing dimension between the second isolation portion 23 and the gate structure 3 is smaller than the spacing dimension between the first isolation portion 22 and the gate structure 3, so as to reduce the area of the leakage region W. Furthermore, the second isolation portion 23 of the trench isolation structure 2 is arc-shaped, and the outwardly protruding portion of the isolation trench 21 is also arc-shaped, so that the process of forming the trench isolation structure is simpler. Since the second isolation portion 23 of the trench isolation structure 2 protrudes laterally relative to the first isolation portion 22, the area of the leakage region W between the trench isolation structure 2 and the gate structure 3 in the active area is reduced, thereby reducing the equivalent resistance on the leakage channel, thereby reducing the leakage current and improving the storage performance of the device.
可选的,所述源区111和所述漏区112分别从所述衬底1的顶面往所述衬底1的内部延伸第四深度位置(即从所述衬底1顶面往衬底1内部延伸第四深度值H4的位置)及第五深度位置(即从所述衬底1顶面往衬底1内部延伸第五深度值H5),所述第四深度位置低于所述第一深度位置并高于所述第三深度位置,以使所述栅极结构3更下沉于所述源区111,使沿着所述栅极结构3底部的U形区域构成晶体管的沟道,所述第五深度位置高于所述第一深度位置,以使所述源区111更下沉于所述漏区112,由于所述源区111较图1中的源区111’位置更低,为了保证晶体管的沟道的长度不发生变化,可以相应提高漏区112的位置,保证沟道的长度不变,不会影响半导体器件的导通性能。Optionally, the source region 111 and the drain region 112 extend from the top surface of the substrate 1 to the inside of the substrate 1 to a fourth depth position (i.e., a position where a fourth depth value H4 is extended from the top surface of the substrate 1 to the inside of the substrate 1) and a fifth depth position (i.e., a position where a fifth depth value H5 is extended from the top surface of the substrate 1 to the inside of the substrate 1), respectively. The fourth depth position is lower than the first depth position and higher than the third depth position, so that the gate structure 3 is further sunken into the source region 111, so that the U-shaped area along the bottom of the gate structure 3 constitutes a channel of the transistor, and the fifth depth position is higher than the first depth position, so that the source region 111 is further sunken into the drain region 112. Since the source region 111 is lower than the source region 111' in Figure 1, in order to ensure that the length of the channel of the transistor does not change, the position of the drain region 112 can be correspondingly increased to ensure that the length of the channel remains unchanged and will not affect the conduction performance of the semiconductor device.
进一步,所述半导体器件可以应用于集成电路存储器,所述有源区用于构成所述集成电路存储器中的晶体管。Furthermore, the semiconductor device can be applied to an integrated circuit memory, and the active region is used to constitute a transistor in the integrated circuit memory.
如图2所示,本实施例还提供了一种半导体器件的形成方法,包括:As shown in FIG. 2 , this embodiment further provides a method for forming a semiconductor device, comprising:
S1:提供一衬底,所述衬底中形成有至少一个隔离沟槽,所述隔离沟槽包括第一沟槽部和第二沟槽部,所述第一沟槽部从所述衬底的顶面向所述衬底的内部延伸至第一深度位置,所述第二沟槽部从所述第一沟槽部的下方延伸至第二深度位置并与所述第一沟槽部连通,并且所述第二沟槽部在垂直于高度方向上的横向宽度尺寸大于所述第一沟槽部在垂直于高度方向上的横向宽度尺寸;以及,S1: providing a substrate, wherein at least one isolation trench is formed in the substrate, wherein the isolation trench comprises a first trench portion and a second trench portion, wherein the first trench portion extends from the top surface of the substrate to the inside of the substrate to a first depth position, and the second trench portion extends from below the first trench portion to a second depth position and is connected to the first trench portion, and the lateral width dimension of the second trench portion in a direction perpendicular to the height direction is greater than the lateral width dimension of the first trench portion in a direction perpendicular to the height direction; and,
S2:填充隔离材料层于所述隔离沟槽中,以构成沟槽隔离结构,所述沟槽隔离结构中对应所述第一沟槽部的部分构成第一隔离部,所述沟槽隔离结构中对应所述第二沟槽部的部分构成第二隔离部,并且所述第二隔离部相对于所述第一隔离部横向凸出;S2: filling an isolation material layer in the isolation trench to form a trench isolation structure, wherein a portion of the trench isolation structure corresponding to the first trench portion constitutes a first isolation portion, and a portion of the trench isolation structure corresponding to the second trench portion constitutes a second isolation portion, and the second isolation portion protrudes laterally relative to the first isolation portion;
S3:形成有源区于所述衬底中,所述源区包括源区和漏区,且所述源区从所述衬底的顶面延伸至第一深度位置及第二深度位置之间,以使所述源区更下沉于所述漏区。S3: forming an active region in the substrate, wherein the source region includes a source region and a drain region, and the source region extends from the top surface of the substrate to between a first depth position and a second depth position, so that the source region is further sunken into the drain region.
