CN110986694B - A rocket model and fixed-point landing method using coaxial reverse propellers - Google Patents
A rocket model and fixed-point landing method using coaxial reverse propellers Download PDFInfo
- Publication number
- CN110986694B CN110986694B CN201911327342.3A CN201911327342A CN110986694B CN 110986694 B CN110986694 B CN 110986694B CN 201911327342 A CN201911327342 A CN 201911327342A CN 110986694 B CN110986694 B CN 110986694B
- Authority
- CN
- China
- Prior art keywords
- rocket model
- motor
- rocket
- target point
- model body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000007246 mechanism Effects 0.000 claims abstract description 70
- 230000006698 induction Effects 0.000 claims description 4
- 238000011084 recovery Methods 0.000 abstract description 5
- 108010066114 cabin-2 Proteins 0.000 description 9
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B15/00—Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
- F42B15/01—Arrangements thereon for guidance or control
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H27/00—Toy aircraft; Other flying toys
- A63H27/005—Rockets; Missiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/32—Range-reducing or range-increasing arrangements; Fall-retarding means
- F42B10/48—Range-reducing, destabilising or braking arrangements, e.g. impact-braking arrangements; Fall-retarding means, e.g. balloons, rockets for braking or fall-retarding
- F42B10/54—Spin braking means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B10/00—Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
- F42B10/60—Steering arrangements
- F42B10/66—Steering by varying intensity or direction of thrust
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Combustion & Propulsion (AREA)
- Toys (AREA)
Abstract
本发明提供了一种采用共轴反桨的火箭模型及定点降落方法,属于航天模型技术领域,包括火箭模型本体、动力机构、方向调节机构、电控舱和制动机构。火箭模型本体上设有动力机构和方向调节机构;火箭模型本体内设有电控舱,电控舱用于感应火箭模型本体的位置,并通过方向调节机构控制动力机构的驱动方向;火箭模型本体的前端设有制动机构,制动机构用于控制动力机构停止。本发明提供的一种采用共轴反桨的火箭模型,在火箭模型本体需要降落时,电控舱向方向调节机构发送控制信号,驱动机构调整其驱动方向,使火箭模型向目标点降落,制动机构控制动力机构停止运行,从而使火箭模型稳定的降落。最终能够实现火箭模型准确的定点回收。
The invention provides a rocket model using a coaxial reverse propeller and a fixed-point landing method, belonging to the technical field of aerospace models, including a rocket model body, a power mechanism, a direction adjustment mechanism, an electric control cabin and a braking mechanism. The rocket model body is provided with a power mechanism and a direction adjustment mechanism; the rocket model body is provided with an electric control cabin, which is used to sense the position of the rocket model body and control the driving direction of the power mechanism through the direction adjustment mechanism; the rocket model body The front end is provided with a braking mechanism, which is used to control the power mechanism to stop. The present invention provides a rocket model using a coaxial reverse propeller. When the rocket model body needs to land, the electronic control cabin sends a control signal to the direction adjustment mechanism, and the drive mechanism adjusts its driving direction to make the rocket model land on the target point. The driving mechanism controls the power mechanism to stop running, so that the rocket model can land stably. Finally, the accurate fixed-point recovery of the rocket model can be realized.
Description
技术领域technical field
本发明属于航天模型技术领域,更具体地说,是涉及一种采用共轴反桨的火箭模型及定点降落方法。The invention belongs to the technical field of aerospace models, and more particularly relates to a rocket model and a fixed-point landing method using a coaxial reverse propeller.
背景技术Background technique
随着科技进步,人类航天技术正在蓬勃发展,目前,其回收重复利用受到广泛关注。火箭模型作为航天事业的基础,不只是一种玩具,更可以成为一种运载工具。随着航天技术的发展,也在不断进步。但目前火箭模型的主要功能还是发射和开伞降落,但还不能做到精准的定点回收。With the advancement of science and technology, human spaceflight technology is developing vigorously. At present, its recycling and reuse have received extensive attention. As the foundation of the aerospace industry, the rocket model is not only a toy, but also a vehicle. With the development of aerospace technology, it is also constantly improving. However, the main function of the current rocket model is to launch and parachute landing, but it cannot achieve accurate fixed-point recovery.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种采用共轴反桨的火箭模型,旨在解决火箭模型不能做到精准的定点回收的问题。The purpose of the present invention is to provide a rocket model using a coaxial reverse propeller, which aims to solve the problem that the rocket model cannot be accurately recovered at a fixed point.
为实现上述目的,本发明采用的技术方案是:提供一种采用共轴反桨的火箭模型,包括火箭模型本体,所述火箭模型本体上设有动力机构和方向调节机构;In order to achieve the above object, the technical solution adopted in the present invention is to provide a rocket model using a coaxial reverse propeller, including a rocket model body, and a power mechanism and a direction adjustment mechanism are provided on the rocket model body;
所述火箭模型本体内设有电控舱,所述电控舱用于感应所述火箭模型本体的位置,并通过所述方向调节机构控制所述动力机构的驱动方向;The rocket model body is provided with an electric control cabin, and the electric control cabin is used to sense the position of the rocket model body and control the driving direction of the power mechanism through the direction adjustment mechanism;
所述火箭模型本体的前端设有制动机构,所述制动机构用于控制所述动力机构停止运行。The front end of the rocket model body is provided with a braking mechanism, and the braking mechanism is used to control the power mechanism to stop running.
作为本申请另一实施例,所述动力机构包括共轴反桨电机和依次设于所述共轴反桨电机驱动轴上的两个螺旋桨,所述制动机构用于控制所述共轴反桨电机停止运行。As another embodiment of the present application, the power mechanism includes a coaxial reverse propeller motor and two propellers sequentially arranged on the drive shaft of the coaxial reverse propeller motor, and the braking mechanism is used to control the coaxial reverse propeller motor. The propeller motor stops running.
作为本申请另一实施例,所述方向调节机构包括水平转动电机和竖直转动电机,所述水平转动电机安装于所述火箭模型本体上,所述竖直转动电机通过连接装置连接所述水平转动电机和所述动力机构,所述水平转动电机和所述竖直转动电机通过接收所述电控舱的感应信号用于调节所述动力机构的驱动方向。As another embodiment of the present application, the direction adjustment mechanism includes a horizontal rotation motor and a vertical rotation motor, the horizontal rotation motor is installed on the rocket model body, and the vertical rotation motor is connected to the horizontal rotation motor through a connecting device The rotation motor and the power mechanism, the horizontal rotation motor and the vertical rotation motor are used to adjust the driving direction of the power mechanism by receiving the induction signal of the electric control cabin.
作为本申请另一实施例,所述连接装置包括第一连接件和第二连接件,所述第一连接件连接于所述水平转动电机的驱动端和所述竖直转动电机的固定端,所述第二连接件连接于所述竖直转动电机的驱动端和所述共轴反桨电机的固定端。As another embodiment of the present application, the connecting device includes a first connecting member and a second connecting member, the first connecting member is connected to the driving end of the horizontal rotation motor and the fixed end of the vertical rotation motor, The second connecting piece is connected to the driving end of the vertical rotation motor and the fixed end of the coaxial reverse propeller motor.
作为本申请另一实施例,所述电控舱包括GPS模块、陀螺仪模块和单片机,所述单片机用于记录目标点坐标,所述GPS模块用于时时感应所述火箭模型本体的位置坐标,所述陀螺仪模块用于感应所述位置坐标与所述目标点坐标的偏差角度,通过所述水平转动电机和所述竖直转动电机控制两个所述螺旋桨的驱动方向。As another embodiment of the present application, the electronic control cabin includes a GPS module, a gyroscope module, and a single-chip microcomputer, the single-chip microcomputer is used to record the coordinates of the target point, and the GPS module is used to constantly sense the position coordinates of the rocket model body, The gyroscope module is used to sense the deviation angle between the position coordinates and the target point coordinates, and control the driving directions of the two propellers through the horizontal rotation motor and the vertical rotation motor.
作为本申请另一实施例,所述火箭模型本体的前端设有整流头锥,所述制动机构设于所述整流头锥的端部。As another embodiment of the present application, the front end of the rocket model body is provided with a rectifying nose cone, and the braking mechanism is provided at the end of the rectifying nose cone.
作为本申请另一实施例,所述制动机构为顶针开关,所述顶针开关用于控制所述共轴反桨电机停止运行。As another embodiment of the present application, the braking mechanism is a thimble switch, and the thimble switch is used to control the coaxial reverse propeller motor to stop running.
作为本申请另一实施例,所述火箭模型本体的末端设有降落伞。As another embodiment of the present application, the end of the rocket model body is provided with a parachute.
本发明提供的一种采用共轴反桨的火箭模型的有益效果在于:与现有技术相比,本发明一种采用共轴反桨的火箭模型,在火箭模型本体需要降落时,电控舱感应火箭模型本体的位置,并与目标位置进行比对分析,向方向调节机构发送控制信号,方向调节机构接收到控制信号后,驱动机构调整其驱动方向,调整火箭模型本体的降落方向,使其向目标点降落。当火箭模型本体降落到地面上时,制动机构控制动力机构停止运行,从而使火箭模型稳定的降落。最终能够实现火箭模型准确的定点回收。The beneficial effect of the rocket model using the coaxial reverse propeller provided by the present invention is: compared with the prior art, the rocket model using the coaxial reverse propeller of the present invention has the following advantages: when the rocket model body needs to land, the electric control cabin The position of the rocket model body is sensed, compared with the target position, and a control signal is sent to the direction adjustment mechanism. After the direction adjustment mechanism receives the control signal, the driving mechanism adjusts its driving direction and adjusts the landing direction of the rocket model body to make it Land to the target point. When the rocket model body falls to the ground, the braking mechanism controls the power mechanism to stop running, so that the rocket model can land stably. Finally, the accurate fixed-point recovery of the rocket model can be realized.
本发明还提供了一种火箭模型的定点降落方法,包含所述的一种采用共轴反桨的火箭模型,包括以下步骤:The present invention also provides a fixed-point landing method for a rocket model, including the rocket model using a coaxial reverse propeller, including the following steps:
S1:将目标点坐标(x,y,z)输入单片机内;S1: Input the coordinates of the target point (x, y, z) into the microcontroller;
S2:火箭模型本体发射并开伞以后,GPS模块感应当前位置坐标(X,Y,Z);S2: After the rocket model body is launched and the parachute is opened, the GPS module senses the current position coordinates (X, Y, Z);
S3:单片机通过当前位置坐标(X,Y,Z)和目标点坐标(x,y,z),计算火箭模型本体所需仰俯角度A和所需偏航角度B;S3: The single-chip microcomputer calculates the required pitch angle A and required yaw angle B of the rocket model body through the current position coordinates (X, Y, Z) and the target point coordinates (x, y, z);
S4:陀螺仪模块时时读取当前的俯仰角数据a和航向角度数据b;S4: The gyroscope module reads the current pitch angle data a and heading angle data b from time to time;
S5:单片机通过比对A和a,或B和b计算电机转动方向F,并通过电机转动方向F计算电机转动速度V;S5: The microcontroller calculates the motor rotation direction F by comparing A and a, or B and b, and calculates the motor rotation speed V through the motor rotation direction F;
S6:火箭模型触地后,触发顶针开关,各电机停止转动。S6: After the rocket model touches the ground, trigger the thimble switch, and each motor stops rotating.
作为本申请另一实施例,在步骤S3至S5中,As another embodiment of the present application, in steps S3 to S5,
计算所需俯仰角度A: Calculate the required pitch angle A:
计算所需偏航角度B:或 Calculate the required yaw angle B: or
计算电机转动方向F:SΔ=A-a, Calculate the motor rotation direction F: S Δ =Aa,
计算电机转动速度V:e(t)=V(2)-V(1),Calculate the motor rotation speed V: e (t) = V (2) - V (1) ,
本发明提供的一种火箭模型的定点降落方法的有益效果在于:与现有技术相比,首先将目标点坐标(x,y,z)输入火箭模型本体上的单片机内;火箭模型本体发射并开伞以后,GPS模块感应当前位置坐标(X,Y,Z);单片机通过当前位置坐标(X,Y,Z)和目标点坐标(x,y,z),计算火箭模型本体所需仰俯角度A和所需偏航角度B;陀螺仪模块时时读取当前的俯仰角数据a和航向角度数据b;单片机通过比对A和a,或B和b计算电机转动方向F,并通过电机转动方向F计算电机转动速度V;火箭模型触地后,触发顶针开关,各电机停止转动。能够实现火箭模型准确的定点回收。The beneficial effect of the fixed-point landing method for a rocket model provided by the present invention is: compared with the prior art, the coordinates (x, y, z) of the target point are firstly input into the single-chip microcomputer on the rocket model body; After the parachute is opened, the GPS module senses the current position coordinates (X, Y, Z); the single-chip microcomputer calculates the required pitch of the rocket model body through the current position coordinates (X, Y, Z) and the target point coordinates (x, y, z). Angle A and required yaw angle B; the gyroscope module reads the current pitch angle data a and heading angle data b from time to time; the microcontroller calculates the motor rotation direction F by comparing A and a, or B and b, and rotates the motor through the motor The direction F calculates the motor rotation speed V; after the rocket model touches the ground, the thimble switch is triggered, and each motor stops rotating. It can realize the accurate fixed-point recovery of the rocket model.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present invention. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明实施例提供的一种采用共轴反桨的火箭模型的结构示意图;Fig. 1 is the structural representation of a kind of rocket model that adopts coaxial counter-propeller provided by the embodiment of the present invention;
图2为本发明实施例提供的一种火箭模型的定点降落方法流程图。FIG. 2 is a flowchart of a fixed-point landing method for a rocket model provided by an embodiment of the present invention.
图中:1、火箭模型本体;2、电控舱;3、共轴反桨电机;4、螺旋桨;5、水平转动电机;6、竖直转动电机;7、第一连接件;8、第二连接件;9、整流头锥;10、顶针开关。In the figure: 1. Rocket model body; 2. Electric control cabin; 3. Coaxial reverse propeller motor; 4. Propeller; 5. Horizontal rotation motor; 6. Vertical rotation motor; 7. First connecting piece; Two connectors; 9, rectifier head cone; 10, thimble switch.
具体实施方式Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
请参阅图1,现对本发明提供的一种采用共轴反桨的火箭模型进行说明。一种采用共轴反桨的火箭模型,包括火箭模型本体1、动力机构、方向调节机构、电控舱2和制动机构。Referring to FIG. 1 , a rocket model using a coaxial reverse propeller provided by the present invention will now be described. A rocket model using a coaxial reverse propeller includes a
火箭模型本体1上设有动力机构和方向调节机构;火箭模型本体1内设有电控舱2,电控舱2用于感应火箭模型本体1的位置,并通过方向调节机构控制动力机构的驱动方向;火箭模型本体1的前端设有制动机构,制动机构用于控制动力机构停止运行。The
本发明提供的一种采用共轴反桨的火箭模型,与现有技术相比,在火箭模型本体1需要降落时,电控舱2感应火箭模型本体1的位置,并与目标位置进行比对分析,向方向调节机构发送控制信号,方向调节机构接收到控制信号后,驱动机构调整其驱动方向,调整火箭模型本体1的降落方向,使其向目标点降落。当火箭模型本体1降落到地面上时,制动机构控制动力机构停止运行,从而使火箭模型稳定的降落。最终能够实现火箭模型准确的定点回收。Compared with the prior art, when the
作为本发明提供的一种采用共轴反桨的火箭模型的一种具体实施方式,请参阅图1,动力机构包括共轴反桨电机3和依次设于共轴反桨电机3驱动轴上的两个螺旋桨4,制动机构用于控制共轴反桨电机3停止运行。本实施例中,共轴反桨电机3又名共轴双桨电机,共轴设有两个旋向相反的两个螺旋桨4,是飞行设备上常用的装置,可以平衡单向转动偏转力矩,避免火箭模型采用单向螺旋桨4转动时,带来的单相偏转力矩使火箭模型本体1产生自旋,造成控制困难的问题。制动装置与共轴反桨电机3电连接,可以控制共轴反桨电机3的停止运行,实现火箭模型的降落。As a specific embodiment of a rocket model using a coaxial counter-propeller provided by the present invention, please refer to FIG. 1 , the power mechanism includes a coaxial
作为本发明提供的一种采用共轴反桨的火箭模型的一种具体实施方式,请参阅图1,方向调节机构包括水平转动电机5和竖直转动电机6,水平转动电机5安装于火箭模型本体1上,竖直转动电机6通过连接装置连接水平转动电机5和动力机构,水平转动电机5和竖直转动电机6通过接收电控舱2的感应信号用于调节动力机构的驱动方向。本实施例中,竖直转动电机6带动动力机构改变火箭模型与地面的降落夹角;水平转动电机5带动动力机构改变降落方向。水平转动电机5和竖直转动电机6均由电控舱2控制,通过接收电控舱2的感应信号,水平转动电机5和竖直转动电机6改变转速和转动方向。As a specific embodiment of a rocket model using a coaxial reverse propeller provided by the present invention, please refer to FIG. 1 , the direction adjustment mechanism includes a
作为本发明提供的一种采用共轴反桨的火箭模型的一种具体实施方式,请参阅图1,连接装置包括第一连接件7和第二连接件8,第一连接件7连接于水平转动电机5的驱动端和竖直转动电机6的固定端,第二连接件8连接于竖直转动电机6的驱动端和共轴反桨电机3的固定端。本实施例中,第一连接件7和第二连接件8均为U形架体,对应的自由端铰接,第一连接件7转动设于第二连接件8的上方。第一连接件7连接水平转动电机5的驱动端,水平转动电机5的驱动端转动带动,通过第二连接件8带动竖直转动电机6及共轴反桨电机3转换角度,从而改变火箭模型的飞行方向。第二连接件8连接竖直转动电机6的驱动端和共轴反桨电机3,竖直转动电机6带动第二连接件8相对于第一连接件7转动,从而改变火箭模型与地面的飞行角度。As a specific embodiment of a rocket model using a coaxial reverse propeller provided by the present invention, please refer to FIG. 1 , the connecting device includes a first connecting
作为本发明提供的一种采用共轴反桨的火箭模型的一种具体实施方式,请参阅图1,电控舱2包括GPS模块、陀螺仪模块和单片机,单片机用于记录目标点坐标,GPS模块用于时时感应火箭模型本体1的位置坐标,陀螺仪模块用于感应位置坐标与目标点坐标的偏差角度,通过水平转动电机5和竖直转动电机6控制两个螺旋桨4的驱动方向。本实施例中,先将目标点坐标输入单片机内,在火箭模型飞行过程中,GPS模块时时感应位置坐标,并与目标点坐标分析比对,根据二者的偏差值,生成感应信号发送至相应的电机,即水平转动电机5和竖直转动电机6,通过控制水平转动电机5和竖直转动电机6控制火箭模型的飞行方向和角度。As a specific implementation of a rocket model using coaxial reverse propeller provided by the present invention, please refer to FIG. 1 , the
作为本发明提供的一种采用共轴反桨的火箭模型的一种具体实施方式,请参阅图1,火箭模型本体1的前端设有整流头锥9,制动机构设于整流头锥9的端部。本实施例中,整流头锥9为锥形机构,能够减少火箭模型的飞行阻力,制动装置安装在其端部,通过火箭模型的降落启动制动装置,控制火箭模型挺稳。As a specific embodiment of a rocket model using a coaxial reverse propeller provided by the present invention, please refer to FIG. Ends. In this embodiment, the rectifying
作为本发明提供的一种采用共轴反桨的火箭模型的一种具体实施方式,请参阅图1,制动机构为顶针开关10,顶针开关10用于控制共轴反桨电机3停止运行。本实施例中,顶针开关10具备复位功能,在火箭模型触地使,顶针开关10先于火箭模型接触地面,在火箭模型重力的作用下,顶针开关10控制共轴反桨电机3断路,使共轴反桨电机3停止运行,两个螺旋桨4不再转动,从而使火箭模型降落后保持稳定。As a specific embodiment of a rocket model using a coaxial reverse propeller provided by the present invention, please refer to FIG. 1 , the braking mechanism is a
作为本发明提供的一种采用共轴反桨的火箭模型的一种具体实施方式,请参阅图1,火箭模型本体1的末端设有降落伞。本实施例中,降落伞位于电控舱2的后侧,在火箭模型降落时弹出,缓冲火箭模型降落速度,不但能够避免火箭模型降落时,由于惯性过大而损坏,同时能够为火箭模型调整飞行方向和角度提供足够长的时间。As a specific embodiment of a rocket model using a coaxial reverse propeller provided by the present invention, please refer to FIG. 1 , a parachute is provided at the end of the
本发明还提供了一种火箭模型的定点降落方法,使用了上述的一种采用共轴反桨的火箭模型,请参阅图2,包括以下步骤:The present invention also provides a fixed-point landing method for a rocket model, using the above-mentioned rocket model using a coaxial reverse propeller, please refer to FIG. 2, including the following steps:
S1:将目标点坐标(x,y,z)输入单片机内;S1: Input the coordinates of the target point (x, y, z) into the microcontroller;
S2:火箭模型本体1发射并开伞以后,GPS模块感应当前位置坐标(X,Y,Z);S2: After the
S3:单片机通过当前位置坐标(X,Y,Z)和目标点坐标(x,y,z),计算火箭模型本体1所需仰俯角度A和所需偏航角度B;S3: The single-chip microcomputer calculates the required pitch angle A and required yaw angle B of the
S4:陀螺仪模块时时读取当前的俯仰角数据a和航向角度数据b;S4: The gyroscope module reads the current pitch angle data a and heading angle data b from time to time;
S5:单片机通过比对A和a,或B和b计算电机转动方向F,并通过电机转动方向F计算电机转动速度V;S5: The microcontroller calculates the motor rotation direction F by comparing A and a, or B and b, and calculates the motor rotation speed V through the motor rotation direction F;
S6:火箭模型触地后,触发顶针开关10,各电机停止转动。S6: After the rocket model touches the ground, trigger the
计算所需俯仰角度A:Calculate the required pitch angle A:
其中,x为目标点的经度,y为目标点的纬度,z为目标点的高度,X为当前火箭模型所在位置的经度,Y为当前火箭模型所在位置的纬度,Z为当前火箭模型所在位置的高度。Among them, x is the longitude of the target point, y is the latitude of the target point, z is the height of the target point, X is the longitude of the current rocket model location, Y is the latitude of the current rocket model location, and Z is the current rocket model location. the height of.
计算所需偏航角度B:Calculate the required yaw angle B:
首先以当前火箭模型所在位置为原点,航向角为零的方向为Y轴正方向,顺时针旋转90度方向为X轴正方向,建立水平的坐标系,判断目标点位于第几象限。First, take the position of the current rocket model as the origin, the direction where the heading angle is zero is the positive direction of the Y-axis, and the 90-degree clockwise direction is the positive direction of the X-axis, establish a horizontal coordinate system, and determine which quadrant the target point is located in.
当目标点位于第一,二象限时: When the target point is in the first and second quadrants:
当目标点位于第三,四象限时: When the target point is in the third and fourth quadrants:
其中,x为目标点的经度,y为目标点的纬度,X为当前火箭模型所在位置的经度,Y为当前火箭模型所在位置的纬度。Among them, x is the longitude of the target point, y is the latitude of the target point, X is the longitude of the location of the current rocket model, and Y is the latitude of the location of the current rocket model.
计算电机转动方向F:Calculate the motor rotation direction F:
SΔ=A-a, S Δ =Aa,
其中,上述A可替换为B,a可替换成b,且必须同时替换;SΔ为当前角度与所需角度差值。Among them, the above A can be replaced by B, a can be replaced by b, and must be replaced at the same time; S Δ is the difference between the current angle and the required angle.
计算电机转动速度V:Calculate the motor rotation speed V:
e(t)=V(2)-V(1), e (t) = V (2) - V (1) ,
e(t)电机转速实际值与电机转速预定值之差,V(1)单位时刻电机转速预定值,V(2)单位时刻电机转速实际值,KP为比例系数,Ti积分系数,Td微分系数。e (t) the difference between the actual value of the motor speed and the predetermined value of the motor speed, V (1) the predetermined value of the motor speed per unit time, V (2) the actual value of the motor speed per unit time, K P is the proportional coefficient, T i is the integral coefficient, T d Differential coefficient.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911327342.3A CN110986694B (en) | 2019-12-20 | 2019-12-20 | A rocket model and fixed-point landing method using coaxial reverse propellers |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911327342.3A CN110986694B (en) | 2019-12-20 | 2019-12-20 | A rocket model and fixed-point landing method using coaxial reverse propellers |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110986694A CN110986694A (en) | 2020-04-10 |
| CN110986694B true CN110986694B (en) | 2022-05-03 |
Family
ID=70073563
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911327342.3A Expired - Fee Related CN110986694B (en) | 2019-12-20 | 2019-12-20 | A rocket model and fixed-point landing method using coaxial reverse propellers |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110986694B (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106568352A (en) * | 2015-10-12 | 2017-04-19 | 李爱兵 | Hovering soft-landing system for rocket propelling module |
| CN108452534A (en) * | 2018-04-13 | 2018-08-28 | 深圳市阳日电子有限公司 | Toy rocket and its control method |
| CN108528695A (en) * | 2018-06-03 | 2018-09-14 | 王继华 | Electronic coaxial aircraft control dynamical system design |
| CN108535742A (en) * | 2018-04-04 | 2018-09-14 | 北京科技大学 | A kind of model rocket device and fixed point recognition methods based on fixed point identification |
| CN109260721A (en) * | 2018-11-08 | 2019-01-25 | 重庆大学 | A kind of model rocket of pinpoint landing |
| CN109708535A (en) * | 2019-01-28 | 2019-05-03 | 西安深瞳智控技术有限公司 | A coaxial twin propeller tail propulsion small missile |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6659395B2 (en) * | 2001-11-07 | 2003-12-09 | Rehco, Llc | Propellers and propeller related vehicles |
-
2019
- 2019-12-20 CN CN201911327342.3A patent/CN110986694B/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106568352A (en) * | 2015-10-12 | 2017-04-19 | 李爱兵 | Hovering soft-landing system for rocket propelling module |
| CN108535742A (en) * | 2018-04-04 | 2018-09-14 | 北京科技大学 | A kind of model rocket device and fixed point recognition methods based on fixed point identification |
| CN108452534A (en) * | 2018-04-13 | 2018-08-28 | 深圳市阳日电子有限公司 | Toy rocket and its control method |
| CN108528695A (en) * | 2018-06-03 | 2018-09-14 | 王继华 | Electronic coaxial aircraft control dynamical system design |
| CN109260721A (en) * | 2018-11-08 | 2019-01-25 | 重庆大学 | A kind of model rocket of pinpoint landing |
| CN109708535A (en) * | 2019-01-28 | 2019-05-03 | 西安深瞳智控技术有限公司 | A coaxial twin propeller tail propulsion small missile |
Non-Patent Citations (1)
| Title |
|---|
| 四旋翼飞行器建模及其运动控制;郭勇;《传感器与微系统》;20171130;第36卷(第11期);38-41 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110986694A (en) | 2020-04-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN205891232U (en) | Urgent safe launching appliance of four rotor unmanned aerial vehicle | |
| CN105353762B (en) | The control method of six rotor wing unmanned aerial vehicles based on double remaining attitude transducers | |
| CN108037662B (en) | An output-limited backstepping control method for quadrotor aircraft based on integral sliding mode obstacle Lyapunov function | |
| CN102763049B (en) | The system and method that stall prevents/recovers | |
| CN111413997B (en) | High-wind-resistance tilting rotor wing mooring unmanned aerial vehicle and flight control method thereof | |
| CN204701770U (en) | Exempt from stable four autogiros of taking photo by plane of The Cloud Terrace | |
| CN105511488B (en) | A kind of continuous shooting method and unmanned vehicle based on unmanned vehicle | |
| US20170371352A1 (en) | Method for dynamically converting the attitude of a rotary-wing drone | |
| CN105460217B (en) | A kind of continuous shooting method and unmanned vehicle based on unmanned vehicle | |
| CN111413998B (en) | High-wind-resistance tandem rotor wing mooring unmanned aerial vehicle and flight control method thereof | |
| CN111433702B (en) | Unmanned aerial vehicle and its PTZ control method | |
| CN110217381A (en) | A kind of unmanned plane increases steady dynamic counterweight balance system and its balance method | |
| WO2018184121A1 (en) | Autonomous flight vehicle capable of fixed wing flight and rotary wing flight | |
| CN106032166B (en) | Aircraft and overturning method thereof | |
| CN111284687A (en) | High-wind-resistance coaxial reverse-paddle type mooring unmanned aerial vehicle and flight control method thereof | |
| CN106628126A (en) | Unmanned aerial vehicle capable of taking off and landing on slope | |
| CN110775302A (en) | Emergency sun-checking method based on solar panel output current information | |
| CN205068169U (en) | Six rotor unmanned aerial vehicle based on two remaining attitude sensor | |
| CN110986694B (en) | A rocket model and fixed-point landing method using coaxial reverse propellers | |
| CN103921949A (en) | Autonomous quad-rotor flight vehicle based on Renesas chip R5F100LEA | |
| CN107942672A (en) | It is a kind of based on it is symmetrical when constant obstacle liapunov function the limited backstepping control method of quadrotor output | |
| CN117104546B (en) | Multi-duct unmanned aerial vehicle and control method | |
| CN108698694A (en) | Control method, aircraft control system and rotorcraft | |
| Hossain et al. | Design and development of an y4 copter control system | |
| CN206819160U (en) | UAV flight control circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220503 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |