CN111252751A - Microfluidic droplet forming structural component and method for preparing solid spherical lithium iron phosphate - Google Patents
Microfluidic droplet forming structural component and method for preparing solid spherical lithium iron phosphate Download PDFInfo
- Publication number
- CN111252751A CN111252751A CN201811464385.1A CN201811464385A CN111252751A CN 111252751 A CN111252751 A CN 111252751A CN 201811464385 A CN201811464385 A CN 201811464385A CN 111252751 A CN111252751 A CN 111252751A
- Authority
- CN
- China
- Prior art keywords
- fluid channel
- channel
- fluid
- microfluidic
- iron phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 23
- 239000007787 solid Substances 0.000 title claims abstract description 20
- 239000012530 fluid Substances 0.000 claims abstract description 82
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 16
- 239000007863 gel particle Substances 0.000 claims abstract description 13
- 230000008878 coupling Effects 0.000 claims abstract description 12
- 238000010168 coupling process Methods 0.000 claims abstract description 12
- 238000005859 coupling reaction Methods 0.000 claims abstract description 12
- 238000005516 engineering process Methods 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 12
- 229920002545 silicone oil Polymers 0.000 claims abstract description 12
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims abstract description 7
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims abstract description 7
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims abstract description 7
- 235000019837 monoammonium phosphate Nutrition 0.000 claims abstract description 7
- 239000008346 aqueous phase Substances 0.000 claims abstract description 5
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 239000006185 dispersion Substances 0.000 claims description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 239000012780 transparent material Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 2
- 239000003921 oil Substances 0.000 claims 2
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 claims 2
- 229910052710 silicon Inorganic materials 0.000 claims 2
- 239000010703 silicon Substances 0.000 claims 2
- 238000010438 heat treatment Methods 0.000 claims 1
- 239000012071 phase Substances 0.000 abstract description 8
- 239000011159 matrix material Substances 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/16—Oxyacids of phosphorus; Salts thereof
- C01B25/26—Phosphates
- C01B25/45—Phosphates containing plural metal, or metal and ammonium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/52—Particles with a specific particle size distribution highly monodisperse size distribution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Colloid Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
本发明涉及微流控液滴形成结构件,包括基体,基体内开设连续流体通道、分散流体通道和液滴形成通道,且连续流体通道的出液口、分散流体通道的出液口和液滴形成通道的入液口相交汇。微流控技术与凝胶法相耦合以制备实心球形磷酸铁锂的方法,将醋酸锂、纳米三氧化二铁和磷酸二氢铵混合在水‑乙醇溶液中,得到流体A;将硅油和流体A分别注到连续流体通道和分散流体通道内,并以使流体A通过硅油的作用在连续流体通道、分散流体通道和液滴形成通道所共同的交汇处形成水相液滴,所形成的水相液滴流入液滴形成通道内;利用紫外放射源对水相液滴进行加热,使其形成凝胶粒;对凝胶粒进行烧结,得到实心球形磷酸铁锂。可控制目标产品尺寸。
The invention relates to a microfluidic droplet forming structure, comprising a matrix in which a continuous fluid channel, a dispersed fluid channel and a droplet formation channel are provided, and the liquid outlet of the continuous fluid channel, the liquid outlet of the dispersed fluid channel and the droplet The inlets that form the channels meet. A method for preparing solid spherical lithium iron phosphate by coupling microfluidic technology and gel method, mixing lithium acetate, nano-iron trioxide and ammonium dihydrogen phosphate in a water-ethanol solution to obtain fluid A; combining silicone oil and fluid A It is injected into the continuous fluid channel and the dispersed fluid channel respectively, and the water phase droplets are formed at the common intersection of the continuous fluid channel, the dispersed fluid channel and the droplet formation channel by the action of the fluid A through the silicone oil. The droplets flow into the droplet forming channel; the aqueous phase droplets are heated by an ultraviolet radiation source to form gel particles; the gel particles are sintered to obtain solid spherical lithium iron phosphate. The target product size can be controlled.
Description
技术领域technical field
本发明涉及锂电池领域,尤其涉及一种微流控液滴形成结构件及微流控技术与凝胶法相耦合以制备实心球形磷酸铁锂的方法。The invention relates to the field of lithium batteries, in particular to a microfluidic droplet forming structure and a method for preparing solid spherical lithium iron phosphate by coupling the microfluidic technology and the gel method.
背景技术Background technique
公告号为CN106328906A的专利提供了一种纳米球形磷酸铁锂正极材料的制备方法,该方法在实际制备过程中,碳球的均一性难以保证。The patent with the publication number CN106328906A provides a method for preparing a nano-spherical lithium iron phosphate positive electrode material. In the actual preparation process of the method, the uniformity of the carbon spheres is difficult to guarantee.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题是提供一种微流控液滴形成结构件及微流控技术与凝胶法相耦合以制备实心球形磷酸铁锂的方法,以克服上述现有技术中的不足。The technical problem to be solved by the present invention is to provide a microfluidic droplet forming structure and a method for coupling the microfluidic technology and the gel method to prepare solid spherical lithium iron phosphate, so as to overcome the above-mentioned deficiencies in the prior art.
本发明解决上述技术问题的技术方案如下:一种微流控液滴形成结构件,包括基体,基体内开设连续流体通道、分散流体通道和液滴形成通道,且连续流体通道的出液口、分散流体通道的出液口和液滴形成通道的入液口相交汇。The technical solution of the present invention to solve the above-mentioned technical problems is as follows: a microfluidic droplet forming structure, including a matrix, in which a continuous fluid channel, a dispersion fluid channel and a droplet forming channel are provided, and the liquid outlet of the continuous fluid channel, The liquid outlet port of the dispersion fluid channel and the liquid inlet port of the droplet forming channel meet.
本发明的有益效果是:水相液滴生成操作简单,无需引入外界作用力,可一步合成目标尺寸颗粒,液滴单分散性好、大小均一、体系封闭,试剂消耗量少,反应条件稳定,易于控制。The beneficial effects of the invention are as follows: the water-phase droplet generation operation is simple, no external force is required, the target size particles can be synthesized in one step, the droplet monodispersity is good, the size is uniform, the system is closed, the consumption of reagents is small, and the reaction conditions are stable, Easy to control.
在上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solutions, the present invention can also be improved as follows.
进一步,连续流体通道、分散流体通道和液滴形成通道所共同构成T型。Further, the continuous fluid channel, the dispersion fluid channel and the droplet forming channel together constitute a T-shape.
进一步,连续流体通道、分散流体通道和液滴形成通道的直径均为10-250μm。Further, the diameters of the continuous fluid channel, the dispersed fluid channel and the droplet formation channel are all 10-250 μm.
进一步,连续流体通道、分散流体通道和液滴形成通道的直径均为60μm。Further, the diameters of the continuous fluid channel, the dispersed fluid channel and the droplet formation channel are all 60 μm.
进一步,基体采用透明材料制成。Further, the base body is made of transparent material.
微流控技术与凝胶法相耦合以制备实心球形磷酸铁锂的方法,采用微流控液滴形成结构件与凝胶法相耦合以制备实心球形磷酸铁锂的方法,包括如下步骤:The method for preparing solid spherical lithium iron phosphate by coupling microfluidic technology and gel method, and the method for preparing solid spherical lithium iron phosphate by coupling microfluidic droplet forming structure with gel method, includes the following steps:
S100、将醋酸锂、纳米三氧化二铁和磷酸二氢铵混合在水-乙醇溶液中,得到流体A,备用;S100, mixing lithium acetate, nano-ferric oxide and ammonium dihydrogen phosphate in a water-ethanol solution to obtain fluid A, for subsequent use;
S200、将硅油和流体A分别注到连续流体通道和分散流体通道内,并以使流体A通过硅油的作用在连续流体通道、分散流体通道和液滴形成通道所共同的交汇处形成水相液滴,所形成的水相液滴流入液滴形成通道内;S200, inject the silicone oil and the fluid A into the continuous fluid channel and the dispersed fluid channel respectively, and make the fluid A pass through the action of the silicone oil to form an aqueous liquid at the common intersection of the continuous fluid channel, the dispersed fluid channel and the droplet formation channel droplets, the formed water phase droplets flow into the droplet formation channel;
S300、利用紫外放射源对流入到液滴形成通道内的水相液滴进行加热,使其形成凝胶粒;S300, using an ultraviolet radiation source to heat the water-phase droplets flowing into the droplet forming channel to form gel particles;
S400、对凝胶粒进行烧结,得到实心球形磷酸铁锂。S400, sintering the gel particles to obtain solid spherical lithium iron phosphate.
进一步,步骤S100中流体A的具体制备方法为:将摩尔比为2:1:1的醋酸锂、纳米三氧化二铁和磷酸二氢铵均匀混合到含有10%乙酸的水-乙醇溶液中,配置成溶质含量为5-30%的溶液,即得到流体A。Further, the specific preparation method of fluid A in step S100 is as follows: Lithium acetate, nano-iron trioxide and ammonium dihydrogen phosphate with a molar ratio of 2:1:1 are uniformly mixed into a water-ethanol solution containing 10% acetic acid, It is configured into a solution with a solute content of 5-30%, that is, fluid A is obtained.
进一步,步骤S200中,硅油以10-500μL/h的速度注到连续流体通道内,流体A以0.1-100μL/h的速度注到分散流体通道内。Further, in step S200, the silicone oil is injected into the continuous fluid channel at a rate of 10-500 μL/h, and the fluid A is injected into the dispersion fluid channel at a rate of 0.1-100 μL/h.
进一步,硅油以15μL/h的速度注到连续流体通道内,流体A以100μL/h的速度注到分散流体通道内。Further, the silicone oil was injected into the continuous fluid channel at a rate of 15 μL/h, and the fluid A was injected into the dispersion fluid channel at a rate of 100 μL/h.
进一步,步骤S400中,对凝胶粒进行烧结时的温度为1000-1800℃。Further, in step S400, the temperature of sintering the gel particles is 1000-1800°C.
本发明的有益效果是:通过微流控液滴生成技术与凝胶法相耦合来制备磷酸铁锂,使得磷酸铁锂的制备过程变得简单,而且还可控制目标产品尺寸,同时易于保证产品的均一性,以及获得的实心球形磷酸铁锂的外形更规则。The beneficial effects of the invention are that: the microfluidic droplet generation technology is coupled with the gel method to prepare the lithium iron phosphate, so that the preparation process of the lithium iron phosphate becomes simple, and the size of the target product can be controlled, and it is easy to ensure the quality of the product. The uniformity, and the shape of the obtained solid spherical lithium iron phosphate are more regular.
附图说明Description of drawings
图1为本发明所述微流控液滴形成结构件的结构示意图;FIG. 1 is a schematic structural diagram of the microfluidic droplet forming structure according to the present invention;
图2为本发明所述微流控液滴形成结构件的应用图;FIG. 2 is an application diagram of the microfluidic droplet forming structure according to the present invention;
图3为采用本发明所述方法所制备的实心球形磷酸铁锂的SEM图。Fig. 3 is the SEM image of the solid spherical lithium iron phosphate prepared by the method of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention will be described below with reference to the accompanying drawings. The examples are only used to explain the present invention, but not to limit the scope of the present invention.
如图1、图2所示,微流控液滴形成结构件,包括基体1,基体1内开设连续流体通道110、分散流体通道120和液滴形成通道130,且连续流体通道110的出液口、分散流体通道120的出液口和液滴形成通道130的入液口相交汇,在设计过程中,连续流体通道110、分散流体通道120和液滴形成通道130的直径均为10-250μm,优选为60μm,连续流体通道110、分散流体通道120和液滴形成通道130所共同构成T型、Y型、流聚焦结构或共聚焦结构,在本实施例所对应附图中给出的为T型,基体1采用透明材料制成,便于过程观察。As shown in FIG. 1 and FIG. 2 , the microfluidic droplet forming structure includes a substrate 1, in which a
一种微流控技术与凝胶法相耦合以制备实心球形磷酸铁锂的方法,包括如下步骤:A method for preparing solid spherical lithium iron phosphate by coupling a microfluidic technology and a gel method, comprising the following steps:
S100、将醋酸锂、纳米三氧化二铁和磷酸二氢铵混合在水-乙醇溶液中,得到流体A,备用;S100, mixing lithium acetate, nano-ferric oxide and ammonium dihydrogen phosphate in a water-ethanol solution to obtain fluid A, for subsequent use;
S200、将硅油和流体A分别注到连续流体通道110和分散流体通道120内,并以使流体A通过硅油的作用在连续流体通道110、分散流体通道120和液滴形成通道130所共同的交汇处形成水相液滴,所形成的水相液滴流入液滴形成通道130内;S200, inject the silicone oil and the fluid A into the
S300、利用紫外放射源对流入到液滴形成通道130内的水相液滴进行加热,使其形成凝胶粒;S300, using an ultraviolet radiation source to heat the water-phase droplets flowing into the
S400、对凝胶粒进行烧结,得到实心球形磷酸铁锂。S400, sintering the gel particles to obtain solid spherical lithium iron phosphate.
应用例Application example
如图1、图2、图3所示,一种微流控技术与凝胶法相耦合以制备实心球形磷酸铁锂的方法,包括如下步骤:As shown in Figure 1, Figure 2, Figure 3, a method for preparing solid spherical lithium iron phosphate by coupling microfluidic technology and gel method, including the following steps:
S100、将摩尔比为2:1:1的醋酸锂、纳米三氧化二铁和磷酸二氢铵均匀混合到含有10%乙酸的水-乙醇溶液中,配置成溶质含量为5-30%的溶液,最好是10%,即得到流体A,备用;S100. Uniformly mix lithium acetate, nano-iron trioxide and ammonium dihydrogen phosphate with a molar ratio of 2:1:1 into a water-ethanol solution containing 10% acetic acid, and configure a solution with a solute content of 5-30% , preferably 10%, that is, fluid A is obtained, which is ready for use;
S200、利用注射泵将硅油以10-500μL/h的速度注到连续流体通道110内,最好是15μL/h,同时,利用注射泵将流体A以0.1-100μL/h的速度注到分散流体通道120内,最好是100μL/h,并以使流体A通过硅油的作用在连续流体通道110、分散流体通道120和液滴形成通道130所共同的交汇处形成水相液滴,所形成的水相液滴流入液滴形成通道130内;S200, use a syringe pump to inject silicone oil into the
S300、利用紫外放射源对流入到液滴形成通道130内的水相液滴进行加热,使其形成凝胶粒;S300, using an ultraviolet radiation source to heat the water-phase droplets flowing into the
S400、将凝胶粒进行收集,并在1000-1800℃下对凝胶粒进行烧结,最好是1600℃,得到实心球形磷酸铁锂。S400 , collecting the gel particles, and sintering the gel particles at 1000-1800° C., preferably 1,600° C., to obtain solid spherical lithium iron phosphate.
微流控液滴生成技术可与水热法、凝胶法等常规碳球生产方法中的一个或两个耦合。水热法中,碳源可为石油沥青、煤沥青、蔗糖、葡萄糖、淀粉、纤维素、柠檬酸钠、酚醛树脂和环氧树脂等有机碳源。凝胶法中,凝胶剂可为乙醇和乙酸等可失水或失醇缩聚的有机物,以合成脂类等碳源。The microfluidic droplet generation technology can be coupled with one or both of the conventional carbon sphere production methods such as hydrothermal method and gel method. In the hydrothermal method, the carbon source can be an organic carbon source such as petroleum pitch, coal pitch, sucrose, glucose, starch, cellulose, sodium citrate, phenolic resin and epoxy resin. In the gel method, the gelling agent can be an organic substance such as ethanol and acetic acid, which can be dehydrated or polycondensed by dehydration, to synthesize carbon sources such as lipids.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811464385.1A CN111252751B (en) | 2018-12-03 | 2018-12-03 | Microfluidic droplet forming structural member and method for preparing solid spherical lithium iron phosphate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811464385.1A CN111252751B (en) | 2018-12-03 | 2018-12-03 | Microfluidic droplet forming structural member and method for preparing solid spherical lithium iron phosphate |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111252751A true CN111252751A (en) | 2020-06-09 |
| CN111252751B CN111252751B (en) | 2023-01-10 |
Family
ID=70923473
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811464385.1A Active CN111252751B (en) | 2018-12-03 | 2018-12-03 | Microfluidic droplet forming structural member and method for preparing solid spherical lithium iron phosphate |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111252751B (en) |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1648036A (en) * | 2004-12-17 | 2005-08-03 | 清华大学 | A kind of preparation method of LiFePO4 spherical powder |
| US20080085433A1 (en) * | 2006-10-06 | 2008-04-10 | Stmicroelectronics S.R.L. | Process and corresponding apparatus for continuously producing gaseous hydrogen to be supplied to micro fuel cells and integrated system for producing electric energy |
| CN102456873A (en) * | 2011-04-20 | 2012-05-16 | 南京工业大学 | A kind of preparation method of lithium iron phosphate cathode composite material for lithium ion battery |
| CN102585252A (en) * | 2011-01-10 | 2012-07-18 | 中国科学院大连化学物理研究所 | Method for synthesizing nonspherical polymer microparticles |
| CN103084225A (en) * | 2011-10-27 | 2013-05-08 | 中国科学院大连化学物理研究所 | High throughput microgel fixing method and special micro-fluidic chip thereof |
| CN104779384A (en) * | 2015-03-19 | 2015-07-15 | 广西大学 | Preparation method of lithium ion battery negative electrode materials |
| CN105233893A (en) * | 2015-11-02 | 2016-01-13 | 华东理工大学 | Method for preparing micro-droplets based on micro-fluidic chip modification technology |
| CN105363503A (en) * | 2015-11-02 | 2016-03-02 | 华东理工大学 | Multicomponent micro droplet microfluidic chip and processing method thereof |
| CN106328906A (en) * | 2016-11-03 | 2017-01-11 | 深圳市沃特玛电池有限公司 | Nano spherical lithium iron phosphate positive electrode material and preparation method thereof, lithium iron phosphate positive electrode sheet and lithium iron phosphate battery |
| CN106732213A (en) * | 2016-12-27 | 2017-05-31 | 中国科学院合肥物质科学研究院 | A kind of golden nanometer particle/hydrogel composite material and its preparation method and application |
| CN107473196A (en) * | 2017-09-30 | 2017-12-15 | 贵州微化科技有限公司 | A kind of method of continuous production LITHIUM BATTERY high compacted density nano ferric phosphate |
| CN107565111A (en) * | 2017-08-28 | 2018-01-09 | 北方奥钛纳米技术有限公司 | The nano modification method of LiFePO4 and its nano modification LiFePO4 and lithium ion battery of preparation |
| CN107774347A (en) * | 2016-08-31 | 2018-03-09 | 中国科学院青岛生物能源与过程研究所 | The method and its dynamic drop platform of a kind of micro-fluidic dynamic liquid drop control |
| WO2018165585A2 (en) * | 2017-03-10 | 2018-09-13 | University Of Maryland, College Park | Aqueous hydrogel electrolyte systems with wide electrochemical stability window |
-
2018
- 2018-12-03 CN CN201811464385.1A patent/CN111252751B/en active Active
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1648036A (en) * | 2004-12-17 | 2005-08-03 | 清华大学 | A kind of preparation method of LiFePO4 spherical powder |
| US20080085433A1 (en) * | 2006-10-06 | 2008-04-10 | Stmicroelectronics S.R.L. | Process and corresponding apparatus for continuously producing gaseous hydrogen to be supplied to micro fuel cells and integrated system for producing electric energy |
| CN102585252A (en) * | 2011-01-10 | 2012-07-18 | 中国科学院大连化学物理研究所 | Method for synthesizing nonspherical polymer microparticles |
| CN102456873A (en) * | 2011-04-20 | 2012-05-16 | 南京工业大学 | A kind of preparation method of lithium iron phosphate cathode composite material for lithium ion battery |
| CN103084225A (en) * | 2011-10-27 | 2013-05-08 | 中国科学院大连化学物理研究所 | High throughput microgel fixing method and special micro-fluidic chip thereof |
| CN104779384A (en) * | 2015-03-19 | 2015-07-15 | 广西大学 | Preparation method of lithium ion battery negative electrode materials |
| CN105233893A (en) * | 2015-11-02 | 2016-01-13 | 华东理工大学 | Method for preparing micro-droplets based on micro-fluidic chip modification technology |
| CN105363503A (en) * | 2015-11-02 | 2016-03-02 | 华东理工大学 | Multicomponent micro droplet microfluidic chip and processing method thereof |
| CN107774347A (en) * | 2016-08-31 | 2018-03-09 | 中国科学院青岛生物能源与过程研究所 | The method and its dynamic drop platform of a kind of micro-fluidic dynamic liquid drop control |
| CN106328906A (en) * | 2016-11-03 | 2017-01-11 | 深圳市沃特玛电池有限公司 | Nano spherical lithium iron phosphate positive electrode material and preparation method thereof, lithium iron phosphate positive electrode sheet and lithium iron phosphate battery |
| CN106732213A (en) * | 2016-12-27 | 2017-05-31 | 中国科学院合肥物质科学研究院 | A kind of golden nanometer particle/hydrogel composite material and its preparation method and application |
| WO2018165585A2 (en) * | 2017-03-10 | 2018-09-13 | University Of Maryland, College Park | Aqueous hydrogel electrolyte systems with wide electrochemical stability window |
| CN107565111A (en) * | 2017-08-28 | 2018-01-09 | 北方奥钛纳米技术有限公司 | The nano modification method of LiFePO4 and its nano modification LiFePO4 and lithium ion battery of preparation |
| CN107473196A (en) * | 2017-09-30 | 2017-12-15 | 贵州微化科技有限公司 | A kind of method of continuous production LITHIUM BATTERY high compacted density nano ferric phosphate |
Non-Patent Citations (3)
| Title |
|---|
| ZHU, HJ, ET AL: "Synthesis and characterization of LiMnPO4/C nano-composites from manganese(II) phosphate trihydrate precipitated from a micro-channel reactor approach", 《RSC ADVANCES》 * |
| 严鹏等: "微通道反应器制备锂离子电池正极材料磷酸铁锂", 《化工新型材料》 * |
| 邱阳等: "复杂结构核-壳微颗粒的微流控制备方法", 《华东理工大学学报(自然科学版)》 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111252751B (en) | 2023-01-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104588139B (en) | A kind of micro-fluidic chip and using method preparing microballoon | |
| CN110004111B (en) | A kind of preparation method of organoid spheroid | |
| CN109201130B (en) | A double emulsified glass capillary microfluidic chip and its phase change microcapsules | |
| CN104650104B (en) | The preparation method of zinc ion-porphyrin nano complex | |
| CN104173294B (en) | Based on the PVA method for preparing microsphere of Microfluidic droplet generation technique | |
| CN107020054A (en) | A kind of preparation method of the high heat conduction phase-change microcapsule of uniform particle sizes | |
| CN108514896A (en) | A kind of preparation method and device of micro-fluidic aqueous two-phase monodisperse calcium alginate microsphere | |
| CN102898134A (en) | Method for preparing zirconium dioxide ceramic microspheres with microfluid device | |
| CN111618313B (en) | Method for preparing silver nanoparticles based on microfluidic technology | |
| CN108525622B (en) | A multi-stage reaction microfluidic device and its application in the preparation of nanomaterials | |
| CN106145198A (en) | Prepare the method and device of uranium oxide microsphere | |
| CN106109440A (en) | A kind of micro-fluidic chip and the preparation method of alginate magnetic microsphere | |
| CN211586547U (en) | Micro-reactor | |
| CN113499697B (en) | Water-in-water monodisperse double emulsion and preparation method thereof | |
| CN104688714A (en) | Graphene/ chitosan compound micro-capsule and preparation method thereof | |
| CN101069928A (en) | Method for preparing copper-base composite particles of internal carbon-inlaid nano pipe | |
| CN206405435U (en) | A kind of micro-fluidic preparation facilities of nano-Au solution | |
| CN111261850B (en) | Method for preparing hollow spherical material of lithium ion battery by utilizing microfluidic technology | |
| CN207102563U (en) | A kind of micro fluidic device for the high heat conduction phase-change microcapsule for preparing uniform particle sizes | |
| CN111252751B (en) | Microfluidic droplet forming structural member and method for preparing solid spherical lithium iron phosphate | |
| CN108993338A (en) | It is a kind of for synthesizing the micro-reaction device and method of ferriferrous oxide nano powder | |
| CN111261849B (en) | Method for preparing solid spherical material for negative electrode of lithium ion battery by microfluidic technology | |
| CN112921436B (en) | Fiber wrapping perovskite quantum dots, preparation method and device | |
| CN113578404B (en) | A multi-concentration microdroplet chip oriented to drug microspheres and its manufacturing method | |
| CN115888591A (en) | Millifluidic device and control method for continuous self-circulation preparation of nanoparticles |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address |
Address after: 611435 No. 168, Xinke Avenue, new material industry functional zone, Xinjin County, Chengdu City, Sichuan Province Patentee after: CHENGDU YINLONG NEW ENERGY Co.,Ltd. Country or region after: China Patentee after: Gree titanium new energy Co.,Ltd. Address before: 611435 No. 168, Xinke Avenue, new material industry functional zone, Xinjin County, Chengdu City, Sichuan Province Patentee before: CHENGDU YINLONG NEW ENERGY Co.,Ltd. Country or region before: China Patentee before: YINLONG ENERGY Co.,Ltd. |
|
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: No.168 Xinke Avenue, new material industry functional zone, Xinjin County, Chengdu City, Sichuan Province Patentee after: Chengdu Gree Titanium New Energy Co.,Ltd. Country or region after: China Patentee after: Gree titanium new energy Co.,Ltd. Address before: No. 168 Xinke Avenue, New Materials Industry Functional Zone, Xinjin County, Chengdu City, Sichuan Province Patentee before: CHENGDU YINLONG NEW ENERGY Co.,Ltd. Country or region before: China Patentee before: Gree titanium new energy Co.,Ltd. |
|
| CP03 | Change of name, title or address |