具体的,首先请参阅图3,提供一衬底1,对所述衬底1执行第一刻蚀工艺,以在所述第一衬底1中形成一第一沟槽部211,所述第一沟槽部211从所述衬底1的顶面向衬底1内部延伸至第一深度位置。可选的,所述第一刻蚀工艺为各项异性干法刻蚀,以形成垂直向下的盲孔于所述衬底1中,且所述在第一沟槽部211在垂直于高度方向上的横向宽度尺寸h’大致相同。Specifically, first refer to FIG3 , a substrate 1 is provided, and a first etching process is performed on the substrate 1 to form a first groove portion 211 in the first substrate 1, wherein the first groove portion 211 extends from the top surface of the substrate 1 to the inside of the substrate 1 to a first depth position. Optionally, the first etching process is anisotropic dry etching to form a vertically downward blind hole in the substrate 1, and the lateral width dimension h' of the first groove portion 211 in the direction perpendicular to the height is substantially the same.
接下来如图4所示,形成保护材料层41于所述衬底1上,所述保护材料层4覆盖所述衬底1并延伸覆盖所述第一沟槽部211的侧壁及底壁,接着采用刻蚀工艺去除所述保护材料层41覆盖所述衬底1及覆盖所述第一沟槽部211的底壁的部分,保留所述保护材料层41覆盖所述第一沟槽部211侧壁的部分,以形成所述保护层4于所述第一沟槽部211侧壁上,具体如图5所示。Next, as shown in FIG. 4 , a protective material layer 41 is formed on the substrate 1, the protective material layer 4 covers the substrate 1 and extends to cover the side walls and bottom walls of the first groove portion 211, and then an etching process is used to remove the portion of the protective material layer 41 covering the substrate 1 and the bottom wall of the first groove portion 211, and the portion of the protective material layer 41 covering the side walls of the first groove portion 211 is retained to form the protective layer 4 on the side walls of the first groove portion 211, as specifically shown in FIG. 5 .
接着以所述保护层4为掩膜对所述第一沟槽部211底部的衬底1执行第二刻蚀工艺,以形成所述第二沟槽部212,所述第一沟槽部211及所述第二沟槽部212共同构成所述隔离沟槽21,所述第二沟槽部212位于所述第一沟槽部211的下方并向所述衬底1的内部延伸至第二深度位置。可选的,所述第二刻蚀工艺为各项同性湿法刻蚀,刻蚀液通过所述第一沟槽部211流入,并沿着横向和纵向同时刻蚀所述第一沟槽部211下方的衬底1,以形成所述第二沟槽部212,由于所述第一沟槽部211的侧壁上具有所述保护层4的保护,所述第一沟槽部211的侧壁不会被刻蚀,而所述第一沟槽部211底部的衬底1被各项同性刻蚀后,形成的所述第二沟槽部212在垂直于高度方向上的横向宽度尺寸大于所述第一沟槽部211在垂直于高度方向上的横向宽度尺寸,具体如图6所示。Then, the second etching process is performed on the substrate 1 at the bottom of the first groove portion 211 using the protective layer 4 as a mask to form the second groove portion 212. The first groove portion 211 and the second groove portion 212 together constitute the isolation groove 21. The second groove portion 212 is located below the first groove portion 211 and extends to the inside of the substrate 1 to a second depth position. Optionally, the second etching process is isotropic wet etching. The etching liquid flows through the first groove portion 211 and etches the substrate 1 below the first groove portion 211 in the horizontal and vertical directions to form the second groove portion 212. Since the sidewalls of the first groove portion 211 are protected by the protective layer 4, the sidewalls of the first groove portion 211 will not be etched. After the substrate 1 at the bottom of the first groove portion 211 is isotropically etched, the lateral width dimension of the second groove portion 212 formed in the direction perpendicular to the height is greater than the lateral width dimension of the first groove portion 211 in the direction perpendicular to the height, as shown in FIG. 6.
接下来如图7所示,在所述隔离沟槽21中填充隔离材料层,以形成所述沟槽隔离结构2,可以理解的是,所述沟槽隔离结构2中对应所述第一沟槽部211的部分构成第一隔离部22,所述沟槽隔离结构2中对应所述第二沟槽部212的部分构成第二隔离部23,并且所述第二隔离部23相对于所述第一隔离部22横向凸出。此时沟槽隔离结构2已经形成,并且通过所述沟槽隔离结构2定义出了形成有源区的区域,接着执行第一离子注入工艺,以形成第一导电类型的第一掺杂区11于所述衬底1中,所述第一掺杂区11的底部边界位于所述第四深度位置,所述第四深度位置位于所述第一深度位置及所述第二深度位置之间,具体如图8所示。Next, as shown in FIG7 , an isolation material layer is filled in the isolation trench 21 to form the trench isolation structure 2. It can be understood that the portion of the trench isolation structure 2 corresponding to the first trench portion 211 constitutes a first isolation portion 22, and the portion of the trench isolation structure 2 corresponding to the second trench portion 212 constitutes a second isolation portion 23, and the second isolation portion 23 protrudes laterally relative to the first isolation portion 22. At this time, the trench isolation structure 2 has been formed, and the region where the active region is formed is defined by the trench isolation structure 2. Then, a first ion implantation process is performed to form a first conductive type first doping region 11 in the substrate 1, and the bottom boundary of the first doping region 11 is located at the fourth depth position, and the fourth depth position is located between the first depth position and the second depth position, as shown in FIG8 .
进一步,如图9-图10所示,刻蚀所述衬底1,以形成对应栅极区域的栅极沟槽31,并利用栅极沟槽31界定出用于形成源区的第一区域和用于形成漏区的第二区域,接着在所述栅极沟槽31中形成栅极结构3,形成所述栅极结构3的步骤可以是:如图10所示,在所述栅极沟槽31的底壁及侧壁上形成栅介质层32,所述栅介质层32可以是氧化硅材料,接着在所述栅极沟槽31中填充栅电极层33及绝缘层34,所述栅电极层33位于所述栅极沟槽31的下部分,所述绝缘层34位于所述栅极沟槽31的上部分,使所述绝缘层34覆盖所述栅电极层33,以对所述栅电极层33进行隔离保护,可选的,所述栅电极层33填充的深度较所述绝缘层34填充的深度更大。可以理解的是,所述栅极沟槽31的从所述衬底1的顶面向所述衬底1的内部延伸至第三深度位置,所述第三深度位置位于所述第一深度位置和第二深度位置之间,以使所述栅极结构3更下沉于所述第一掺杂区11。Further, as shown in Figures 9 and 10, the substrate 1 is etched to form a gate trench 31 corresponding to the gate area, and the gate trench 31 is used to define a first area for forming a source area and a second area for forming a drain area, and then a gate structure 3 is formed in the gate trench 31. The steps of forming the gate structure 3 may be: as shown in Figure 10, a gate dielectric layer 32 is formed on the bottom wall and side wall of the gate trench 31, and the gate dielectric layer 32 may be a silicon oxide material, and then a gate electrode layer 33 and an insulating layer 34 are filled in the gate trench 31, the gate electrode layer 33 is located in the lower part of the gate trench 31, and the insulating layer 34 is located in the upper part of the gate trench 31, so that the insulating layer 34 covers the gate electrode layer 33 to isolate and protect the gate electrode layer 33. Optionally, the filling depth of the gate electrode layer 33 is greater than the filling depth of the insulating layer 34. It can be understood that the gate trench 31 extends from the top surface of the substrate 1 to the inside of the substrate 1 to a third depth position, and the third depth position is located between the first depth position and the second depth position, so that the gate structure 3 is further sunken into the first doping region 11.
进一步,如图10所示,位于所述第一区域中的所述第一掺杂区11构成所述源区111,即所述源区111的底部边界位于所述第四深度位置,所述第四深度位置低于所述第一深度位置并高于所述第三深度位置,接着对所述第二区域的衬底1执行第二离子注入工艺,以注入第二导电类型离子在所述第一掺杂区11中,所述第二导电类型离子从所述第一掺杂区11的底部边界往所述衬底1的顶面延伸至第五深度位置,以使所述第一掺杂区11从所述底部边界至所述第五深度位置之间的部分形成第二导电类型的第二掺杂区(所述第一导电类型与所述第二导电类型相反,使所述第二掺杂区所述衬底1融为一体),所述第一掺杂区11中从所述第五深度位置至所述衬底1顶面的部分构成第一导电类型的漏区112(即所述漏区112从所述衬底1的顶面向所述衬底1内部延伸至第五深度位置),所述第五深度位置高于所述第一深度位置,以使所述源区111更下沉于所述漏区112。Further, as shown in Figure 10, the first doping region 11 located in the first area constitutes the source region 111, that is, the bottom boundary of the source region 111 is located at the fourth depth position, the fourth depth position is lower than the first depth position and higher than the third depth position, and then the second ion implantation process is performed on the substrate 1 of the second area to implant the second conductive type ions in the first doping region 11, the second conductive type ions extend from the bottom boundary of the first doping region 11 to the top surface of the substrate 1 to the fifth depth position, so that the first doping region 11 forms a second doping region of the second conductive type from the bottom boundary to the fifth depth position (the first conductive type is opposite to the second conductive type, so that the second doping region and the substrate 1 are integrated), and the portion of the first doping region 11 from the fifth depth position to the top surface of the substrate 1 constitutes a drain region 112 of the first conductive type (that is, the drain region 112 extends from the top surface of the substrate 1 to the inside of the substrate 1 to the fifth depth position), and the fifth depth position is higher than the first depth position, so that the source region 111 is further sunken into the drain region 112.
如图11所示,每个所述有源区中可以形成两个所述栅极结构3,以形成两个晶体管,并且两个所述晶体管的漏区111共用,以构成一晶体管对,提高了器件的密集程度,可以理解的是,如图10所示,每个所述有源区中的栅极结构3也可能只有一个,本发明不作限制。As shown in FIG11 , two gate structures 3 can be formed in each active area to form two transistors, and the drain regions 111 of the two transistors are shared to form a transistor pair, thereby improving the density of the device. It can be understood that, as shown in FIG10 , there may be only one gate structure 3 in each active area, and the present invention does not limit this.
综上,在本发明实施例提供的半导体器件及其形成方法中,首先形成沟槽隔离结构于所述衬底中,通过所述沟槽隔离结构界定出有源区,由于所述沟槽隔离结构具有相连接的第一隔离部及位于所述第一隔离部下方的第二隔离部,并且所述第二隔离部在垂直于高度方向上的横向宽度尺寸大于所述第一隔离部在垂直于高度方向上的横向宽度尺寸,以使所述第二隔离部相对于所述第一隔离部横向凸出,从而减小了泄漏区域的面积,从而增加了泄漏通路上的等效电阻,从而减小了漏电流,提高了半导体器件的存储性能,进一步,所述源区从所述衬底的顶面延伸至第一深度位置及第二深度位置之间,进一步减小了泄漏区域的面积,达到更好的减小漏电流的作用,且所述源区更下沉于所述漏区,以调节沟道长度保证半导体器件的沟道不发生改变,对器件的导通性能影响很小。In summary, in the semiconductor device and the formation method thereof provided in the embodiment of the present invention, a trench isolation structure is first formed in the substrate, and an active area is defined by the trench isolation structure. Since the trench isolation structure has a first isolation portion connected to each other and a second isolation portion located below the first isolation portion, and the lateral width dimension of the second isolation portion in the direction perpendicular to the height is greater than the lateral width dimension of the first isolation portion in the direction perpendicular to the height, the second isolation portion protrudes laterally relative to the first isolation portion, thereby reducing the area of the leakage region, thereby increasing the equivalent resistance on the leakage path, thereby reducing the leakage current and improving the storage performance of the semiconductor device. Furthermore, the source region extends from the top surface of the substrate to between the first depth position and the second depth position, further reducing the area of the leakage region, achieving a better effect of reducing the leakage current, and the source region is further sunken in the drain region to adjust the channel length to ensure that the channel of the semiconductor device does not change, and has little effect on the conduction performance of the device.
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。The above is only a preferred embodiment of the present invention and does not limit the present invention in any way. Any technician in the relevant technical field, without departing from the scope of the technical solution of the present invention, makes any form of equivalent replacement or modification to the technical solution and technical content disclosed in the present invention, which does not depart from the content of the technical solution of the present invention and still falls within the protection scope of the present invention.
Claims (11)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811161707.5A CN110970435B (en) | 2018-09-30 | 2018-09-30 | Semiconductor device and method of forming the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811161707.5A CN110970435B (en) | 2018-09-30 | 2018-09-30 | Semiconductor device and method of forming the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110970435A CN110970435A (en) | 2020-04-07 |
| CN110970435B true CN110970435B (en) | 2024-10-29 |
Family
ID=70029189
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811161707.5A Active CN110970435B (en) | 2018-09-30 | 2018-09-30 | Semiconductor device and method of forming the same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110970435B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12262597B2 (en) | 2022-11-28 | 2025-03-25 | Boe Technology Group Co., Ltd. | Display substrate and display device |
| CN116895600A (en) * | 2023-08-10 | 2023-10-17 | 荣芯半导体(淮安)有限公司 | Semiconductor device and manufacturing method thereof |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101009284A (en) * | 2006-01-23 | 2007-08-01 | 海力士半导体有限公司 | Semiconductor device and method of manufacturing the same |
| CN101645400A (en) * | 2008-08-04 | 2010-02-10 | 海力士半导体有限公司 | Semiconductor device and method of fabricating the same |
| CN108172577A (en) * | 2017-12-22 | 2018-06-15 | 睿力集成电路有限公司 | Memory and its manufacturing method, semiconductor device |
| CN208923133U (en) * | 2018-09-30 | 2019-05-31 | 长鑫存储技术有限公司 | Semiconductor devices |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100876893B1 (en) * | 2007-06-29 | 2009-01-07 | 주식회사 하이닉스반도체 | Semiconductor device and manufacturing method thereof |
| CN102214657A (en) * | 2010-04-07 | 2011-10-12 | 中国科学院微电子研究所 | Semiconductor device, isolation structure of semiconductor device and manufacturing method thereof |
| JP2012234964A (en) * | 2011-04-28 | 2012-11-29 | Elpida Memory Inc | Semiconductor device and manufacturing method of the same |
| US9171847B1 (en) * | 2014-10-02 | 2015-10-27 | Inotera Memories, Inc. | Semiconductor structure |
| CN107425072A (en) * | 2017-09-06 | 2017-12-01 | 睿力集成电路有限公司 | A kind of device architecture of semiconductor memory |
-
2018
- 2018-09-30 CN CN201811161707.5A patent/CN110970435B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101009284A (en) * | 2006-01-23 | 2007-08-01 | 海力士半导体有限公司 | Semiconductor device and method of manufacturing the same |
| CN101645400A (en) * | 2008-08-04 | 2010-02-10 | 海力士半导体有限公司 | Semiconductor device and method of fabricating the same |
| CN108172577A (en) * | 2017-12-22 | 2018-06-15 | 睿力集成电路有限公司 | Memory and its manufacturing method, semiconductor device |
| CN208923133U (en) * | 2018-09-30 | 2019-05-31 | 长鑫存储技术有限公司 | Semiconductor devices |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110970435A (en) | 2020-04-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100673105B1 (en) | Vertical transistors in semiconductor devices and methods of forming them | |
| CN100490153C (en) | Semiconductor device and method of manufacturing the same | |
| CN110034182A (en) | The manufacturing method of trench-gate device with shield grid | |
| CN112242305B (en) | Semiconductor device and method for manufacturing the same | |
| CN101536166A (en) | Methods of forming field effect transistors, pluralities of field effect transistors, and dram circuitry comprising a plurality of individual memory cells | |
| CN113299652B (en) | Memory structure and manufacturing method thereof | |
| TW201742124A (en) | Method for manufacturing power MOS semiconductor field effect transistor | |
| CN111785619A (en) | Process method for shielding trench of gate trench type MOSFET | |
| CN110970435B (en) | Semiconductor device and method of forming the same | |
| CN110970347A (en) | Trench isolation structure and forming method thereof, semiconductor device and forming method thereof | |
| US7537986B2 (en) | Semiconductor device and method for manufacturing the same | |
| CN110890424A (en) | Transistor, semiconductor device and forming method thereof | |
| KR100920046B1 (en) | Semiconductor device and manufacturing method thereof | |
| CN111128853B (en) | Integrated structure of trenches and method of making the same | |
| JP4519442B2 (en) | MOS transistor and manufacturing method thereof | |
| CN110875254B (en) | Method for forming semiconductor device | |
| US20160027881A1 (en) | Semiconductor device and method for manufacturing the same | |
| KR100799111B1 (en) | Transistor of semiconductor device and manufacturing method thereof | |
| KR20140023056A (en) | Semiconductor device and method for forming the same | |
| TW201312745A (en) | Insulator manufacturing method | |
| KR100854502B1 (en) | Semiconductor device adopting transistor having recess channel region and manufacturing method thereof | |
| JPH0389555A (en) | Semiconductor device and manufacture thereof | |
| KR100730466B1 (en) | Trench transistor and method of manufacturing the same | |
| KR20130127206A (en) | Semiconductor device having buried multi-channel structure and method of the same | |
| CN115188771B (en) | Semiconductor device and method for manufacturing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |