CN111159382B - Method and device for constructing and using knowledge model of conversational system - Google Patents
Method and device for constructing and using knowledge model of conversational system Download PDFInfo
- Publication number
- CN111159382B CN111159382B CN201911407443.1A CN201911407443A CN111159382B CN 111159382 B CN111159382 B CN 111159382B CN 201911407443 A CN201911407443 A CN 201911407443A CN 111159382 B CN111159382 B CN 111159382B
- Authority
- CN
- China
- Prior art keywords
- knowledge
- user
- question
- questions
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/332—Query formulation
- G06F16/3329—Natural language query formulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Human Computer Interaction (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本发明公开会话系统知识模型的构建和使用方法及装置,其中,一种会话系统知识模型的构建方法,包括:由会话系统中的知识点抽象出与所述知识点关联的至少一个主题;基于所述至少一个主题构建系统主题树;基于所述系统主题树确定各知识点之间的关联关系;至少基于所述系统主题树和所述各知识点之间的关联关系构建会话系统知识模型。本实施例的方法通过将知识点抽象成至少一个主题,之后利用主题构建主题树,再根据主题树确定各知识点之间的关联关系,然后可以构建会话系统知识模型,用于后续的启发式会话过程中对用户进行问题或者答案的推荐,从而可以向用户推荐更符合用户兴趣的问题或内容。
The invention discloses a method and device for constructing and using a knowledge model of a conversation system, wherein a method for constructing a knowledge model of a conversation system includes: abstracting at least one subject associated with the knowledge point from the knowledge point in the conversation system; The at least one topic constructs a system topic tree; based on the system topic tree, an association relationship between knowledge points is determined; a conversational system knowledge model is constructed at least based on the system topic tree and the association relationship between each knowledge point. The method of this embodiment abstracts the knowledge points into at least one topic, then uses the topic to construct a topic tree, and then determines the association relationship between the knowledge points according to the topic tree, and then a conversational system knowledge model can be constructed for subsequent heuristics. During the session, questions or answers are recommended to the user, so that questions or content that are more in line with the user's interests can be recommended to the user.
Description
技术领域technical field
本发明属于会话系统技术领域,尤其涉及会话系统知识模型的构建和使用方法及装置。The invention belongs to the technical field of conversational systems, and in particular relates to a method and device for constructing and using a knowledge model of conversational systems.
背景技术Background technique
相关技术中,在一般的会话系统应用场景中,比如在智能音箱、智能电视,包括现在车载的设备等,当用户说了一个问句,智能客服自动的问答和对话,这样的系统的基本流程是它接收到用户的一个问句或者用户说的一句话,然后系统里做一些处理,给用户一个答复。In related technologies, in general conversational system application scenarios, such as smart speakers, smart TVs, including current in-vehicle equipment, etc., when the user says a question, the intelligent customer service automatically asks and answers questions and dialogues, the basic process of such a system. It receives a question from the user or a sentence said by the user, and then does some processing in the system to give the user a reply.
启发式会话通过获取问题背后的一些联系,能让会话一直持续下去。Heuristic conversations keep conversations going by capturing some of the connections behind the questions.
发明人在实现本申请的过程中发现:目前已有产品或技术主要是基于主题或场景的启发式会话,没有考虑用户自身的兴趣点。In the process of realizing the present application, the inventor found that the existing products or technologies are mainly heuristic conversations based on themes or scenarios, without considering the interests of users themselves.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种会话系统知识模型的构建和使用方法及装置,用于至少解决上述技术问题之一。Embodiments of the present invention provide a method and device for constructing and using a knowledge model of a conversational system, which are used to solve at least one of the above technical problems.
第一方面,本发明实施例提供一种会话系统知识模型的构建方法,包括:由会话系统中的知识点抽象出与所述知识点关联的至少一个主题;基于所述至少一个主题构建系统主题树;基于所述系统主题树确定各知识点之间的关联关系;以及至少基于所述系统主题树和所述各知识点之间的关联关系构建会话系统知识模型。In a first aspect, an embodiment of the present invention provides a method for constructing a knowledge model of a conversational system, including: abstracting at least one topic associated with the knowledge point from a knowledge point in a conversational system; constructing a system topic based on the at least one topic tree; determining an association relationship between knowledge points based on the system topic tree; and constructing a conversational system knowledge model based at least on the system theme tree and the association relationship between the knowledge points.
第二方面,本发明实施例提供一种会话系统知识模型的使用方法,包括:基于用户的基本信息和所述用户的历史会话数据构建用户兴趣模型,其中,所述用户兴趣模型中包含至少一个知识点;对所述用户兴趣模型中的知识点和根据第一方面所述的方法构建的所述会话系统知识模型中的知识点进行基于语义图的匹配;根据语义图的匹配结果生成至少一个匹配的知识点,其中,所述知识点与至少一个问题关联;以及将与所述至少一个匹配的知识点关联的问题推荐给所述用户。In a second aspect, an embodiment of the present invention provides a method for using a knowledge model of a conversation system, including: constructing a user interest model based on basic information of a user and historical conversation data of the user, wherein the user interest model includes at least one knowledge points; perform semantic map-based matching on the knowledge points in the user interest model and the knowledge points in the conversation system knowledge model constructed according to the method of the first aspect; generate at least one semantic map according to the matching result of the semantic map matching knowledge points, wherein the knowledge points are associated with at least one question; and recommending the questions associated with the at least one matching knowledge point to the user.
第三方面,本发明实施例提供一种会话系统知识模型的构建装置,包括:知识点抽象模块,配置为由会话系统中的知识点抽象出与所述知识点关联的至少一个主题;主题树构建模块,配置为基于所述至少一个主题构建系统主题树;关联关系确定模块,配置为基于所述系统主题树确定各知识点之间的关联关系;以及知识模型构建模块,配置为至少基于所述系统主题树和所述各知识点之间的关联关系构建会话系统知识模型。In a third aspect, an embodiment of the present invention provides an apparatus for constructing a knowledge model of a conversational system, including: a knowledge point abstraction module configured to abstract at least one topic associated with the knowledge point from the knowledge point in the conversational system; a topic tree a building module, configured to build a system theme tree based on the at least one theme; an association relationship determination module, configured to determine the association relationship between knowledge points based on the system theme tree; and a knowledge model building module, configured to at least based on all A conversational system knowledge model is constructed based on the relationship between the system topic tree and the knowledge points.
第四方面,本发明实施例提供一种会话系统知识模型的使用装置,包括:用户兴趣模型构建模块,配置为基于用户的基本信息和所述用户的历史会话数据构建用户兴趣模型,其中,所述用户兴趣模型中包含至少一个知识点;语义图匹配模块,配置为对所述用户兴趣模型中的知识点和根据第一方面所述的方法构建的所述会话系统知识模型中的知识点进行基于语义图的匹配;匹配知识点生成模块,配置为根据语义图的匹配结果生成至少一个匹配的知识点,其中,所述知识点与至少一个问题关联;以及推荐模块,配置为将与所述至少一个匹配的知识点关联的问题推荐给所述用户。In a fourth aspect, an embodiment of the present invention provides a device for using a knowledge model of a conversation system, including: a user interest model building module configured to build a user interest model based on basic information of a user and historical conversation data of the user, wherein the The user interest model includes at least one knowledge point; the semantic graph matching module is configured to perform the matching between the knowledge point in the user interest model and the knowledge point in the conversation system knowledge model constructed according to the method described in the first aspect. Semantic graph-based matching; a matching knowledge point generation module, configured to generate at least one matched knowledge point according to the matching result of the semantic graph, wherein the knowledge point is associated with at least one question; At least one matching knowledge point associated question is recommended to the user.
第五方面,提供一种电子设备,其包括:至少一个处理器,以及与所述至少一个处理器通信连接的存储器,其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本发明任一实施例的会话系统知识模型的构建方法的步骤。A fifth aspect provides an electronic device comprising: at least one processor, and a memory communicatively connected to the at least one processor, wherein the memory stores instructions executable by the at least one processor, The instructions are executed by the at least one processor, so that the at least one processor can execute the steps of the method for constructing a knowledge model of a conversational system according to any embodiment of the present invention.
第六方面,本发明实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行本发明任一实施例的会话系统知识模型的构建方法的步骤。In a sixth aspect, an embodiment of the present invention further provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, and when the program is When the instructions are executed by a computer, the computer is made to execute the steps of the method for constructing a knowledge model of a conversational system according to any embodiment of the present invention.
本实施例的方法通过将知识点抽象成至少一个主题,之后利用主题构建主题树,再根据主题树确定各知识点之间的关联关系,然后可以构建会话系统知识模型,用于后续的启发式会话过程中对用户进行问题或者答案的推荐,从而可以向用户推荐更符合用户兴趣的问题或内容。The method of this embodiment abstracts the knowledge points into at least one topic, then uses the topic to construct a topic tree, and then determines the association relationship between the knowledge points according to the topic tree, and then a conversational system knowledge model can be constructed for subsequent heuristics. During the session, questions or answers are recommended to the user, so that questions or content that are more in line with the user's interests can be recommended to the user.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明一实施例提供的一种会话系统知识模型的构建方法的流程图;1 is a flowchart of a method for constructing a knowledge model of a conversational system according to an embodiment of the present invention;
图2为本发明一实施例提供的另一种会话系统知识模型的构建方法的流程图;2 is a flowchart of another method for constructing a knowledge model of a conversational system provided by an embodiment of the present invention;
图3为本发明一实施例提供的一种会话系统知识模型的使用方法的流程图;3 is a flowchart of a method for using a conversational system knowledge model provided by an embodiment of the present invention;
图4为本发明一实施例提供的另一种会话系统知识模型的使用方法的流程图;4 is a flowchart of another method for using a knowledge model of a conversation system provided by an embodiment of the present invention;
图5为本发明一实施例提供的又一种会话系统知识模型的使用方法的流程图;5 is a flowchart of another method for using a knowledge model of a conversational system provided by an embodiment of the present invention;
图6为本发明一实施例提供的系统具体流程图;FIG. 6 is a specific flowchart of a system provided by an embodiment of the present invention;
图7为本发明一实施例提供的基于主题和知识点的用户兴趣点模型结构的具体示例图;7 is a specific example diagram of a model structure of user interest points based on topics and knowledge points provided by an embodiment of the present invention;
图8为本发明一实施例提供的用户问题的语义表示和对话系统知识体系语义表示;FIG. 8 is a semantic representation of a user question and a semantic representation of a dialogue system knowledge system provided by an embodiment of the present invention;
图9为本发明一实施例提供的一种会话系统知识模型的构建装置框图;9 is a block diagram of an apparatus for constructing a knowledge model of a conversation system according to an embodiment of the present invention;
图10位本发明一实施例提供的一种会话系统知识模型的使用装置框图;10 is a block diagram of a device for using a knowledge model of a conversation system provided by an embodiment of the present invention;
图11是本发明一实施例提供的电子设备的结构示意图。FIG. 11 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
请参考图1,其示出了本申请的会话系统知识模型的构建方法一实施例的流程图,本实施例的会话系统知识模型的构建方法可以适用于具备智能语音对话功能的终端,如智能儿童故事机、智能对话玩具、包含智能故事播放的设备等。Please refer to FIG. 1 , which shows a flowchart of an embodiment of a method for constructing a knowledge model of a conversational system of the present application. The method for constructing a knowledge model of a conversational system in this embodiment can be applied to a terminal with an intelligent voice dialogue function, such as an intelligent Children's story machines, smart conversation toys, devices that include smart story playback, etc.
如图1所示,在步骤101中,由会话系统中的知识点抽象出与知识点关联的至少一个主题;As shown in Figure 1, in
在步骤102中,基于至少一个主题构建系统主题树;In
在步骤103中,基于系统主题树确定各知识点之间的关联关系;In
在步骤104中,至少基于系统主题树和各知识点之间的关联关系构建会话系统知识模型。In
在本实施例中,对于步骤101,会话系统知识模型的构建装置由会话系统中的知识点抽象出与知识点关联的至少一个主题,其中,知识点可以例如是李白,它可以抽象成是诗人,或者可以抽象成一个游戏角色,从而构建一个主题,这个主题例如是诗人或者游戏角色。In this embodiment, for
之后,对于步骤102,基于至少一个主题构建系统主题树,例如从诗人李白衍生出杜甫等各大诗人从而构建主题树。或者从游戏角色李白衍生出狄仁杰等各大游戏角色从而构建的主题树。After that, for
然后,对于步骤103,基于系统主题树确定各知识点之间的关联关系,例如基于诗人的主题树确定李白和杜甫等各大诗人的关联关系,或者基于游戏角色的主题树从而确定李白和狄仁杰等各大游戏角色的关联关系。Then, for
最后,对于步骤104,至少基于系统主题树和各知识点之间的关联关系构建会话系统知识模型,例如,基于诗人主题树和各知识点之间的关联关系构建会话系统知识模型,其中,知识模型就是将知识进行形式化和结构化的抽象。Finally, for
本实施例的方法通过将知识点抽象成至少一个主题,之后利用主题构建主题树,再根据主题树确定各知识点之间的关联关系,然后可以构建会话系统知识模型,用于后续的启发式会话过程中对用户进行问题或者答案的推荐,从而可以向用户推荐更符合用户兴趣的问题或内容。The method of this embodiment abstracts the knowledge points into at least one topic, then uses the topic to construct a topic tree, and then determines the association relationship between the knowledge points according to the topic tree, and then a conversational system knowledge model can be constructed for subsequent heuristics. During the session, questions or answers are recommended to the user, so that questions or content that are more in line with the user's interests can be recommended to the user.
进一步参考图2,其示出了本申请一实施例提供的另一种会话系统知识模型的构建方法的流程图。该流程图主要是针对流程图1中步骤103进一步限定的步骤的流程图。其中,知识点包括问答对和知识图谱,问答对包括第一实体,知识图谱包括第二实体以及第二实体之间的关联关系。Referring further to FIG. 2 , it shows a flowchart of another method for constructing a knowledge model of a conversation system provided by an embodiment of the present application. This flowchart is mainly a flowchart for the steps further defined in
如图2所示,在步骤201中,当主题树中的第一实体与第二实体相同时,将第一实体与第二实体进行关联融合;As shown in Figure 2, in
在步骤202中,基于关联融合后的主题树确定各知识点之间的关联关系。In
在本实施例中,对于步骤201,会话系统知识模型的构建装置当主题树中的第一实体与第二实体相同时,将第一实体与第二实体进行关联融合,例如将主题树中的诗人白居易作为第一实体,将影视角色白居易作为第二实体,然后将他们进行关联融合,从而形成融合后的主题树;In this embodiment, for
最后,对于步骤202,基于关联融合后的主题树确定各知识点之间的关联关系,例如基于诗人和影视角色融合后的主题树确定各知识点之间的关联关系构建会话系统知识模型。Finally, for
本实施例的方案通过对主题树种相同的实体进行关系融合,确定知识点之间的关联关系,从而将相同的实体进行融合可以使得各知识点之间的关系更加紧密,使原本没有关系的两个知识点建立联系。The solution of this embodiment determines the association relationship between knowledge points by performing relationship fusion on entities with the same theme tree species, so that the same entity can be fused to make the relationship between the knowledge points more closely, so that there is no relationship between two knowledge points. contact with knowledge points.
请参考图3,其示出了本申请提供的一种会话系统知识模型的使用方法一实施例的流程图。Please refer to FIG. 3 , which shows a flowchart of an embodiment of a method for using a knowledge model of a conversation system provided by the present application.
如图3所示,在步骤301中,基于用户的基本信息和用户的历史会话数据构建用户兴趣模型,其中,用户兴趣模型中包含至少一个知识点;As shown in Figure 3, in
在步骤302中,对用户兴趣模型中的知识点和以上实施例的方法构建的会话系统知识模型中的知识点进行基于语义图的匹配;In
在步骤303中,根据语义图的匹配结果生成至少一个匹配的知识点,其中,知识点与至少一个问题关联;In
在步骤304中,将与至少一个匹配的知识点关联的问题推荐给用户。In
在本实施例中,对于步骤301.会话系统知识模型的构建装置基于用户的基本信息和用户的历史会话数据来收集用户的年龄、性别等基本信息和用户的历史会话数据构建用户兴趣模型,例如,基于用户的历史会话中出现的“李白”、“杜甫”等数据来构建用户的唐诗兴趣模型,或者基于用户的历史会话中“苏轼”、“李清照”等数据来构建用户的宋词兴趣模型。In this embodiment, for
之后,对于步骤302,对用户兴趣模型中的知识点和根据本申请所述的方法构建的会话系统知识模型中的知识点进行基于语义图的匹配,然后,对于步骤303,根据语义图的匹配结果生成至少一个匹配的知识点,最后,对于步骤304,将与至少一个匹配的知识点关联的问题推荐给用户。Afterwards, for
例如,根据上述实施例中的构建知识模型的方法对用户兴趣模型中的“唐诗”创建一个知识模型,之后再将“唐诗”中的知识点进行基于语义图的匹配,然后根据语义图的匹配结果生成例如“张九龄”。“杜牧”等至少一个匹配的知识点,最后再将与“张九龄”、“杜牧”等至少一个匹配的知识点关联的问题推荐给用户。For example, according to the method for building a knowledge model in the above-mentioned embodiment, a knowledge model is created for "Tang poetry" in the user interest model, and then the knowledge points in "Tang poetry" are matched based on the semantic graph, and then based on the semantic graph matching The result is generated such as "Zhang Jiuling". At least one matching knowledge point such as "Du Mu", and finally recommends questions related to at least one matching knowledge point such as "Zhang Jiuling" and "Du Mu" to the user.
本实施例的方法通过根据用户已有的数据构建用户兴趣模型,之后将与用户兴趣模型中的知识点匹配的问题推荐给用户,从而可以根据基于用户数据构建的用户兴趣模型向用户推荐更符合用户兴趣的问题,推荐的问题与用户的匹配度更高,用户体验更好。The method of this embodiment constructs a user interest model based on the user's existing data, and then recommends to the user questions that match the knowledge points in the user interest model, so that the user interest model constructed based on the user data can be recommended to the user more suitable for For questions of user interest, the recommended questions have a higher degree of matching with the user, and the user experience is better.
进一步参考图4,其示出了本申请提供的一种会话系统知识模型的使用方法的另一实施例的流程图。该流程图主要是针对流程图3中步骤301“基于用户的基本信息和用户的历史会话数据构建用户兴趣模型”进一步限定的步骤的流程。其中,用户的历史会话数据包括用户主动问题及答案和用户接受的系统推荐知识及答案。Referring further to FIG. 4 , it shows a flowchart of another embodiment of a method for using a knowledge model of a conversational system provided by the present application. This flowchart is mainly a flowchart for the steps further defined in
如图4所示,在步骤401中,对用户基本信息和用户的历史会话数据进行层次聚类,生成用户主题树;As shown in Figure 4, in
在步骤402中,将用户主动问题及答案和用户接受的系统推荐知识及答案构造成包含问题、答案及问题和答案之间的关联关系的知识三元组,其中,问题和答案组成问答对;In
在步骤403中,将知识三元组关联到用户主题树上;In
在步骤404中,利用实体链接技术,将三元组中的问答对中的实体映射到会话系统知识模型的知识三元组中,并将映射好的知识三元组加入到用户主题树下的知识点中,形成用户兴趣模型;In
在步骤405中,计算各问答对之间的语义相似度,并将语义相似度加入用户兴趣模型中。In
在本实施例中,对于步骤401,会话系统知识模型的构建装置会对用户的性别、年龄等基本信息和用户的历史会话数据进行层次聚类,生成用户主题树,其中,层次聚类试图在不同层次对数据集进行划分,从而形成树形的聚类结构。数据集划分可采用"自底向上"的聚合策略,也可采用"自顶向下"的分拆策略。例如,“唐诗”为一个聚类,在下一层聚类中就包含了“李白”、“杜甫”、“张九龄”等聚类,又例如在“唐诗”这一聚类中就会包含“唐诗”、“宋词”等聚类,以此类推,在此不再赘述。In this embodiment, for
然后,对于步骤402,会话系统知识模型的构建装置会将用户主动提问的问题及答案和用户接受的系统推荐知识及答案构造成包含问题、答案及问题和答案之间的关联关系的知识三元组,例如,首先用户主动对设备提问“李白的静夜思全文是什么”,然后设备给出答案后还会询问用户是否接受系统推荐的李白的其他诗词,如果用户接受了系统推荐知识,则提问、答案和系统推荐知识组成知识三元组,其中,问题和答案组成问答对;Then, for
之后,对于步骤403,会话系统知识模型的构建装置会将知识三元组关联到用户主题树上;Afterwards, for
然后,对于步骤404,会话系统知识模型的构建装置利用实体链接技术,将三元组中的问答对中的实体映射到会话系统知识模型的知识三元组中,并将映射好的知识三元组加入到用户主题树下的知识点中,形成用户兴趣模型;其中,实体链接技术是解决命名实体歧义问题的一种重要方法,该方法通过将具有歧义的实体指称项链接到给定的知识库中从而实现实体歧义的消除。Then, for
最后,对于步骤405,计算各问答对之间的语义相似度,并将语义相似度加入用户兴趣模型中。Finally, for
本实施例的方法通过对用户已有的一些信息进行层次聚类,形成用户主题树,之后再构建知识三元组,将知识三元组关联到用户主题树上,构建用户兴趣模型,最后再计算用户兴趣模型中的问答对的语义相似度,加入到用户兴趣模型中,从而可以构建包含语义相似度的用户兴趣模型,便于后续的启发式会话中对用户推荐语音相似度更高的问题或答案。The method of this embodiment forms a user topic tree by performing hierarchical clustering on some existing information of the user, then constructs a knowledge triplet, associates the knowledge triplet with the user topic tree, constructs a user interest model, and finally constructs a user interest model. Calculate the semantic similarity of the question and answer pairs in the user interest model and add it to the user interest model, so that a user interest model containing semantic similarity can be constructed, which is convenient for recommending questions with higher voice similarity to users in subsequent heuristic conversations or Answer.
进一步参考图5,其示出了本申请提供的一种会话系统知识模型的使用方法的又一实施例的流程图。该流程图主要是针对流程图4中步骤401“对用户基本信息和用户的历史会话数据进行层次聚类,生成用户主题树”之前的步骤进一步限定的步骤的流程。主要适用于历史会话数据特别少的用户,例如该用户的历史会话数据可以是少于预设阈值。该预设阈值可以是由自定义的,本申请在此没有限制。Referring further to FIG. 5 , it shows a flowchart of another embodiment of a method for using a knowledge model of a conversation system provided by the present application. This flow chart is mainly for the flow of steps further defined in the steps before
如图5所示,在步骤501中,根据用户的基本信息查找基本信息相同的用户;As shown in Figure 5, in
在步骤502中,基于基本信息相同的用户的问答对集合和知识三元组集合构建用户的问答对集合和知识三元组集合;In
在步骤503中,计算用户主动问题与所构建的问答对集合中的问题的语义相似度,选取语义相似度最高的前N个问题对应的问答对;In
在步骤504中,计算用户接受的系统推荐答案对应的答案三元组与所构建的知识三元组中问题的语义相似度,选取语义相似度最高的前M个知识三元组;In
在步骤505中,将前N个问题对应的问答对和前M个知识三元组作为用户的初始历史会话数据。In
在本实施例中,对于步骤501,如果用户的历史会话数据特别少,首先会话系统知识模型的构建装置会根据用户的基本信息查找基本信息相同的用户;然后,对于步骤502,基于基本信息相同的用户的问答对集合和知识三元组集合构建用户的问答对集合和知识三元组集合;之后,对于步骤503,计算用户主动问题与所构建的问答对集合中的问题的语义相似度,选取语义相似度最高的前N个问题对应的问答对;在然后,对于步骤504,计算用户接受的系统推荐答案对应的答案三元组与所构建的知识三元组中问题的语义相似度,选取语义相似度最高的前M个知识三元组;最后,对于步骤505,将前N个问题对应的问答对和前M个知识三元组作为用户的初始历史会话数据。In this embodiment, for
本申请实施例提供的方案综合考虑了用户关注的知识点,知识点之间的关联,实现更细粒度层次的建模,根据知识点的关联和用户之间的相似度以及对用户兴趣点和知识点统一建模可以利用图匹配算法,找到和用户兴趣点匹配的知识点,结合时间敏感,地点敏感和事件敏感度从而使得用户可以更加精准的对用户兴趣进行刻画和能快速准确的计算出用户的兴趣点,构建用户初始兴趣模型以及为用户推荐更准确的会话内容。The solution provided by the embodiments of the present application comprehensively considers the knowledge points that users pay attention to, and the association between knowledge points, so as to achieve more fine-grained modeling. The unified modeling of knowledge points can use the graph matching algorithm to find the knowledge points that match the user's interest points. Combined with time sensitivity, location sensitivity and event sensitivity, users can more accurately describe user interests and calculate quickly and accurately. Users' interest points, build the user's initial interest model and recommend more accurate conversational content for users.
在一些可选的实施例中,语义图匹配包括节点语义相似度匹配和路径语义相似度匹配。In some optional embodiments, the semantic graph matching includes node semantic similarity matching and path semantic similarity matching.
下面对通过描述发明人在实现本发明的过程中遇到的一些问题和对最终确定的方案的一个具体实施例进行说明,以使本领域技术人员更好地理解本申请的方案。The following describes some problems encountered by the inventor in the process of implementing the present invention and a specific embodiment of the finalized solution, so that those skilled in the art can better understand the solution of the present application.
启发式会话的一个简单的流程如下:首先根据用户的问题主动引导对话交互,用户问了一个问题,系统会根据这个问题把一些相关的问题列出来或者问用户他想不想了解。用户的问题是以多种形式连接到知识点,当然这个对话后面,我们叫知识点,以一个知识点的方式,连接一个知识点可能就是对于一个具体的问题,这个问题可能有各种不同的问法,我们都认为它是一个知识点。A simple process of heuristic conversation is as follows: First, the dialogue interaction is actively guided according to the user's question. The user asks a question, and the system will list some related questions based on this question or ask the user if he wants to know. The user's question is connected to the knowledge point in various forms. Of course, after this dialogue, we call it a knowledge point. In the way of a knowledge point, connecting a knowledge point may be for a specific problem, and this problem may have various types. Ask the law, we all think it is a knowledge point.
本发明提出一种基于知识关联性和用户兴趣的个性化启发式对话技术。首先,本专利提出了基于主题和知识点的联合建模方法,基于用户历史会话记录数据,对用户兴趣进行分层建模,即包括主题层和知识点层,主题层支持层级结构。第二,本专利对知识点进行建模和组织,建模方法包括知识点的主题抽象,主题树构造,知识点的关联;第三,对新用户的兴趣点进行预测建模,构造初始兴趣模型。第四,将用户兴趣图和知识图做图匹配,同时结合时间敏感,地点敏感和事件敏感,找到用户潜在感兴趣的知识点,为用户推荐更精准的会话内容。The invention proposes a personalized heuristic dialogue technology based on knowledge correlation and user interest. First of all, this patent proposes a joint modeling method based on topics and knowledge points. Based on user historical session record data, hierarchical modeling of user interests is carried out, including topic layer and knowledge point layer, and topic layer supports hierarchical structure. Second, this patent models and organizes knowledge points, and the modeling method includes topic abstraction of knowledge points, topic tree construction, and association of knowledge points; third, predictive modeling of new users' interest points to construct initial interest Model. Fourth, match the user's interest graph and knowledge graph, and combine time-sensitive, location-sensitive and event-sensitive to find the knowledge points that users are potentially interested in, and recommend more accurate conversation content for users.
本发明通过对用户兴趣点和知识的主题关联和知识点的关联统一建模,实现了一种个性化的启发式会话方法,提高会话的效率,高效地达到用户的沟通目标。The invention realizes a personalized heuristic conversation method by uniformly modeling the topic association of user interest points and knowledge and the association of knowledge points, improves the efficiency of conversation, and efficiently achieves the communication goal of the user.
本发明的技术创新点:The technical innovation of the present invention:
1、基于主题、知识点和用户兴趣点联合建模。1. Joint modeling based on topics, knowledge points and user interest points.
传统用户建模方法大多使用主题建模,本专利除了考虑主题信息外,还综合考虑了用户关注的知识点,知识点之间的关联,实现更细粒度层次的建模,可以更加精准的对用户兴趣进行刻画。Most of the traditional user modeling methods use topic modeling. In addition to considering topic information, this patent also comprehensively considers the knowledge points that users pay attention to and the association between knowledge points to achieve more fine-grained modeling, which can be more accurate. User interests are described.
2、对新用户的兴趣点的预测。2. Prediction of new users' points of interest.
传统的用户建模方法,利用用户的历史记录,往往会有冷启动问题,不适合只有少量用户历史记录的场景。本专利根据知识点的关联和用户之间的相似度,能快速准确的计算出用户的兴趣点,构建用户初始兴趣模型。The traditional user modeling method, which uses the user's history records, often has a cold start problem, which is not suitable for scenarios with only a small number of user history records. According to the association of knowledge points and the similarity between users, the present patent can quickly and accurately calculate the user's interest points, and build a user's initial interest model.
3、基于图匹配的用户兴趣点和知识点推荐。3. User interest point and knowledge point recommendation based on graph matching.
对用户兴趣点和知识点统一建模,可以利用图匹配算法,找到和用户兴趣点匹配的知识点,结合时间敏感,地点敏感和事件敏感度,为用户推荐更准确的会话内容。Unified modeling of user interest points and knowledge points can use graph matching algorithm to find knowledge points that match user interest points, and combine time sensitivity, location sensitivity and event sensitivity to recommend more accurate conversation content for users.
图6示出了本申请一实施例提供的系统流程图。FIG. 6 shows a flow chart of a system provided by an embodiment of the present application.
如图6所示,系统主要包括三部分,左侧的部分为历史会话数据缺乏的用户兴趣建模,这类用户只有用户基本信息或注册信息,有少量的会话记录。对于这类用户,系统根据少量的会话记录和会话系统知识模型预测用户兴趣模型,并给出一个初始化的用户兴趣模型。As shown in Figure 6, the system mainly includes three parts. The left part models the interests of users who lack historical session data. Such users only have basic user information or registration information and a small amount of session records. For such users, the system predicts a user interest model based on a small amount of conversation records and a conversational system knowledge model, and gives an initialized user interest model.
中间的部分为历史会话数据丰富的用户,这类用户有丰富的会话历史,这里使用的是用户基本信息,用户主动的提问及答案,系统推荐的知识及答案并且被用户接受过三类数据对用户进行兴趣建模。The middle part is the users with rich historical session data. Such users have rich session history. Here, the basic information of the user, the user's active questions and answers, the knowledge and answers recommended by the system, and the three types of data pairs that have been accepted by the user are used here. Users conduct interest modeling.
右侧的部分是会话系统中知识体系的建模流程,包括主题树构建,包括实体及关系的知识图谱构建,知识点和主题树关联;问答对知识的整理,包括问题与答案的对应关系,可能是一对一、一对多关系,问题之间的语义相似度,问答对中涉及的实体与知识图谱中的实体进行关联等等The right part is the modeling process of the knowledge system in the conversation system, including the construction of the topic tree, including the construction of the knowledge map of entities and relationships, the association of knowledge points and topic trees; the sorting of knowledge in question and answer, including the correspondence between questions and answers, May be one-to-one, one-to-many relationships, semantic similarity between questions, associations between entities involved in question-answer pairs and entities in the knowledge graph, etc.
然后对用户兴趣模型和系统知识模型做基于语义图的匹配,计算出最匹配的知识点,将相关问题推荐给用户。Then, match the user interest model and the system knowledge model based on the semantic graph, calculate the most matching knowledge point, and recommend related questions to the user.
图7示出了基于主题和知识点的用户兴趣点模型结构。FIG. 7 shows the structure of a user interest point model based on topics and knowledge points.
用户兴趣建模的数据来源包括用户基本信息,用户主动的提问及答案,系统推荐的知识及答案并且被用户接受过三类数据The data sources of user interest modeling include basic user information, user active questions and answers, knowledge and answers recommended by the system, and three types of data accepted by users.
用户兴趣模型用语义图的形式表示,图7展示了模型结构,包括主题,知识点,问答对,实体,属性5种元素,主题层支持层次结构,即一个主题可以有多个子主题,例如主题A包括主题B和主题C两个子主题;主题下面是知识点,例如主题D包括知识点1和知识点2;知识点可以属于多个主题;知识点包括问答对和知识图谱中的知识,以三元组的形式表示,包括实体,关系和属性,属性值,例如知识点1包括问答对1和实体E1,E2及他们之间的关系。The user interest model is represented in the form of a semantic graph. Figure 7 shows the model structure, including five elements: topic, knowledge point, question-answer pair, entity, and attribute. The topic layer supports hierarchical structure, that is, a topic can have multiple subtopics, such as topic A includes two sub-topics, topic B and topic C; under the topic are knowledge points, for example, topic D includes knowledge point 1 and knowledge point 2; knowledge points can belong to multiple topics; knowledge points include question-and-answer pairs and knowledge in the knowledge graph, with It is represented in the form of triples, including entities, relationships and attributes, and attribute values. For example, knowledge point 1 includes question-and-answer pair 1 and entities E1, E2 and their relationships.
第一步:根据用户的用户主动的提问及答案,系统推荐的知识及答案,做层次聚类,得到具有层次结构的主题树。同时将用户主动的提问和系统推荐的知识构造成问答对或者知识三元组,关联到主题树上。The first step: According to the user's active questions and answers, the knowledge and answers recommended by the system, do hierarchical clustering to obtain a topic tree with a hierarchical structure. At the same time, the user's active questions and the knowledge recommended by the system are constructed into question-answer pairs or knowledge triples, which are associated with the topic tree.
第二步:利用实体链接技术,将问答对中的实体提及映射到系统知识模型中,并将映射好的知识三元组加入到对应的主题树下的知识点中。其中,实体提及的意思是,实体在文本中的表现形式。例如,北京大学这个实体,在文本中的形式可以能是北大。Step 2: Use entity linking technology to map the entity mentions in the question-and-answer pair to the system knowledge model, and add the mapped knowledge triples to the knowledge points under the corresponding topic tree. Among them, the entity mentioned means the manifestation of the entity in the text. For example, the entity Peking University may be in the form of Peking University in the text.
第三步:计算问答对之间的语义相似度,并将语义相似度加入用户兴趣模型。Step 3: Calculate the semantic similarity between the question-answer pairs and add the semantic similarity to the user interest model.
基于语义相似度传播的用户兴趣预测及兴趣模型初始化User Interest Prediction and Interest Model Initialization Based on Semantic Similarity Propagation
对于用户历史会话数据较少的用户,提出一种基于语义相似度的用户兴趣传播模型,利用改模型来预测用户兴趣,并对兴趣模型做初始化。For users with less user historical session data, a user interest propagation model based on semantic similarity is proposed. The modified model is used to predict user interest, and the interest model is initialized.
为了便于说明,假设用户A只有一个主动提问Q1被问答对解决了,一个系统推荐的且被A接受的问题Q2被知识三元组解决了。For the sake of illustration, it is assumed that user A has only one active question Q1 that is solved by the question-and-answer pair, and a question Q2 that is recommended by the system and accepted by A is solved by the knowledge triplet.
第一步,根据用户注册/基本信息找到类似的用户,例如年龄段,性别,地理位置相近的用户集合C,将C中的用户的问答对构成集合CQA,知识三元组构成集合CKB。The first step is to find similar users based on user registration/basic information, such as user set C with similar age, gender, and geographic location, and the question-answer pairs of users in C form the set CQA, and the knowledge triples form the set CKB.
第二步,计算Q1和CQA中问题的语义相似度,选择前N个问题作为候选。具体算法可以是简单的编辑距离,集合距离,也可以将问题表示成向量,计算向量的余弦距离。In the second step, the semantic similarity of questions in Q1 and CQA is calculated, and the top N questions are selected as candidates. The specific algorithm can be simple edit distance, set distance, or express the problem as a vector and calculate the cosine distance of the vector.
第三步,计算Q2对应的答案三元组<e1,r1,e2>和CKB中问题的语义相似度。假设CKB中三元组为<e1*,r2,e2*>,计算方法可以是知识图谱中e1和e2到e1*和e2*的最小距离。The third step is to calculate the semantic similarity between the answer triple <e1,r1,e2> corresponding to Q2 and the questions in CKB. Assuming that the triplet in CKB is <e1*,r2,e2*>, the calculation method can be the minimum distance from e1 and e2 to e1* and e2* in the knowledge graph.
第四步,从第二步结果中取前N个相似度最高的问答对,从第三步的结果中取前M个距离最短的知识三元组,将N和M作为用户初始兴趣点,用前述实施例的构建模型的方法构造用户兴趣点模型。In the fourth step, the first N question-and-answer pairs with the highest similarity are taken from the results of the second step, and the first M knowledge triples with the shortest distance are taken from the results of the third step, and N and M are used as the user's initial interest points. The user interest point model is constructed using the method for constructing the model in the foregoing embodiment.
系统知识语义图和用户兴趣语义图的匹配:语义图匹配同时考虑节点语义相似度和路径语义相似度。Matching of system knowledge semantic graph and user interest semantic graph: Semantic graph matching considers node semantic similarity and path semantic similarity at the same time.
图8示出了用户问题的语义表示(上部分),对话系统知识体系语义表示(下部分)。Figure 8 shows the semantic representation of the user question (upper part), and the semantic representation of the dialogue system body of knowledge (lower part).
图8给出了用户问题语义表示和对话系统知识体系的语义表示。假设户接入系统,问了一个问题Q时,并且命中问答1,即Q和问答1中的问题是语义等价的。Figure 8 presents the semantic representation of the user question and the semantic representation of the dialogue system knowledge system. Suppose the user accesses the system, asks a question Q, and hits question 1, that is, the questions in Q and question 1 are semantically equivalent.
第一步,构建问答1到主题的路径T1,如图8的上部分所示,该路径包括了问答1的知识点A,子主题2,一级主题1,同时还包括了和问答1在同一个知识点下面的所有问答记为QA1和所有知识三元组KB1。The first step is to construct the path T1 from Q&A 1 to the topic. As shown in the upper part of Figure 8, this path includes knowledge point A of Q&A 1, sub-topic 2, first-level topic 1, and also includes Q&A 1 in All questions and answers under the same knowledge point are recorded as QA1 and all knowledge triples KB1.
第二步,从系统知识体系中选择主题路径T2,如图8下部分所示,例如一级主题1和子主题3,知识点B,问答集合QA2,知识点三元组KB2The second step is to select the topic path T2 from the system knowledge system, as shown in the lower part of Figure 8, such as primary topic 1 and subtopic 3, knowledge point B, question and answer set QA2, knowledge point triplet KB2
第三步,计算第一步和第二步得到的主题路径相似度,同时考虑主题的权重,KB1和KB2的相似度取平均,QA1和QA2的相似度也取平均。相似度计算方法可以是编辑距离,也可以是词嵌入后的词向量余弦距离。The third step is to calculate the similarity of the topic paths obtained in the first step and the second step, while considering the weight of the topic, the similarity of KB1 and KB2 is averaged, and the similarity of QA1 and QA2 is also averaged. The similarity calculation method can be the edit distance or the cosine distance of the word vector after word embedding.
Sim(T1,T2)=w1*sim(主题1,主题3)+w2*sim(子主题2,子主题4)+average(sim(QA1,QA2))+average(sim(KB1,KB2)),其中,sim的意思是similarity,即相似度。Sim(T1,T2)=w1*sim(topic 1, topic 3)+w2*sim(subtopic 2,subtopic 4)+average(sim(QA1,QA2))+average(sim(KB1,KB2)) , where sim means similarity, that is, similarity.
第四步,根据时间,地点,事件敏感增加相应QA或知识三元组的权重,例如,当前的时间是中秋节,那么会增加关于中秋节的QA或知识三元组会的权重。地点和事件处理方法类似。The fourth step is to increase the weight of the corresponding QA or knowledge triplet according to time, location, and event sensitivity. For example, if the current time is the Mid-Autumn Festival, then the weight of the QA or knowledge triplet meeting about the Mid-Autumn Festival will be increased. Location and event handling methods are similar.
会话系统知识体系语义图和用户兴趣语义图的更新:当问题被推荐给某个用户后。当用户选择了系统推荐的问题时,该问题会加入用户兴趣模型中。如果用户没有选择推荐的问题,那么用户兴趣模型中和该问题语义相似度较高的问题推荐指数降低某个值。Update of the semantic graph of the knowledge system of conversational systems and the semantic graph of user interests: when a question is recommended to a user. When the user selects a question recommended by the system, the question will be added to the user interest model. If the user does not select the recommended question, the recommendation index of the question with higher semantic similarity to the question in the user interest model is reduced by a certain value.
本专利通过整合知识的关联性和用户兴趣点,为用户推荐更感兴趣的知识点,从而完成更高效的个性化的启发式会话。个性化的启发式会话有以下几个好处:第一,提高沟通的效率,加快收敛到用户感兴趣的话题。第二,提高用户满意度。This patent recommends more interesting knowledge points for users by integrating the relevance of knowledge and user interest points, thereby completing a more efficient personalized heuristic conversation. Personalized heuristic conversations have the following advantages: First, it improves the efficiency of communication and accelerates convergence to topics that users are interested in. Second, improve user satisfaction.
请参考图9,其示出了本申请一实施例提供的会话系统知识模型的构建装置的框图。Please refer to FIG. 9 , which shows a block diagram of an apparatus for constructing a knowledge model of a conversation system provided by an embodiment of the present application.
如图9所示,一种会话系统知识模型的构建装置900,包括:知识点抽象模块910、主题树构建模块920、关联关系确定模块930和知识模型构建模块940。As shown in FIG. 9 , an apparatus 900 for constructing a knowledge model of a conversation system includes: a knowledge
其中,知识点抽象模块910,配置为由会话系统中的知识点抽象出与所述知识点关联的至少一个主题;主题树构建模块920,配置为基于所述至少一个主题构建系统主题树;关联关系确定模块930,配置为基于所述系统主题树确定各知识点之间的关联关系;以及知识模型构建模块940,配置为至少基于所述系统主题树和所述各知识点之间的关联关系构建会话系统知识模型。The knowledge
请参考图10,其示出了本申请一实施例提供的会话系统知识模型的构建装置的框图。Please refer to FIG. 10 , which shows a block diagram of an apparatus for constructing a knowledge model of a conversation system provided by an embodiment of the present application.
如图10所示,一种会话系统知识模型的使用装置1000,包括:用户兴趣模型构建模块1010、语义图匹配模块1020、匹配知识点生成模块1030和推荐模块1040。As shown in FIG. 10 , an apparatus 1000 for using a knowledge model of a conversation system includes: a user interest
其中,用户兴趣模型构建模块1010,配置为基于用户的基本信息和所述用户的历史会话数据构建用户兴趣模型,其中,所述用户兴趣模型中包含至少一个知识点;语义图匹配模块1020,配置为对所述用户兴趣模型中的知识点和根据本申请所述的方法构建的所述会话系统知识模型中的知识点进行基于语义图的匹配;匹配知识点生成模块1030,配置为根据语义图的匹配结果生成至少一个匹配的知识点,其中,所述知识点与至少一个问题关联;以及推荐模块1040,配置为将与所述至少一个匹配的知识点关联的问题推荐给所述用户。The user interest
应当理解,图9和图10中记载的诸模块与参考图1、图2、图3、图4和图5中描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作和特征以及相应的技术效果同样适用于图5中的诸模块,在此不再赘述。It should be understood that the modules recited in FIGS. 9 and 10 correspond to various steps in the methods described with reference to FIGS. 1 , 2 , 3 , 4 and 5 . Therefore, the operations and features described above with respect to the method and the corresponding technical effects are also applicable to the modules in FIG. 5 , which will not be repeated here.
值得注意的是,本公开的实施例中的模块并不用于限制本公开的方案,例如属性分析模块可以描述为基于获取的用户的声纹信息,分析用户的基础属性的模块。另外,还可以通过硬件处理器来实现相关功能模块,例如属性分析模块也可以用处理器实现,在此不再赘述。It is worth noting that the modules in the embodiments of the present disclosure are not used to limit the solution of the present disclosure. For example, the attribute analysis module may be described as a module that analyzes the basic attributes of the user based on the acquired voiceprint information of the user. In addition, the relevant functional modules may also be implemented by a hardware processor, for example, the attribute analysis module may also be implemented by a processor, which will not be repeated here.
在另一些实施例中,本发明实施例还提供了一种非易失性计算机存储介质,计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的会话系统知识模型的构建方法;In other embodiments, embodiments of the present invention further provide a non-volatile computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions can execute the session system in any of the foregoing method embodiments The construction method of knowledge model;
作为一种实施方式,本发明的非易失性计算机存储介质存储有计算机可执行指令,计算机可执行指令设置为:As an embodiment, the non-volatile computer storage medium of the present invention stores computer-executable instructions, and the computer-executable instructions are set to:
由会话系统中的知识点抽象出与所述知识点关联的至少一个主题;At least one topic associated with the knowledge point is abstracted from the knowledge point in the conversation system;
基于所述至少一个主题构建系统主题树;constructing a system theme tree based on the at least one theme;
基于所述系统主题树确定各知识点之间的关联关系;Determine the association relationship between the knowledge points based on the system theme tree;
至少基于所述系统主题树和所述各知识点之间的关联关系构建会话系统知识模型。A conversational system knowledge model is constructed at least based on the system topic tree and the association relationship between the knowledge points.
非易失性计算机可读存储介质可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据会话系统知识模型的构建装置的使用所创建的数据等。此外,非易失性计算机可读存储介质可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,非易失性计算机可读存储介质可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至会话系统知识模型的构建装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The non-volatile computer-readable storage medium can include a stored program area and a stored data area, wherein the stored program area can store an operating system and an application program required by at least one function; data created by the use of the device, etc. In addition, the non-volatile computer-readable storage medium may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device. In some embodiments, the non-transitory computer-readable storage medium may optionally include memory located remotely from the processor, the remote memory being connectable through a network to the means for constructing the knowledge model of the conversational system. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
本发明实施例还提供一种计算机程序产品,计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,计算机程序包括程序指令,当程序指令被计算机执行时,使计算机执行上述任一项会话系统知识模型的构建方法。An embodiment of the present invention further provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by a computer, the computer is made to execute the above A method for constructing knowledge model of any conversational system.
图11是本发明实施例提供的电子设备的结构示意图,如图11所示,该设备包括:一个或多个处理器1110以及存储器1120,图11中以一个处理器1110为例。会话系统知识模型的构建方法的设备还可以包括:输入装置1130和输出装置1140。处理器1110、存储器1120、输入装置1130和输出装置1140可以通过总线或者其他方式连接,图11中以通过总线连接为例。存储器1120为上述的非易失性计算机可读存储介质。处理器1110通过运行存储在存储器1120中的非易失性软件程序、指令以及模块,从而执行服务器的各种功能应用以及数据处理,即实现上述方法实施例会话系统知识模型的构建方法。输入装置1130可接收输入的数字或字符信息,以及产生与上述装置的用户设置以及功能控制有关的键信号输入。输出装置1140可包括显示屏等显示设备。FIG. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present invention. As shown in FIG. 11 , the device includes: one or
上述产品可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。The above product can execute the method provided by the embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method. For technical details not described in detail in this embodiment, reference may be made to the method provided by the embodiment of the present invention.
作为一种实施方式,上述电子设备应用于会话系统知识模型的构建装置中,用于客户端,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够:As an embodiment, the above electronic device is applied to an apparatus for constructing a knowledge model of a conversational system for a client, comprising: at least one processor; and a memory communicatively connected to the at least one processor; wherein, the memory stores a instructions to be executed by at least one processor, the instructions being executed by at least one processor to enable at least one processor to:
基于获取的用户的声纹信息,分析所述用户的基础属性;Based on the acquired voiceprint information of the user, analyze the basic attributes of the user;
基于所述用户的基础属性向所述用户推荐第一故事集合以供选择;recommending a first set of stories to the user for selection based on the user's underlying attributes;
判断所述用户是否选择所述第一故事集合中的任一故事并记录所述用户的选择情况,其中,所述任一故事具有至少一个故事属性且每一个故事属性对应一个权重值;Judging whether the user selects any story in the first set of stories and recording the user's selection, wherein the any story has at least one story attribute and each story attribute corresponds to a weight value;
基于所述用户的选择情况更新所述用户的各故事属性的权重值;Update the weight value of each story attribute of the user based on the user's selection;
基于所述用户的基础属性和更新后的所述用户的各故事属性的权重值向所述用户推荐第二故事集合以供选择。Based on the basic attribute of the user and the updated weight value of each story attribute of the user, a second set of stories is recommended to the user for selection.
本申请实施例的电子设备以多种形式存在,包括但不限于:The electronic devices in the embodiments of the present application exist in various forms, including but not limited to:
(1)移动通信设备:这类设备的特点是具备移动通信功能,并且以提供话音、数据通信为主要目标。这类终端包括:智能手机(例如iPhone)、多媒体手机、功能性手机,以及低端手机等。(1) Mobile communication equipment: This type of equipment is characterized by having mobile communication functions, and its main goal is to provide voice and data communication. Such terminals include: smart phones (eg iPhone), multimedia phones, feature phones, and low-end phones.
(2)超移动个人计算机设备:这类设备属于个人计算机的范畴,有计算和处理功能,一般也具备移动上网特性。这类终端包括:PDA、MID和UMPC设备等,例如iPad。(2) Ultra-mobile personal computer equipment: This type of equipment belongs to the category of personal computers, has computing and processing functions, and generally has the characteristics of mobile Internet access. Such terminals include: PDAs, MIDs, and UMPC devices, such as iPads.
(3)便携式娱乐设备:这类设备可以显示和播放多媒体内容。该类设备包括:音频、视频播放器(例如iPod),掌上游戏机,电子书,以及智能玩具和便携式车载导航设备。(3) Portable entertainment equipment: This type of equipment can display and play multimedia content. Such devices include: audio and video players (eg iPod), handheld game consoles, e-books, as well as smart toys and portable car navigation devices.
(4)服务器:提供计算服务的设备,服务器的构成包括处理器、硬盘、内存、系统总线等,服务器和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。(4) Server: A device that provides computing services. The composition of the server includes a processor, a hard disk, a memory, a system bus, etc. The server is similar to a general computer architecture, but due to the need to provide highly reliable services, the processing power, stability , reliability, security, scalability, manageability and other aspects of high requirements.
(5)其他具有数据交互功能的电子装置。(5) Other electronic devices with data interaction function.
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。The device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place , or distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分的方法。From the description of the above embodiments, those skilled in the art can clearly understand that each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware. Based on this understanding, the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic Disks, optical discs, etc., include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods of various embodiments or portions of embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911407443.1A CN111159382B (en) | 2019-12-27 | 2019-12-27 | Method and device for constructing and using knowledge model of conversational system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201911407443.1A CN111159382B (en) | 2019-12-27 | 2019-12-27 | Method and device for constructing and using knowledge model of conversational system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111159382A CN111159382A (en) | 2020-05-15 |
| CN111159382B true CN111159382B (en) | 2022-07-12 |
Family
ID=70559851
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201911407443.1A Active CN111159382B (en) | 2019-12-27 | 2019-12-27 | Method and device for constructing and using knowledge model of conversational system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111159382B (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111814091B (en) * | 2020-07-17 | 2023-11-28 | 北京达佳互联信息技术有限公司 | Message distribution method and related device |
| CN113704440B (en) * | 2021-09-06 | 2022-02-18 | 中国计量大学 | A Conversational Recommendation Method Based on Path Representation in Item Graph Network |
| CN114549248A (en) * | 2022-02-22 | 2022-05-27 | 广州起祥科技有限公司 | Error cause analysis method and device and electronic equipment |
| CN114661890B (en) * | 2022-03-31 | 2025-09-05 | 北京百度网讯科技有限公司 | A knowledge recommendation method, device, system and storage medium |
| CN118093788B (en) * | 2024-04-22 | 2024-07-02 | 成都同步新创科技股份有限公司 | Construction and search method of knowledge base of small and medium enterprises based on large model |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109086434A (en) * | 2018-08-13 | 2018-12-25 | 华中师范大学 | A kind of knowledge polymerizing method and system based on thematic map |
| CN110008326A (en) * | 2019-04-01 | 2019-07-12 | 苏州思必驰信息科技有限公司 | Method and system for generating knowledge abstracts in conversational systems |
| CN110377715A (en) * | 2019-07-23 | 2019-10-25 | 天津汇智星源信息技术有限公司 | Reasoning type accurate intelligent answering method based on legal knowledge map |
-
2019
- 2019-12-27 CN CN201911407443.1A patent/CN111159382B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109086434A (en) * | 2018-08-13 | 2018-12-25 | 华中师范大学 | A kind of knowledge polymerizing method and system based on thematic map |
| CN110008326A (en) * | 2019-04-01 | 2019-07-12 | 苏州思必驰信息科技有限公司 | Method and system for generating knowledge abstracts in conversational systems |
| CN110377715A (en) * | 2019-07-23 | 2019-10-25 | 天津汇智星源信息技术有限公司 | Reasoning type accurate intelligent answering method based on legal knowledge map |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111159382A (en) | 2020-05-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111159382B (en) | Method and device for constructing and using knowledge model of conversational system | |
| JP7108122B2 (en) | Selection of synthetic voices for agents by computer | |
| US12236321B2 (en) | Batching techniques for handling unbalanced training data for a chatbot | |
| CN114365118B (en) | Knowledge graph-based querying in AI chatbots with basic query element detection and graph path generation | |
| CN106302085B (en) | Method and system for recommending instant messaging groups | |
| US11017767B2 (en) | Hierarchical attention for spoken dialogue state tracking | |
| CN117219080A (en) | Virtual assistant for generating personalized responses within a communication session | |
| CN116806339A (en) | Virtual dialog system performance assessment and enrichment | |
| CN111506292B (en) | Voice skill skipping method for man-machine conversation, electronic device and storage medium | |
| US20210019375A1 (en) | Computing system including virtual agent bot providing semantic topic model-based response | |
| CN108763494A (en) | Knowledge Sharing method, dialogue method and device between conversational system | |
| WO2020246975A1 (en) | Action validation for digital assistant-based applications | |
| WO2019000472A1 (en) | Navigation method and apparatus, storage medium, and server | |
| CN108763495A (en) | Interactive method, system, electronic equipment and storage medium | |
| CN110008326B (en) | Method and system for generating knowledge abstracts in conversational systems | |
| CN114550705A (en) | Dialogue recommendation method, model training method, device, equipment and medium | |
| CN108932646B (en) | Carrier-based user tag authentication method, device and electronic device | |
| CN109190116B (en) | Semantic analysis method, system, electronic device and storage medium | |
| WO2021135561A1 (en) | Skill voice wake-up method and apparatus | |
| CN112580896A (en) | Knowledge point prediction method, device, equipment and storage medium | |
| WO2024152686A1 (en) | Method and apparatus for determining recommendation index of resource information, device, storage medium and computer program product | |
| van Mil et al. | A Matter of (Joint) control? Virtual assistants and the general data protection regulation | |
| CN109033228A (en) | A kind of determination method, apparatus, server and the storage medium of recommendation list | |
| US20190340280A1 (en) | Expert discovery using user query navigation paths | |
| CN112131484B (en) | A method, device, equipment and storage medium for establishing a multi-person session |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information |
Address after: 215123 building 14, Tengfei Innovation Park, 388 Xinping street, Suzhou Industrial Park, Suzhou City, Jiangsu Province Applicant after: Sipic Technology Co.,Ltd. Address before: 215123 building 14, Tengfei Innovation Park, 388 Xinping street, Suzhou Industrial Park, Suzhou City, Jiangsu Province Applicant before: AI SPEECH Co.,Ltd. |
|
| CB02 | Change of applicant information | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |