[go: up one dir, main page]

CN111277354B - Coding and decoding method and related device of low-density parity check LDPC code - Google Patents

Coding and decoding method and related device of low-density parity check LDPC code Download PDF

Info

Publication number
CN111277354B
CN111277354B CN201811473706.4A CN201811473706A CN111277354B CN 111277354 B CN111277354 B CN 111277354B CN 201811473706 A CN201811473706 A CN 201811473706A CN 111277354 B CN111277354 B CN 111277354B
Authority
CN
China
Prior art keywords
line
matrix
row
value
bits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811473706.4A
Other languages
Chinese (zh)
Other versions
CN111277354A (en
Inventor
基多·蒙托里西
塞吉奥·贝勒迪多
林伟
辛岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201811473706.4A priority Critical patent/CN111277354B/en
Priority to PCT/CN2019/122269 priority patent/WO2020114337A1/en
Publication of CN111277354A publication Critical patent/CN111277354A/en
Application granted granted Critical
Publication of CN111277354B publication Critical patent/CN111277354B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0043Realisations of complexity reduction techniques, e.g. use of look-up tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Error Detection And Correction (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本申请提供了一种奇偶校验LDPC码的编译码方法和装置。本申请的方案根据奇偶校验H矩阵,对8064个信息比特进行LDPC编码,编码得到码率分别为R=1/2,5/8,3/4,13/16,7/8的LDPC码,其中奇偶校验H矩阵为(n+s‑k)×(n+s)的奇偶校验矩阵,H矩阵被划分为大小为Z×Z维的子方阵,所述Z取值为64或42,子方阵为单位矩阵的循环移位或空矩阵,s为待缩短比特与所述H矩阵所对应的列数,且为Z的正整数倍。

Figure 201811473706

The present application provides a method and device for encoding and decoding a parity-check LDPC code. According to the parity check H matrix, the scheme of the present application performs LDPC encoding on 8064 information bits, and the encoding obtains LDPC codes with code rates of R=1/2, 5/8, 3/4, 13/16, and 7/8 respectively , wherein the parity check H matrix is a parity check matrix of (n+s-k)×(n+s), and the H matrix is divided into sub-square matrices whose size is Z×Z dimensions, and the value of Z is 64 Or 42, the sub-square matrix is the cyclic shift of the unit matrix or an empty matrix, s is the number of columns corresponding to the bits to be shortened and the H matrix, and is a positive integer multiple of Z.

Figure 201811473706

Description

低密度奇偶校验LDPC码的编译码方法、相关装置Coding and decoding method and related device of low-density parity-check LDPC code

技术领域technical field

本申请涉及通信技术领域,特别涉及低密度奇偶校验LDPC码的编译码方法、相关装置。The present application relates to the field of communication technology, and in particular to a coding and decoding method and a related device of a low-density parity-check LDPC code.

背景技术Background technique

无线局域网(wireless LAN,WLAN)标准IEEE802.11ad/ay主要研究目的是如何在60吉赫兹(Giga Hz,GHz)大带宽场景下提升用户的体验,包括提升用户平均吞吐量以及电池类供电设备的能量使用效率。60GHz大带宽场景需要支持在有限的频率和功率资源上实现数据、视频等业务的高速可靠传输,因此需要高可靠性和高效率的信道编译码方案。在信道编码领域,Turbo码和低密度奇偶校验(Low-density parity-check code,LDPC)码是应用最成熟和广泛的两种信道编码方法,它们都有接近香农(Shannon)限的性能,均已经被广泛地应用到通信领域。与Turbo码相比,LDPC码具有:不需要深度交织器即可获得很好的误码性能;具有更好的误帧率性能;错误平层大大降低;支持并行译码增加吞吐量,译码延时小等优点。The main research purpose of wireless local area network (wireless LAN, WLAN) standard IEEE802.11ad/ay is how to improve user experience in 60 GHz (Giga Hz, GHz) high-bandwidth scenarios, including improving user average throughput and battery-powered devices. Energy use efficiency. The 60GHz large bandwidth scenario needs to support high-speed and reliable transmission of data, video and other services on limited frequency and power resources, so a highly reliable and efficient channel coding and decoding solution is required. In the field of channel coding, Turbo codes and Low-density parity-check (LDPC) codes are the most mature and widely used two channel coding methods, both of which have performance close to the Shannon limit. Both have been widely used in the field of communication. Compared with Turbo codes, LDPC codes have: good bit error performance without deep interleaver; better frame error rate performance; greatly reduced error floor; support for parallel decoding to increase throughput, decoding The advantages of small delay and so on.

因此,LDPC码已成为IEEE802.11n/ac/ax等低频短距WLAN通信系统的标准信道编码方案,同时也已成为IEEE802.11ad/ay等60GHz高频短距WLAN通信系统的信道编码方案。基于此,也可考虑针对下一代60GHz WLAN系统设计新的LDPC码,以进一步提高下一代WLAN系统的可靠性和系统性能。Therefore, LDPC codes have become the standard channel coding scheme for low-frequency short-range WLAN communication systems such as IEEE802.11n/ac/ax, and have also become the channel coding scheme for 60GHz high-frequency short-range WLAN communication systems such as IEEE802.11ad/ay. Based on this, it may also be considered to design a new LDPC code for the next-generation 60GHz WLAN system, so as to further improve the reliability and system performance of the next-generation WLAN system.

发明内容Contents of the invention

第一方面,本申请提供了一种低密度奇偶校验LDPC码的编码方法,包括:根据奇偶校验H矩阵,对8064个信息比特进行LDPC编码,获得编码后的码字C,所述码字C的码长为n,码率R为k/n,n为大于k的正整数;其中,所述H矩阵为(n+s-k)×(n+s)的奇偶校验矩阵,所述H矩阵被划分为大小为Z×Z维的子方阵,所述Z取值为64或42,所述子方阵为单位矩阵的循环移位或空矩阵,s为待缩短比特与所述H矩阵所对应的列数,且为Z的正整数倍。基于此方案可以得到新的码长更长的LDPC码,可以降低误码率,降低计算复杂度,进一步提高系统的性能和可靠性。In the first aspect, the present application provides an encoding method of a low-density parity-check LDPC code, including: performing LDPC encoding on 8064 information bits according to the parity-check H matrix to obtain an encoded code word C, the code The code length of the word C is n, the code rate R is k/n, and n is a positive integer greater than k; wherein, the H matrix is a parity check matrix of (n+s-k)×(n+s), and the The H matrix is divided into a sub-square matrix with a size of Z×Z dimension, the value of Z is 64 or 42, the sub-square matrix is a cyclic shift of the unit matrix or an empty matrix, and s is the bit to be shortened and the The number of columns corresponding to the H matrix, which is a positive integer multiple of Z. Based on this scheme, a new LDPC code with a longer code length can be obtained, which can reduce the bit error rate, reduce the computational complexity, and further improve the performance and reliability of the system.

在一种可能的实现方法中,在所述8064个信息比特前填充s个待缩短比特,得到(s+k)个待编码比特,所述s个待缩短比特的值为0;对所述(s+k)个待编码比特进行LDPC编码,获得编码后的码字C1,所述码字C1的码长为(s+n);删除所述码字C1中的所述s个待缩短比特,得到所述码字C,其中,所述s个待缩短比特与所述H矩阵的前s列相对应。通过在k个信息比特前填充s个值为0的待缩短比特,可有效提升译码性能,降低误比特率或误码字率。In a possible implementation method, s bits to be shortened are filled before the 8064 information bits to obtain (s+k) bits to be encoded, and the value of the s bits to be shortened is 0; for the (s+k) bits to be encoded are subjected to LDPC encoding to obtain encoded codeword C 1 , the code length of the codeword C 1 is (s+n); delete the s in the codeword C 1 bits to be shortened to obtain the codeword C, wherein the s bits to be shortened correspond to the first s columns of the H matrix. By filling s bits to be shortened with a value of 0 before the k information bits, the decoding performance can be effectively improved and the bit error rate or word error rate can be reduced.

第二方面,本申请提供一种低密度奇偶校验LDPC码的译码方法,包括:获取经过LDPC编码后的码字C,在码字C之前填充s个待缩短比特,构成码长为(s+n)的码字C1,利用奇偶校验H矩阵对码字C1进行解码,获得解码后的k个信息比特;其中,H矩阵为(n+s-k)×(n+s)奇偶校验矩阵,奇偶校验矩阵H被划分为大小为ZxZ的子方阵,子方阵是单位矩阵的循环移位,或是具有全零项的空子矩阵。s为待缩短比特与所述H矩阵所对应的列数,且为Z的正整数倍。In a second aspect, the present application provides a decoding method of a low-density parity-check LDPC code, including: obtaining a code word C after LDPC encoding, filling s bits to be shortened before the code word C, and forming a code length of ( s+n) codeword C 1 , use the parity check H matrix to decode the codeword C 1 to obtain the decoded k information bits; where, the H matrix is (n+sk)×(n+s) parity The check matrix, the parity check matrix H is divided into a sub-square matrix with a size of ZxZ, and the sub-square matrix is a cyclic shift of the identity matrix, or an empty sub-matrix with all zero entries. s is the number of columns corresponding to the bits to be shortened and the H matrix, and is a positive integer multiple of Z.

其中,单位矩阵记为P0,单位矩阵P0的循环置换矩阵Pi表示通过将单位矩阵P0向右循环移动i个元素,称为循环移位矩阵。可选的,Z的取值为64或42。Wherein, the identity matrix is denoted as P0, and the cyclic permutation matrix Pi of the identity matrix P0 means that the identity matrix P0 is cyclically shifted to the right by i elements, which is called a cyclic shift matrix. Optionally, the value of Z is 64 or 42.

在一种可能的实现方法中,利用奇偶校验H矩阵对码字C1进行解码,获得解码后的k个信息比特,包括:利用奇偶校验H矩阵对码字C1进行解码后,得到(s+k)个译码比特,删除所述(s+k)个译码比特中的前s个待缩短比特,获得解码后的k个信息比特,所述s个待缩短比特的值为0。通过在k个信息比特前填充s个值为0的待缩短比特,可有效提升译码性能,降低误比特率或误码字率。In a possible implementation method, the code word C 1 is decoded by using the parity check H matrix to obtain the decoded k information bits, including: after decoding the code word C 1 by using the parity check H matrix, obtaining (s+k) decoding bits, delete the first s bits to be shortened in the (s+k) decoding bits, and obtain k information bits after decoding, and the value of the s to be shortened bits is 0. By filling s bits to be shortened with a value of 0 before the k information bits, the decoding performance can be effectively improved and the bit error rate or word error rate can be reduced.

结合第一方面或第二方面或其可能的实现方法中,该译码方法或编码方法可应用于高频无线通信局域网中,例如,60吉赫兹无线通信系统中。In combination with the first aspect or the second aspect or possible implementation methods thereof, the decoding method or encoding method can be applied to a high-frequency wireless communication local area network, for example, a 60 GHz wireless communication system.

结合第一方面或第二方面,在一种可能的实现方式中,奇偶校验H矩阵可为示例一至示例十中所示的任何一个。奇偶校验H矩阵还可以采用其他形式表示,且任一个H矩阵中的行和行的次序可以相互交换,列和列的次序也可以相互交换。With reference to the first aspect or the second aspect, in a possible implementation manner, the parity check H matrix may be any one shown in Example 1 to Example 10. The parity-check H matrix can also be expressed in other forms, and the order of rows and rows in any H matrix can be exchanged, and the order of columns can also be exchanged.

第三方面,本申请提供了一种低密度奇偶校验LDPC码的编码装置,该装置具有实现上述第一方面中涉及编码侧的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。In a third aspect, the present application provides a low-density parity-check LDPC code encoding device, which has the function of realizing the encoding side in the above-mentioned first aspect. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware. The hardware or software includes one or more units corresponding to the functions described above.

在一种可能的实现方式中,当该装置包括:处理器和存储器,所述处理器被配置为支持编码装置执行上述第一方面方法中相应的功能。所述存储器用于与处理器耦合,其保存编码装置必要的程序指令和数据。In a possible implementation manner, when the device includes: a processor and a memory, the processor is configured to support the encoding device to perform corresponding functions in the method of the first aspect above. The memory is used for coupling with the processor, which stores necessary program instructions and data of the encoding device.

在另一种可能的实现方式中,该装置包括:生成模块,编码模块和输入输出模块;生成模块用于生成k个信息比特;编码模块,用于根据奇偶校验H矩阵,对所述k个信息比特进行LDPC编码,获得编码后的码字C,所述码字C的码长为n,码率R为k/n;输入输出模块1003,用于输出所述码字C。In another possible implementation, the device includes: a generation module, an encoding module, and an input-output module; the generation module is used to generate k information bits; the encoding module is used to perform the k LDPC encoding is performed on information bits to obtain a coded code word C, the code length of the code word C is n, and the code rate R is k/n; the input and output module 1003 is used to output the code word C.

在又一个可能的实现方式中,该装置包括:处理器,存储器,发送模块,接收模块,射频模块,天线,用于支持编码装置执行上述第一方面方法中相应的功能。In yet another possible implementation manner, the device includes: a processor, a memory, a sending module, a receiving module, a radio frequency module, and an antenna, configured to support the encoding device to perform corresponding functions in the method of the first aspect above.

第四方面,本申请提供了一种低密度奇偶校验LDPC码的译码装置,该装置具有实现上述第二方面中涉及译码侧的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。In a fourth aspect, the present application provides a device for decoding a low-density parity check LDPC code, and the device has the function of realizing the decoding side in the above-mentioned second aspect. This function may be implemented by hardware, or may be implemented by executing corresponding software on the hardware. The hardware or software includes one or more units corresponding to the functions described above.

在一种可能的实现方式中,当该装置包括:处理器和存储器,所述处理器被配置为支持译码装置执行上述第二方面中相应的功能。所述存储器用于与处理器耦合,其保存编码装置必要的程序指令和数据。可选的,该存储器可以位于该处理器内部,为内部存储器,还可以位于该处理器外部,为外部存储器。In a possible implementation manner, when the device includes: a processor and a memory, the processor is configured to support the decoding device to perform the corresponding functions in the second aspect above. The memory is used for coupling with the processor, which stores necessary program instructions and data of the encoding device. Optionally, the memory may be located inside the processor as an internal memory, or located outside the processor as an external memory.

在另一种可能的实现方式中,该装置包括:输入输出模块,填充模块和译码模块;输入输出模块,用于获取待解码的码字C1,包括n个码字比特;填充模块,用于在n个码字比特前填充s个待删除比特,构成(s+n)个待译码比特,这s个待删除比特的值为0;译码模块,用于根据奇偶校验H矩阵,对所述(s+n)个待译码比特进行LDPC译码,获得译码后的k个比特。In another possible implementation, the device includes: an input-output module, a padding module and a decoding module; an input-output module, configured to obtain a codeword C 1 to be decoded, including n codeword bits; a padding module, It is used to fill s bits to be deleted before n codeword bits to form (s+n) bits to be decoded, and the value of these s bits to be deleted is 0; the decoding module is used for parity check H matrix, performing LDPC decoding on the (s+n) bits to be decoded to obtain k bits after decoding.

在又一个可能的实现方式中,该装置包括:处理器,存储器,发送模块,接收模块,射频模块,天线,用于支持编码装置执行上述方法中相应的功能。In yet another possible implementation manner, the device includes: a processor, a memory, a sending module, a receiving module, a radio frequency module, and an antenna, configured to support the encoding device to perform corresponding functions in the foregoing method.

上述任一处提到的处理器,可以是一个通用中央处理器(Central ProcessingUnit,简称CPU),微处理器,特定应用集成电路(application-specific integratedcircuit,简称ASIC),或一个或多个用于控制上述各方面空间复用方法的程序执行的集成电路。The processor mentioned in any of the above can be a general-purpose central processing unit (Central Processing Unit, referred to as CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, referred to as ASIC), or one or more An integrated circuit controlling program execution of the spatial multiplexing method of the above aspects.

第五方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,所述指令可以由处理电路上的一个或多个处理器执行。当其在计算机上运行时,使得计算机执行上述第一方面或第二方面中的方法。In a fifth aspect, the present application provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and the instructions can be executed by one or more processors on a processing circuit. When it runs on a computer, it causes the computer to execute the method in the first aspect or the second aspect above.

第六方面,提供了一种包含指令的计算机程序产品,该计算机程序产品包括用于实现上述第一方面或第二方面中方法的指令,其在计算机上运行时,使得计算机执行上述第一方面或第二方面或其任意可能的实现方式中的方法。该计算机程序产品可全部或部分的存储于封装于处理器当中的存储介质上,还可以全部或部分的存储在封装于处理器之外的存储介质中。A sixth aspect provides a computer program product containing instructions, the computer program product includes instructions for implementing the method in the first aspect or the second aspect above, and when running on a computer, the computer executes the first aspect above Or the method in the second aspect or any possible implementation thereof. The computer program product may be stored in whole or in part on a storage medium packaged in the processor, and may also be stored in whole or in part in a storage medium packaged outside the processor.

第七方面,本申请实施例提供一种无线通信系统,该系统包括上述方面涉及的编码装置和,译码装置。In a seventh aspect, an embodiment of the present application provides a wireless communication system, where the system includes the encoding device and the decoding device involved in the above aspect.

第八方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各方面中的方法。第九方面,提供另一种芯片,包括:输入接口、输出接口、处理器,可选的,还包括存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面中的方法。In an eighth aspect, a chip is provided, including a processor, configured to call from a memory and execute instructions stored in the memory, so that a communication device installed with the chip executes the methods in the above aspects. In the ninth aspect, another chip is provided, including: an input interface, an output interface, a processor, and optionally a memory, and the input interface, the output interface, the processor, and the memory are internally connected The processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the method in the above aspects.

第十方面,提供又一种芯片,包括一个或多个处理电路,以及输入输出接口。当所述芯片应用于编码装置中时,所述一个或多个处理电路可用于根据奇偶校验H矩阵进行编码,输入输出接口可用于输出编码后的码字C;当所述芯片应用于译码装置中时,所述一个或多个处理电路可用于根据奇偶校验H矩阵进行解码,输入输出接口可用于输入待译码的码字C,还用于输出译码后的信息比特。In a tenth aspect, there is provided another chip, including one or more processing circuits, and input and output interfaces. When the chip is used in an encoding device, the one or more processing circuits can be used for encoding according to the parity check H matrix, and the input and output interface can be used for outputting the encoded code word C; when the chip is used for decoding When in the coding device, the one or more processing circuits can be used for decoding according to the parity check H matrix, and the input and output interface can be used for inputting the code word C to be decoded, and also for outputting the decoded information bits.

第十一方面,提供一种装置,用于实现上述各实施例中的方法。In an eleventh aspect, an apparatus is provided for implementing the methods in the foregoing embodiments.

本申请实施例提供了新的LDPC编码方法,相较于5G NR LDPC码,可降低误码字率和计算复杂度,进一步提高系统可靠性和性能。The embodiment of the present application provides a new LDPC encoding method, which can reduce the bit error rate and calculation complexity compared with the 5G NR LDPC code, and further improve system reliability and performance.

附图说明Description of drawings

图1为本申请实施例提供的一种应用场景示意图;FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application;

图2为本申请实施例提供的一种LDPC编码方法流程示意图;Fig. 2 is a schematic flow chart of an LDPC encoding method provided by the embodiment of the present application;

图3为本申请实施例提供的大小为4x4的循环移位矩阵;FIG. 3 is a cyclic shift matrix with a size of 4x4 provided by the embodiment of the present application;

图4为本申请实施例提供的一种LDPC译码方法流程示意图;FIG. 4 is a schematic flow chart of an LDPC decoding method provided in an embodiment of the present application;

图5为本申请实施例提供的一个奇偶校验H矩阵对应的20行146列的母矩阵;Fig. 5 is the parent matrix of 20 rows and 146 columns corresponding to a parity check H matrix provided by the embodiment of the present application;

图6为本申请实施例提供的一种LDPC编码方法的示例;FIG. 6 is an example of an LDPC encoding method provided in an embodiment of the present application;

图7为本申请实施例提供的一种LDPC译码方法的示例;FIG. 7 is an example of an LDPC decoding method provided in an embodiment of the present application;

图8为本申请实施例提供的第一组LDPC码与5G NR LDPC码的误码率仿真性能比较;Fig. 8 is the bit error rate simulation performance comparison of the first group of LDPC codes provided by the embodiment of the present application and the 5G NR LDPC codes;

图9为本申请实施例提供的第二组LDPC码与5G NR LDPC码的误码率仿真性能比较;Fig. 9 is the bit error rate simulation performance comparison of the second group of LDPC codes provided by the embodiment of the present application and the 5G NR LDPC codes;

图10为本申请实施例提供的一种LDPC码编码装置示意图;FIG. 10 is a schematic diagram of an LDPC code encoding device provided in an embodiment of the present application;

图11为本申请实施例提供的另一种LDPC码编码装置示意图;FIG. 11 is a schematic diagram of another LDPC code encoding device provided in the embodiment of the present application;

图12为本申请实施例提供的一种LDPC码译码装置示意图;FIG. 12 is a schematic diagram of an LDPC code decoding device provided in an embodiment of the present application;

图13为本申请实施例提供的另一种LDPC码译码装置示意图;FIG. 13 is a schematic diagram of another LDPC code decoding device provided in the embodiment of the present application;

图14为本申请实施例提供的一种通信装置的示意图。FIG. 14 is a schematic diagram of a communication device provided by an embodiment of the present application.

具体实施方式Detailed ways

本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。The terms used in the embodiments of the present application are only used to explain specific embodiments of the present application, and are not intended to limit the present application.

本申请实施例提供一种低密度奇偶校验LDPC码编译码方法和编译码装置。应理解,本申请实施例的技术方案可以应用于各种移动通信系统,例如:通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwideinteroperability for microwave access,WiMAX)通信系统、以及未来的5G(fifthgeneration,5G)通信系统等。本申请实施例的技术方案还可以应用于无线局域网(wireless local area network,WLAN),并且本申请实施例可以适用于WLAN当前采用的国际电工电子工程学会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议。例如,应用于802.11ay标准,或者,应用于802.11ay下一代的标准等。本申请实施例的编码装置和译码装置可以是上述通信系统中的网络节点,还可以是上述通信系统中网络节点内的芯片。Embodiments of the present application provide a low density parity check LDPC code encoding and decoding method and an encoding and decoding device. It should be understood that the technical solutions of the embodiments of the present application can be applied to various mobile communication systems, for example: universal mobile telecommunications system (universal mobile telecommunications system, UMTS), worldwide interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, And the future 5G (fifthgeneration, 5G) communication system, etc. The technical solution of the embodiment of the present application can also be applied to a wireless local area network (wireless local area network, WLAN), and the embodiment of the present application can be applied to the Institute of Electrical and Electronics Engineers (Institute of Electrical and Electronics Engineers, IEEE) 802.11 currently adopted by the WLAN. Any protocol in a series of protocols. For example, it is applied to the 802.11ay standard, or it is applied to the standard of the next generation of 802.11ay. The encoding device and the decoding device in the embodiment of the present application may be a network node in the above-mentioned communication system, or may be a chip in the network node in the above-mentioned communication system.

本申请实施例以WLAN通信系统为例进行说明。WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA),则本申请实施例的编码装置和译码装置可以是WLAN系统中的AP或STA,还可以是位于AP或STA内的芯片。本申请实施例的方案既可以运用于AP与STA之间的通信,还可以运用于AP与AP之间的通信,STA与STA之间的通信,且可以是一对一的通信,还可以是一对多和多对多的通信。例如,可以是一个AP与一个STA之间通信(例如图1左所示),可以是AP与多个STA同时通信(如图1右所示),还可以是多个AP与多个STA之间同时通信,还可以是多个STA与AP之间同时通信。The embodiment of the present application is described by taking a WLAN communication system as an example. The WLAN may include one or more basic service sets (basic service set, BSS), and the network nodes in the basic service set include an access point (access point, AP) and a station (station, STA), then the encoding device of the embodiment of the present application The sum and decoding device may be an AP or STA in the WLAN system, and may also be a chip located in the AP or STA. The solution of the embodiment of the present application can be applied to the communication between AP and STA, the communication between AP and AP, the communication between STA and STA, and it can be one-to-one communication, or it can be One-to-many and many-to-many communication. For example, it can be communication between one AP and one STA (such as shown on the left of Figure 1), it can be simultaneous communication between an AP and multiple STAs (as shown on the right of Figure 1), or it can be between multiple APs and multiple STAs. Simultaneous communication between STAs, or simultaneous communication between multiple STAs and APs.

AP为具有无线收发功能的通信装置,可以为定向多吉比特(directional multi-gigabit,DMG)AP/PCP和增强型定向多吉比特(enhanced directional multi-gigabit,EDMG)AP/PCP,还可以是支持60GHz的AP,但本申请实施例对此不作限定。该AP也可以称为基站。STA可以为具有无线收发功能的通信装置,例如,可以是支持60GHz通信的无线通信装置。该STA也可以称为用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。AP is a communication device with wireless transceiver function, which can be directional multi-gigabit (directional multi-gigabit, DMG) AP/PCP and enhanced directional multi-gigabit (enhanced directional multi-gigabit, EDMG) AP/PCP, and can also support 60GHz AP, but this embodiment of the application does not limit it. The AP can also be called a base station. The STA may be a communication device having a wireless transceiver function, for example, may be a wireless communication device supporting 60 GHz communication. The STA may also be called a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a user equipment (UE) ).

下面结合更多的附图,对本申请实施例的技术方案进一步详细说明。The technical solutions of the embodiments of the present application will be further described in detail below in conjunction with more drawings.

图2示出了本申请实施例提供的一种低密度奇偶校验LDPC码的编码方法,可选的,该方法可以应用于高频无线局域网通信系统中,例如60GHz无线局域网通信系统中,该方法包括:Figure 2 shows a method for encoding a low-density parity-check LDPC code provided by an embodiment of the present application. Optionally, this method can be applied to a high-frequency wireless local area network communication system, such as a 60GHz wireless local area network communication system. Methods include:

S201,获取k个信息比特,k=8064;S201, acquire k information bits, k=8064;

可选的,编码装置,在所述k个信息比特之前填充s个待缩短比特,所述s个待缩短比特的值为0,从而构成(s+k)个待编码比特。其中s为大于等于0的整数,s为Z的正整数倍。Optionally, the encoding device fills s bits to be shortened before the k information bits, and the s bits to be shortened have a value of 0, thereby forming (s+k) bits to be encoded. Where s is an integer greater than or equal to 0, and s is a positive integer multiple of Z.

一个示例中,k个信息比特可以全部为有效载荷;又一个示例中,k个信息比特中可以有部分比特是有效载荷比特,剩余部分比特可以是填充比特,有效载荷比特和剩余部分比特共同构成待编码的k个信息比特。In one example, all of the k information bits may be payloads; in another example, some of the k information bits may be payload bits, and the remaining bits may be padding bits, and the payload bits and the remaining bits together form k information bits to be encoded.

S202,根据奇偶校验H矩阵,对所述k个信息比特进行LDPC编码,获取进行LDPC编码后的码字C,所述码字C的码长为n,码率R为k/n,n为大于k的正整数;S202. Perform LDPC encoding on the k information bits according to the parity check H matrix, and obtain a code word C after LDPC encoding. The code length of the code word C is n, and the code rate R is k/n, n is a positive integer greater than k;

具体的,H矩阵为(n+s-k)×(n+s)的奇偶校验矩阵。其中,s为待缩短的比特所对应的H矩阵的列数。本申请实施例中,码字还可以称为编码后的比特序列。Specifically, the H matrix is a (n+s-k)×(n+s) parity check matrix. Wherein, s is the column number of the H matrix corresponding to the bits to be shortened. In this embodiment of the present application, a codeword may also be referred to as an encoded bit sequence.

可选的,S203,编码装置输出编码后的码字C。Optionally, in S203, the encoding device outputs the encoded codeword C.

一个示例中,编码装置可以对码字C进行处理后发送出去;又一个示例中,编码装置可以输出码字C到射频电路进行处理后发送出去。In one example, the encoding device may process the codeword C and send it out; in another example, the encoding device may output the codeword C to a radio frequency circuit for processing and then send it out.

可选的,对(k+s)个待编码比特,基于奇偶校验矩阵进行LDPC编码,生成(n-k)个奇偶校验比特。(k+s)个待编码比特与(n-k)个校验比特构成码长为(s+n)的码字C1,删除码字C1中的前s个待缩短比特,得到码长为n的码字C,码字C包括(n-k)个奇偶校验比特和k个信息比特。所述前s个待缩短比特与奇偶校验H矩阵中的前s列相对应,码率R为k/n。需要说明的是,编码时该s个比特取值均为’0’,编码完成后的码字中该s个比特的值仍为0,“缩短”指的是将这s个待缩短的取值为’0’的比特删除,因此删除比特也可以称为缩短比特。Optionally, perform LDPC encoding on the (k+s) bits to be encoded based on the parity check matrix to generate (nk) parity check bits. (k+s) bits to be encoded and (nk) check bits constitute a codeword C 1 with a code length of (s+n), and the first s bits to be shortened in the codeword C 1 are deleted to obtain a code length of A code word C of n, the code word C includes (nk) parity check bits and k information bits. The first s bits to be shortened correspond to the first s columns in the parity check H matrix, and the code rate R is k/n. It should be noted that the values of the s bits are all '0' during encoding, and the values of the s bits in the codeword after encoding are still 0. "Shortening" refers to shortening the s bits to be shortened. Bits with a value of '0' are deleted, so deleted bits may also be referred to as shortened bits.

奇偶校验矩阵H可进一步划分为大小为ZxZ的子方阵。子方阵是单位矩阵的循环移位,或是具有全零项的空子矩阵。单位矩阵记为P0,单位矩阵P0的循环置换矩阵Pi表示通过将单位矩阵P0向右循环移动i个元素,称为循环移位矩阵(cyclic permutation matrices,CPM)。循环移位矩阵CPM的下标i表示单位矩阵向右循环移位的位数。The parity check matrix H can be further divided into sub-square matrices with a size of ZxZ. A subsquare is a cyclic shift of the identity matrix, or an empty submatrix with all zero entries. The identity matrix is denoted as P0, and the cyclic permutation matrix Pi of the identity matrix P0 means that by moving the identity matrix P0 to the right by i elements, it is called a cyclic shift matrix (cyclic permutation matrices, CPM). The subscript i of the cyclic shift matrix CPM represents the number of bits that the identity matrix is cyclically shifted to the right.

Z是循环移位矩阵CPM或子方阵的大小。可选的,本申请实施例中,子方阵的大小为64或42。为方便描述,以4x4的CPM为例,P0,P1,P2,P3可如图3所示,相类似地,64x64的CPM和42x42的CPM可参考图3的方式获得,此处不再赘述。Z is the size of the cyclic shift matrix CPM or sub-square. Optionally, in this embodiment of the present application, the size of the sub-square matrix is 64 or 42. For the convenience of description, taking 4x4 CPM as an example, P0, P1, P2, and P3 can be shown in Figure 3. Similarly, 64x64 CPM and 42x42 CPM can be obtained by referring to Figure 3, and will not be repeated here.

以ZxZ阶子方阵表示奇偶校验H矩阵的矩阵形式,可以称为母矩阵,母矩阵包括(n+s-k)/Z行,(n+s)/Z列,母矩阵的每一个元素为一个ZxZ阶的子方阵。The matrix form of the parity check H matrix is represented by a ZxZ order sub-square matrix, which can be called a mother matrix. The mother matrix includes (n+s-k)/Z rows and (n+s)/Z columns. Each element of the mother matrix is A sub-square matrix of order ZxZ.

本申请实施例提供了一种LDPC编码方法,其码长更长,且具有更低的误码率和更好的性能,因此可有效提升系统可靠性和传输性能。The embodiment of the present application provides an LDPC encoding method, which has a longer code length, lower bit error rate, and better performance, and thus can effectively improve system reliability and transmission performance.

图4示出了本申请实施例提供的一种低密度奇偶校验LDPC码的译码方法,包括:Fig. 4 shows the decoding method of a kind of low density parity check LDPC code provided by the embodiment of the present application, including:

S401,获取经过LDPC编码后的码字C;S401. Obtain the codeword C encoded by LDPC;

译码装置接收该码字C,其中,码字C的长度为n,包括k个信息比特和(n-k)个奇偶校验比特。The decoding device receives the codeword C, wherein the codeword C has a length of n and includes k information bits and (n-k) parity check bits.

承载码字C的信号可以是经由射频电路部分处理后,再输入译码装置进行译码处理;还可以是承载码字C的信号由译码装置接收,并经由射频处理后再进行译码处理。The signal carrying the code word C may be partially processed by the radio frequency circuit, and then input to the decoding device for decoding processing; it may also be that the signal carrying the code word C is received by the decoding device, and then decoded after being processed by the radio frequency .

S402,在码字C前面填充值为0的s个待缩短比特,得到码字C1S402, filling s bits to be shortened with a value of 0 in front of the codeword C to obtain the codeword C 1 ;

具体的,在码字C前面填充值为0的s个待缩短比特,构成码长为(s+n)的码字C1Specifically, s bits to be shortened with a value of 0 are filled in front of the codeword C to form a codeword C 1 with a code length of (s+n);

S403,利用奇偶校验H矩阵对码字C1进行解码,获得解码后的k个信息比特;S403, using the parity check H matrix to decode the code word C 1 , and obtain k information bits after decoding;

具体的,利用奇偶校验H矩阵对码字C1进行解码后得到(s+k)个译码比特,删除(s+k)个译码比特中的前s个比特,获得解码后的k个信息比特;具体的,H矩阵为(n+s-k)×(n+s)奇偶校验矩阵,奇偶校验矩阵H可进一步划分为大小为ZxZ的子方阵。子方阵是单位矩阵的循环移位,或是具有全零项的空子矩阵。单位矩阵记为P0,单位矩阵P0的循环置换矩阵Pi表示通过将单位矩阵P0向右循环移动i个元素,称为循环移位矩阵。循环移位矩阵CPM的下标i表示单位矩阵向右循环移位的位数。Z为子方阵或循环移位矩阵的大小。可选的,本申请实施例中,Z的取值为64或42。以ZxZ阶子方阵表示奇偶校验矩阵的矩阵形式,可以称为母矩阵,母矩阵包括(n+s-k)/Z行,(n+s)/Z列,母矩阵的每一个元素为一个ZxZ阶的子方阵。Specifically, use the parity check H matrix to decode the codeword C 1 to obtain (s+k) decoding bits, delete the first s bits in the (s+k) decoding bits, and obtain the decoded k information bits; specifically, the H matrix is a (n+sk)×(n+s) parity check matrix, and the parity check matrix H can be further divided into sub-square matrices with a size of ZxZ. A subsquare is a cyclic shift of the identity matrix, or an empty submatrix with all zero entries. The identity matrix is denoted as P0, and the cyclic permutation matrix Pi of the identity matrix P0 means that by moving the identity matrix P0 to the right by i elements, it is called a cyclic shift matrix. The subscript i of the cyclic shift matrix CPM represents the number of bits that the identity matrix is cyclically shifted to the right. Z is the size of the subsquare or cyclic shift matrix. Optionally, in the embodiment of the present application, the value of Z is 64 or 42. The matrix form of the parity check matrix is represented by a ZxZ order sub-square matrix, which can be called a mother matrix. The mother matrix includes (n+sk)/Z rows and (n+s)/Z columns. Each element of the mother matrix is a A sub-square matrix of order ZxZ.

本申请实施例相较于802.11ay标准和802.11ad标准,设计了码长更长的LDPC码编码方法,因此误码字率更低,通信系统的可靠性和系统性能进一步得到提升。且在k个信息比特前填充s个待缩短比特,有助于提高译码装置的译码性能,降低误比特率或误码字率。Compared with the 802.11ay standard and the 802.11ad standard, the embodiment of the present application designs an LDPC code encoding method with a longer code length, so the bit error rate is lower, and the reliability and system performance of the communication system are further improved. And filling s bits to be shortened before the k information bits helps to improve the decoding performance of the decoding device and reduce the bit error rate or word error rate.

下面进一步说明本申请实施例提供的两组LDPC码编码方案,具体包括奇偶校验矩阵的设计。The following further describes the two sets of LDPC code coding schemes provided by the embodiment of the present application, specifically including the design of the parity check matrix.

第一组LDPC码编码方案:码率R分别为R=7/8,13/16,3/4,5/8,1/2,且CPM为64x64;The first group of LDPC code encoding schemes: the code rates R are respectively R=7/8, 13/16, 3/4, 5/8, 1/2, and the CPM is 64x64;

第二组LDPC码编码方案:码率R分别为R=7/8,13/16,3/4,5/8,1/2,且CPM为42x42;其中,两组LDPC码的信息比特长度均为k=8064比特。The second group of LDPC code encoding schemes: the code rate R is respectively R=7/8, 13/16, 3/4, 5/8, 1/2, and the CPM is 42x42; wherein, the information bit length of the two groups of LDPC codes Both are k=8064 bits.

首先介绍第一组LDPC码编码方案,码率R分别为R=7/8,13/16,3/4,5/8,1/2,且CPM为64x64,信息比特长度k=8064。Firstly, the first group of LDPC code coding schemes are introduced, the code rates R are R=7/8, 13/16, 3/4, 5/8, 1/2, and the CPM is 64x64, and the information bit length k=8064.

示例一:码率为7/8,循环移位矩阵(CPM)的大小为64,信息比特长度为k=8064比特。Example 1: the code rate is 7/8, the size of the cyclic shift matrix (CPM) is 64, and the information bit length is k=8064 bits.

码率R=7/8的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为9344,对应母矩阵总的列数为N0=N1/64=146,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为1280,对应母矩阵总的行数为M0=M1/64=20,k=8064个信息比特对应H矩阵中的8064列,对应母矩阵中的k/Z=20列。该奇偶校验H矩阵的最大行重为23,即H矩阵的每行中最多23个1。The LDPC code of code rate R=7/8, the total column number N1=(n+s) of its parity-check H matrix, N1 is 9344, and the total column number corresponding mother matrix is N0=N1/64=146, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 1280, and the total row number corresponding to the mother matrix is M0=M1/64=20, and k=8064 information bits correspond to in the H matrix 8064 columns, corresponding to k/Z=20 columns in the mother matrix. The maximum row weight of the parity check H matrix is 23, that is, there are at most 23 1s in each row of the H matrix.

根据奇偶校验H矩阵,生成1152个奇偶校验比特,获得码长为n1=9344的LDPC码码字C1,码字C1包括s个待缩短比特、8064个信息比特和1152个奇偶校验比特;对C1进行缩短,即删除C1的前s个待缩短比特,得到其缩短后的码字C,码字C包括8064个信息比特和1152个奇偶校验比特,码字C的真实码长为n=9216比特,所需缩短比特为C1的前s=128比特,即为母矩阵的前2列对应的C1的前128个比特,这前128个比特的值为0。According to the parity check H matrix, 1152 parity check bits are generated, and the code length is n1=9344 LDPC code word C 1 , code word C 1 includes s bits to be shortened, 8064 information bits and 1152 parity check bits check bits; shorten C 1 , that is, delete the first s bits to be shortened of C 1 , and obtain its shortened codeword C. Codeword C includes 8064 information bits and 1152 parity check bits. The real code length is n=9216 bits, and the required shortening bit is the first s=128 bits of C 1 , which is the first 128 bits of C 1 corresponding to the first 2 columns of the mother matrix, and the value of the first 128 bits is 0 .

下面给出码率为7/8的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第19行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第64i行中值为‘1’的列位置,且0≤i≤19。H矩阵中第(64i+1)行至第(64i+63)行中‘1’的位置为H矩阵中的第64i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字43表示奇偶校验H矩阵第0行第43列的位置取值为‘1’,第0行中的数字103表示奇偶校验H矩阵第0行中第103列的位置取值为‘1’。H矩阵第0行第43列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为44,依次类推,而H矩阵中第21行中1的列位置为0。The parity check H matrix with a code rate of 7/8 is given below. The matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 19th row, where the number of the row and the number of the column start from 0 start. Each number in the i-th row as follows represents the column position with the value '1' in the 64ith row of the parity check H matrix, and 0≤i≤19. The position of '1' in the (64i+1)th row to (64i+63)th row in the H matrix is obtained by cyclic shifting in the 64ith row in the H matrix according to the cyclic shift matrix (CPM). For example, the number 43 in the 0th row indicates that the position of the 43rd column in the 0th row of the parity check H matrix is '1', and the number 103 in the 0th row indicates the 103rd column in the 0th row of the parity check H matrix The value of the position is '1'. The position of the 43rd column of the 0th row of the H matrix is '1', and after cyclic shifting according to the cyclic shift matrix (CPM), the position of the column with a value of 1 in the 1st row of the H matrix is 44, And so on, and the column position of 1 in row 21 of H matrix is 0.

按照如上规则,奇偶校验矩阵H表示如下:According to the above rules, the parity check matrix H is expressed as follows:

Figure BDA0001891644730000061
Figure BDA0001891644730000061

Figure BDA0001891644730000071
Figure BDA0001891644730000071

如前所述,奇偶校验H矩阵前128列所对应的128个比特需要缩短处理,即编码前该128列对应的比特均为’0’,编码完成后再将这些’0’比特删除。上述H矩阵还可以母矩阵的形式来表示。如图5所示。母矩阵包括20行146列,母矩阵的行和列的编号从0开始,分别为第0行至第19行,第0列至第145列。母矩阵中的每一个元素为一个64x64阶的子方阵,子方阵是单位矩阵的循环置换,或是具有全零项的空子矩阵。图5中,空白部分表示64x64的全零矩阵,而非零数值表示64x64循环移位矩阵的循环移位系数。例如,母矩阵中第1行第1列的非零数值43表示循环移位矩阵的循环移位系数为43,即为单位矩阵向右循环移位的位数为43,得到循环移位矩阵P43。128个待缩短比特对应母矩阵中的前2列(第0列和第1列),k个信息比特对应母矩阵的第2列至第127列,奇偶校验比特对应母矩阵的第128列至145列。需要说明的是,H矩阵还可以有其他的变形,例如,H矩阵中的第0行至第19行中行的次序是可以相互交换,也就是说,H矩阵中的所有行的顺序不仅限于示例一给出的情形,例如,H矩阵的20行可以依次为:第19行,第18行,第17行,…第0行;或,第1行,第2行,…,第19行,第0行等。H矩阵中的列和列的次序也是可以交换的,本申请实施例并不具体限定。As mentioned above, the 128 bits corresponding to the first 128 columns of the parity check H matrix need to be shortened, that is, the bits corresponding to the 128 columns are all '0' before encoding, and these '0' bits are deleted after encoding is completed. The above H matrix can also be expressed in the form of a parent matrix. As shown in Figure 5. The mother matrix includes 20 rows and 146 columns, and the numbers of the rows and columns of the mother matrix start from 0, and are respectively the 0th row to the 19th row, and the 0th column to the 145th column. Each element in the mother matrix is a sub-square matrix of order 64x64, and the sub-square matrix is a cyclic permutation of the identity matrix, or an empty sub-matrix with all zero entries. In FIG. 5 , the blank part represents the 64x64 all-zero matrix, and the non-zero value represents the cyclic shift coefficient of the 64x64 cyclic shift matrix. For example, the non-zero value 43 in the first row and the first column of the mother matrix indicates that the cyclic shift coefficient of the cyclic shift matrix is 43, that is, the number of bits of the identity matrix to be cyclically shifted to the right is 43, and the cyclic shift matrix P43 is obtained The 128 bits to be shortened correspond to the first 2 columns (column 0 and column 1) in the mother matrix, the k information bits correspond to columns 2 to 127 of the mother matrix, and the parity bits correspond to the 128th column of the mother matrix Columns up to 145 columns. It should be noted that the H matrix can also have other deformations, for example, the order of the rows in the 0th row to the 19th row in the H matrix can be exchanged, that is to say, the order of all the rows in the H matrix is not limited to the example In a given situation, for example, the 20 rows of the H matrix can be: the 19th row, the 18th row, the 17th row, ... the 0th row; or, the 1st row, the 2nd row, ..., the 19th row, line 0 etc. The columns and the order of the columns in the H matrix can also be exchanged, which is not specifically limited in this embodiment of the present application.

示例二:码率为13/16,循环移位矩阵(CPM)的大小为64,信息比特长度为k=8064比特。Example 2: the code rate is 13/16, the size of the cyclic shift matrix (CPM) is 64, and the information bit length is k=8064 bits.

码率R=13/16的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为10176,对应母矩阵总的列数为N0=N1/64=159,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为2112,对应母矩阵总的行数为M0=M1/64=33,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为16,即H矩阵的每行中最多16个1。The LDPC code of code rate R=13/16, the number N1=(n+s) of the total column of its parity check H matrix, N1 is 10176, and the total column number of corresponding mother matrix is N0=N1/64=159, The total row number M1=(n+s-k) of its parity-check H matrix, M1 is 2112, and the total row number corresponding to the mother matrix is M0=M1/64=33, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the parent matrix. The maximum row weight of the parity check H matrix is 16, that is, there are at most 16 1s in each row of the H matrix.

根据奇偶校验H矩阵,生成1920个奇偶校验比特,获得码长为n0=10176的LDPC码码字C1,对C1前s个比特进行缩短,得到其缩短后的码字C,码字C的真实码长为n=9984比特,所需缩短的比特为C1的前s=192比特,即为母矩阵的前3列对应的C1中的前192个比特,这前192个比特的取值为0。According to the parity check H matrix, generate 1920 parity check bits, obtain the LDPC code word C 1 with code length n0=10176, shorten the first s bits of C 1 , and obtain the shortened code word C, the code The real code length of word C is n=9984 bits, and the bits that need to be shortened are the first s=192 bits of C 1 , which is the first 192 bits in C 1 corresponding to the first 3 columns of the mother matrix, these first 192 bits The value of the bit is 0.

下面给出码率为13/16的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第32行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第64i行中值为‘1’的列位置,0≤i≤32。H矩阵中第(64i+1)行至第(64i+63)行中‘1’的位置为H矩阵中的第64i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字17表示奇偶校验H矩阵第0行第17列的位置取值为‘1’,第0行中的数字156表示奇偶校验H矩阵第0行中第156列的位置取值为‘1’。H矩阵第0行第17列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为18,依次类推,而H矩阵中第47行中取值为1的列位置为0。另外,行末尾的’-1’不表示任何含义,可以删除,即,第0行为:17 156 413 1371 2211 2561 3397 3910 4614 6070 62446662 7213 7430 8128。The parity check H matrix with a code rate of 13/16 is given below. The matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 32nd row, where the number of the row and the number of the column are all from 0 start. Each number in the i-th row as follows represents the column position of the value '1' in the 64th row of the parity check H matrix, 0≤i≤32. The position of '1' in the (64i+1)th row to (64i+63)th row in the H matrix is obtained by cyclic shifting in the 64ith row in the H matrix according to the cyclic shift matrix (CPM). For example, the number 17 in the 0th row indicates that the position of the 17th column in the 0th row of the parity check H matrix is '1', and the number 156 in the 0th row indicates the 156th column in the 0th row of the parity check H matrix The value of the position is '1'. The position of the 17th column in the 0th row of the H matrix is '1', and after cyclic shifting according to the cyclic shift matrix (CPM), the position of the column with a value of 1 in the 1st row of the H matrix is 18, And so on, and the position of the column with the value 1 in the 47th row of the H matrix is 0. In addition, the '-1' at the end of the line does not mean anything and can be deleted, that is, line 0: 17 156 413 1371 2211 2561 3397 3910 4614 6070 62446662 7213 7430 8128.

按照如上规则,其校验矩阵表示如下:According to the above rules, the parity check matrix is expressed as follows:

Figure BDA0001891644730000081
Figure BDA0001891644730000081

Figure BDA0001891644730000091
Figure BDA0001891644730000091

Figure BDA0001891644730000101
Figure BDA0001891644730000101

如前所述,奇偶校验H矩阵前192列所对应的192个比特需要缩短处理,编码时该192列对应的192个比特取值均为’0’,编码完成后再将这些’0’比特删掉。即编码后输出的码字C不包括这192个待缩短比特。As mentioned earlier, the 192 bits corresponding to the first 192 columns of the parity check H matrix need to be shortened. During encoding, the 192 bits corresponding to the 192 columns are all '0', and these '0' Bit deleted. That is, the codeword C output after encoding does not include the 192 bits to be shortened.

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a parent matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

示例三:码率为3/4,循环移位矩阵(CPM)的大小为64,信息比特长度为k=8064比特。Example 3: the code rate is 3/4, the size of the cyclic shift matrix (CPM) is 64, and the information bit length is k=8064 bits.

码率R=3/4的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为11008,对应母矩阵总的列数为N0=N1/64=172,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为2944,对应母矩阵总的行数为M0=M1/64=46,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为13,即H矩阵中每行中最多13个1。The LDPC code of code rate R=3/4, the number N1=(n+s) of the total column of its parity check H matrix, N1 is 11008, and the total column number of corresponding mother matrix is N0=N1/64=172, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 2944, and the total row number corresponding to the mother matrix is M0=M1/64=46, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the mother matrix. The maximum row weight of the parity check H matrix is 13, that is, there are at most 13 1s in each row of the H matrix.

根据奇偶校验H矩阵,生成2688个奇偶校验比特,获得码长为n0=11008的LDPC码码字C1,码字C1包括:s个待缩短比特、8064个信息比特、2688个奇偶校验比特;对C1前s个比特进行缩短,得到其缩短后的码字C,码字C的真实码长为n=10752比特,包括8064个信息比特和2688个奇偶校验比特,所需缩短比特为C1的前s=256比特,即为母矩阵的前4列对应C1的前256个比特,这前256个比特的取值为0。According to the parity check H matrix, 2688 parity check bits are generated, and the LDPC code word C 1 with a code length of n0=11008 is obtained, and the code word C 1 includes: s bits to be shortened, 8064 information bits, and 2688 parity bits check bits; the first s bits of C1 are shortened to obtain its shortened codeword C, the real code length of codeword C is n=10752 bits, including 8064 information bits and 2688 parity check bits, so The bits to be shortened are the first s=256 bits of C 1 , that is, the first 4 columns of the mother matrix correspond to the first 256 bits of C 1 , and the value of the first 256 bits is 0.

下面给出码率为3/4的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第45行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第64i行中值为‘1’的列位置,0≤i≤45。H矩阵中第(64i+1)行至第(64i+63)行中‘1’的位置为H矩阵中的第64i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字53表示奇偶校验H矩阵第0行第53列的位置取值为‘1’,第0行中的数字199表示奇偶校验H矩阵第0行中第199列的位置取值为‘1’。H矩阵第0行第53列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为54,依次类推,而H矩阵中第11行中取值为1的列位置为0。另外,行末尾的’-1’不表示任何含义,也可以删除。The parity check H matrix with a code rate of 3/4 is given below, and the matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 45th row, where the number of the row and the number of the column start from 0 start. Each number in the i-th row as follows represents the column position of the value '1' in the 64th row of the parity check H matrix, 0≤i≤45. The position of '1' in the (64i+1)th row to (64i+63)th row in the H matrix is obtained by cyclic shifting in the 64ith row in the H matrix according to the cyclic shift matrix (CPM). For example, the number 53 in the 0th row indicates that the position of the 53rd column in the 0th row of the parity check H matrix is '1', and the number 199 in the 0th row indicates the 199th column in the 0th row of the parity check H matrix The value of the position is '1'. The position of column 53 in row 0 of the H matrix is '1', and after cyclic shifting according to the cyclic shift matrix (CPM), it can be obtained that the position of the column with a value of 1 in row 1 of the H matrix is 54, And so on, and the position of the column whose value is 1 in the 11th row of the H matrix is 0. Also, the '-1' at the end of the line does not mean anything and can also be removed.

按照如上规则,奇偶校验H矩阵表示如下:According to the above rules, the parity check H matrix is expressed as follows:

Figure BDA0001891644730000102
Figure BDA0001891644730000102

Figure BDA0001891644730000111
Figure BDA0001891644730000111

Figure BDA0001891644730000121
Figure BDA0001891644730000121

Figure BDA0001891644730000131
Figure BDA0001891644730000131

如前所述,奇偶校验H矩阵前256列所对应的256个比特需要缩短处理,编码时该256列对应的比特取值均为’0’,编码完成后再将这些’0’比特删掉。As mentioned above, the 256 bits corresponding to the first 256 columns of the parity check H matrix need to be shortened. During encoding, the values of the bits corresponding to the 256 columns are all '0', and these '0' bits are deleted after the encoding is completed. Lose.

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a parent matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

示例四:码率为5/8,循环移位矩阵(CPM)的大小为64,信息比特长度为k=8064比特。Example 4: the code rate is 5/8, the size of the cyclic shift matrix (CPM) is 64, and the information bit length is k=8064 bits.

码率R=5/8的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为13504,对应母矩阵总的列数为N0=N1/64=211,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为5440,对应母矩阵总的行数为M0=M1/64=85,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为8,即每行中最多8个1。The LDPC code of code rate R=5/8, the total column number N1=(n+s) of its parity-check H matrix, N1 is 13504, and the total column number corresponding mother matrix is N0=N1/64=211, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 5440, and the total row number corresponding to the mother matrix is M0=M1/64=85, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the parent matrix. The maximum row weight of the parity check H matrix is 8, that is, there are at most 8 1s in each row.

根据奇偶校验H矩阵,生成4864个奇偶校验比特,获得码长为n0=13504的LDPC码码字C1,码字C1包括:s个待删除比特、8064个信息比特和4864个奇偶校验比特;对C1前s个比特进行缩短,得到其缩短后的码字C,码字C的真实码长为n=12928比特,包括8064个信息比特和4864个奇偶校验比特,所需缩短比特为C1的前s=576比特,即为母矩阵的前8列对应的C1的前576个比特,这前576个比特的取值为0。According to the parity check H matrix, 4864 parity check bits are generated, and the LDPC code word C 1 with a code length of n0=13504 is obtained, and the code word C 1 includes: s bits to be deleted, 8064 information bits and 4864 parity check bits; the first s bits of C1 are shortened to obtain its shortened codeword C, the real code length of codeword C is n=12928 bits, including 8064 information bits and 4864 parity check bits, so The bits to be shortened are the first s=576 bits of C 1 , that is, the first 576 bits of C 1 corresponding to the first 8 columns of the mother matrix, and the value of the first 576 bits is 0.

下面给出码率为5/8的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第84行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第64i行中值为‘1’的列位置,0≤i≤84。H矩阵中第(64i+1)行至第(64i+63)行中‘1’的位置为H矩阵中的第64i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字430表示奇偶校验H矩阵第0行第430列的位置取值为‘1’,第0行中的数字1216表示奇偶校验H矩阵第0行中第1216列的位置取值为‘1’。H矩阵第0行第430列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为431,依次类推,而H矩阵中第18行中取值为1的列位置为384。另外,行末尾的’-1’不表示任何含义,也可以删除。A parity check H matrix with a code rate of 5/8 is given below. The matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 84th row, where the number of the row and the number of the column start from 0 start. Each number in the i-th row as follows represents the column position of the value '1' in the 64th row of the parity check H matrix, 0≤i≤84. The position of '1' in the (64i+1)th row to (64i+63)th row in the H matrix is obtained by cyclic shifting in the 64ith row in the H matrix according to the cyclic shift matrix (CPM). For example, the number 430 in the 0th row indicates that the position of the 430th column in the 0th row of the parity check H matrix is '1', and the number 1216 in the 0th row indicates the 1216th column in the 0th row of the parity check H matrix The value of the position is '1'. The position of the 430th column in row 0 of the H matrix is '1', and after cyclic shifting according to the cyclic shift matrix (CPM), the position of the column with a value of 1 in the first row of the H matrix is 431, And so on, and the position of the column whose value is 1 in the 18th row of the H matrix is 384. Also, the '-1' at the end of the line does not mean anything and can also be removed.

按照如上规则,奇偶校验H矩阵表示如下:According to the above rules, the parity check H matrix is expressed as follows:

Figure BDA0001891644730000132
Figure BDA0001891644730000132

Figure BDA0001891644730000141
Figure BDA0001891644730000141

Figure BDA0001891644730000151
Figure BDA0001891644730000151

如前所述,奇偶校验H矩阵前576列所对应的576个比特需要缩短处理,编码时该576列对应的比特取值均为’0’,编码完成后再将这些’0’比特删掉。As mentioned above, the 576 bits corresponding to the first 576 columns of the parity check H matrix need to be shortened, and the values of the bits corresponding to the 576 columns are all '0' during encoding, and these '0' bits are deleted after the encoding is completed. Lose.

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a parent matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

示例五:码率为1/2,循环移位矩阵(CPM)的大小为64,信息比特长度为k=8064比特。Example 5: the code rate is 1/2, the size of the cyclic shift matrix (CPM) is 64, and the information bit length is k=8064 bits.

码率R=1/2的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为17088,对应母矩阵总的列数为N0=N1/64=267,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为9024,对应母矩阵总的行数为M0=M1/64=141,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为7,即每行中最多7个1。The LDPC code of code rate R=1/2, the total column number N1=(n+s) of its parity-check H matrix, N1 is 17088, and the total column number corresponding to mother matrix is N0=N1/64=267, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 9024, and the total row number corresponding to the mother matrix is M0=M1/64=141, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the mother matrix. The maximum row weight of the parity-check H matrix is 7, that is, there are at most 7 1s in each row.

根据奇偶校验H矩阵,生成8064个奇偶校验比特,获得码长为n0=17088的LDPC码码字C1,码字C1包括:s个待缩短比特、8064个信息比特和8064个奇偶校验比特;对C1前s个比特进行缩短,得到其缩短后的码字C,码字C的真实码长为n=16128比特,包括8064个信息比特和8064个奇偶校验比特。所需缩短比特为C1的前s=960比特,即为母矩阵的前15列对应的C1的前960个比特,这前960个比特的取值为0。According to the parity check H matrix, 8064 parity check bits are generated to obtain an LDPC code word C 1 with a code length of n0=17088. The code word C 1 includes: s bits to be shortened, 8064 information bits and 8064 parity Parity bits; the first s bits of C 1 are shortened to obtain its shortened code word C, the real code length of the code word C is n=16128 bits, including 8064 information bits and 8064 parity bits. The required shortening bits are the first s=960 bits of C 1 , that is, the first 960 bits of C 1 corresponding to the first 15 columns of the mother matrix, and the value of the first 960 bits is 0.

下面给出码率为1/2的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第140行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第64i行中值为‘1’的列位置,0≤i≤84。H矩阵中第(64i+1)行至第(64i+63)行中‘1’的位置为H矩阵中的第64i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字384表示奇偶校验H矩阵第0行第384列的位置取值为‘1’,第0行中的数字2304表示奇偶校验H矩阵第0行中第2304列的位置取值为‘1’。H矩阵第0行第384列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为385,依次类推,而H矩阵中第63行中取值为1的列位置为447。另外,行末尾的’-1’不表示任何含义,也可以删除。The parity check H matrix with a code rate of 1/2 is given below. The matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 140th row, where the number of the row and the number of the column start from 0 start. Each number in the i-th row as follows represents the column position of the value '1' in the 64th row of the parity check H matrix, 0≤i≤84. The position of '1' in the (64i+1)th row to (64i+63)th row in the H matrix is obtained by cyclic shifting in the 64ith row in the H matrix according to the cyclic shift matrix (CPM). For example, the number 384 in the 0th row indicates that the position of the 384th column in the 0th row of the parity check H matrix is '1', and the number 2304 in the 0th row indicates the 2304th column in the 0th row of the parity check H matrix The value of the position is '1'. The position of the 384th column in row 0 of the H matrix is '1', and after cyclic shifting according to the cyclic shift matrix (CPM), it can be obtained that the position of the column with a value of 1 in the first row of the H matrix is 385, And so on, and the position of the column with the value 1 in the 63rd row of the H matrix is 447. Also, the '-1' at the end of the line does not mean anything and can also be removed.

按照如上规则,奇偶校验H矩阵表示如下:According to the above rules, the parity check H matrix is expressed as follows:

Figure BDA0001891644730000161
Figure BDA0001891644730000161

Figure BDA0001891644730000171
Figure BDA0001891644730000171

Figure BDA0001891644730000181
Figure BDA0001891644730000181

Figure BDA0001891644730000191
Figure BDA0001891644730000191

Figure BDA0001891644730000201
Figure BDA0001891644730000201

如前所述,奇偶校验H矩阵前960列所对应的960个比特需要缩短处理,编码时该960列对应的比特取值均为’0’,编码完成后再将这些’0’比特删掉。As mentioned above, the 960 bits corresponding to the first 960 columns of the parity check H matrix need to be shortened. During encoding, the values of the bits corresponding to the 960 columns are all '0', and these '0' bits are deleted after the encoding is completed. Lose.

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a parent matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

接下来介绍第二组LDPC码编码方案,码率R分别为R=7/8,13/16,3/4,5/8,1/2,且CPM为42x42,信息比特长度k=8064。Next, the second group of LDPC code coding schemes will be introduced. The code rates R are R=7/8, 13/16, 3/4, 5/8, and 1/2 respectively, and the CPM is 42x42, and the information bit length k=8064.

示例六:码率为7/8,循环移位矩阵(CPM)的大小为Z=42,信息比特长度为k=8064比特。Example 6: the code rate is 7/8, the size of the cyclic shift matrix (CPM) is Z=42, and the information bit length is k=8064 bits.

码率R=7/8的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为9366,对应母矩阵总的列数为N0=N1/42=223,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为1302,对应母矩阵总的行数为M0=M1/42=31,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为23,即每行中最多23个1。The LDPC code of code rate R=7/8, the number N1=(n+s) of the total column of its parity check H matrix, N1 is 9366, and the total column number of corresponding mother matrix is N0=N1/42=223, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 1302, and the total row number corresponding to the mother matrix is M0=M1/42=31, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the mother matrix. The maximum row weight of the parity-check H matrix is 23, that is, there are at most 23 1s in each row.

根据奇偶校验H矩阵,生成1176个奇偶校验比特,获得码长为n0=9366的LDPC码码字C1,码字C1包括:s个待缩短比特、8064个信息比特和1176个奇偶校验比特;对C1进行缩短,得到其缩短后的码字C,码字C的真实码长为n=9240比特,包括8064个信息比特和1176个奇偶校验比特。所需缩短比特为C1的前s=126比特,即为母矩阵的前3列对应的前126个比特,前126个比特的取值为0。According to the parity check H matrix, 1176 parity check bits are generated, and the LDPC code word C 1 with a code length of n0=9366 is obtained, and the code word C 1 includes: s bits to be shortened, 8064 information bits and 1176 parity Parity bits; C 1 is shortened to obtain its shortened codeword C. The real code length of the codeword C is n=9240 bits, including 8064 information bits and 1176 parity bits. The required shortening bits are the first s=126 bits of C 1 , that is, the first 126 bits corresponding to the first 3 columns of the mother matrix, and the value of the first 126 bits is 0.

下面给出码率为7/8的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第30行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第42i行中值为‘1’的列位置,0≤i≤30。H矩阵中第(42i+1)行至第(42i+41)行中‘1’的位置为H矩阵中的第42i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字27表示奇偶校验H矩阵第0行第27列的位置取值为‘1’,第0行中的数字42表示奇偶校验H矩阵第0行中第42列的位置取值为‘1’。H矩阵第0行第27列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为28,依次类推,而H矩阵中第15行中1的列位置为0。需要说明的是,行末尾的“-1”不表示任何含义,可以删除。A parity check H matrix with a code rate of 7/8 is given below. The matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 30th row, where the number of the row and the number of the column start from 0 start. Each number in the i-th row below represents the column position of the value '1' in the 42i row of the parity check H matrix, 0≤i≤30. The position of '1' in row (42i+1) to row (42i+41) in the H matrix is obtained by cyclic shifting in row 42i in the H matrix according to the cyclic shift matrix (CPM). For example, the number 27 in the 0th row indicates that the position of the 27th column in the 0th row of the parity check H matrix is '1', and the number 42 in the 0th row indicates the 42nd column in the 0th row of the parity check H matrix The value of the position is '1'. The position of the 27th column of the 0th row of the H matrix is '1', according to the cyclic shift matrix (CPM), the position of the column with a value of 1 in the first row of the H matrix is 28, And so on, and the column position of 1 in row 15 of H matrix is 0. It should be noted that the "-1" at the end of the line does not mean anything and can be deleted.

按照如上规则,奇偶校验H矩阵表示如下:According to the above rules, the parity check H matrix is expressed as follows:

Figure BDA0001891644730000202
Figure BDA0001891644730000202

Figure BDA0001891644730000211
Figure BDA0001891644730000211

Figure BDA0001891644730000221
Figure BDA0001891644730000221

如前所述,奇偶校验H矩阵前126列所对应的126个比特需要缩短处理,即编码时该126列对应的比特均为’0’,编码完成后再将这些’0’比特删掉。As mentioned earlier, the 126 bits corresponding to the first 126 columns of the parity check H matrix need to be shortened, that is, the bits corresponding to the 126 columns are all '0' during encoding, and these '0' bits are deleted after encoding .

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a mother matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

示例七:码率为13/16,循环移位矩阵(CPM)的大小为42,信息比特长度为k=8064比特。Example 7: the code rate is 13/16, the size of the cyclic shift matrix (CPM) is 42, and the information bit length is k=8064 bits.

码率R=13/16的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为10164,对应母矩阵总的列数为N0=N1/42=242,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为2100,对应母矩阵总的行数为M0=M1/42=50,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为15,即每行中最多15个1。The LDPC code of code rate R=13/16, the number N1=(n+s) of the total column of its parity check H matrix, N1 is 10164, and the total column number of corresponding mother matrix is N0=N1/42=242, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 2100, and the total row number corresponding to the mother matrix is M0=M1/42=50, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the mother matrix. The maximum row weight of the parity-check H matrix is 15, that is, there are at most 15 1s in each row.

根据奇偶校验H矩阵,生成1890个奇偶校验比特,获得码长为n0=10164的LDPC码码字C1,码字C1包括:s个待缩短比特、8064个信息比特和1890个奇偶校验比特;对C1进行缩短,得到其缩短后的码字C,码字C的真实码长为n=9954比特,包括:8064个信息比特和1890个奇偶校验比特。所需缩短比特为C1的前s=210比特,即为母矩阵的前5列对应的前210个比特,前210个比特的取值为0。According to the parity check H matrix, 1890 parity check bits are generated, and the LDPC code word C 1 with a code length of n0=10164 is obtained, and the code word C 1 includes: s bits to be shortened, 8064 information bits and 1890 parity Parity bits; C 1 is shortened to obtain its shortened codeword C, the real code length of codeword C is n=9954 bits, including: 8064 information bits and 1890 parity check bits. The required shortening bits are the first s=210 bits of C 1 , that is, the first 210 bits corresponding to the first 5 columns of the mother matrix, and the value of the first 210 bits is 0.

下面给出码率为13/16的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第49行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第42i行中值为‘1’的列位置,0≤i≤49。H矩阵中第(42i+1)行至第(42i+41)行中‘1’的位置为H矩阵中的第42i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字48表示奇偶校验H矩阵第0行第48列的位置取值为‘1’,第0行中的数字749表示奇偶校验H矩阵第0行中第749列的位置取值为‘1’。H矩阵第0行第48列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为49,依次类推,而H矩阵中第36行中1的列位置为42。需要说明的是,行末尾的“-1”不代表任何含义,可以删除。The parity check H matrix with a code rate of 13/16 is given below. The matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 49th row, where the number of the row and the number of the column are all from 0 start. Each number in the i-th row as follows represents the column position of the value '1' in the 42ith row of the parity check H matrix, 0≤i≤49. The position of '1' in row (42i+1) to row (42i+41) in the H matrix is obtained by cyclic shifting in row 42i in the H matrix according to the cyclic shift matrix (CPM). For example, the number 48 in the 0th row indicates that the position of the 48th column in the 0th row of the parity check H matrix is '1', and the number 749 in the 0th row indicates the 749th column in the 0th row of the parity check H matrix The value of the position is '1'. The position of the 48th column of the 0th row of the H matrix is '1'. According to the cyclic shift matrix (CPM), the position of the column with a value of 1 in the first row of the H matrix is 49. And so on, and the column position of 1 in the 36th row in the H matrix is 42. It should be noted that the "-1" at the end of the line does not mean anything and can be deleted.

按照如上规则,奇偶校验H矩阵表示如下:According to the above rules, the parity check H matrix is expressed as follows:

Figure BDA0001891644730000231
Figure BDA0001891644730000231

Figure BDA0001891644730000241
Figure BDA0001891644730000241

Figure BDA0001891644730000251
Figure BDA0001891644730000251

如前所述,奇偶校验H矩阵前210列所对应的210个比特需要缩短处理,即编码时该210列对应的比特均为’0’,编码完成后再将这些’0’比特删掉。As mentioned above, the 210 bits corresponding to the first 210 columns of the parity check H matrix need to be shortened, that is, the bits corresponding to the 210 columns are all '0' during encoding, and these '0' bits are deleted after encoding .

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a parent matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

示例八:码率为3/4,循环移位矩阵(CPM)的大小为42,信息比特长度为k=8064比特。Example 8: the code rate is 3/4, the size of the cyclic shift matrix (CPM) is 42, and the information bit length is k=8064 bits.

码率R=3/4的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为11046,对应母矩阵总的列数为N0=N1/42=263,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为2982,对应母矩阵总的行数为M0=M1/42=71,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为12,即每行中最多12个1。The LDPC code of code rate R=3/4, the total column number N1=(n+s) of its parity-check H matrix, N1 is 11046, and the total column number corresponding to mother matrix is N0=N1/42=263, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 2982, and the total row number corresponding to the mother matrix is M0=M1/42=71, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the mother matrix. The maximum row weight of the parity-check H matrix is 12, that is, there are at most 12 1s in each row.

根据奇偶校验H矩阵,生成2688个奇偶校验比特,获得码长为n0=11046的LDPC码码字C1,码字C1包括:s个待缩短比特、8064个信息比特和2688个奇偶校验比特;对C1进行缩短,得到其缩短后的码字C,码字C的真实码长为n=10752比特,包括8064个信息比特和2688个奇偶校验比特。所需缩短比特为C1的前s=294比特,即为母矩阵的前7列对应于的前294个比特,前294个比特的取值为0。According to the parity check H matrix, generate 2688 parity check bits, and obtain the LDPC code word C 1 whose code length is n0=11046, the code word C 1 includes: s bits to be shortened, 8064 information bits and 2688 parity Parity bits; C 1 is shortened to obtain its shortened codeword C. The real code length of the codeword C is n=10752 bits, including 8064 information bits and 2688 parity bits. The required shortening bits are the first s=294 bits of C 1 , that is, the first 294 bits corresponding to the first 7 columns of the mother matrix, and the value of the first 294 bits is 0.

下面给出码率为3/4的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第70行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第42i行中值为‘1’的列位置,0≤i≤70。H矩阵中第(42i+1)行至第(42i+41)行中‘1’的位置为H矩阵中的第42i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字72表示奇偶校验H矩阵第0行第72列的位置取值为‘1’,第0行中的数字241表示奇偶校验H矩阵第0行中第241列的位置取值为‘1’。H矩阵第0行第72列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为73,依次类推,而H矩阵中第12行中1的列位置为42。需要说明的是,行末尾的“-1”不代表任何含义,可以删除。A parity check H matrix with a code rate of 3/4 is given below. The matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 70th row, where the number of the row and the number of the column start from 0 start. Each number in the i-th row as follows represents the column position of the value '1' in the 42ith row of the parity check H matrix, 0≤i≤70. The position of '1' in row (42i+1) to row (42i+41) in the H matrix is obtained by cyclic shifting in row 42i in the H matrix according to the cyclic shift matrix (CPM). For example, the number 72 in the 0th row indicates that the position of the 72nd column in the 0th row of the parity check H matrix is '1', and the number 241 in the 0th row indicates the 241st column in the 0th row of the parity check H matrix The value of the position is '1'. The position of the 72nd column in row 0 of the H matrix is '1', and after cyclic shifting according to the cyclic shift matrix (CPM), the position of the column with a value of 1 in the first row of the H matrix is 73, And so on, and the column position of 1 in the 12th row in the H matrix is 42. It should be noted that the "-1" at the end of the line does not mean anything and can be deleted.

按照如上规则,奇偶校验H矩阵表示如下:According to the above rules, the parity check H matrix is expressed as follows:

Figure BDA0001891644730000261
Figure BDA0001891644730000261

Figure BDA0001891644730000271
Figure BDA0001891644730000271

Figure BDA0001891644730000281
Figure BDA0001891644730000281

Figure BDA0001891644730000291
Figure BDA0001891644730000291

如前所述,奇偶校验H矩阵前294列所对应的294个比特需要缩短处理,即编码时该294列对应的比特均为’0’,编码完成后再将这些’0’比特删掉。As mentioned earlier, the 294 bits corresponding to the first 294 columns of the parity check H matrix need to be shortened, that is, the bits corresponding to the 294 columns are all '0' during encoding, and these '0' bits are deleted after encoding .

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a mother matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

示例九:码率为5/8,循环移位矩阵(CPM)的大小为42,信息比特长度为k=8064比特。Example 9: the code rate is 5/8, the size of the cyclic shift matrix (CPM) is 42, and the information bit length is k=8064 bits.

码率R=5/8的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为13440,对应母矩阵总的列数为N0=N1/42=320,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为5376,对应母矩阵总的行数为M0=M1/42=128,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为9,即每行中最多9个1。The LDPC code of code rate R=5/8, the number N1=(n+s) of the total column of its parity check H matrix, N1 is 13440, and the total column number of corresponding mother matrix is N0=N1/42=320, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 5376, and the total row number corresponding to the mother matrix is M0=M1/42=128, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the mother matrix. The maximum row weight of the parity-check H matrix is 9, that is, there are at most 9 1s in each row.

根据奇偶校验H矩阵,生成4872个奇偶校验比特,获得码长为n0=13440的LDPC码码字C1,码字C1包括:s个待缩短比特、8064个信息比特和4872个奇偶校验比特;对C1进行缩短,得到其缩短后的码字C,码字C的真实码长为n=12936比特:8064个信息比特和4872个奇偶校验比特。所需缩短比特为C1的前s=504比特,即为母矩阵的前12列对应的前504个比特,前504个比特的取值为0。According to the parity check H matrix, generate 4872 parity check bits, and obtain the LDPC code word C 1 whose code length is n0=13440, the code word C 1 includes: s bits to be shortened, 8064 information bits and 4872 parity Parity bits; C 1 is shortened to obtain its shortened codeword C, the real code length of the codeword C is n=12936 bits: 8064 information bits and 4872 parity check bits. The required shortening bits are the first s=504 bits of C 1 , that is, the first 504 bits corresponding to the first 12 columns of the mother matrix, and the value of the first 504 bits is 0.

下面给出码率为5/8的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第127行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第42i行中值为‘1’的列位置,0≤i≤127。H矩阵中第(42i+1)行至第(42i+41)行中‘1’的位置为H矩阵中的第42i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字11表示奇偶校验H矩阵第0行第11列的位置取值为‘1’,第0行中的数字239表示奇偶校验H矩阵第42i行中第239列的位置取值为‘1’。H矩阵第0行第11列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为12,依次类推,而H矩阵中第31行中1的列位置为0。需要说明的是,行末尾的“-1”不代表任何含义,可以删除。A parity-check H matrix with a code rate of 5/8 is given below. The matrix form of the parity-check H matrix can be expressed as the following form from row 0 to row 127, where the number of rows and columns start from 0 start. Each number in the i-th row below represents the column position of the value '1' in the 42i row of the parity check H matrix, 0≤i≤127. The position of '1' in row (42i+1) to row (42i+41) in the H matrix is obtained by cyclic shifting in row 42i in the H matrix according to the cyclic shift matrix (CPM). For example, the number 11 in the 0th row indicates that the position of the 11th column in the 0th row of the parity check H matrix is '1', and the number 239 in the 0th row indicates the 239th column in the 42i row of the parity check H matrix The value of the position is '1'. The position of the 11th column of the 0th row of the H matrix is '1', according to the cyclic shift matrix (CPM), the position of the column with a value of 1 in the first row of the H matrix is 12, And so on, and the column position of 1 in row 31 of H matrix is 0. It should be noted that the "-1" at the end of the line does not mean anything and can be deleted.

按照如上规则,奇偶校验H矩阵表示如下:According to the above rules, the parity check H matrix is expressed as follows:

Figure BDA0001891644730000301
Figure BDA0001891644730000301

Figure BDA0001891644730000311
Figure BDA0001891644730000311

Figure BDA0001891644730000321
Figure BDA0001891644730000321

Figure BDA0001891644730000331
Figure BDA0001891644730000331

如前所述,奇偶校验H矩阵前504列所对应的504个比特需要缩短处理,即编码时该504列对应的比特均为’0’,编码完成后再将这些’0’比特删掉。As mentioned earlier, the 504 bits corresponding to the first 504 columns of the parity check H matrix need to be shortened, that is, the bits corresponding to the 504 columns are all '0' during encoding, and these '0' bits are deleted after encoding .

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a mother matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

示例十:码率为1/2,循环移位矩阵(CPM)的大小为42,信息比特长度为k=8064比特。Example ten: the code rate is 1/2, the size of the cyclic shift matrix (CPM) is 42, and the information bit length is k=8064 bits.

码率R=1/2的LDPC码,其奇偶校验H矩阵总的列的数目N1=(n+s),N1为17052,对应母矩阵总的列数为N0=N1/42=406,其奇偶校验H矩阵总的行的数目M1=(n+s-k),M1为8988,对应母矩阵总的行数为M0=M1/42=214,k个信息比特对应H矩阵中的k列,对应母矩阵中的k/Z列。该奇偶校验H矩阵的最大行重为7,即每行中最多7个1。The LDPC code of code rate R=1/2, the total column number N1=(n+s) of its parity-check H matrix, N1 is 17052, and the total column number corresponding to mother matrix is N0=N1/42=406, The total row number M1=(n+s-k) of its parity check H matrix, M1 is 8988, and the total row number corresponding to the mother matrix is M0=M1/42=214, and k information bits correspond to k columns in the H matrix , corresponding to the k/Z columns in the mother matrix. The maximum row weight of the parity-check H matrix is 7, that is, there are at most 7 1s in each row.

根据奇偶校验H矩阵,生成8064个奇偶校验比特,获得码长为n0=17052的LDPC码码字C1,码字C1包括:s个待缩短比特、8064个信息比特和8064个奇偶校验比特;对C1进行缩短,得到其缩短后的码字C,码字C的真实码长为n=16128比特,包括:8064个信息比特和4872个奇偶校验比特。所需缩短比特为C1的前s=924比特,即为母矩阵的前22列所对应的前924个比特,前924个比特的取值为0。According to the parity check H matrix, generate 8064 parity check bits, and obtain the LDPC code word C 1 whose code length is n0=17052, the code word C 1 includes: s bits to be shortened, 8064 information bits and 8064 parity Parity bits; C 1 is shortened to obtain its shortened codeword C. The real code length of the codeword C is n=16128 bits, including: 8064 information bits and 4872 parity bits. The required shortening bits are the first s=924 bits of C 1 , that is, the first 924 bits corresponding to the first 22 columns of the mother matrix, and the value of the first 924 bits is 0.

下面给出码率为1/2的奇偶校验H矩阵,奇偶校验H矩阵的矩阵形式可以表示为如下第0行至第213行的形式,其中,行的编号和列的编号都从0开始。如下第i行中的各个数字表示奇偶校验H矩阵第42i行中值为‘1’的列位置,0≤i≤213。H矩阵中第(42i+1)行至第(42i+41)行中‘1’的位置为H矩阵中的第42i行按照循环移位矩阵(CPM)经过循环移位得到。例如,第0行中的数字289表示奇偶校验H矩阵第0行第289列的位置取值为‘1’,第0行中的数字924表示奇偶校验H矩阵第0行中第924列的位置取值为‘1’。H矩阵第0行第289列的位置取值为‘1’,按照循环移位矩阵(CPM)经过循环移位,则可以得到H矩阵中第1行中取值为1的列位置为290,依次类推,而H矩阵中第5行中1的列位置为252。需要说明的是,行末尾的“-1”不代表任何含义,可以删除。The parity check H matrix with a code rate of 1/2 is given below. The matrix form of the parity check H matrix can be expressed as the following form from the 0th row to the 213th row, where the number of the row and the number of the column start from 0 start. Each number in the i-th row as follows represents the column position of the value '1' in the 42ith row of the parity check H matrix, 0≤i≤213. The position of '1' in the (42i+1)th row to (42i+41)th row in the H matrix is obtained by cyclic shifting in the 42ith row in the H matrix according to the cyclic shift matrix (CPM). For example, the number 289 in the 0th row indicates that the position of the 289th column in the 0th row of the parity check H matrix is '1', and the number 924 in the 0th row indicates the 924th column in the 0th row of the parity check H matrix The value of the position is '1'. The position of the 289th column in row 0 of the H matrix is '1', and after cyclic shifting according to the cyclic shift matrix (CPM), it can be obtained that the position of the column with a value of 1 in the first row of the H matrix is 290, And so on, and the column position of 1 in row 5 in the H matrix is 252. It should be noted that the "-1" at the end of the line does not mean anything and can be deleted.

按照如上规则,奇偶校验H矩阵表示如下:According to the above rules, the parity check H matrix is expressed as follows:

Figure BDA0001891644730000341
Figure BDA0001891644730000341

Figure BDA0001891644730000351
Figure BDA0001891644730000351

Figure BDA0001891644730000361
Figure BDA0001891644730000361

Figure BDA0001891644730000371
Figure BDA0001891644730000371

Figure BDA0001891644730000381
Figure BDA0001891644730000381

Figure BDA0001891644730000391
Figure BDA0001891644730000391

如前所述,奇偶校验H矩阵前924列所对应的924个比特需要缩短处理,即编码时该924列对应的比特均为’0’,编码完成后再将这些’0’比特删掉。As mentioned earlier, the 924 bits corresponding to the first 924 columns of the parity check H matrix need to be shortened, that is, the bits corresponding to the 924 columns are all '0' during encoding, and these '0' bits are deleted after encoding .

可以理解的,上述H矩阵也可以以母矩阵的形式表示。需要说明的是,H矩阵还可以有其他的变形,H矩阵中的行和行的次序可以相互交换,H矩阵中的列和列的次序也可以相互交换,本申请实施例并不具体限定。It can be understood that the above H matrix can also be expressed in the form of a parent matrix. It should be noted that the H matrix can also have other deformations, the order of rows and rows in the H matrix can be exchanged, and the order of columns and columns in the H matrix can also be exchanged, which is not specifically limited in the embodiment of the present application.

图6示出了编码流程的一个示例。编码装置生产k个信息比特后,可在k个信息比特前填充s个值为0的待缩短比特,得到(k+s)个待编码比特。进一步的,根据前述实施例提供的任意一个H矩阵对(k+s)个待编码比特进行编码,得到码字C1,码长为n+s。最后,编码装置可将填充的s个值为0的待缩短比特删除,以得到最终的码长为n的码字C,输出码字C。Figure 6 shows an example of the encoding process. After the encoding device produces k information bits, s bits to be shortened with a value of 0 may be filled in front of the k information bits to obtain (k+s) bits to be encoded. Further, (k+s) bits to be coded are coded according to any H matrix provided in the foregoing embodiments to obtain a codeword C 1 with a code length of n+s. Finally, the encoding device may delete the filled s bits whose values are 0 to be shortened to obtain a final codeword C with a code length of n, and output the codeword C.

图7示出了译码流程的一个示例。译码装置接收到码字C经信道传输后的信号,经过似然估计得到n个比特的似然值,该似然值可以是概率,也可以是对数似然比。这n个比特的似然值包括k个信息比特所对应的似然值,和,(n-k)个奇偶校验比特所对应的似然值。进一步的,译码装置在该n比特似然值前填充s个值为0的待缩短比特相应的似然值,构成(s+n)个比特。根据编码时所使用的H矩阵,对(n+s)个比特所对应的似然值进行译码,得到(k+s)个比特;最后译码装置进行缩短处理,删除前s个比特,得到k个信息比特。Fig. 7 shows an example of the decoding process. The decoding device receives the signal of the code word C transmitted through the channel, and obtains a likelihood value of n bits through likelihood estimation, and the likelihood value may be a probability or a logarithmic likelihood ratio. The likelihood value of n bits includes the likelihood value corresponding to k information bits, and the likelihood value corresponding to (n-k) parity bits. Further, the decoding device fills in front of the n-bit likelihood value corresponding likelihood values of s bits to be shortened with a value of 0 to form (s+n) bits. According to the H matrix used during encoding, the likelihood values corresponding to (n+s) bits are decoded to obtain (k+s) bits; finally, the decoding device performs shortening processing to delete the first s bits, Get k information bits.

本申请实施例以5G新空口(5G new radio,5G NR)LDPC码为参考,进行了误码字率和运算复杂度性能对比分析。In the embodiment of the present application, the LDPC code of 5G new radio (5G new radio, 5G NR) is used as a reference, and a comparative analysis of bit error rate and computational complexity performance is carried out.

图8示出了本申请实施例提供的第一组LDPC码与5G NR LDPC码的误码字率仿真性能比较。图9示出了本申请实施例提供的第二组LDPC码与5G NR LDPC码的误码字率仿真性能比较。图8和图9中示出的结果曲线是在相同的码率和码长下仿真得到的,其中信息比特长度固定为8064,CPM大小为64,采用分层译码的最小和偏移(Min-Sum-Offset)译码算法,最大迭代次数50次,其中,横坐标表示信号噪声比(Signal-to-noise ratio,SNR),纵坐标表示误码字率,黑色实线为本申请实施例的LDPC编码方案误码字率的仿真结果曲线,黑色圈状实线为5G NR LDPC的误码字率的仿真结果曲线,黑色线状虚线为不可快速编码矩阵参考性能。例如,如图8中码率R为1/2的三条曲线所示,当信号噪声比SNR相等时,本申请实施例提出的LDPC码编码方案的误码字率明显低于5G NR LDPC的误码字率。由图8和图9可知,本申请实施例第一组编码方案和第二组编码方案在各个码率下误码字率性能均优于5G NRLDPC的误码字率性能,且码率越低,性能优势越明显。Fig. 8 shows the comparison of the word error rate simulation performance of the first group of LDPC codes provided by the embodiment of the present application and the 5G NR LDPC codes. FIG. 9 shows a comparison of the word error rate simulation performance of the second group of LDPC codes provided by the embodiment of the present application and the 5G NR LDPC codes. The result curves shown in Figure 8 and Figure 9 are simulated under the same code rate and code length, where the information bit length is fixed at 8064, the CPM size is 64, and the minimum sum offset (Min -Sum-Offset) decoding algorithm, the maximum number of iterations is 50 times, wherein the abscissa represents the signal-to-noise ratio (Signal-to-noise ratio, SNR), and the ordinate represents the bit error rate, and the black solid line is the embodiment of the present application The simulation result curve of the bit error rate of the LDPC coding scheme, the black circle solid line is the simulation result curve of the bit error rate of 5G NR LDPC, and the black linear dotted line is the reference performance of the non-fast encoding matrix. For example, as shown in the three curves with the code rate R being 1/2 in Figure 8, when the signal-to-noise ratio SNR is equal, the bit error rate of the LDPC coding scheme proposed in the embodiment of this application is significantly lower than that of 5G NR LDPC. code word rate. It can be seen from Figure 8 and Figure 9 that the code error rate performance of the first group of coding schemes and the second group of coding schemes in the embodiment of the present application is better than that of 5G NRLDPC at each code rate, and the lower the code rate is , the performance advantage is more obvious.

表1示出了本申请实施例提供的第一组LDPC码与5G NR LDPC码的运算复杂度的仿真性能比较。表2示出了本申请实施例提供的第二组LDPC码与5G NR LDPC码的运算复杂度的仿真性能比较。其中,表1中的第一行依次表示:码率R(Rate)、该码率下LDPC码的k个信息比特在母矩阵中对应的列数K0(K0=k/Z)、缩短s个待缩短比特后码字C在母矩阵中对应的列数C0(C0=n/Z)、s个待缩短比特所对应的母矩阵中所需打孔的列数S0(S0=s/Z)、循环移位矩阵的大小Z、校验矩阵的列度分布dv(即各个列重在所有列中所占百分比)、行度分布dc(即各个行重在所有行中所占百分比)、性能增益(Gain)、计算复杂度百分比(Computational complexity ratio,Comp.Ratio)。其中:性能增益(Gain)指在误码字率为10-3时的本申请实施例的LDPC方案相比5G NR LDPC方案的性能增益,计算复杂度百分比表示相同参数下本申请实施例的LDPC编码所需计算次数与5G NR LDPC编码所需计算次数的百分比;列度分布中的三个数字依次表示:列重,列重的总列数,以及列重列数与总列数的占比,例如,表1中的第一行的第一组数字:2 7488 0.438202,表示列重为2的列数为7488,占比为0.438202。计算复杂度表示相同参数下LDPC编码所需的计算次数,本申请实施例的方案相比5G NR LDPC在复杂度方面的优势可以用计算复杂度百分比体现。Table 1 shows the simulation performance comparison of the computational complexity of the first group of LDPC codes provided by the embodiment of the present application and the 5G NR LDPC codes. Table 2 shows the simulation performance comparison of the computational complexity of the second group of LDPC codes provided by the embodiment of the present application and the 5G NR LDPC codes. Wherein, the first row in Table 1 represents in sequence: the code rate R (Rate), the number of columns K0 (K0=k/Z) corresponding to the k information bits of the LDPC code under the code rate in the mother matrix, shortening the number of s The number of columns C0 (C0=n/Z) corresponding to the codeword C in the mother matrix after the bits to be shortened, and the number of columns S0 (S0=s/Z) that need to be punched in the mother matrix corresponding to the s bits to be shortened , the size Z of the cyclic shift matrix, the column degree distribution d v of the check matrix (that is, the percentage of each column weight in all columns), and the row degree distribution d c (that is, the percentage of each row weight in all rows) , performance gain (Gain), computational complexity percentage (Computational complexity ratio, Comp.Ratio). Among them: performance gain (Gain) refers to the performance gain of the LDPC scheme of the embodiment of the present application when the bit error rate is 10 -3 compared to the performance gain of the 5G NR LDPC scheme, and the calculation complexity percentage represents the LDPC of the embodiment of the present application under the same parameters The percentage of the number of calculations required for encoding to the number of calculations required for 5G NR LDPC encoding; the three numbers in the column degree distribution represent in turn: column weight, the total number of columns of the column weight, and the ratio of the number of columns to the total number of columns , for example, the first group of numbers in the first row in Table 1: 2 7488 0.438202, indicating that the number of columns with a column weight of 2 is 7488, and the proportion is 0.438202. Computational complexity refers to the number of calculations required for LDPC encoding under the same parameters. Compared with 5G NR LDPC, the solution in the embodiment of the present application has advantages in terms of complexity, which can be reflected by the percentage of computational complexity.

由表1和表2可见,本申请实施例第一组编码方案的计算复杂度与5G NR LDPC的计算复杂度的百分比均小于100%,也就是说第一组编码方案的LDPC编码的计算复杂度低于5G NR LDPC编码的计算复杂度;本申请实施例第二组编码方案的计算复杂度与5G NR LDPC的计算复杂度的百分比均小于100%,也就是说第二组编码方案的LDPC编码的计算复杂度低于5G NR LDPC编码的计算复杂度;因此本申请实施例第一组编码方案和本申请实施例第二组编码方案在各种码率下译码运算复杂度均低于同样参数下的5G NR LDPC码,并且码率越低,本申请实施例提出的LDPC编码方案的复杂度优势越明显。It can be seen from Table 1 and Table 2 that the percentage of the computational complexity of the first group of coding schemes in the embodiment of the present application and the computational complexity of 5G NR LDPC is less than 100%, which means that the calculation of the LDPC coding of the first group of coding schemes is complex degree is lower than the computational complexity of 5G NR LDPC coding; the percentage of the computational complexity of the second group of coding schemes in the embodiment of the present application and the computational complexity of 5G NR LDPC is less than 100%, that is to say, the LDPC of the second group of coding schemes The computational complexity of coding is lower than that of 5G NR LDPC coding; therefore, the decoding computational complexity of the first group of coding schemes in the embodiment of the present application and the second group of coding schemes in the embodiment of the present application are lower than The 5G NR LDPC code under the same parameters, and the lower the code rate, the more obvious the complexity advantage of the LDPC coding scheme proposed in the embodiment of this application.

因此,本申请实施例提供的LDPC码可有效提升系统的性能和可靠性。Therefore, the LDPC code provided by the embodiment of the present application can effectively improve the performance and reliability of the system.

表1Table 1

Figure BDA0001891644730000411
Figure BDA0001891644730000411

表2Table 2

Figure BDA0001891644730000412
Figure BDA0001891644730000412

Figure BDA0001891644730000421
Figure BDA0001891644730000421

参考图10,本申请实施例提供的一种LDPC码编码装置1000的示意图,该LDPC码编码装置1000可以执行上述任一方面的方法,可以是一个整机的设备,还可以是设备内的芯片或集成电路,该LDPC码编码装置1000包括:生成模块1001、编码模块1002、输出模块1003。Referring to FIG. 10 , a schematic diagram of an LDPC code encoding device 1000 provided in an embodiment of the present application, the LDPC code encoding device 1000 can perform any of the above-mentioned methods, it can be a complete device, or it can be a chip in the device Or an integrated circuit, the LDPC code encoding device 1000 includes: a generation module 1001 , an encoding module 1002 , and an output module 1003 .

生成模块1001,用于获取k个信息比特,其中k=8064;编码模块1002,用于根据奇偶校验H矩阵,对所述k个信息比特进行LDPC编码,获得编码后的码字C,所述码字C的码长为n,码率R为k/n;其中,所述H矩阵为(n+s-k)×(n+s)阶的奇偶校验矩阵,所述H矩阵被划分为大小为Z×Z阶的子方阵,所述Z取值为64或42,所述子方阵为单位矩阵P0的循环移位或空矩阵,s为待缩短的比特数且为Z的正整数倍;输入输出模块1003,用于输出所述码字C。一个示例中,生成模块1001,编码模块1002,输出模块1003可以集成在一个处理单元中,输出模块1003可以为该处理单元的接口电路,用于输入和输出该处理单元与其他单元交互的信令或数据。The generation module 1001 is used to obtain k information bits, wherein k=8064; the encoding module 1002 is used to perform LDPC encoding on the k information bits according to the parity check H matrix to obtain the encoded codeword C, so The code length of the code word C is n, and the code rate R is k/n; wherein, the H matrix is a parity check matrix of (n+sk)×(n+s) order, and the H matrix is divided into A sub-square matrix with a size of Z×Z order, the value of Z is 64 or 42, the sub-square matrix is a cyclic shift or an empty matrix of the unit matrix P 0 , s is the number of bits to be shortened and is the value of Z Positive integer multiple; an input and output module 1003, configured to output the code word C. In an example, the generation module 1001, the encoding module 1002, and the output module 1003 can be integrated into a processing unit, and the output module 1003 can be an interface circuit of the processing unit, which is used to input and output signaling for the interaction between the processing unit and other units or data.

可选的,所述装置还包括:填充模块1004,用于在所述k个信息比特前填充s个待缩短比特,得到k+s个待编码比特,所述s个待缩短比特的值为0;所述编码模块,用于对所述(s+k)个待编码比特进行LDPC编码,获得编码后的码字C1,所述码字C1的码长为n+s;删除模块1005:用于删除所述码字C1中的所述s个待缩短比特,得到所述码字C,其中,所述s个待缩短比特与所述H矩阵的前s列相对应。Optionally, the device further includes: a filling module 1004, configured to fill s bits to be shortened before the k information bits to obtain k+s bits to be encoded, and the value of the s bits to be shortened is 0; the coding module is used to perform LDPC coding on the (s+k) bits to be coded to obtain the coded code word C 1 , the code length of the code word C 1 is n+s; the deletion module 1005: Deleting the s bits to be shortened in the codeword C 1 to obtain the codeword C, where the s bits to be shortened correspond to the first s columns of the H matrix.

需要说明的是,对于不同的码率,奇偶校验H矩阵可参考前述示例一至示例十或其变形形式,此处不再赘述。It should be noted that, for different code rates, the parity check H matrix may refer to the foregoing example 1 to example 10 or their modified forms, which will not be repeated here.

参考图11,本申请实施例提供了一种LDPC码编码装置1100。编码装置1100包括:处理器1101,可选的,还包括存储器1102。存储器1102可用于存储奇偶校验H矩阵。处理器1101可用于对k个信息比特根据奇偶校验H矩阵进行LDPC编码,从而得到LDPC编码后的码字c。可选的,处理器还可以用于从存储器1102存储的多个H矩阵中,确定一个H矩阵,用于进行LDPC编码。具体如何确定H矩阵,处理器可以依据码率或业务需求选择,本申请实施例并不具体限定。Referring to FIG. 11 , an embodiment of the present application provides an LDPC code encoding device 1100 . The encoding device 1100 includes: a processor 1101 , and optionally, a memory 1102 . The memory 1102 can be used to store the parity check H matrix. The processor 1101 may be configured to perform LDPC encoding on the k information bits according to the parity check H matrix, so as to obtain an LDPC-encoded code word c. Optionally, the processor may also be configured to determine an H matrix from the multiple H matrices stored in the memory 1102 for LDPC encoding. Specifically, how to determine the H matrix can be selected by the processor according to the code rate or service requirements, which is not specifically limited in this embodiment of the present application.

参考图12,本申请实施例提供的一种LDPC码译码装置1200的示意图,该LDPC码译码装置1200可以执行上述任一方面的方法,可以是一个整机的设备,还可以是设备内的芯片或集成电路,该LDPC码译码装置1200包括:输入输出模块1201、填充模块1202、译码模块1203。Referring to FIG. 12 , it is a schematic diagram of an LDPC code decoding device 1200 provided in an embodiment of the present application. The LDPC code decoding device 1200 can perform any of the above-mentioned methods, and can be a complete device or an internal device. chip or integrated circuit, the LDPC code decoding device 1200 includes: an input and output module 1201 , a filling module 1202 , and a decoding module 1203 .

输入输出模块1201,获取经过LDPC编码后的码字C,码长为n;填充模块1202,用于在码字C的最前面填充值为0的s个待缩短比特,得到码字C1,所述s个待缩短比特的取值为0。译码模块1203,,用于根据奇偶校验H矩阵,对所述码字C1进行LDPC译码,获得译码后的(s+k)个比特,删除前s个值为0的待缩短比特,得到k个信息比特。其中,所述H矩阵为(n+s-k)×(n+s)阶的奇偶校验矩阵,所述H矩阵被划分为大小为Z×Z阶的子方阵,所述Z取值为64或42,所述子方阵为单位矩阵P0的循环移位或空矩阵,s为待缩短的比特数且为Z的正整数倍;The input and output module 1201 obtains the codeword C after LDPC encoding, and the code length is n; the filling module 1202 is used to fill the s bits to be shortened with a value of 0 at the front of the codeword C to obtain the codeword C 1 , The value of the s bits to be shortened is 0. The decoding module 1203 is used to perform LDPC decoding on the codeword C 1 according to the parity check H matrix, obtain (s+k) bits after decoding, and delete the first s values of 0 to be shortened bits to get k information bits. Wherein, the H matrix is a parity check matrix of order (n+sk)×(n+s), the H matrix is divided into sub-square matrices of order Z×Z, and the value of Z is 64 Or 42, the sub-square matrix is a cyclic shift or an empty matrix of the identity matrix P 0 , and s is the number of bits to be shortened and is a positive integer multiple of Z;

一个示例中,输入输出模块1201、填充模块1202、译码模块1203可以集成在一个处理单元中,输入输出模块1003可以为该处理单元的接口电路,用于输入和输出该处理单元与其他单元交互的信令或数据。In an example, the input and output module 1201, the filling module 1202, and the decoding module 1203 can be integrated in a processing unit, and the input and output module 1003 can be an interface circuit of the processing unit, which is used to input and output the processing unit to interact with other units signaling or data.

需要说明的是,对于不同的码率,奇偶校验H矩阵可参考前述示例一至示例十,此处不再赘述。It should be noted that, for different code rates, the parity check H matrix may refer to the foregoing example 1 to example 10, and details are not repeated here.

参考图13,本申请实施例提供了一种LDPC码译码装置1300。译码装置1300包括:处理器1301,可选的,还包括存储器1302。存储器1302可用于存储奇偶校验H矩阵。处理器1301可用于对码字比特根据奇偶校验H矩阵进行LDPC译码,从而得到LDPC译码后的信息比特。可选的,处理器还可以用于从存储器1302存储的多个H矩阵中,确定一个H矩阵,用于进行LDPC译码。具体如何确定H矩阵,处理器可以依据码率或业务需求选择,本申请实施例并不具体限定。可选的,存储器1302可以是集成在处理器1301的内部存储器,还可以是与处理器耦合的外部存储器。Referring to FIG. 13 , an embodiment of the present application provides an LDPC code decoding device 1300 . The decoding apparatus 1300 includes: a processor 1301 , and optionally, a memory 1302 . The memory 1302 can be used to store the parity check H matrix. The processor 1301 may be configured to perform LDPC decoding on codeword bits according to the parity check H matrix, so as to obtain LDPC-decoded information bits. Optionally, the processor may also be configured to determine an H matrix from the multiple H matrices stored in the memory 1302 for LDPC decoding. Specifically, how to determine the H matrix can be selected by the processor according to the code rate or service requirements, which is not specifically limited in this embodiment of the present application. Optionally, the memory 1302 may be an internal memory integrated in the processor 1301, or an external memory coupled with the processor.

图14示出在无线通信系统中的无线通信装置1400,该装置1400包括:处理器1401,发送模块1403,接收模块1404,射频模块1405,天线1406。射频模块1405和接收模块1404可对经由天线1406接收到的信号进行滤波、放大、解调、下变频、数字化以及解码等)并提供输入采样,射频模块1405和发送模块1403可以对待发送的信号进行编码、模拟转换、滤波、放大、调制和上变频后经由天线1406发送。可选的,所述装置1400还包括存储器1402。FIG. 14 shows a wireless communication device 1400 in a wireless communication system, and the device 1400 includes: a processor 1401 , a sending module 1403 , a receiving module 1404 , a radio frequency module 1405 , and an antenna 1406 . The radio frequency module 1405 and the receiving module 1404 can filter, amplify, demodulate, down-convert, digitize, and decode the signal received via the antenna 1406) and provide input sampling, and the radio frequency module 1405 and the transmitting module 1403 can perform signal processing on the signal to be transmitted. After coding, analog conversion, filtering, amplification, modulation and frequency up-conversion, it is sent via the antenna 1406 . Optionally, the apparatus 1400 further includes a memory 1402 .

一个示例中,所述装置1400可以被配置为执行LDPC编码的编码装置,可以执行上述任一方面涉及编码的方法。装置1400例如可以是接入点AP(基于图1中的AP111),站点(例如图1的站点112)等,还可以是接入点AP和站点内的芯片。In an example, the apparatus 1400 may be configured as an encoding apparatus for performing LDPC encoding, and may implement any method related to encoding in any aspect above. The apparatus 1400 may be, for example, an access point AP (based on AP 111 in FIG. 1 ), a station (eg, station 112 in FIG. 1 ), etc., and may also be an access point AP and a chip in a station.

装置1400的发送模块1403中还可包括LDPC码编码器。编码器可用于对需要发送的信息比特进行编码处理,以生成码字。一个示例中,编码器可获取k个信息比特,并对k个信息比特根据奇偶校验H矩阵进行LDPC编码,从而得到LDPC编码后的码字c。其中,奇偶校验H矩阵可参考前述示例一至示例十,可根据码率选择其中的一种或多种奇偶校验H矩阵进行编码,此处不再赘述。码字C经由发送模块1403中的其他电路和射频模块1405进行进一步处理后输出至天线1406发送。The sending module 1403 of the device 1400 may further include an LDPC code encoder. The encoder can be used to encode the information bits to be sent to generate codewords. In an example, the encoder may obtain k information bits, and perform LDPC encoding on the k information bits according to the parity check H matrix, so as to obtain an LDPC-encoded codeword c. For the parity check H matrix, reference may be made to the foregoing examples 1 to 10, and one or more of the parity check H matrices may be selected for encoding according to the code rate, and details are not repeated here. The codeword C is further processed by other circuits in the sending module 1403 and the radio frequency module 1405, and then output to the antenna 1406 for transmission.

另一个示例中,所述装置1400可以被配置为执行LDPC编码的译码装置,可以执行上述任一方面涉及译码的方法。装置1400例如可以是接入点AP(基于图1中的AP111),站点(例如图1的站点112)等,还可以是接入点AP和站点内的芯片。In another example, the device 1400 may be configured as a decoding device for performing LDPC encoding, and may perform the method related to decoding in any aspect above. The apparatus 1400 may be, for example, an access point AP (based on AP 111 in FIG. 1 ), a station (eg, station 112 in FIG. 1 ), etc., and may also be an access point AP and a chip in a station.

装置1400的接收模块1404可包括LDPC码译码器。译码器可用于对需要发送的信息比特进行译码处理,以生成码字。一个示例中,译码器可获取码字比特,并对码字比特根据奇偶校验H矩阵进行LDPC译码,从而得到LDPC译码后的信息比特。其中,奇偶校验H矩阵可参考前述示例一至示例十,可根据码率选择其中的一种或多种奇偶校验H矩阵进行译码,此处不再赘述。The receiving module 1404 of the device 1400 may include an LDPC code decoder. The decoder can be used to decode the information bits to be sent to generate codewords. In an example, the decoder may obtain the codeword bits, and perform LDPC decoding on the codeword bits according to the parity check H matrix, so as to obtain LDPC-decoded information bits. For the parity check H matrix, reference may be made to the foregoing examples 1 to 10, and one or more of the parity check H matrices may be selected for decoding according to the code rate, which will not be repeated here.

本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各示例中的方法。An embodiment of the present application further provides a computer program product, the computer program product including: computer program code, when the computer program code is run by a computer, the computer is made to execute the methods in the above examples.

本申请实施例还提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行上述各示例中的方法的指令。An embodiment of the present application also provides a computer-readable medium for storing a computer program, where the computer program includes instructions for executing the methods in the foregoing examples.

本申请实施例还提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各示例中的方法。The embodiment of the present application also provides a chip, including a processor, configured to call and execute instructions stored in the memory from a memory, so that a communication device installed with the chip executes the methods in the above examples.

本申请实施例还提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各示例中的方法。The embodiment of the present application also provides another chip, including: an input interface, an output interface, a processor, and a memory, the input interface, the output interface, the processor, and the memory are connected through an internal connection path, and the The processor is configured to execute the codes in the memory, and when the codes are executed, the processor is configured to execute the methods in the above examples.

本申请实施例还提供又一种芯片,包括一个或多个处理电路,以及输入输出接口。当所述芯片应用于编码装置中时,所述一个或多个处理电路可用于根据奇偶校验H矩阵进行编码,输入输出接口可用于输出编码后的码字C;当所述芯片应用于译码装置中时,所述一个或多个处理电路可用于根据奇偶校验H矩阵进行解码,输入输出接口可用于输入待译码的码字C,还用于输出译码后的信息比特。The embodiment of the present application also provides another chip, including one or more processing circuits, and an input and output interface. When the chip is used in an encoding device, the one or more processing circuits can be used for encoding according to the parity check H matrix, and the input and output interface can be used for outputting the encoded code word C; when the chip is used for decoding When in the coding device, the one or more processing circuits can be used for decoding according to the parity check H matrix, and the input and output interface can be used for inputting the code word C to be decoded, and also for outputting the decoded information bits.

本申请实施例还提供一种装置,用于实现上述各实施例中的方法。The embodiment of the present application further provides an apparatus for implementing the methods in the foregoing embodiments.

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid StateDisk)。In the above embodiments, all or part of them may be implemented by software, hardware, firmware or any combination thereof. When implemented using software, it may be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the present application will be generated in whole or in part. The computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices. The computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means. The computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media. The available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk).

Claims (26)

1.一种低密度奇偶校验LDPC码的编码方法,其特征在于,包括:1. an encoding method of a low-density parity check LDPC code, is characterized in that, comprising: 获取k个信息比特,其中k=8064;Obtain k information bits, where k=8064; 根据奇偶校验H矩阵,对所述k个信息比特进行LDPC编码,获得编码后的码字C,所述码字C的码长为n,码率R为k/n,n为大于k的正整数;According to the parity check H matrix, perform LDPC encoding on the k information bits to obtain the coded code word C, the code length of the code word C is n, the code rate R is k/n, and n is greater than k positive integer; 其中,所述H矩阵为(n+s-k)×(n+s)的奇偶校验矩阵,所述H矩阵被划分为大小为Z×Z的子方阵,所述Z取值为64或42,所述子方阵为单位矩阵的循环移位或空矩阵,s为待缩短比特与所述H矩阵所对应的列数,且为Z的正整数倍;Wherein, the H matrix is a parity check matrix of (n+s-k)×(n+s), the H matrix is divided into sub-square matrices with a size of Z×Z, and the value of Z is 64 or 42 , the sub-square matrix is a cyclic shift of the unit matrix or an empty matrix, and s is the number of columns corresponding to the bits to be shortened and the H matrix, and is a positive integer multiple of Z; 所述根据奇偶校验H矩阵,获得对所述k个信息比特进行LDPC编码后的码字C,具体包括:According to the parity check H matrix, the code word C after LDPC encoding of the k information bits is obtained, specifically includes: 在所述k个信息比特前填充s个待缩短比特,得到(s+k)个待编码比特,所述s个待缩短比特的值为0;Filling s bits to be shortened before the k information bits to obtain (s+k) bits to be encoded, the value of the s bits to be shortened is 0; 对所述(s+k)个待编码比特进行LDPC编码,获得编码后的码字C1,所述码字C1的码长为(s+n),所述码字C1包括所述s个待缩短比特、k个信息比特和(n-k)个奇偶校验比特;Perform LDPC encoding on the (s+k) bits to be encoded to obtain an encoded codeword C 1 , the code length of the codeword C 1 is (s+n), and the codeword C 1 includes the s bits to be shortened, k information bits and (nk) parity bits; 删除所述码字C1中的所述s个待缩短比特,得到所述码字C,其中,所述s个待缩短比特与所述H矩阵的前s列相对应。Deleting the s bits to be shortened in the codeword C 1 to obtain the codeword C, wherein the s bits to be shortened correspond to the first s columns of the H matrix. 2.根据权利要求1所述的方法,其特征在于,所述方法应用于60吉赫兹GHz的无线局域网通信系统中。2. The method according to claim 1, wherein the method is applied in a 60 GHz wireless local area network communication system. 3.根据权利要求1所述的方法,其特征在于,所述码长n=9216,所述码率为R=7/8,所述Z=64,所述s=128时,所述H矩阵表示为:3. method according to claim 1, is characterized in that, described code length n=9216, described code rate R=7/8, described Z=64, when described s=128, described H The matrix is expressed as: 第0行:43 103 292 985 1077 1885 2266 2378 3195 3618 3740 4088 4595 51335301 6091 6297 6593 7029 7542 7841 7949 8128Line 0: 43 103 292 985 1077 1885 2266 2378 3195 3618 3740 4088 4595 51335301 6091 6297 6593 7029 7542 7841 7949 8128 第1行:57 90 410 781 1235 1556 1958 2541 2823 3307 3845 4145 4716 53535509 6023 6191 6995 7122 7393 7666 8176 8192Line 1: 57 90 410 781 1235 1556 1958 2541 2823 3307 3845 4145 4716 53535509 6023 6191 6995 7122 7393 7666 8176 8192 第2行:22 115 195 875 1308 1800 2333 2372 2875 3265 3981 4099 4756 51115617 5792 6367 6673 7043 7635 7811 7960 8256Line 2: 22 115 195 875 1308 1800 2333 2372 2875 3265 3981 4099 4756 51115617 5792 6367 6673 7043 7635 7811 7960 8256 第3行:27 79 374 897 1267 1766 2159 2655 3048 3395 3657 4053 4910 49645501 6184 6629 6719 7292 7445 8213 8277 8320 第4行:61 102 448 832 1389 17282112 2809 3008 3456 3840 4288 4893 5120 5568 5952 6550 6848 7104 7336 76808064 8384第3行:27 79 374 897 1267 1766 2159 2655 3048 3395 3657 4053 4910 49645501 6184 6629 6719 7292 7445 8213 8277 8320 第4行:61 102 448 832 1389 17282112 2809 3008 3456 3840 4288 4893 5120 5568 5952 6550 6848 7104 7336 76808064 8384 第5行:12 123 477 703 1458 1535 2032 2592 3024 3263 3647 4137 4479 51235409 6053 6222 6956 7563 7691 8328 8388 8448Line 5: 12 123 477 703 1458 1535 2032 2592 3024 3263 3647 4137 4479 51235409 6053 6222 6956 7563 7691 8328 8388 8448 第6行:36 125 345 704 1180 1567 1920 2528 2752 3462 3648 4466 4480 49285376 5760 6272 6656 7309 7759 8122 8448 8512Line 6: 36 125 345 704 1180 1567 1920 2528 2752 3462 3648 4466 4480 49285376 5760 6272 6656 7309 7759 8122 8448 8512 第7行:109 142 632 678 1130 1503 2202 2316 2746 2919 3476 3669 4226 44854955 5649 6116 6289 6989 7390 8117 8575 8576Line 7: 109 142 632 678 1130 1503 2202 2316 2746 2919 3476 3669 4226 44854955 5649 6116 6289 6989 7390 8117 8575 8576 第8行:43 83 397 895 1293 1677 2061 2573 3102 3405 3959 4237 4685 52555681 6193 6413 6859 7245 7704 7885 8420 8640Line 8: 43 83 397 895 1293 1677 2061 2573 3102 3405 3959 4237 4685 52555681 6193 6413 6859 7245 7704 7885 8420 8640 第9行:4 65 595 670 1420 1769 2019 2663 3140 3431 3855 4377 4706 5451 55795953 6371 6810 7091 7465 8526 8671 8704Line 9: 4 65 595 670 1420 1769 2019 2663 3140 3431 3855 4377 4706 5451 55795953 6371 6810 7091 7465 8526 8671 8704 第10行:20 88 404 1080 1328 1601 1923 2398 2974 3294 3829 4343 4823 50425756 5984 6417 6730 7177 7582 8016 8734 8768Line 10: 20 88 404 1080 1328 1601 1923 2398 2974 3294 3829 4343 4823 50425756 5984 6417 6730 7177 7582 8016 8734 8768 第11行:5 69 517 901 1349 1797 2181 2629 2693 3077 3578 3909 4608 47415189 5637 6021 6469 7098 7301 7749 8773 8832Line 11: 5 69 517 901 1349 1797 2181 2629 2693 3077 3578 3909 4608 47415189 5637 6021 6469 7098 7301 7749 8773 8832 第12行:48 188 320 768 1216 1600 2129 2496 3090 3570 3776 4160 4608 52445504 5888 6551 6942 7168 7616 7908 8865 8896Line 12: 48 188 320 768 1216 1600 2129 2496 3090 3570 3776 4160 4608 52445504 5888 6551 6942 7168 7616 7908 8865 8896 第13行:30 255 534 942 1206 1703 1984 2463 2816 3375 3719 4174 4544 49925727 5847 6443 6823 7483 8016 8631 8775 8960Line 13: 30 255 534 942 1206 1703 1984 2463 2816 3375 3719 4174 4544 49925727 5847 6443 6823 7483 8016 8631 8775 8960 第14行:30 96 230 722 1101 1657 2364 2487 2908 3252 3794 4266 4584 49015348 5834 6261 6629 7204 7582 8919 8996 9024Line 14: 30 96 230 722 1101 1657 2364 2487 2908 3252 3794 4266 4584 49015348 5834 6261 6629 7204 7582 8919 8996 9024 第15行:22 107 295 751 1127 1794 2108 2579 2967 3343 4010 4170 4517 52475430 5790 6247 6750 7247 7527 8359 8679 9088Line 15: 22 107 295 751 1127 1794 2108 2579 2967 3343 4010 4170 4517 52475430 5790 6247 6750 7247 7527 8359 8679 9088 第16行:40 88 471 1027 1508 1884 2095 2432 2944 3589 3963 4405 4748 50565440 5824 6336 6784 8128 8910 9071 9088 9152Line 16: 40 88 471 1027 1508 1884 2095 2432 2944 3589 3963 4405 4748 50565440 5824 6336 6784 8128 8910 9071 9088 9152 第17行:35 98 265 1016 1348 1706 2294 2775 3250 4032 4303 4816 5118 53305920 6480 6855 7504 7863 8268 9042 9176 9216Line 17: 35 98 265 1016 1348 1706 2294 2775 3250 4032 4303 4816 5118 53305920 6480 6855 7504 7863 8268 9042 9176 9216 第18行:113 128 576 960 1408 1856 2240 3136 3520 3968 4352 4800 5302 56966080 6528 6912 7360 7936 8576 8832 9216 9280Line 18: 113 128 576 960 1408 1856 2240 3136 3520 3968 4352 4800 5302 56966080 6528 6912 7360 7936 8576 8832 9216 9280 第19行:38 65 561 819 1164 1548 2204 2892 3340 3724 4439 4658 5004 55505936 6478 6732 7757 8012 8244 9199 9271 9280;Line 19: 38 65 561 819 1164 1548 2204 2892 3340 3724 4439 4658 5004 55505936 6478 6732 7757 8012 8244 9199 9271 9280; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 4.根据权利要求1所述的方法,其特征在于,所述码长n=9984,所述码率为R=13/16,所述Z=64,所述s=192时,所述H矩阵表示为:4. method according to claim 1, is characterized in that, described code length n=9984, described code rate R=13/16, described Z=64, when described s=192, described H The matrix is expressed as: 第0行:17 156 413 1371 2211 2561 3397 3910 4614 6070 6244 6662 7213 74308128Line 0: 17 156 413 1371 2211 2561 3397 3910 4614 6070 6244 6662 7213 74308128 第1行:29 103 179 758 1203 1907 3000 3591 4505 4927 5363 6400 7000 76038179 8192Line 1: 29 103 179 758 1203 1907 3000 3591 4505 4927 5363 6400 7000 76038179 8192 第2行:19 155 800 1344 2112 2688 3936 4160 4992 5504 6860 7168 7334 79738256Line 2: 19 155 800 1344 2112 2688 3936 4160 4992 5504 6860 7168 7334 79738256 第3行:48 135 999 1628 2045 2709 3763 4032 5153 5591 6272 6912 7959 83098320Line 3: 48 135 999 1628 2045 2709 3763 4032 5153 5591 6272 6912 7959 83098320 第4行:4 89 376 939 1303 1936 2829 3232 4458 4612 5953 6685 6824 7484 83548384Line 4: 4 89 376 939 1303 1936 2829 3232 4458 4612 5953 6685 6824 7484 83548384 第5行:96 180 862 1675 2317 3045 3599 3968 5146 5561 6331 7090 8069 83848448Line 5: 96 180 862 1675 2317 3045 3599 3968 5146 5561 6331 7090 8069 83848448 第6行:43 148 705 1146 1849 2901 3887 4300 4931 5987 6343 7160 7789 84888512Line 6: 43 148 705 1146 1849 2901 3887 4300 4931 5987 6343 7160 7789 84888512 第7行:2 130 576 2010 2335 2705 3782 4163 5097 5832 6208 6848 8192 85128576Line 7: 2 130 576 2010 2335 2705 3782 4163 5097 5832 6208 6848 8192 85128576 第8行:90 263 510 1630 1821 2670 3390 4148 4734 5385 6384 7354 8089 86378640Line 8: 90 263 510 1630 1821 2670 3390 4148 4734 5385 6384 7354 8089 86378640 第9行:61 114 581 1337 2389 2533 3223 3946 4716 5565 6061 7606 7788 86988704Line 9: 61 114 581 1337 2389 2533 3223 3946 4716 5565 6061 7606 7788 86988704 第10行:2 96 376 534 1507 1974 2550 3318 4014 4700 5750 6150 6724 75428158 8768Line 10: 2 96 376 534 1507 1974 2550 3318 4014 4700 5750 6150 6724 75428158 8768 第11行:26 99 169 512 1428 1792 2771 3868 4024 4993 5741 6080 6720 86408768 8832Line 11: 26 99 169 512 1428 1792 2771 3868 4024 4993 5741 6080 6720 86408768 8832 第12行:6 186 384 1088 2556 2560 3514 4584 4888 5368 6107 7148 7627 76808896Line 12: 6 186 384 1088 2556 2560 3514 4584 4888 5368 6107 7148 7627 76808896 第13行:119 150 883 1230 2059 2926 3313 4130 5262 5383 6270 6899 7738 89358960Line 13: 119 150 883 1230 2059 2926 3313 4130 5262 5383 6270 6899 7738 89358960 第14行:116 192 960 1674 2434 3008 3712 4593 5213 5824 6768 7546 8061 89609024Line 14: 116 192 960 1674 2434 3008 3712 4593 5213 5824 6768 7546 8061 89609024 第15行:19 115 131 450 1197 2280 3078 3699 4460 4657 5766 6540 7254 75209080 9088Line 15: 19 115 131 450 1197 2280 3078 3699 4460 4657 5766 6540 7254 75209080 9088 第16行:57 170 889 1759 2297 2937 3715 4409 5113 5753 6642 7161 8050 91459152Line 16: 57 170 889 1759 2297 2937 3715 4409 5113 5753 6642 7161 8050 91459152 第17行:35 115 136 904 1544 2312 2952 3656 4424 5128 5768 6472 7944 87129160 9216Line 17: 35 115 136 904 1544 2312 2952 3656 4424 5128 5768 6472 7944 87129160 9216 第18行:98 256 1243 1600 2368 3072 3776 4480 5184 5888 6528 7232 8000 92169280Line 18: 98 256 1243 1600 2368 3072 3776 4480 5184 5888 6528 7232 8000 92169280 第19行:108 227 988 1106 2055 3109 3291 4943 5104 5631 6031 6946 8202 93319344Line 19: 108 227 988 1106 2055 3109 3291 4943 5104 5631 6031 6946 8202 93319344 第20行:72 149 788 1730 2443 2671 3449 4500 4793 5433 6463 6841 7673 94019408Line 20: 72 149 788 1730 2443 2671 3449 4500 4793 5433 6463 6841 7673 94019408 第21行:1 168 768 1472 2176 2816 3584 4288 5210 5632 6400 7292 7872 94089472Line 21: 1 168 768 1472 2176 2816 3584 4288 5210 5632 6400 7292 7872 94089472 第22行:30 102 145 444 1399 2407 3192 3330 4083 4845 5493 6309 7385 88789523 9536Line 22: 30 102 145 444 1399 2407 3192 3330 4083 4845 5493 6309 7385 88789523 9536 第23行:110 264 680 1557 1989 3033 3461 4335 4869 5665 6341 6981 7749 95419600Line 23: 110 264 680 1557 1989 3033 3461 4335 4869 5665 6341 6981 7749 95419600 第24行:48 110 148 1079 1209 2164 2953 3444 4415 4778 5472 6631 6800 73697707 9664Line 24: 48 110 148 1079 1209 2164 2953 3444 4415 4778 5472 6631 6800 73697707 9664 第25行:122 154 704 1408 2249 2752 3520 4224 5328 5568 6691 7464 7808 96649728Line 25: 122 154 704 1408 2249 2752 3520 4224 5328 5568 6691 7464 7808 96649728 第26行:172 497 639 1456 2175 2617 3341 4055 4863 5920 6173 6924 7864 97369792Line 26: 172 497 639 1456 2175 2617 3341 4055 4863 5920 6173 6924 7864 97369792 第27行:8 98 138 1060 1216 1920 3155 3479 4221 4800 5650 6144 7002 79079815 9856Line 27: 8 98 138 1060 1216 1920 3155 3479 4221 4800 5650 6144 7002 79079815 9856 第28行:20 65 214 574 1556 1891 2826 3703 4265 5053 5765 6132 7398 76299911 9920Line 28: 20 65 214 574 1556 1891 2826 3703 4265 5053 5765 6132 7398 76299911 9920 第29行:19 171 959 1280 2048 2624 3582 4096 5295 5902 6485 7040 7911 99209984Line 29: 19 171 959 1280 2048 2624 3582 4096 5295 5902 6485 7040 7911 99209984 第30行:55 94 684 1480 1758 2756 3814 4265 4754 5834 6531 8740 8848 999410048Line 30: 55 94 684 1480 1758 2756 3814 4265 4754 5834 6531 8740 8848 999410048 第31行:73 320 1024 1664 2432 3136 3840 4544 5248 5952 6592 7296 806410048 10112Line 31: 73 320 1024 1664 2432 3136 3840 4544 5248 5952 6592 7296 806410048 10112 第32行:58 167 688 1864 2182 3237 3562 4401 4976 5488 6483 7053 7830 964810112;Line 32: 58 167 688 1864 2182 3237 3562 4401 4976 5488 6483 7053 7830 964810112; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 5.根据权利要求1所述的方法,其特征在于,所述码长n=10752,所述码率为R=3/4,所述Z=64,所述s=256时,所述H矩阵表示为:5. method according to claim 1, is characterized in that, described code length n=10752, described code rate R=3/4, described Z=64, when described s=256, described H The matrix is expressed as: 第0行:53 199 1356 1994 3149 3624 4661 6453 7300 7458 7839 8128Line 0: 53 199 1356 1994 3149 3624 4661 6453 7300 7458 7839 8128 第1行:8 234 1096 1992 3080 3976 6024 7432 7870 8072 8136 8192Line 1: 8 234 1096 1992 3080 3976 6024 7432 7870 8072 8136 8192 第2行:113 234 1495 1914 3270 3613 5526 6582 7061 8067 8233 8256Line 2: 113 234 1495 1914 3270 3613 5526 6582 7061 8067 8233 8256 第3行:89 168 533 896 1792 3025 4354 4861 5824 6848 7945 8256 8320Line 3: 89 168 533 896 1792 3025 4354 4861 5824 6848 7945 8256 8320 第4行:5 238 1087 1600 2624 3520 5075 6239 6968 7558 8359 8384Line 4: 5 238 1087 1600 2624 3520 5075 6239 6968 7558 8359 8384 第5行:29 224 830 1550 2590 4015 4693 5504 6500 7884 8390 8448Line 5: 29 224 830 1550 2590 4015 4693 5504 6500 7884 8390 8448 第6行:18 255 1147 1630 2738 4041 5187 5441 7002 7767 8504 8512Line 6: 18 255 1147 1630 2738 4041 5187 5441 7002 7767 8504 8512 第7行:69 194 1154 2114 3138 4098 4994 6082 7282 7405 8514 8576Line 7: 69 194 1154 2114 3138 4098 4994 6082 7282 7405 8514 8576 第8行:243 789 1709 2557 3491 4541 5812 6692 7580 8447 8640Line 8: 243 789 1709 2557 3491 4541 5812 6692 7580 8447 8640 第9行:55 155 1212 1537 2543 4231 5031 5577 6739 8577 8641 8704Line 9: 55 155 1212 1537 2543 4231 5031 5577 6739 8577 8641 8704 第10行:78 485 1398 2254 3439 4238 5134 6222 7118 7374 8595 8768Line 10: 78 485 1398 2254 3439 4238 5134 6222 7118 7374 8595 8768 第11行:126 320 1280 2304 3264 4288 5184 6272 7168 8704 8768 8832Line 11: 126 320 1280 2304 3264 4288 5184 6272 7168 8704 8768 8832 第12行:127 197 551 2358 2632 3733 5191 5563 7039 7660 8868 8896Line 12: 127 197 551 2358 2632 3733 5191 5563 7039 7660 8868 8896 第13行:0 235 686 3069 3819 3952 4756 4982 5590 6625 8918 8960Line 13: 0 235 686 3069 3819 3952 4756 4982 5590 6625 8918 8960 第14行:72 187 1427 2159 2730 3863 4586 5882 6506 7937 9002 9024Line 14: 72 187 1427 2159 2730 3863 4586 5882 6506 7937 9002 9024 第15行:49 217 704 1949 3135 3648 3776 4785 5917 6801 9024 9088Line 15: 49 217 704 1949 3135 3648 3776 4785 5917 6801 9024 9088 第16行:21 191 863 1970 2659 3579 4544 5479 7129 7525 9115 9152Line 16: 21 191 863 1970 2659 3579 4544 5479 7129 7525 9115 9152 第17行:40 177 562 2203 2710 4109 5070 5912 6892 7527 9063 9216Line 17: 40 177 562 2203 2710 4109 5070 5912 6892 7527 9063 9216 第18行:41 246 640 1895 3493 3886 5124 5747 6528 7488 9216 9280Line 18: 41 246 640 1895 3493 3886 5124 5747 6528 7488 9216 9280 第19行:26 250 695 2205 2858 3543 4522 6342 6956 9195 9299 9344Line 19: 26 250 695 2205 2858 3543 4522 6342 6956 9195 9299 9344 第20行:80 138 1116 1821 2816 4132 4608 5632 6656 7680 9344 9408Line 20: 80 138 1116 1821 2816 4132 4608 5632 6656 7680 9344 9408 第21行:78 220 1429 2450 2557 3727 3801 5053 5665 6461 7869 9472Line 21: 78 220 1429 2450 2557 3727 3801 5053 5665 6461 7869 9472 第22行:112 174 989 1729 2960 4672 4946 6227 6720 8736 9472 9536Line 22: 112 174 989 1729 2960 4672 4946 6227 6720 8736 9472 9536 第23行:121 128 576 1624 2560 3690 5434 6004 7108 8192 9573 9600Line 23: 121 128 576 1624 2560 3690 5434 6004 7108 8192 9573 9600 第24行:106 154 455 1013 1597 2810 3959 5293 5823 6478 7935 9627 9664Line 24: 106 154 455 1013 1597 2810 3959 5293 5823 6478 7935 9627 9664 第25行:114 197 1244 1704 3256 4318 4454 6162 6407 7786 9431 9728Line 25: 114 197 1244 1704 3256 4318 4454 6162 6407 7786 9431 9728 第26行:64 384 1344 2368 3328 4413 5248 6360 7232 9664 9728 9792Line 26: 64 384 1344 2368 3328 4413 5248 6360 7232 9664 9728 9792 第27行:131 280 1179 2490 2970 4178 4880 5839 7276 7643 8319 9856Line 27: 131 280 1179 2490 2970 4178 4880 5839 7276 7643 8319 9856 第28行:67 228 1343 2048 3166 4032 6004 6284 6976 8000 9856 9920Line 28: 67 228 1343 2048 3166 4032 6004 6284 6976 8000 9856 9920 第29行:147 400 1064 2158 2930 4427 4635 5455 7349 8062 9980 9984Line 29: 147 400 1064 2158 2930 4427 4635 5455 7349 8062 9980 9984 第30行:24 128 960 1728 1856 3374 4800 5888 6912 9818 9984 10048Line 30: 24 128 960 1728 1856 3374 4800 5888 6912 9818 9984 10048 第31行:21 201 1233 2080 2944 3840 4864 6305 7040 7168 8033 10112Line 31: 21 201 1233 2080 2944 3840 4864 6305 7040 7168 8033 10112 第32行:6 225 950 1835 2609 4279 5299 5644 6672 9804 10146 10176Line 32: 6 225 950 1835 2609 4279 5299 5644 6672 9804 10146 10176 第33行:159 361 633 2296 3255 3696 6085 7696 8088 10095 10232 10240Line 33: 159 361 633 2296 3255 3696 6085 7696 8088 10095 10232 10240 第34行:43 137 1309 2397 2752 4329 4676 6207 6865 7616 10048 10304Line 34: 43 137 1309 2397 2752 4329 4676 6207 6865 7616 10048 10304 第35行:49 215 710 2100 2870 4204 4914 5618 6811 7727 10367 10368Line 35: 49 215 710 2100 2870 4204 4914 5618 6811 7727 10367 10368 第36行:117 131 901 2002 3446 4079 5138 6125 6603 7563 9562 10432Line 36: 117 131 901 2002 3446 4079 5138 6125 6603 7563 9562 10432 第37行:125 256 1216 2176 3200 4160 5056 6144 10240 10368 10432 10496Line 37: 125 256 1216 2176 3200 4160 5056 6144 10240 10368 10432 10496 第38行:69 345 834 2396 3335 4013 5410 5738 6577 9439 10551 10560Line 38: 69 345 834 2396 3335 4013 5410 5738 6577 9439 10551 10560 第39行:112 162 730 1711 2912 3631 4841 5743 7194 7791 10607 10624Line 39: 112 162 730 1711 2912 3631 4841 5743 7194 7791 10607 10624 第40行:57 188 832 2346 3088 3712 4736 5760 6784 10514 10624 10688Line 40: 57 188 832 2346 3088 3712 4736 5760 6784 10514 10624 10688 第41行:34 243 599 1485 3310 3518 4486 5389 6777 9335 10694 10752Line 41: 34 243 599 1485 3310 3518 4486 5389 6777 9335 10694 10752 第42行:92 317 1534 1745 2290 2775 4590 6022 6654 8932 10766 10816Line 42: 92 317 1534 1745 2290 2775 4590 6022 6654 8932 10766 10816 第43行:189 420 1058 1954 3042 3938 5367 5986 7970 10269 10850 10880Line 43: 189 420 1058 1954 3042 3938 5367 5986 7970 10269 10850 10880 第44行:140 448 1408 2432 3392 4352 5312 6336 7296 9184 10880 10944Line 44: 140 448 1408 2432 3392 4352 5312 6336 7296 9184 10880 10944 第45行:1 146 788 2900 4434 4948 5355 6040 7892 10628 10810 10944;Line 45: 1 146 788 2900 4434 4948 5355 6040 7892 10628 10810 10944; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 6.根据权利要求1所述的方法,其特征在于,所述码长n=12928,所述码率为R=5/8,所述Z=64,所述s=576时,所述H矩阵表示为:6. The method according to claim 1, characterized in that, the code length n=12928, the code rate R=5/8, the Z=64, when the s=576, the H The matrix is expressed as: 第0行:430 1216 3550 3802 5326 6769 8128Line 0: 430 1216 3550 3802 5326 6769 8128 第1行:492 1119 2525 4253 6761 8187 8192Line 1: 492 1119 2525 4253 6761 8187 8192 第2行:98 366 1938 3708 5707 7296 8192 8256Line 2: 98 366 1938 3708 5707 7296 8192 8256 第3行:42 625 2493 2900 4718 6574 8271 8320Line 3: 42 625 2493 2900 4718 6574 8271 8320 第4行:363 2091 3883 6105 7659 8363 8384Line 4: 363 2091 3883 6105 7659 8363 8384 第5行:111 512 2240 3776 3968 5888 8384 8448Line 5: 111 512 2240 3776 3968 5888 8384 8448 第6行:471 1728 3520 5376 7168 8000 8512Line 6: 471 1728 3520 5376 7168 8000 8512 第7行:18 440 2144 4169 5184 7040 8569 8576Line 7: 18 440 2144 4169 5184 7040 8569 8576 第8行:58 482 1324 2794 4922 6387 8629 8640Line 8: 58 482 1324 2794 4922 6387 8629 8640 第9行:129 2334 3969 4394 7654 8645 8704Line 9: 129 2334 3969 4394 7654 8645 8704 第10行:103 247 1424 3909 5268 6188 8748 8768Line 10: 103 247 1424 3909 5268 6188 8748 8768 第11行:66 217 1676 3261 5511 6582 8768 8832Line 11: 66 217 1676 3261 5511 6582 8768 8832 第12行:428 2332 2946 4510 7232 8849 8896Line 12: 428 2332 2946 4510 7232 8849 8896 第13行:465 2296 5859 7552 8064 8896 8960Line 13: 465 2296 5859 7552 8064 8896 8960 第14行:570 1049 2612 5834 7876 9022 9024Line 14: 570 1049 2612 5834 7876 9022 9024 第15行:427 1159 3167 5594 7081 9063 9088Line 15: 427 1159 3167 5594 7081 9063 9088 第16行:34 311 1344 5125 7054 8084 9088 9152Line 16: 34 311 1344 5125 7054 8084 9088 9152 第17行:262 1280 3846 4928 6784 9171 9216Line 17: 262 1280 3846 4928 6784 9171 9216 第18行:415 1882 2880 4736 7606 9257 9280Line 18: 415 1882 2880 4736 7606 9257 9280 第19行:224 1809 2562 5315 6814 9293 9344Line 19: 224 1809 2562 5315 6814 9293 9344 第20行:472 768 4141 5918 6808 9363 9408Line 20: 472 768 4141 5918 6808 9363 9408 第21行:701 905 3352 5385 7157 9451 9472Line 21: 701 905 3352 5385 7157 9451 9472 第22行:159 2188 3593 4863 6463 9479 9536Line 22: 159 2188 3593 4863 6463 9479 9536 第23行:29 342 1979 3328 5430 7939 9536 9600Line 23: 29 342 1979 3328 5430 7939 9536 9600 第24行:46 426 872 4397 6046 7360 9659 9664Line 24: 46 426 872 4397 6046 7360 9659 9664 第25行:48 405 1655 4228 4330 7761 8048 9728Line 25: 48 405 1655 4228 4330 7761 8048 9728 第26行:138 223 960 2913 5241 6895 9728 9792Line 26: 138 223 960 2913 5241 6895 9728 9792 第27行:267 892 4134 4521 6322 9828 9856Line 27: 267 892 4134 4521 6322 9828 9856 第28行:256 1984 3712 5696 7488 9856 9920Line 28: 256 1984 3712 5696 7488 9856 9920 第29行:442 2369 2877 4879 7784 9954 9984Line 29: 442 2369 2877 4879 7784 9954 9984 第30行:4 317 2289 3392 5686 7489 9984 10048Line 30: 4 317 2289 3392 5686 7489 9984 10048 第31行:28 549 1472 3990 6159 7490 10056 10112Line 31: 28 549 1472 3990 6159 7490 10056 10112 第32行:275 2084 3327 4309 6680 10116 10176Line 32: 275 2084 3327 4309 6680 10116 10176 第33行:122 278 1266 2688 5217 6400 10176 10240Line 33: 122 278 1266 2688 5217 6400 10176 10240 第34行:25 138 1228 3057 5042 7277 10247 10304Line 34: 25 138 1228 3057 5042 7277 10247 10304 第35行:86 136 1733 2760 4969 6560 10312 10368Line 35: 86 136 1733 2760 4969 6560 10312 10368 第36行:64 656 2304 4032 5952 7872 10368 10432Line 36: 64 656 2304 4032 5952 7872 10368 10432 第37行:327 2417 3713 4396 6940 10441 10496Line 37: 327 2417 3713 4396 6940 10441 10496 第38行:28 380 1088 3055 5137 6615 10496 10560Line 38: 28 380 1088 3055 5137 6615 10496 10560 第39行:340 1503 3459 4733 6621 10604 10624Line 39: 340 1503 3459 4733 6621 10604 10624 第40行:518 1819 2676 5453 8479 10632 10688Line 40: 518 1819 2676 5453 8479 10632 10688 第41行:319 896 2624 5962 6272 10688 10752Line 41: 319 896 2624 5962 6272 10688 10752 第42行:34 183 1560 4266 4779 7230 10793 10816Line 42: 34 183 1560 4266 4779 7230 10793 10816 第43行:521 1748 3200 4992 6848 10816 10880Line 43: 521 1748 3200 4992 6848 10816 10880 第44行:40 242 1989 2944 5951 6592 10908 10944Line 44: 40 242 1989 2944 5951 6592 10908 10944 第45行:125 269 1325 2688 4288 7719 10992 11008Line 45: 125 269 1325 2688 4288 7719 10992 11008 第46行:0 310 829 3129 5081 6517 11017 11072Line 46: 0 310 829 3129 5081 6517 11017 11072 第47行:570 2004 3648 5632 7424 11072 11136Line 47: 570 2004 3648 5632 7424 11072 11136 第48行:44 310 994 3475 4544 7683 11191 11200Line 48: 44 310 994 3475 4544 7683 11191 11200 第49行:193 2064 2954 4735 7026 11256 11264Line 49: 193 2064 2954 4735 7026 11256 11264 第50行:24 217 793 2727 6128 7363 9668 11328Line 50: 24 217 793 2727 6128 7363 9668 11328 第51行:148 576 2368 4096 6016 7936 11328 11392Line 51: 148 576 2368 4096 6016 7936 11328 11392 第52行:187 720 1153 3009 4837 6657 11396 11456Line 52: 187 720 1153 3009 4837 6657 11396 11456 第53行:0 448 2176 4033 5824 7744 11456 11520Line 53: 0 448 2176 4033 5824 7744 11456 11520 第54行:9 394 1459 4477 5111 6270 11558 11584Line 54: 9 394 1459 4477 5111 6270 11558 11584 第55行:320 1600 3456 5120 6976 11584 11648Line 55: 320 1600 3456 5120 6976 11584 11648 第56行:97 454 2114 4665 6022 7204 11654 11712Line 56: 97 454 2114 4665 6022 7204 11654 11712 第57行:191 938 1566 2816 4608 6464 11712 11776Line 57: 191 938 1566 2816 4608 6464 11712 11776 第58行:46 489 1708 3097 4419 6211 11827 11840Line 58: 46 489 1708 3097 4419 6211 11827 11840 第59行:143 592 2549 4602 5312 7104 11840 11904Line 59: 143 592 2549 4602 5312 7104 11840 11904 第60行:94 330 1029 2560 4741 7624 11907 11968Line 60: 94 330 1029 2560 4741 7624 11907 11968 第61行:436 2187 2856 4491 6276 12008 12032Line 61: 436 2187 2856 4491 6276 12008 12032 第62行:2 394 1792 3584 5440 7331 12032 12096Line 62: 2 394 1792 3584 5440 7331 12032 12096 第63行:108 366 1664 3607 5248 7348 12124 12160Line 63: 108 366 1664 3607 5248 7348 12124 12160 第64行:552 1024 3701 5595 6978 12199 12224Line 64: 552 1024 3701 5595 6978 12199 12224 第65行:20 368 1161 3526 4625 6701 12244 12288Line 65: 20 368 1161 3526 4625 6701 12244 12288 第66行:2 232 1359 3841 4958 6922 12288 12352Line 66: 2 232 1359 3841 4958 6922 12288 12352 第67行:33 518 1490 5443 5819 6235 11321 12416Line 67: 33 518 1490 5443 5819 6235 11321 12416 第68行:503 1536 5056 7592 8072 12416 12480Line 68: 503 1536 5056 7592 8072 12416 12480 第69行:36 233 832 3439 5551 6479 12513 12544Line 69: 36 233 832 3439 5551 6479 12513 12544 第70行:114 490 1631 3328 5302 12359 12580 12608Line 70: 114 490 1631 3328 5302 12359 12580 12608 第71行:498 747 3245 5658 6418 7844 12672Line 71: 498 747 3245 5658 6418 7844 12672 第72行:139 530 2523 3136 4864 7112 12672 12736Line 72: 139 530 2523 3136 4864 7112 12672 12736 第73行:1 515 3167 4047 6007 6861 12799 12800Line 73: 1 515 3167 4047 6007 6861 12799 12800 第74行:3 284 2465 3120 4848 6768 12836 12864Line 74: 3 284 2465 3120 4848 6768 12836 12864 第75行:384 2112 3904 5760 7680 12864 12928Line 75: 384 2112 3904 5760 7680 12864 12928 第76行:57 559 986 3924 4560 6148 12990 12992Line 76: 57 559 986 3924 4560 6148 12990 12992 第77行:10 221 1112 3408 6356 7473 12993 13056Line 77: 10 221 1112 3408 6356 7473 12993 13056 第78行:343 1920 3750 5568 7360 13056 13120Line 78: 343 1920 3750 5568 7360 13056 13120 第79行:234 727 2678 4417 7468 13142 13184Line 79: 234 727 2678 4417 7468 13142 13184 第80行:47 365 1902 3269 5008 6341 13189 13248Line 80: 47 365 1902 3269 5008 6341 13189 13248 第81行:478 1346 2779 5752 7822 8459 13312Line 81: 478 1346 2779 5752 7822 8459 13312 第82行:228 1892 4212 5540 7268 13348 13376Line 82: 228 1892 4212 5540 7268 13348 13376 第83行:176 640 2432 4160 6080 12608 13376 13440Line 83: 176 640 2432 4160 6080 12608 13376 13440 第84行:22 533 1471 3327 5767 6975 13311 13440;Line 84: 22 533 1471 3327 5767 6975 13311 13440; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 7.根据权利要求1所述的方法,其特征在于,所述码长n=16128,所述码率为R=1/2,所述Z=64,所述s=960时,所述H矩阵表示为:7. The method according to claim 1, characterized in that, the code length n=16128, the code rate R=1/2, the Z=64, when the s=960, the H The matrix is expressed as: 第0行:384 2304 5312 7680 7936 8128Line 0: 384 2304 5312 7680 7936 8128 第1行:96 798 7691 7940 8156 8192Line 1: 96 798 7691 7940 8156 8192 第2行:83 739 3123 5976 7552 8256Line 2: 83 739 3123 5976 7552 8256 第3行:91 728 2696 7105 8298 8320Line 3: 91 728 2696 7105 8298 8320 第4行:101 851 3881 6331 7612 8384Line 4: 101 851 3881 6331 7612 8384 第5行:328 738 3762 6261 8381 8448Line 5: 328 738 3762 6261 8381 8448 第6行:5 416 1809 3325 8404 8475 8512Line 6: 5 416 1809 3325 8404 8475 8512 第7行:436 1188 4860 7405 7523 8576Line 7: 436 1188 4860 7405 7523 8576 第8行:144 832 6891 8244 8597 8640Line 8: 144 832 6891 8244 8597 8640 第9行:94 991 3257 6667 7855 8704Line 9: 94 991 3257 6667 7855 8704 第10行:331 871 4668 7847 8743 8768Line 10: 331 871 4668 7847 8743 8768 第11行:2 638 1917 3520 7340 8640 8832Line 11: 2 638 1917 3520 7340 8640 8832 第12行:43 343 1805 5174 8775 8882 8896Line 12: 43 343 1805 5174 8775 8882 8896 第13行:114 911 4419 6607 8898 8960Line 13: 114 911 4419 6607 8898 8960 第14行:77 890 2624 6352 8960 9024Line 14: 77 890 2624 6352 8960 9024 第15行:49 206 653 3342 6953 9037 9088Line 15: 49 206 653 3342 6953 9037 9088 第16行:104 906 3705 6408 9096 9152Line 16: 104 906 3705 6408 9096 9152 第17行:546 714 3472 8080 9168 9216Line 17: 546 714 3472 8080 9168 9216 第18行:62 161 1051 5039 5828 6303 9280Line 18: 62 161 1051 5039 5828 6303 9280 第19行:32 338 1984 5056 9216 9280 9344Line 19: 32 338 1984 5056 9216 9280 9344 第20行:103 698 2196 3243 7449 8114 9408Line 20: 103 698 2196 3243 7449 8114 9408 第21行:39 459 687 2646 5585 9430 9472Line 21: 39 459 687 2646 5585 9430 9472 第22行:33 368 1303 4329 6553 9505 9536Line 22: 33 368 1303 4329 6553 9505 9536 第23行:83 786 4697 6788 9392 9600Line 23: 83 786 4697 6788 9392 9600 第24行:64 864 3852 5589 9573 9664Line 24: 64 864 3852 5589 9573 9664 第25行:91 247 709 2497 5863 9655 9728Line 25: 91 247 709 2497 5863 9655 9728 第26行:41 77 2387 2901 9685 9749 9792Line 26: 41 77 2387 2901 9685 9749 9792 第27行:212 942 2807 5715 8971 9856Line 27: 212 942 2807 5715 8971 9856 第28行:57 550 1683 4165 8561 9856 9920Line 28: 57 550 1683 4165 8561 9856 9920 第29行:58 259 682 4136 6144 9977 9984Line 29: 58 259 682 4136 6144 9977 9984 第30行:58 144 2272 5358 9255 10002 10048Line 30: 58 144 2272 5358 9255 10002 10048 第31行:191 754 4009 6995 10098 10112Line 31: 191 754 4009 6995 10098 10112 第32行:116 822 3702 9802 10166 10176Line 32: 116 822 3702 9802 10166 10176 第33行:595 1157 4332 7237 10181 10240Line 33: 595 1157 4332 7237 10181 10240 第34行:102 313 1344 5307 7424 10240 10304Line 34: 102 313 1344 5307 7424 10240 10304 第35行:305 681 4395 6063 10306 10368Line 35: 305 681 4395 6063 10306 10368 第36行:565 2747 4612 8048 10368 10432Line 36: 565 2747 4612 8048 10368 10432 第37行:160 846 3529 8024 10478 10496Line 37: 160 846 3529 8024 10478 10496 第38行:8 602 1239 2969 6278 10502 10560Line 38: 8 602 1239 2969 6278 10502 10560 第39行:481 743 3912 5669 9122 10624Line 39: 481 743 3912 5669 9122 10624 第40行:28 475 896 3904 7657 10624 10688Line 40: 28 475 896 3904 7657 10624 10688 第41行:95 525 2437 4691 5808 10727 10752Line 41: 95 525 2437 4691 5808 10727 10752 第42行:58 207 1620 3008 6935 10752 10816Line 42: 58 207 1620 3008 6935 10752 10816 第43行:95 755 5271 7778 10841 10880Line 43: 95 755 5271 7778 10841 10880 第44行:31 214 953 2776 5984 10912 10944Line 44: 31 214 953 2776 5984 10912 10944 第45行:95 670 3502 6622 10974 11008Line 45: 95 670 3502 6622 10974 11008 第46行:583 2176 5184 10560 11008 11072Line 46: 583 2176 5184 10560 11008 11072 第47行:29 280 1302 3542 5658 9657 11136Line 47: 29 280 1302 3542 5658 9657 11136 第48行:526 1728 4800 7744 11136 11200Line 48: 526 1728 4800 7744 11136 11200 第49行:62 912 1460 4352 7894 11215 11264Line 49: 62 912 1460 4352 7894 11215 11264 第50行:117 628 2623 5631 11294 11328Line 50: 117 628 2623 5631 11294 11328 第51行:120 1469 3806 6503 11387 11392Line 51: 120 1469 3806 6503 11387 11392 第52行:67 959 2867 6169 11392 11456Line 52: 67 959 2867 6169 11392 11456 第53行:81 626 2846 7657 11509 11520Line 53: 81 626 2846 7657 11509 11520 第54行:501 757 4250 6341 11520 11584Line 54: 501 757 4250 6341 11520 11584 第55行:21 385 2174 4595 7511 11584 11648Line 55: 21 385 2174 4595 7511 11584 11648 第56行:36 403 927 4777 6511 11649 11712Line 56: 36 403 927 4777 6511 11649 11712 第57行:23 461 1739 4421 11124 11712 11776Line 57: 23 461 1739 4421 11124 11712 11776 第58行:18 173 1146 2977 11077 11810 11840Line 58: 18 173 1146 2977 11077 11810 11840 第59行:76 875 3392 6995 11840 11904Line 59: 76 875 3392 6995 11840 11904 第60行:98 731 2816 6208 11904 11968Line 60: 98 731 2816 6208 11904 11968 第61行:57 323 2376 3095 6369 10817 12032Line 61: 57 323 2376 3095 6369 10817 12032 第62行:229 721 4354 6687 12063 12096Line 62: 229 721 4354 6687 12063 12096 第63行:58 165 1581 3776 7188 12096 12160Line 63: 58 165 1581 3776 7188 12096 12160 第64行:368 815 3832 5766 12027 12224Line 64: 368 815 3832 5766 12027 12224 第65行:40 128 1046 3840 6976 12224 12288Line 65: 40 128 1046 3840 6976 12224 12288 第66行:94 811 5504 12201 12294 12352Line 66: 94 811 5504 12201 12294 12352 第67行:313 1206 4917 5464 6109 12416Line 67: 313 1206 4917 5464 6109 12416 第68行:56 273 2464 3366 5478 6566 12480Line 68: 56 273 2464 3366 5478 6566 12480 第69行:10 518 1792 5342 9792 12480 12544Line 69: 10 518 1792 5342 9792 12480 12544 第70行:617 1140 3200 12416 12590 12608Line 70: 617 1140 3200 12416 12590 12608 第71行:16 432 1216 4288 4992 7296 12672Line 71: 16 432 1216 4288 4992 7296 12672 第72行:89 690 4089 7909 12680 12736Line 72: 89 690 4089 7909 12680 12736 第73行:61 448 2368 5376 12608 12736 12800Line 73: 61 448 2368 5376 12608 12736 12800 第74行:29 545 2328 3017 5733 12825 12864Line 74: 29 545 2328 3017 5733 12825 12864 第75行:59 407 912 2499 7121 11490 12928Line 75: 59 407 912 2499 7121 11490 12928 第76行:569 890 3145 5824 12928 12992Line 76: 569 890 3145 5824 12928 12992 第77行:106 778 4122 6685 13014 13056Line 77: 106 778 4122 6685 13014 13056 第78行:21 575 1642 4714 7658 12906 13120Line 78: 21 575 1642 4714 7658 12906 13120 第79行:360 2112 5120 13056 13120 13184Line 79: 360 2112 5120 13056 13120 13184 第80行:88 781 2587 5518 8363 13248Line 80: 88 781 2587 5518 8363 13248 第81行:202 2002 5186 6735 13248 13312Line 81: 202 2002 5186 6735 13248 13312 第82行:5 372 2129 5239 13214 13330 13376Line 82: 5 372 2129 5239 13214 13330 13376 第83行:95 938 3338 6079 13439 13440Line 83: 95 938 3338 6079 13439 13440 第84行:113 886 3448 5950 13441 13504Line 84: 113 886 3448 5950 13441 13504 第85行:327 775 3712 6789 9495 13568Line 85: 327 775 3712 6789 9495 13568 第86行:124 719 3032 6541 13576 13632Line 86: 124 719 3032 6541 13576 13632 第87行:17 256 2048 5911 13504 13632 13696Line 87: 17 256 2048 5911 13504 13632 13696 第88行:7 79 1011 2635 5680 13031 13760Line 88: 7 79 1011 2635 5680 13031 13760 第89行:11 192 1856 4928 12352 13760 13824Line 89: 11 192 1856 4928 12352 13760 13824 第90行:9 119 775 3304 6762 13831 13888Line 90: 9 119 775 3304 6762 13831 13888 第91行:25 508 2090 3493 13711 13888 13952Line 91: 25 508 2090 3493 13711 13888 13952 第92行:31 144 1368 5087 7250 11968 14016Line 92: 31 144 1368 5087 7250 11968 14016 第93行:43 495 1586 4526 5986 14010 14080Line 93: 43 495 1586 4526 5986 14010 14080 第94行:461 1896 3968 7040 14080 14144Line 94: 461 1896 3968 7040 14080 14144 第95行:73 487 805 4909 12655 14186 14208Line 95: 73 487 805 4909 12655 14186 14208 第96行:48 143 1626 4520 6401 14214 14272Line 96: 48 143 1626 4520 6401 14214 14272 第97行:26 497 1024 4160 7168 14016 14336Line 97: 26 497 1024 4160 7168 14016 14336 第98行:63 627 2005 4227 12391 14272 14400Line 98: 63 627 2005 4227 12391 14272 14400 第99行:64 776 5432 14370 14449 14464Line 99: 64 776 5432 14370 14449 14464 第100行:78 667 3618 13195 13498 14528Line 100: 78 667 3618 13195 13498 14528 第101行:295 1536 4608 8512 14528 14592Line 101: 295 1536 4608 8512 14528 14592 第102行:549 1514 4966 14509 14592 14656Line 102: 549 1514 4966 14509 14592 14656 第103行:214 878 3620 6054 14696 14720Line 103: 214 878 3620 6054 14696 14720 第104行:405 1513 3584 7221 14720 14784Line 104: 405 1513 3584 7221 14720 14784 第105行:64 806 2881 6080 14814 14848Line 105: 64 806 2881 6080 14814 14848 第106行:117 935 5406 5519 14881 14912Line 106: 117 935 5406 5519 14881 14912 第107行:32 129 620 2752 7044 14912 14976Line 107: 32 129 620 2752 7044 14912 14976 第108行:436 576 3448 6464 14976 15040Line 108: 436 576 3448 6464 14976 15040 第109行:33 398 1922 2736 5921 15081 15104Line 109: 33 398 1922 2736 5921 15081 15104 第110行:257 1408 4480 7360 7789 15168Line 110: 257 1408 4480 7360 7789 15168 第111行:5 280 661 4089 6114 15207 15232Line 111: 5 280 661 4089 6114 15207 15232 第112行:294 928 5152 13721 15252 15296Line 112: 294 928 5152 13721 15252 15296 第113行:229 2503 2905 6263 15129 15360Line 113: 229 2503 2905 6263 15129 15360 第114行:20 304 1664 4736 14464 15360 15424Line 114: 20 304 1664 4736 14464 15360 15424 第115行:52 701 1472 4544 7488 15454 15488Line 115: 52 701 1472 4544 7488 15454 15488 第116行:15 222 883 3176 6856 15493 15552Line 116: 15 222 883 3176 6856 15493 15552 第117行:24 553 2268 3287 7346 15319 15616Line 117: 24 553 2268 3287 7346 15319 15616 第118行:1 457 1742 6869 15573 15637 15680Line 118: 1 457 1742 6869 15573 15637 15680 第119行:33 540 1666 3656 7255 14866 15744Line 119: 33 540 1666 3656 7255 14866 15744 第120行:43 223 891 4773 7431 15760 15808Line 120: 43 223 891 4773 7431 15760 15808 第121行:333 637 3143 5817 11340 15872Line 121: 333 637 3143 5817 11340 15872 第122行:24 196 1280 4416 15808 15872 15936Line 122: 24 196 1280 4416 15808 15872 15936 第123行:102 671 3973 6427 14980 16000Line 123: 102 671 3973 6427 14980 16000 第124行:64 2071 3939 6912 16000 16064Line 124: 64 2071 3939 6912 16000 16064 第125行:68 852 2944 8148 15104 16128Line 125: 68 852 2944 8148 15104 16128 第126行:178 760 5058 16102 16170 16192Line 126: 178 760 5058 16102 16170 16192 第127行:108 813 4956 9673 15963 16256Line 127: 108 813 4956 9673 15963 16256 第128行:7 261 2618 4601 6204 16313 16320Line 128: 7 261 2618 4601 6204 16313 16320 第129行:122 687 5755 7566 15740 16384Line 129: 122 687 5755 7566 15740 16384 第130行:1 350 2234 4864 7872 16384 16448Line 130: 1 350 2234 4864 7872 16384 16448 第131行:641 2365 4172 6767 16454 16512Line 131: 641 2365 4172 6767 16454 16512 第132行:496 1088 4224 15985 16512 16576Line 132: 496 1088 4224 15985 16512 16576 第133行:24 621 1930 4096 16236 16627 16640Line 133: 24 621 1930 4096 16236 16627 16640 第134行:21 406 1015 4087 7159 16663 16704Line 134: 21 406 1015 4087 7159 16663 16704 第135行:614 1958 15718 16230 16742 16768Line 135: 614 1958 15718 16230 16742 16768 第136行:57 320 2240 5248 8000 16768 16832Line 136: 57 320 2240 5248 8000 16768 16832 第137行:21 174 899 4832 7040 16320 16896Line 137: 21 174 899 4832 7040 16320 16896 第138行:38 404 1360 3118 6634 16946 16960Line 138: 38 404 1360 3118 6634 16946 16960 第139行:0 512 2432 8192 8768 16960 17024Line 139: 0 512 2432 8192 8768 16960 17024 第140行:33 384 1261 3732 6804 16837 17024;Line 140: 33 384 1261 3732 6804 16837 17024; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 8.根据权利要求1所述的方法,其特征在于,所述码长n=9240,所述码率为R=7/8,所述Z=42,所述s=126时,所述H矩阵表示为:8. The method according to claim 1, characterized in that, the code length n=9240, the code rate R=7/8, the Z=42, when the s=126, the H The matrix is expressed as: 第0行:27 42 378 913 1260 1680 2100 2562 2982 3150 3402 3864 4242 47045124 5586 6006 6426 6846 7308 7728 8020 8106Line 0: 27 42 378 913 1260 1680 2100 2562 2982 3150 3402 3864 4242 47045124 5586 6006 6426 6846 7308 7728 8020 8106 第1行:120 435 580 1345 1654 2069 2330 2910 3091 4307 4426 4867 5472 58686196 6618 6988 7627 7996 8098 8128 8148Line 1: 120 435 580 1345 1654 2069 2330 2910 3091 4307 4426 4867 5472 58686196 6618 6988 7627 7996 8098 8128 8148 第2行:85 170 683 1014 1544 1914 2226 2870 3382 3920 4183 4368 4830 55196040 6306 6558 6888 7393 7686 7854 8190Line 2: 85 170 683 1014 1544 1914 2226 2870 3382 3920 4183 4368 4830 55196040 6306 6558 6888 7393 7686 7854 8190 第3行:13 80 110 840 1253 1780 2195 2528 2873 3465 3621 4082 4607 51955267 5901 6164 6691 6888 7169 7889 8211 8232Line 3: 13 80 110 840 1253 1780 2195 2528 2873 3465 3621 4082 4607 51955267 5901 6164 6691 6888 7169 7889 8211 8232 第4行:28 54 502 672 1176 1512 2058 2560 2856 3276 3738 4337 4785 49985557 5945 6462 6678 7224 7604 8022 8232 8274Line 4: 28 54 502 672 1176 1512 2058 2560 2856 3276 3738 4337 4785 49985557 5945 6462 6678 7224 7604 8022 8232 8274 第5行:44 91 502 1036 1349 2011 2277 3017 3422 3580 4156 4492 5197 55015894 6600 6700 7319 7488 8051 8304 8316Line 5: 44 91 502 1036 1349 2011 2277 3017 3422 3580 4156 4492 5197 55015894 6600 6700 7319 7488 8051 8304 8316 第6行:34 119 322 497 927 1392 2017 2452 2853 3289 3561 4260 4648 50145233 5854 6115 6863 7118 7782 7949 8350 8358Line 6: 34 119 322 497 927 1392 2017 2452 2853 3289 3561 4260 4648 50145233 5854 6115 6863 7118 7782 7949 8350 8358 第7行:51 246 666 1304 1506 2052 2430 2850 3270 3732 4152 4659 4992 54966051 6294 6769 7357 7596 8265 8394 8400Line 7: 51 246 666 1304 1506 2052 2430 2850 3270 3732 4152 4659 4992 54966051 6294 6769 7357 7596 8265 8394 8400 第8行:40 99 618 1097 1434 2083 2961 3152 3196 3511 3892 4110 4398 48545597 5972 6404 7036 7149 7432 7880 8442Line 8: 40 99 618 1097 1434 2083 2961 3152 3196 3511 3892 4110 4398 48545597 5972 6404 7036 7149 7432 7880 8442 第9行:13 48 270 804 1098 1392 1993 2358 2628 2778 3198 3660 4038 47715299 5382 6089 6222 6959 7285 7780 8448 8484Line 9: 13 48 270 804 1098 1392 1993 2358 2628 2778 3198 3660 4038 47715299 5382 6089 6222 6959 7285 7780 8448 8484 第10行:13 84 241 546 1000 1284 1932 2310 2730 3482 3803 4180 4536 49145334 5796 6295 6636 7140 7907 8316 8420 8526Line 10: 13 84 241 546 1000 1284 1932 2310 2730 3482 3803 4180 4536 49145334 5796 6295 6636 7140 7907 8316 8420 8526 第11行:44 120 876 1084 1555 1794 2400 2646 3328 3643 4237 4356 4813 56575763 6266 6785 6999 7601 7842 8563 8568Line 11: 44 120 876 1084 1555 1794 2400 2646 3328 3643 4237 4356 4813 56575763 6266 6785 6999 7601 7842 8563 8568 第12行:108 286 748 1268 1588 2158 2470 2638 2932 3338 3861 4192 4654 51205633 5956 6334 6754 7450 7636 8518 8610Line 12: 108 286 748 1268 1588 2158 2470 2638 2932 3338 3861 4192 4654 51205633 5956 6334 6754 7450 7636 8518 8610 第13行:60 294 756 1218 1596 2104 2478 2969 3318 3780 4200 4662 5040 55026022 6342 6762 7375 7644 8568 8610 8652Line 13: 60 294 756 1218 1596 2104 2478 2969 3318 3780 4200 4662 5040 5502 6022 6342 6762 7375 7644 8568 8610 8652 第14行:59 343 758 1140 1396 1946 2334 2605 2725 3110 3601 4056 4427 50375312 6109 6308 6666 6912 7250 7542 8694Line 14: 59 343 758 1140 1396 1946 2334 2605 2725 3110 3601 4056 4427 50375312 6109 6308 6666 6912 7250 7542 8694 第15行:20 69 431 659 1523 1646 2036 2510 2931 3568 3988 4450 4908 53635710 6369 6550 7283 7531 8104 8681 8734 8736Line 15: 20 69 431 659 1523 1646 2036 2510 2931 3568 3988 4450 4908 53635710 6369 6550 7283 7531 8104 8681 8734 8736 第16行:24 56 163 661 1072 1756 1896 2515 3056 3081 3925 4457 4613 51135355 5713 6147 6806 7029 7696 7949 8764 8778Line 16: 24 56 163 661 1072 1756 1896 2515 3056 3081 3925 4457 4613 51135355 5713 6147 6806 7029 7696 7949 8764 8778 第17行:39 61 208 544 1008 1640 1689 1848 2268 2688 3689 3990 4494 48725292 5754 6237 6877 7056 7845 7896 8778 8820Line 17: 39 61 208 544 1008 1640 1689 1848 2268 2688 3689 3990 4494 48725292 5754 6237 6877 7056 7845 7896 8778 8820 第18行:88 146 786 1172 1481 1878 2306 2646 3108 3716 4226 4718 5156 54095985 6442 6969 7069 7650 8661 8820 8862Line 18: 88 146 786 1172 1481 1878 2306 2646 3108 3716 4226 4718 5156 54095985 6442 6969 7069 7650 8661 8820 8862 第19行:6 125 312 627 956 1759 2209 3069 3401 3512 3737 4297 4533 48845285 5944 6212 6642 7184 7466 8856 8877 8904Line 19: 6 125 312 627 956 1759 2209 3069 3401 3512 3737 4297 4533 48845285 5944 6212 6642 7184 7466 8856 8877 8904 第20行:12 46 371 723 1134 1428 1974 2593 3026 3259 3801 4074 4578 50515418 5880 6482 6753 7182 7728 8148 8904 8946Line 20: 12 46 371 723 1134 1428 1974 2593 3026 3259 3801 4074 4578 50515418 5880 6482 6753 7182 7728 8148 8904 8946 第21行:23 70 109 586 1208 1711 1843 2239 2695 3296 3562 4015 4539 52205450 5798 6394 6990 7246 7743 8912 8973 8988Line 21: 23 70 109 586 1208 1711 1843 2239 2695 3296 3562 4015 4539 52205450 5798 6394 6990 7246 7743 8912 8973 8988 第22行:58 266 718 933 1575 1828 2471 2658 3160 3211 3877 3951 4372 48125222 5798 6256 6729 7135 7395 9001 9030Line 22: 58 266 718 933 1575 1828 2471 2658 3160 3211 3877 3951 4372 48125222 5798 6256 6729 7135 7395 9001 9030 第23行:10 76 338 800 968 1319 2183 2522 2942 3362 3824 4664 4959 50845546 5966 6386 6806 7268 7688 8402 9032 9072Line 23: 10 76 338 800 968 1319 2183 2522 2942 3362 3824 4664 4959 50845546 5966 6386 6806 7268 7688 8402 9032 9072 第24行:13 56 238 895 1107 1495 1964 2184 2995 3428 3764 3950 4720 51515516 5746 6489 6585 7347 7598 7831 8573 9114Line 24: 13 56 238 895 1107 1495 1964 2184 2995 3428 3764 3950 4720 51515516 5746 6489 6585 7347 7598 7831 8573 9114 第25行:7 91 411 518 905 1452 1844 2392 2788 3122 3693 4362 4522 4966 53965790 6525 6841 7038 7457 8154 9083 9156Line 25: 7 91 411 518 905 1452 1844 2392 2788 3122 3693 4362 4522 4966 53965790 6525 6841 7038 7457 8154 9083 9156 第26行:34 102 159 537 1238 1377 1923 2393 2771 3603 4050 4679 4917 56996110 6378 6627 7131 7509 7996 9134 9189 9198Line 26: 34 102 159 537 1238 1377 1923 2393 2771 3603 4050 4679 4917 56996110 6378 6627 7131 7509 7996 9134 9189 9198 第27行:71 84 681 1182 1603 1870 2416 2739 3840 4117 4559 5046 5432 57126174 6552 7089 7492 7924 9142 9207 9240Line 27: 71 84 681 1182 1603 1870 2416 2739 3840 4117 4559 5046 5432 57126174 6552 7089 7492 7924 9142 9207 9240 第28行:24 84 407 806 1602 1783 2245 2811 3256 3745 4024 4483 4793 55515673 6172 6951 7659 8056 8101 8484 9262 9282Line 28: 24 84 407 806 1602 1783 2245 2811 3256 3745 4024 4483 4793 55515673 6172 6951 7659 8056 8101 8484 9262 9282 第29行:86 420 840 1302 1722 2142 3024 3444 3486 3906 4284 4746 5166 56286048 6468 7350 7770 8988 9072 9282 9324Line 29: 86 420 840 1302 1722 2142 3024 3444 3486 3906 4284 4746 5166 56286048 6468 7350 7770 8988 9072 9282 9324 第30行:121 176 596 985 1058 2125 2594 2820 3620 4249 4920 5276 5598 58466530 7223 7526 7946 8744 9206 9290 9324;Line 30: 121 176 596 985 1058 2125 2594 2820 3620 4249 4920 5276 5598 58466530 7223 7526 7946 8744 9206 9290 9324; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 9.根据权利要求1所述的方法,其特征在于,所述码长n=9954,所述码率为R=13/16,所述Z=42,所述s=210时,所述H矩阵表示为:9. The method according to claim 1, characterized in that, the code length n=9954, the code rate R=13/16, the Z=42, when the s=210, the H The matrix is expressed as: 第0行:48 749 1801 2039 2142 2856 3612 4242 4956 5628 6426 7056 7812 80228106Line 0: 48 749 1801 2039 2142 2856 3612 4242 4956 5628 6426 7056 7812 80228106 第1行:14 141 410 1080 2350 2536 3310 4312 4923 5279 6078 6898 7923 81378148Line 1: 14 141 410 1080 2350 2536 3310 4312 4923 5279 6078 6898 7923 81378148 第2行:40 184 459 1581 1953 2727 3399 4029 4827 5945 6462 6843 7515 81878190Line 2: 40 184 459 1581 1953 2727 3399 4029 4827 5945 6462 6843 7515 81878190 第3行:47 150 714 1428 2100 2968 3849 4564 4914 5792 6384 7225 7770 81908232Line 3: 47 150 714 1428 2100 2968 3849 4564 4914 5792 6384 7225 7770 81908232 第4行:186 344 1069 2282 2578 3154 3935 5013 5370 5972 6686 7358 8237 8274Line 4: 186 344 1069 2282 2578 3154 3935 5013 5370 5972 6686 7358 8237 8274 第5行:7 114 399 1113 2510 2583 3852 4341 5047 5803 6111 7252 7664 82958316Line 5: 7 114 399 1113 2510 2583 3852 4341 5047 5803 6111 7252 7664 82958316 第6行:19 177 776 1450 1864 2656 3311 4478 5263 5759 6390 6776 7935 83308358Line 6: 19 177 776 1450 1864 2656 3311 4478 5263 5759 6390 6776 7935 83308358 第7行:161 462 1218 1806 2730 3645 4166 4994 5857 6174 6989 7537 8358 8400Line 7: 161 462 1218 1806 2730 3645 4166 4994 5857 6174 6989 7537 8358 8400 第8行:51 86 459 1617 2115 3121 3568 3903 4783 5515 6633 6672 7514 84208442Line 8: 51 86 459 1617 2115 3121 3568 3903 4783 5515 6633 6672 7514 84208442 第9行:167 334 1653 2011 2712 3500 4317 4610 5695 6267 7138 7737 8482 8484Line 9: 167 334 1653 2011 2712 3500 4317 4610 5695 6267 7138 7737 8482 8484 第10行:151 861 1717 2058 2932 3570 4398 4872 5586 6342 7346 7953 84848526Line 10: 151 861 1717 2058 2932 3570 4398 4872 5586 6342 7346 7953 84848526 第11行:59 108 491 1451 2152 3133 3779 4171 4705 5558 6012 6679 7532 85498568Line 11: 59 108 491 1451 2152 3133 3779 4171 4705 5558 6012 6679 7532 85498568 第12行:52 267 590 1264 1683 2481 3656 4440 4581 5920 6242 6955 7951 85718610Line 12: 52 267 590 1264 1683 2481 3656 4440 4581 5920 6242 6955 7951 85718610 第13行:51 122 750 1155 1818 2754 3255 4241 4683 5313 6222 6830 7425 86318652Line 13: 51 122 750 1155 1818 2754 3255 4241 4683 5313 6222 6830 7425 86318652 第14行:0 126 798 1470 2226 2940 3713 4326 4998 5712 6513 7140 7854 86528694Line 14: 0 126 798 1470 2226 2940 3713 4326 4998 5712 6513 7140 7854 86528694 第15行:1 177 992 1259 2417 2887 3329 4137 5245 5412 6271 7069 7874 87358736Line 15: 1 177 992 1259 2417 2887 3329 4137 5245 5412 6271 7069 7874 87358736 第16行:112 544 924 1344 1974 2916 3600 4158 5082 5544 6258 6972 7686 87368778Line 16: 112 544 924 1344 1974 2916 3600 4158 5082 5544 6258 6972 7686 87368778 第17行:154 803 1222 1895 2774 3180 4105 5235 5851 5994 6732 7889 88138820Line 17: 154 803 1222 1895 2774 3180 4105 5235 5851 5994 6732 7889 88138820 第18行:42 210 882 1554 2268 3024 3696 4410 5082 5796 6510 7224 7938 88208862Line 18: 42 210 882 1554 2268 3024 3696 4410 5082 5796 6510 7224 7938 88208862 第19行:186 518 1734 2248 3437 4094 4606 5357 6172 7216 7571 8102 88928904Line 19: 186 518 1734 2248 3437 4094 4606 5357 6172 7216 7571 8102 88928904 第20行:66 133 559 1273 1903 2986 3457 4087 4843 5528 6344 6859 7573 89178946Line 20: 66 133 559 1273 1903 2986 3457 4087 4843 5528 6344 6859 7573 89178946 第21行:91 355 588 1479 2403 3034 3749 4247 4988 5460 6216 6888 7602 89468988Line 21: 91 355 588 1479 2403 3034 3749 4247 4988 5460 6216 6888 7602 89468988 第22行:14 181 299 1159 1983 3035 3240 3978 4729 5671 5922 7120 7823 90059030Line 22: 14 181 299 1159 1983 3035 3240 3978 4729 5671 5922 7120 7823 90059030 第23行:45 156 479 986 2053 3785 3842 5164 5630 64737169 7468 8025 80809072Line 23: 45 156 479 986 2053 3785 3842 5164 5630 64737169 7468 8025 80809072 第24行:125 187 672 1386 2016 2814 3528 4200 5073 5668 6300 7014 7728 90729114Line 24: 125 187 672 1386 2016 2814 3528 4200 5073 5668 6300 7014 7728 90729114 第25行:115 250 692 1133 2168 2671 3203 3872 4836 5744 6339 6870 7436 91149156Line 25: 115 250 692 1133 2168 2671 3203 3872 4836 5744 6339 6870 7436 91149156 第26行:195 992 1008 1856 2721 3726 4490 4698 5470 6094 7142 7512 91569198Line 26: 195 992 1008 1856 2721 3726 4490 4698 5470 6094 7142 7512 91569198 第27行:43 131 366 1355 1945 2436 3245 4070 4536 5613 6076 6947 7786 92199240Line 27: 43 131 366 1355 1945 2436 3245 4070 4536 5613 6076 6947 7786 92199240 第28行:4 122 646 1661 2320 2586 3497 4041 5155 5496 5981 7284 7415 90379282Line 28: 4 122 646 1661 2320 2586 3497 4041 5155 5496 5981 7284 7415 90379282 第29行:52 184 857 1273 2387 2814 3333 4201 4853 5388 6496 6774 7624 93169324Line 29: 52 184 857 1273 2387 2814 3333 4201 4853 5388 6496 6774 7624 93169324 第30行:57 192 560 1551 1794 3104 3651 3978 4682 5457 6200 7223 7735 93549366Line 30: 57 192 560 1551 1794 3104 3651 3978 4682 5457 6200 7223 7735 93549366 第31行:138 630 1302 1932 2857 3486 4116 5092 5502 6415 6930 7644 93669408Line 31: 138 630 1302 1932 2857 3486 4116 5092 5502 6415 6930 7644 93669408 第32行:165 909 1176 2075 2646 3318 4419 4746 5418 6211 6814 7999 94219450Line 32: 165 909 1176 2075 2646 3318 4419 4746 5418 6211 6814 7999 94219450 第33行:27 207 950 1426 1754 3099 3461 3910 4925 5434 6137 6720 7703 94859492Line 33: 27 207 950 1426 1754 3099 3461 3910 4925 5434 6137 6720 7703 94859492 第34行:148 300 1073 1721 2559 3373 4012 5181 5315 6427 6735 7997 92639534Line 34: 148 300 1073 1721 2559 3373 4012 5181 5315 6427 6735 7997 92639534 第35行:38 96 700 1375 2184 3276 4359 4890 5334 6132 7284 7392 8064 95349576Line 35: 38 96 700 1375 2184 3276 4359 4890 5334 6132 7284 7392 8064 95349576 第36行:6 130 550 1101 1722 2520 3393 3906 4620 5549 6697 6780 7606 96129618Line 36: 6 130 550 1101 1722 2520 3393 3906 4620 5549 6697 6780 7606 96129618 第37行:4 199 603 1023 2241 2808 3224 4006 4824 5926 6043 6658 7824 96459660Line 37: 4 199 603 1023 2241 2808 3224 4006 4824 5926 6043 6658 7824 96459660 第38行:36 133 761 1891 2096 2394 3414 3864 4789 5728 6083 7022 7566 94969702Line 38: 36 133 761 1891 2096 2394 3414 3864 4789 5728 6083 7022 7566 94969702 第39行:35 261 428 1549 2102 2510 3594 3973 4544 5314 6368 7034 7387 97399744Line 39: 35 261 428 1549 2102 2510 3594 3973 4544 5314 6368 7034 7387 97399744 第40行:65 168 840 1512 2454 2982 3654 4368 5040 5754 6583 7182 7896 97449786Line 40: 65 168 840 1512 2454 2982 3654 4368 5040 5754 6583 7182 7896 97449786 第41行:83 84 826 1396 2203 2752 3532 4375 4704 5376 6527 6997 7434 96609828Line 41: 83 84 826 1396 2203 2752 3532 4375 4704 5376 6527 6997 7434 96609828 第42行:88 248 1021 1486 1766 2999 3151 4141 4620 5906 6007 6917 7646 98619870Line 42: 88 248 1021 1486 1766 2999 3151 4141 4620 5906 6007 6917 7646 98619870 第43行:38 185 773 1557 2201 2915 3800 4301 5037 5687 6485 7115 9825 98879912Line 43: 38 185 773 1557 2201 2915 3800 4301 5037 5687 6485 7115 9825 98879912 第44行:71 149 393 1197 1678 2606 2976 3693 4501 4771 5812 6318 6674 73769954Line 44: 71 149 393 1197 1678 2606 2976 3693 4501 4771 5812 6318 6674 73769954 第45行:81 208 887 1145 2286 2848 3203 4523 4634 5261 6587 7061 7687 99659996Line 45: 81 208 887 1145 2286 2848 3203 4523 4634 5261 6587 7061 7687 99659996 第46行:41 114 631 1209 2355 2477 2634 3471 4274 5183 5238 6095 6885 778610038Line 46: 41 114 631 1209 2355 2477 2634 3471 4274 5183 5238 6095 6885 778610038 第47行:108 1315 1611 1834 2321 3077 3749 4463 5135 5849 6563 7277 799110049 10080Line 47: 108 1315 1611 1834 2321 3077 3749 4463 5135 5849 6563 7277 799110049 10080 第48行:98 252 924 1596 2352 3108 3780 4494 5166 5880 6594 7308 9912 1008010122Line 48: 98 252 924 1596 2352 3108 3780 4494 5166 5880 6594 7308 9912 1008010122 第49行:109 199 521 1313 1865 2789 3419 4049 4894 5616 6617 7318 753510013 10122;Line 49: 109 199 521 1313 1865 2789 3419 4049 4894 5616 6617 7318 753510013 10122; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 10.根据权利要求1所述的方法,其特征在于,所述码长n=10752,所述码率为R=3/4,所述Z=42,所述s=294时,所述H矩阵表示为:10. The method according to claim 1, characterized in that, the code length n=10752, the code rate R=3/4, the Z=42, when the s=294, the H The matrix is expressed as: 第0行:72 241 462 1386 3402 4452 5749 6504 7571 7812 8096 8106Line 0: 72 241 462 1386 3402 4452 5749 6504 7571 7812 8096 8106 第1行:33 89 439 1253 2965 3161 4248 5697 6830 7833 8140 8148Line 1: 33 89 439 1253 2965 3161 4248 5697 6830 7833 8140 8148 第2行:201 786 1893 2541 3251 4341 5663 6589 7787 8165 8190Line 2: 201 786 1893 2541 3251 4341 5663 6589 7787 8165 8190 第3行:146 672 1512 2520 3712 4578 5628 6678 7518 8190 8232Line 3: 146 672 1512 2520 3712 4578 5628 6678 7518 8190 8232 第4行:93 280 2121 2213 3550 4579 5512 6328 7274 7801 8274Line 4: 93 280 2121 2213 3550 4579 5512 6328 7274 7801 8274 第5行:106 672 1998 2903 3620 4410 5418 6342 7573 8274 8316Line 5: 106 672 1998 2903 3620 4410 5418 6342 7573 8274 8316 第6行:150 544 1372 2290 3138 4559 6029 6831 7223 8347 8358Line 6: 150 544 1372 2290 3138 4559 6029 6831 7223 8347 8358 第7行:99 630 2038 2883 3858 4521 5886 6607 8241 8386 8400Line 7: 99 630 2038 2883 3858 4521 5886 6607 8241 8386 8400 第8行:38 227 978 1896 2177 3278 4668 5203 6859 7112 8022 8442Line 8: 38 227 978 1896 2177 3278 4668 5203 6859 7112 8022 8442 第9行:204 429 1353 2319 3369 4654 5469 6393 7531 8451 8484Line 9: 204 429 1353 2319 3369 4654 5469 6393 7531 8451 8484 第10行:272 840 1764 2856 3780 4830 5796 6893 7854 8484 8526Line 10: 272 840 1764 2856 3780 4830 5796 6893 7854 8484 8526 第11行:169 600 1218 2246 3192 4421 5166 6333 7411 8566 8568Line 11: 169 600 1218 2246 3192 4421 5166 6333 7411 8566 8568 第12行:73 177 1130 1215 2181 3441 4789 5425 6697 7888 8598 8610Line 12: 73 177 1130 1215 2181 3441 4789 5425 6697 7888 8598 8610 第13行:22 87 961 1602 2402 3577 4820 5765 6644 7406 8610 8652Line 13: 22 87 961 1602 2402 3577 4820 5765 6644 7406 8610 8652 第14行:59 150 411 1428 2438 3711 4281 6087 6452 7140 8670 8694Line 14: 59 150 411 1428 2438 3711 4281 6087 6452 7140 8670 8694 第15行:121 282 1562 2196 2639 3224 4779 5326 6452 8717 8736Line 15: 121 282 1562 2196 2639 3224 4779 5326 6452 8717 8736 第16行:189 645 1422 2512 3143 4303 5924 6532 7340 8025 8778Line 16: 189 645 1422 2512 3143 4303 5924 6532 7340 8025 8778 第17行:99 592 2128 3369 3532 4991 5506 6556 7671 8782 8820Line 17: 99 592 2128 3369 3532 4991 5506 6556 7671 8782 8820 第18行:206 882 1848 2940 3864 4914 5880 6888 7896 8820 8862Line 18: 206 882 1848 2940 3864 4914 5880 6888 7896 8820 8862 第19行:47 185 496 1987 2701 3163 4934 5171 6275 7479 8864 8904Line 19: 47 185 496 1987 2701 3163 4934 5171 6275 7479 8864 8904 第20行:203 449 1941 2346 3609 4284 5511 6659 7292 8904 8946Line 20: 203 449 1941 2346 3609 4284 5511 6659 7292 8904 8946 第21行:261 363 2175 2398 3258 4475 5355 6406 7527 8975 8988Line 21: 261 363 2175 2398 3258 4475 5355 6406 7527 8975 8988 第22行:20 43 261 1528 2531 3990 4159 5351 6095 7103 8756 9030Line 22: 20 43 261 1528 2531 3990 4159 5351 6095 7103 8756 9030 第23行:84 295 1629 2671 3263 4664 6201 6756 7381 9041 9072Line 23: 84 295 1629 2671 3263 4664 6201 6756 7381 9041 9072 第24行:4 290 1018 1596 2646 3807 4620 5876 6762 7644 9072 9114Line 24: 4 290 1018 1596 2646 3807 4620 5876 6762 7644 9072 9114 第25行:55 153 331 1301 2633 2914 3230 5066 5590 6368 9152 9156Line 25: 55 153 331 1301 2633 2914 3230 5066 5590 6368 9152 9156 第26行:173 546 1452 2978 3444 4546 5805 6468 7350 9156 9198Line 26: 173 546 1452 2978 3444 4546 5805 6468 7350 9156 9198 第27行:223 545 1709 2593 3983 4168 5464 6895 7682 9210 9240Line 27: 223 545 1709 2593 3983 4168 5464 6895 7682 9210 9240 第28行:2 129 732 1319 2809 3986 5000 5753 6220 7903 9244 9282Line 28: 2 129 732 1319 2809 3986 5000 5753 6220 7903 9244 9282 第29行:277 350 1489 2577 3290 4382 6150 7015 7280 9296 9324Line 29: 277 350 1489 2577 3290 4382 6150 7015 7280 9296 9324 第30行:244 682 1302 2383 3661 4898 5686 6300 7310 9324 9366Line 30: 244 682 1302 2383 3661 4898 5686 6300 7310 9324 9366 第31行:93 852 1260 2268 3325 4242 5292 6856 7712 9366 9408Line 31: 93 852 1260 2268 3325 4242 5292 6856 7712 9366 9408 第32行:39 213 897 1193 2702 3108 4926 5921 7137 8414 9434 9450Line 32: 39 213 897 1193 2702 3108 4926 5921 7137 8414 9434 9450 第33行:37 244 756 1779 2688 3612 4662 5712 6804 7686 9477 9492Line 33: 37 244 756 1779 2688 3612 4662 5712 6804 7686 9477 9492 第34行:164 317 1339 2388 4054 4349 5357 6288 7955 9524 9534Line 34: 164 317 1339 2388 4054 4349 5357 6288 7955 9524 9534 第35行:41 135 470 2093 2795 3939 4908 5967 6414 7380 9551 9576Line 35: 41 135 470 2093 2795 3939 4908 5967 6414 7380 9551 9576 第36行:262 924 1890 2982 3906 4956 6028 6930 7938 9576 9618Line 36: 262 924 1890 2982 3906 4956 6028 6930 7938 9576 9618 第37行:150 802 1501 2663 4062 4410 5290 6242 7719 9627 9660Line 37: 150 802 1501 2663 4062 4410 5290 6242 7719 9627 9660 第38行:239 798 1680 2772 3696 4746 5754 7060 8400 9660 9702Line 38: 239 798 1680 2772 3696 4746 5754 7060 8400 9660 9702 第39行:54 134 256 1735 2230 4155 4762 5960 6726 7497 9708 9744Line 39: 54 134 256 1735 2230 4155 4762 5960 6726 7497 9708 9744 第40行:286 1077 2073 2488 3580 4546 5596 6646 7486 9754 9786Line 40: 286 1077 2073 2488 3580 4546 5596 6646 7486 9754 9786 第41行:3 134 935 1814 2906 3830 4880 5846 6854 7991 9794 9828Line 41: 3 134 935 1814 2906 3830 4880 5846 6854 7991 9794 9828 第42行:21 188 966 1932 3024 3948 4998 5922 6972 8004 9828 9870Line 42: 21 188 966 1932 3024 3948 4998 5922 6972 8004 9828 9870 第43行:42 847 1810 2562 4130 4960 5670 6720 7560 9891 9912Line 43: 42 847 1810 2562 4130 4960 5670 6720 7560 9891 9912 第44行:79 249 578 1160 2126 3456 4192 5132 6589 7617 9937 9954Line 44: 79 249 578 1160 2126 3456 4192 5132 6589 7617 9937 9954 第45行:70 163 714 1554 4112 4842 5758 6969 7602 8064 9954 9996Line 45: 70 163 714 1554 4112 4842 5758 6969 7602 8064 9954 9996 第46行:151 1159 1640 3094 3334 4341 5568 6515 7263 10027 10038Line 46: 151 1159 1640 3094 3334 4341 5568 6515 7263 10027 10038 第47行:75 285 1832 2870 3903 5110 5389 6132 7887 10038 10080Line 47: 75 285 1832 2870 3903 5110 5389 6132 7887 10038 10080 第48行:70 267 1781 3037 3670 4607 5407 6946 7957 10114 10122Line 48: 70 267 1781 3037 3670 4607 5407 6946 7957 10114 10122 第49行:98 571 1358 2184 3545 4200 5298 6363 7453 10122 10164Line 49: 98 571 1358 2184 3545 4200 5298 6363 7453 10122 10164 第50行:114 973 1881 2346 4098 4399 5556 6153 7231 10205 10206Line 50: 114 973 1881 2346 4098 4399 5556 6153 7231 10205 10206 第51行:141 620 1186 3398 5073 5424 6503 7735 8069 10232 10248Line 51: 141 620 1186 3398 5073 5424 6503 7735 8069 10232 10248 第52行:39 245 405 2234 3494 3873 4386 5223 6189 8049 10263 10290Line 52: 39 245 405 2234 3494 3873 4386 5223 6189 8049 10263 10290 第53行:64 154 630 1470 2436 3842 5036 5544 6594 7434 10290 10332Line 53: 64 154 630 1470 2436 3842 5036 5544 6594 7434 10290 10332 第54行:197 765 1664 3017 3415 4625 5254 6990 7926 10370 10374Line 54: 197 765 1664 3017 3415 4625 5254 6990 7926 10370 10374 第55行:110 1164 1638 2730 3654 4704 5810 7054 7728 10374 10416Line 55: 110 1164 1638 2730 3654 4704 5810 7054 7728 10374 10416 第56行:99 1099 1422 2748 4024 4294 5286 6798 7766 10457 10458Line 56: 99 1099 1422 2748 4024 4294 5286 6798 7766 10457 10458 第57行:204 731 1428 2846 3751 5211 5992 6510 7626 10458 10500Line 57: 204 731 1428 2846 3751 5211 5992 6510 7626 10458 10500 第58行:168 504 1541 2352 3910 4842 5866 6426 7308 10528 10542Line 58: 168 504 1541 2352 3910 4842 5866 6426 7308 10528 10542 第59行:16 69 809 1861 3047 3150 4498 5636 6604 7182 10560 10584Line 59: 16 69 809 1861 3047 3150 4498 5636 6604 7182 10560 10584 第60行:95 266 1274 2306 3456 4122 5226 6111 9007 10592 10626Line 60: 95 266 1274 2306 3456 4122 5226 6111 9007 10592 10626 第61行:202 372 1717 2831 3306 4213 5130 6981 7240 9007 10668Line 61: 202 372 1717 2831 3306 4213 5130 6981 7240 9007 10668 第62行:82 229 1008 1974 3087 3990 5040 5964 7058 7980 10668 10710Line 62: 82 229 1008 1974 3087 3990 5040 5964 7058 7980 10668 10710 第63行:224 378 1591 2740 3318 4745 5376 6258 10649 10715 10752Line 63: 224 378 1591 2740 3318 4745 5376 6258 10649 10715 10752 第64行:236 1023 1218 2452 3522 4204 5468 6130 7179 10758 10794Line 64: 236 1023 1218 2452 3522 4204 5468 6130 7179 10758 10794 第65行:143 280 2057 2999 3753 4455 5138 6796 7436 10808 10836Line 65: 143 280 2057 2999 3753 4455 5138 6796 7436 10808 10836 第66行:84 882 1722 2814 3738 4788 6256 7162 10626 10836 10878Line 66: 84 882 1722 2814 3738 4788 6256 7162 10626 10836 10878 第67行:230 254 1745 2499 3792 4734 5609 6179 7188 8741 10920Line 67: 230 254 1745 2499 3792 4734 5609 6179 7188 8741 10920 第68行:7 201 1083 2049 3099 4065 5100 6039 7047 8181 10953 10962Line 68: 7 201 1083 2049 3099 4065 5100 6039 7047 8181 10953 10962 第69行:0 210 1092 2058 2604 3627 4074 5082 6048 7056 10962 11004Line 69: 0 210 1092 2058 2604 3627 4074 5082 6048 7056 10962 11004 第70行:213 1077 1946 2400 3492 4500 6074 6698 7398 10899 11004;Line 70: 213 1077 1946 2400 3492 4500 6074 6698 7398 10899 11004; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 11.根据权利要求1所述的方法,其特征在于,所述码长n=12936,所述码率为R=5/8,所述Z=42,所述s=504时,所述H矩阵表示为:11. The method according to claim 1, characterized in that, the code length n=12936, the code rate R=5/8, the Z=42, when the s=504, the H The matrix is expressed as: 第0行:11 239 1276 1605 4020 5316 7189 7320 8106Line 0: 11 239 1276 1605 4020 5316 7189 7320 8106 第1行:72 1042 2455 3948 5796 7644 8106 8148Line 1: 72 1042 2455 3948 5796 7644 8106 8148 第2行:121 399 3219 3290 5455 6902 8174 8190Line 2: 121 399 3219 3290 5455 6902 8174 8190 第3行:284 450 1800 4067 5565 6725 8221 8232Line 3: 284 450 1800 4067 5565 6725 8221 8232 第4行:34 212 1153 1801 3435 6530 6963 7354 8274Line 4: 34 212 1153 1801 3435 6530 6963 7354 8274 第5行:51 849 2571 4523 6015 7905 8283 8316Line 5: 51 849 2571 4523 6015 7905 8283 8316 第6行:35 261 939 3041 4176 5940 7911 8356 8358Line 6: 35 261 939 3041 4176 5940 7911 8356 8358 第7行:205 795 3331 4200 6170 7350 8358 8400Line 7: 205 795 3331 4200 6170 7350 8358 8400 第8行:36 258 644 2338 5003 5923 6730 7125 8442Line 8: 36 258 644 2338 5003 5923 6730 7125 8442 第9行:53 498 1696 2630 4694 6605 8482 8484Line 9: 53 498 1696 2630 4694 6605 8482 8484 第10行:19 377 1870 4168 5482 7246 8484 8526Line 10: 19 377 1870 4168 5482 7246 8484 8526 第11行:32 89 359 2099 3708 5598 7404 8538 8568Line 11: 32 89 359 2099 3708 5598 7404 8538 8568 第12行:76 294 1680 4353 5469 7555 7938 8610Line 12: 76 294 1680 4353 5469 7555 7938 8610 第13行:52 503 3132 3713 5178 6877 8614 8652Line 13: 52 503 3132 3713 5178 6877 8614 8652 第14行:26 473 1669 3524 5654 6943 7195 8694Line 14: 26 473 1669 3524 5654 6943 7195 8694 第15行:130 1387 2254 3510 6893 8658 8718 8736Line 15: 130 1387 2254 3510 6893 8658 8718 8736 第16行:334 826 2268 4794 5754 7602 8568 8778Line 16: 334 826 2268 4794 5754 7602 8568 8778 第17行:241 1036 2566 5163 5673 8751 8792 8820Line 17: 241 1036 2566 5163 5673 8751 8792 8820 第18行:35 77 434 2583 3320 5130 7741 8849 8862Line 18: 35 77 434 2583 3320 5130 7741 8849 8862 第19行:8 192 836 3370 4490 6200 7766 8900 8904Line 19: 8 192 836 3370 4490 6200 7766 8900 8904 第20行:32 230 966 2772 4750 6258 8736 8904 8946Line 20: 32 230 966 2772 4750 6258 8736 8904 8946 第21行:53 717 2685 3866 6485 7891 8983 8988Line 21: 53 717 2685 3866 6485 7891 8983 8988 第22行:0 229 1134 2898 5082 6342 7879 8988 9030Line 22: 0 229 1134 2898 5082 6342 7879 8988 9030 第23行:59 490 2939 4258 5847 7656 9064 9072Line 23: 59 490 2939 4258 5847 7656 9064 9072 第24行:21 100 434 1574 3960 5106 7712 9093 9114Line 24: 21 100 434 1574 3960 5106 7712 9093 9114 第25行:34 93 1193 2117 3797 6057 7493 9131 9156Line 25: 34 93 1193 2117 3797 6057 7493 9131 9156 第26行:1 310 1295 2604 4494 6048 8064 9156 9198Line 26: 1 310 1295 2604 4494 6048 8064 9156 9198 第27行:14 213 714 2855 4368 6365 7930 9216 9240Line 27: 14 213 714 2855 4368 6365 7930 9216 9240 第28行:40 336 2142 3822 5904 7518 7595 9282Line 28: 40 336 2142 3822 5904 7518 7595 9282 第29行:170 487 2170 4229 5293 7279 9296 9324Line 29: 170 487 2170 4229 5293 7279 9296 9324 第30行:13 94 1184 2394 4074 6284 6720 8232 9366Line 30: 13 94 1184 2394 4074 6284 6720 8232 9366 第31行:201 443 2118 3563 5124 9351 9374 9408Line 31: 201 443 2118 3563 5124 9351 9374 9408 第32行:10 340 1006 2399 4451 5930 8182 9271 9450Line 32: 10 340 1006 2399 4451 5930 8182 9271 9450 第33行:185 681 1848 4205 5347 7111 9463 9492Line 33: 185 681 1848 4205 5347 7111 9463 9492 第34行:69 350 1994 4297 5288 7810 9500 9534Line 34: 69 350 1994 4297 5288 7810 9500 9534 第35行:141 1075 2700 5167 6554 7452 9571 9576Line 35: 141 1075 2700 5167 6554 7452 9571 9576 第36行:104 423 2445 4334 6337 7191 7420 9618Line 36: 104 423 2445 4334 6337 7191 7420 9618 第37行:171 467 2788 4991 5563 9595 9637 9660Line 37: 171 467 2788 4991 5563 9595 9637 9660 第38行:44 460 1919 4029 6575 9596 9685 9702Line 38: 44 460 1919 4029 6575 9596 9685 9702 第39行:295 517 2310 4678 5864 7770 9702 9744Line 39: 295 517 2310 4678 5864 7770 9702 9744 第40行:15 314 1350 1617 3509 5260 7982 9765 9786Line 40: 15 314 1350 1617 3509 5260 7982 9765 9786 第41行:52 874 2494 3316 5541 7259 9786 9828Line 41: 52 874 2494 3316 5541 7259 9786 9828 第42行:70 460 1932 5034 5622 7308 9156 9870Line 42: 70 460 1932 5034 5622 7308 9156 9870 第43行:21 347 1643 3449 6824 7659 9878 9912Line 43: 21 347 1643 3449 6824 7659 9878 9912 第44行:40 195 446 3071 3612 6027 8030 9912 9954Line 44: 40 195 446 3071 3612 6027 8030 9912 9954 第45行:145 434 1639 4833 5977 8045 9982 9996Line 45: 145 434 1639 4833 5977 8045 9982 9996 第46行:9 251 1302 3066 4746 6510 9861 9996 10038Line 46: 9 251 1302 3066 4746 6510 9861 9996 10038 第47行:62 480 2790 4390 5236 8427 10043 10080Line 47: 62 480 2790 4390 5236 8427 10043 10080 第48行:73 387 1974 3769 6193 7495 10080 10122Line 48: 73 387 1974 3769 6193 7495 10080 10122 第49行:136 638 3082 4323 5573 7154 10149 10164Line 49: 136 638 3082 4323 5573 7154 10149 10164 第50行:50 400 1826 4599 6092 7433 9945 10206Line 50: 50 400 1826 4599 6092 7433 9945 10206 第51行:37 312 1024 2830 4636 6335 10180 10222 10248Line 51: 37 312 1024 2830 4636 6335 10180 10222 10248 第52行:23 93 837 2436 4284 6542 7980 9324 10290Line 52: 23 93 837 2436 4284 6542 7980 9324 10290 第53行:5 201 1511 2226 3864 5670 10284 10309 10332Line 53: 5 201 1511 2226 3864 5670 10284 10309 10332 第54行:160 630 2837 4242 5964 7938 10332 10374Line 54: 160 630 2837 4242 5964 7938 10332 10374 第55行:125 1349 1940 3649 5058 6822 10415 10416Line 55: 125 1349 1940 3649 5058 6822 10415 10416 第56行:285 615 2071 5062 5801 9264 10451 10458Line 56: 285 615 2071 5062 5801 9264 10451 10458 第57行:216 898 3168 3685 5513 7010 10496 10500Line 57: 216 898 3168 3685 5513 7010 10496 10500 第58行:74 458 2058 4989 6035 7434 10534 10542Line 58: 74 458 2058 4989 6035 7434 10534 10542 第59行:147 339 2158 3570 5418 7619 10551 10584Line 59: 147 339 2158 3570 5418 7619 10551 10584 第60行:265 504 3413 4539 5838 9432 10500 10626Line 60: 265 504 3413 4539 5838 9432 10500 10626 第61行:66 400 2138 3407 6433 8259 10654 10668Line 61: 66 400 2138 3407 6433 8259 10654 10668 第62行:80 492 2199 3603 6358 7250 10702 10710Line 62: 80 492 2199 3603 6358 7250 10702 10710 第63行:57 1328 2427 4405 5218 10621 10745 10752Line 63: 57 1328 2427 4405 5218 10621 10745 10752 第64行:81 356 3016 3597 6229 7951 8606 10794Line 64: 81 356 3016 3597 6229 7951 8606 10794 第65行:0 348 546 2352 4032 6488 7812 10794 10836Line 65: 0 348 546 2352 4032 6488 7812 10794 10836 第66行:165 321 1825 4104 5180 7049 10838 10878Line 66: 165 321 1825 4104 5180 7049 10838 10878 第67行:357 1231 2364 4954 6651 8014 9853 10920Line 67: 357 1231 2364 4954 6651 8014 9853 10920 第68行:55 348 1956 5109 5768 7498 10961 10962Line 68: 55 348 1956 5109 5768 7498 10961 10962 第69行:168 1260 3024 5634 6468 10878 10962 11004Line 69: 168 1260 3024 5634 6468 10878 10962 11004 第70行:59 450 4576 5512 8071 10868 11026 11046Line 70: 59 450 4576 5512 8071 10868 11026 11046 第71行:216 954 3342 3906 5712 7560 11046 11088Line 71: 216 954 3342 3906 5712 7560 11046 11088 第72行:72 480 1722 3552 5250 7056 10088 11130Line 72: 72 480 1722 3552 5250 7056 10088 11130 第73行:281 405 2291 3905 6669 11102 11130 11172Line 73: 281 405 2291 3905 6669 11102 11130 11172 第74行:33 296 1228 2740 4621 6114 7140 9768 11214Line 74: 33 296 1228 2740 4621 6114 7140 9768 11214 第75行:49 1131 1562 4644 6892 10785 11254 11256Line 75: 49 1131 1562 4644 6892 10785 11254 11256 第76行:26 215 1103 2646 4536 6090 11173 11256 11298Line 76: 26 215 1103 2646 4536 6090 11173 11256 11298 第77行:169 392 2921 3752 6384 7828 11324 11340Line 77: 169 392 2921 3752 6384 7828 11324 11340 第78行:104 414 2023 3270 5696 7032 10614 11382Line 78: 104 414 2023 3270 5696 7032 10614 11382 第79行:0 462 2321 3990 6958 7686 11382 11424Line 79: 0 462 2321 3990 6958 7686 11382 11424 第80行:38 147 1077 1891 3392 6448 7703 11340 11466Line 80: 38 147 1077 1891 3392 6448 7703 11340 11466 第81行:49 407 1977 4450 5415 7178 11505 11508Line 81: 49 407 1977 4450 5415 7178 11505 11508 第82行:66 410 2745 4487 5418 6868 11424 11550Line 82: 66 410 2745 4487 5418 6868 11424 11550 第83行:123 1455 1754 4752 6998 11509 11581 11592Line 83: 123 1455 1754 4752 6998 11509 11581 11592 第84行:57 404 2210 4179 5830 7584 8510 11634Line 84: 57 404 2210 4179 5830 7584 8510 11634 第85行:148 434 2253 5057 5642 7823 11648 11676Line 85: 148 434 2253 5057 5642 7823 11648 11676 第86行:0 126 1050 2975 4838 6300 11597 11676 11718Line 86: 0 126 1050 2975 4838 6300 11597 11676 11718 第87行:218 1552 1564 3671 5345 10431 11755 11760Line 87: 218 1552 1564 3671 5345 10431 11755 11760 第88行:64 703 2882 3712 7118 7267 8670 11802Line 88: 64 703 2882 3712 7118 7267 8670 11802 第89行:52 381 2269 4874 5909 9492 11802 11844Line 89: 52 381 2269 4874 5909 9492 11802 11844 第90行:8 252 588 2612 2675 4116 5880 7353 11886Line 90: 8 252 588 2612 2675 4116 5880 7353 11886 第91行:43 441 1699 3360 5340 7014 11922 11928Line 91: 43 441 1699 3360 5340 7014 11922 11928 第92行:221 477 3267 4107 5214 11794 11941 11970Line 92: 221 477 3267 4107 5214 11794 11941 11970 第93行:18 316 1344 3111 4788 6552 9660 11970 12012Line 93: 18 316 1344 3111 4788 6552 9660 11970 12012 第94行:118 672 2478 4326 6224 8022 10668 12054Line 94: 118 672 2478 4326 6224 8022 10668 12054 第95行:4 277 519 3055 3811 5379 11852 12095 12096Line 95: 4 277 519 3055 3811 5379 11852 12095 12096 第96行:26 264 1404 3108 4830 6594 11592 12096 12138Line 96: 26 264 1404 3108 4830 6594 11592 12096 12138 第97行:169 868 3763 5725 8081 12045 12155 12180Line 97: 169 868 3763 5725 8081 12045 12155 12180 第98行:56 380 2885 3640 5741 7070 7541 12222Line 98: 56 380 2885 3640 5741 7070 7541 12222 第99行:177 403 1734 4245 6763 12201 12252 12264Line 99: 177 403 1734 4245 6763 12201 12252 12264 第100行:85 399 2055 3918 6608 11379 11799 12306Line 100: 85 399 2055 3918 6608 11379 11799 12306 第101行:274 1092 2856 4662 6860 10248 12306 12348Line 101: 274 1092 2856 4662 6860 10248 12306 12348 第102行:48 895 2199 4585 6770 7334 12376 12390Line 102: 48 895 2199 4585 6770 7334 12376 12390 第103行:37 257 1430 3152 4916 6680 12188 12392 12432Line 103: 37 257 1430 3152 4916 6680 12188 12392 12432 第104行:190 331 3202 4063 5974 11952 12286 12474Line 104: 190 331 3202 4063 5974 11952 12286 12474 第105行:7 252 1470 3192 4956 7854 12432 12474 12516Line 105: 7 252 1470 3192 4956 7854 12432 12474 12516 第106行:166 756 2520 4410 6418 10752 11508 12558Line 106: 166 756 2520 4410 6418 10752 11508 12558 第107行:85 577 2553 4928 6683 7619 12562 12600Line 107: 85 577 2553 4928 6683 7619 12562 12600 第108行:21 341 882 3187 4578 6174 8316 12600 12642Line 108: 21 341 882 3187 4578 6174 8316 12600 12642 第109行:370 731 1905 3679 6070 7291 12683 12684Line 109: 370 731 1905 3679 6070 7291 12683 12684 第110行:299 575 2026 4120 6821 7075 8860 12726Line 110: 299 575 2026 4120 6821 7075 8860 12726 第111行:20 328 773 3258 4505 6684 7779 12740 12768Line 111: 20 328 773 3258 4505 6684 7779 12740 12768 第112行:54 429 2516 3977 5795 11885 12725 12810Line 112: 54 429 2516 3977 5795 11885 12725 12810 第113行:22 254 1176 2940 4874 6384 12768 12810 12852Line 113: 22 254 1176 2940 4874 6384 12768 12810 12852 第114行:15 160 1338 1629 3459 5414 11447 12852 12894Line 114: 15 160 1338 1629 3459 5414 11447 12852 12894 第115行:21 234 1466 3014 4132 6151 12852 12931 12936Line 115: 21 234 1466 3014 4132 6151 12852 12931 12936 第116行:344 1493 2688 4807 6132 11172 12936 12978Line 116: 344 1493 2688 4807 6132 11172 12936 12978 第117行:74 1171 1806 3528 9072 12516 12999 13020Line 117: 74 1171 1806 3528 9072 12516 12999 13020 第118行:159 996 1764 3848 5491 8423 11112 13062Line 118: 159 996 1764 3848 5491 8423 11112 13062 第119行:165 473 2530 3841 5324 13032 13074 13104Line 119: 165 473 2530 3841 5324 13032 13074 13104 第120行:54 490 2727 3811 5626 10361 13023 13146Line 120: 54 490 2727 3811 5626 10361 13023 13146 第121行:33 84 924 2730 4719 6216 9408 13146 13188Line 121: 33 84 924 2730 4719 6216 9408 13146 13188 第122行:68 468 1881 4704 6984 7744 13198 13230Line 122: 68 468 1881 4704 6984 7744 13198 13230 第123行:9 200 602 2392 3937 7448 12532 13242 13272Line 123: 9 200 602 2392 3937 7448 12532 13242 13272 第124行:6 264 1224 2988 4710 6432 11045 13278 13314Line 124: 6 264 1224 2988 4710 6432 11045 13278 13314 第125行:33 218 1394 3481 4880 6644 13145 13322 13356Line 125: 33 218 1394 3481 4880 6644 13145 13322 13356 第126行:313 1512 3301 4998 6762 13140 13356 13398Line 126: 313 1512 3301 4998 6762 13140 13356 13398 第127行:6 298 1520 2942 4473 6279 12296 12716 13398;Line 127: 6 298 1520 2942 4473 6279 12296 12716 13398; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 12.根据权利要求1所述的方法,其特征在于,所述码长n=16128,所述码率为R=1/2,所述Z=42,所述s=924时,所述H矩阵表示为:12. The method according to claim 1, characterized in that, the code length n=16128, the code rate R=1/2, the Z=42, when the s=924, the H The matrix is expressed as: 第0行:289 924 4942 5554 7862 8106Line 0: 289 924 4942 5554 7862 8106 第1行:348 803 4359 6838 8132 8148Line 1: 348 803 4359 6838 8132 8148 第2行:86 767 2716 7099 7872 8190Line 2: 86 767 2716 7099 7872 8190 第3行:37 473 1999 4817 7799 8190 8232Line 3: 37 473 1999 4817 7799 8190 8232 第4行:8 555 2727 3888 6453 8273 8274Line 4: 8 555 2727 3888 6453 8273 8274 第5行:194 882 4507 7182 8274 8316Line 5: 194 882 4507 7182 8274 8316 第6行:31 520 1088 5226 7966 8329 8358Line 6: 31 520 1088 5226 7966 8329 8358 第7行:7 312 1561 3451 7943 8373 8400Line 7: 7 312 1561 3451 7943 8373 8400 第8行:19 357 1050 4580 7266 8400 8442Line 8: 19 357 1050 4580 7266 8400 8442 第9行:288 859 5461 6111 8477 8484Line 9: 288 859 5461 6111 8477 8484 第10行:21 494 1974 5040 8022 8484 8526Line 10: 21 494 1974 5040 8022 8484 8526 第11行:25 454 675 2568 6392 8566 8568Line 11: 25 454 675 2568 6392 8566 8568 第12行:5 205 1551 4410 8025 8568 8610Line 12: 5 205 1551 4410 8025 8568 8610 第13行:120 616 2680 6841 8620 8652Line 13: 120 616 2680 6841 8620 8652 第14行:122 794 3357 6300 8148 8694Line 14: 122 794 3357 6300 8148 8694 第15行:136 835 2842 7922 8699 8736Line 15: 136 835 2842 7922 8699 8736 第16行:246 1846 3098 6645 8656 8778Line 16: 246 1846 3098 6645 8656 8778 第17行:563 1019 4017 6362 8818 8820Line 17: 563 1019 4017 6362 8818 8820 第18行:42 530 1554 4751 7825 8820 8862Line 18: 42 530 1554 4751 7825 8820 8862 第19行:262 736 2811 5592 8888 8904Line 19: 262 736 2811 5592 8888 8904 第20行:447 1277 2688 6977 8768 8946Line 20: 447 1277 2688 6977 8768 8946 第21行:80 752 3344 5760 8973 8988Line 21: 80 752 3344 5760 8973 8988 第22行:24 394 1764 4788 7933 8988 9030Line 22: 24 394 1764 4788 7933 8988 9030 第23行:109 2294 5028 6372 9049 9072Line 23: 109 2294 5028 6372 9049 9072 第24行:18 150 943 2892 7832 8940 9114Line 24: 18 150 943 2892 7832 8940 9114 第25行:54 431 853 5006 7158 9114 9156Line 25: 54 431 853 5006 7158 9114 9156 第26行:50 246 1615 5310 6427 9177 9198Line 26: 50 246 1615 5310 6427 9177 9198 第27行:36 563 1596 4214 7077 9213 9240Line 27: 36 563 1596 4214 7077 9213 9240 第28行:32 344 1424 3311 5650 9247 9282Line 28: 32 344 1424 3311 5650 9247 9282 第29行:79 183 1344 4494 7476 9282 9324Line 29: 79 183 1344 4494 7476 9282 9324 第30行:69 684 2856 6973 9072 9366Line 30: 69 684 2856 6973 9072 9366 第31行:40 339 707 3569 9328 9403 9408Line 31: 40 339 707 3569 9328 9403 9408 第32行:35 430 627 4083 6034 7879 9450Line 32: 35 430 627 4083 6034 7879 9450 第33行:513 585 3116 5877 9489 9492Line 33: 513 585 3116 5877 9489 9492 第34行:32 89 814 2522 7558 9505 9534Line 34: 32 89 814 2522 7558 9505 9534 第35行:101 859 3799 6991 9553 9576Line 35: 101 859 3799 6991 9553 9576 第36行:126 1134 4974 8000 9576 9618Line 36: 126 1134 4974 8000 9576 9618 第37行:72 304 1329 3741 6891 9654 9660Line 37: 72 304 1329 3741 6891 9654 9660 第38行:36 210 2118 4830 9408 9660 9702Line 38: 36 210 2118 4830 9408 9660 9702 第39行:76 441 1379 4160 6135 9740 9744Line 39: 76 441 1379 4160 6135 9740 9744 第40行:57 870 3234 7028 9744 9786Line 40: 57 870 3234 7028 9744 9786 第41行:54 855 4202 6243 9819 9828Line 41: 54 855 4202 6243 9819 9828 第42行:65 191 1944 4185 5968 9244 9870Line 42: 65 191 1944 4185 5968 9244 9870 第43行:73 612 3570 6174 9870 9912Line 43: 73 612 3570 6174 9870 9912 第44行:545 2251 3669 6390 9917 9954Line 44: 545 2251 3669 6390 9917 9954 第45行:0 629 2159 3005 7400 9977 9996Line 45: 0 629 2159 3005 7400 9977 9996 第46行:38 413 1932 4998 7980 9996 10038Line 46: 38 413 1932 4998 7980 9996 10038 第47行:426 1339 2924 5874 10078 10080Line 47: 426 1339 2924 5874 10078 10080 第48行:33 467 1103 2606 6935 9865 10122Line 48: 33 467 1103 2606 6935 9865 10122 第49行:13 352 1592 4700 7682 10160 10164Line 49: 13 352 1592 4700 7682 10160 10164 第50行:97 679 3181 6336 10111 10206Line 50: 97 679 3181 6336 10111 10206 第51行:70 586 1848 4914 10164 10206 10248Line 51: 70 586 1848 4914 10164 10206 10248 第52行:85 779 3381 5895 8763 10290Line 52: 85 779 3381 5895 8763 10290 第53行:504 1553 3753 6370 10318 10332Line 53: 504 1553 3753 6370 10318 10332 第54行:110 646 5493 6048 9492 10374Line 54: 110 646 5493 6048 9492 10374 第55行:269 1149 4448 7790 10359 10416Line 55: 269 1149 4448 7790 10359 10416 第56行:24 487 1092 4242 7308 10416 10458Line 56: 24 487 1092 4242 7308 10416 10458 第57行:81 326 2126 4139 10384 10494 10500Line 57: 81 326 2126 4139 10384 10494 10500 第58行:125 785 2922 7164 9930 10542Line 58: 125 785 2922 7164 9930 10542 第59行:0 380 1596 5132 7686 10542 10584Line 59: 0 380 1596 5132 7686 10542 10584 第60行:233 833 3095 8080 10586 10626Line 60: 233 833 3095 8080 10586 10626 第61行:3 567 1442 4530 7098 10626 10668Line 61: 3 567 1442 4530 7098 10626 10668 第62行:580 1436 4617 7260 10690 10710Line 62: 580 1436 4617 7260 10690 10710 第63行:108 828 2771 6471 10751 10752Line 63: 108 828 2771 6471 10751 10752 第64行:227 2326 3519 5922 10752 10794Line 64: 227 2326 3519 5922 10752 10794 第65行:78 571 3383 6797 10825 10836Line 65: 78 571 3383 6797 10825 10836 第66行:37 334 720 4623 5931 8928 10878Line 66: 37 334 720 4623 5931 8928 10878 第67行:84 844 2976 6881 10919 10920Line 67: 84 844 2976 6881 10919 10920 第68行:124 599 3035 5659 10864 10962Line 68: 124 599 3035 5659 10864 10962 第69行:14 462 2394 5376 10920 10962 11004Line 69: 14 462 2394 5376 10920 10962 11004 第70行:51 817 4344 5700 9078 11046Line 70: 51 817 4344 5700 9078 11046 第71行:102 693 2562 6201 11046 11088Line 71: 102 693 2562 6201 11046 11088 第72行:101 647 3458 6922 11104 11130Line 72: 101 647 3458 6922 11104 11130 第73行:19 214 1033 2607 7742 11133 11172Line 73: 19 214 1033 2607 7742 11133 11172 第74行:482 610 3042 5898 11190 11214Line 74: 482 610 3042 5898 11190 11214 第75行:102 1389 3910 7380 11218 11256Line 75: 102 1389 3910 7380 11218 11256 第76行:36 384 2058 5082 7896 11256 11298Line 76: 36 384 2058 5082 7896 11256 11298 第77行:523 2288 3727 6552 11307 11340Line 77: 523 2288 3727 6552 11307 11340 第78行:415 670 5084 7449 11370 11382Line 78: 415 670 5084 7449 11370 11382 第79行:107 973 2940 6685 11382 11424Line 79: 107 973 2940 6685 11382 11424 第80行:77 920 3972 11040 11424 11466Line 80: 77 920 3972 11040 11424 11466 第81行:37 475 1007 6059 11014 11489 11508Line 81: 37 475 1007 6059 11014 11489 11508 第82行:607 1680 4809 7770 11508 11550Line 82: 607 1680 4809 7770 11508 11550 第83行:164 1482 4243 6475 11586 11592Line 83: 164 1482 4243 6475 11586 11592 第84行:24 554 1722 4746 7812 11592 11634Line 84: 24 554 1722 4746 7812 11592 11634 第85行:2 559 1428 5380 7560 11636 11676Line 85: 2 559 1428 5380 7560 11636 11676 第86行:550 2188 3723 10261 11693 11718Line 86: 550 2188 3723 10261 11693 11718 第87行:65 410 2448 3330 10260 11730 11760Line 87: 65 410 2448 3330 10260 11730 11760 第88行:57 816 5378 6384 11760 11802Line 88: 57 816 5378 6384 11760 11802 第89行:53 795 3297 7220 11804 11844Line 89: 53 795 3297 7220 11804 11844 第90行:230 750 2786 5642 8666 11886Line 90: 230 750 2786 5642 8666 11886 第91行:71 736 3549 7132 11924 11928Line 91: 71 736 3549 7132 11924 11928 第92行:193 852 5217 6594 11928 11970Line 92: 193 852 5217 6594 11928 11970 第93行:74 220 2229 4910 7570 12001 12012Line 93: 74 220 2229 4910 7570 12001 12012 第94行:291 785 2965 5578 11880 12054Line 94: 291 785 2965 5578 11880 12054 第95行:304 2014 3784 6905 12079 12096Line 95: 304 2014 3784 6905 12079 12096 第96行:53 607 3379 6487 12031 12138Line 96: 53 607 3379 6487 12031 12138 第97行:61 292 720 3442 12136 12178 12180Line 97: 61 292 720 3442 12136 12178 12180 第98行:39 226 716 2637 6281 12203 12222Line 98: 39 226 716 2637 6281 12203 12222 第99行:348 1765 4077 6029 12236 12264Line 99: 348 1765 4077 6029 12236 12264 第100行:75 763 4053 5718 11199 12306Line 100: 75 763 4053 5718 11199 12306 第101行:88 2391 5334 7498 12264 12348Line 101: 88 2391 5334 7498 12264 12348 第102行:92 918 3627 6777 12384 12390Line 102: 92 918 3627 6777 12384 12390 第103行:69 524 2268 5250 12306 12390 12432Line 103: 69 524 2268 5250 12306 12390 12432 第104行:514 696 3492 5712 10785 12474Line 104: 514 696 3492 5712 10785 12474 第105行:94 612 3166 8100 12512 12516Line 105: 94 612 3166 8100 12512 12516 第106行:120 342 1470 4578 7602 12516 12558Line 106: 120 342 1470 4578 7602 12516 12558 第107行:72 807 2991 5531 12579 12600Line 107: 72 807 2991 5531 12579 12600 第108行:209 713 2531 5689 11097 12642Line 108: 209 713 2531 5689 11097 12642 第109行:352 1176 4326 7686 12642 12684Line 109: 352 1176 4326 7686 12642 12684 第110行:464 1173 4542 6510 12724 12726Line 110: 464 1173 4542 6510 12724 12726 第111行:336 677 4026 10514 12735 12768Line 111: 336 677 4026 10514 12735 12768 第112行:123 835 3444 7453 12768 12810Line 112: 123 835 3444 7453 12768 12810 第113行:74 489 2550 5256 6286 12828 12852Line 113: 74 489 2550 5256 6286 12828 12852 第114行:259 1269 2680 5714 12619 12894Line 114: 259 1269 2680 5714 12619 12894 第115行:388 2396 4885 7350 12894 12936Line 115: 388 2396 4885 7350 12894 12936 第116行:7 731 1726 3121 7658 12936 12978Line 116: 7 731 1726 3121 7658 12936 12978 第117行:110 901 4032 7056 12978 13020Line 117: 110 901 4032 7056 12978 13020 第118行:478 1129 4863 7055 12893 13062Line 118: 478 1129 4863 7055 12893 13062 第119行:7 552 1512 4620 7995 13062 13104Line 119: 7 552 1512 4620 7995 13062 13104 第120行:3 431 1914 3948 7202 13035 13146Line 120: 3 431 1914 3948 7202 13035 13146 第121行:272 1663 4706 13116 13154 13188Line 121: 272 1663 4706 13116 13154 13188 第122行:338 740 3265 5796 8177 13230Line 122: 338 740 3265 5796 8177 13230 第123行:63 398 918 4980 6662 13255 13272Line 123: 63 398 918 4980 6662 13255 13272 第124行:95 920 3822 7607 13272 13314Line 124: 95 920 3822 7607 13272 13314 第125行:15 161 1816 3663 5820 13326 13356Line 125: 15 161 1816 3663 5820 13326 13356 第126行:303 1853 4953 5605 13361 13398Line 126: 303 1853 4953 5605 13361 13398 第127行:109 650 3276 6216 13398 13440Line 127: 109 650 3276 6216 13398 13440 第128行:59 691 2767 5611 9828 13482Line 128: 59 691 2767 5611 9828 13482 第129行:172 2788 5057 6679 13499 13524Line 129: 172 2788 5057 6679 13499 13524 第130行:551 2436 5418 13188 13524 13566Line 130: 551 2436 5418 13188 13524 13566 第131行:310 858 2648 6120 13573 13608Line 131: 310 858 2648 6120 13573 13608 第132行:444 701 3883 7375 13637 13650Line 132: 444 701 3883 7375 13637 13650 第133行:72 883 4104 7170 13680 13692Line 133: 72 883 4104 7170 13680 13692 第134行:22 378 2184 5166 10500 13692 13734Line 134: 22 378 2184 5166 10500 13692 13734 第135行:517 638 3631 5868 13745 13776Line 135: 517 638 3631 5868 13745 13776 第136行:84 1008 4200 7398 13776 13818Line 136: 84 1008 4200 7398 13776 13818 第137行:106 644 2571 5502 13443 13860Line 137: 106 644 2571 5502 13443 13860 第138行:15 334 892 4299 6587 13881 13902Line 138: 15 334 892 4299 6587 13881 13902 第139行:73 206 1774 4656 7702 13940 13944Line 139: 73 206 1774 4656 7702 13940 13944 第140行:212 798 5328 6846 13819 13986Line 140: 212 798 5328 6846 13819 13986 第141行:154 761 3652 12437 14003 14028Line 141: 154 761 3652 12437 14003 14028 第142行:21 152 1900 3486 7298 14028 14070Line 142: 21 152 1900 3486 7298 14028 14070 第143行:37 666 2030 5533 6526 14090 14112Line 143: 37 666 2030 5533 6526 14090 14112 第144行:8 433 2387 4284 12449 14112 14154Line 144: 8 433 2387 4284 12449 14112 14154 第145行:127 750 5207 7618 14161 14196Line 145: 127 750 5207 7618 14161 14196 第146行:13 252 1890 4956 8044 14196 14238Line 146: 13 252 1890 4956 8044 14196 14238 第147行:130 841 3439 7513 14254 14280Line 147: 130 841 3439 7513 14254 14280 第148行:391 1260 5145 7392 14280 14322Line 148: 391 1260 5145 7392 14280 14322 第149行:3 266 1386 4536 7518 13944 14364Line 149: 3 266 1386 4536 7518 13944 14364 第150行:118 1058 3221 6064 14324 14406Line 150: 118 1058 3221 6064 14324 14406 第151行:21 67 843 2842 14404 14410 14448Line 151: 21 67 843 2842 14404 14410 14448 第152行:141 2071 2909 6274 9747 14490Line 152: 141 2071 2909 6274 9747 14490 第153行:296 2351 4692 5761 14497 14532Line 153: 296 2351 4692 5761 14497 14532 第154行:92 920 6235 9435 13458 14574Line 154: 92 920 6235 9435 13458 14574 第155行:108 740 4417 6772 14574 14616Line 155: 108 740 4417 6772 14574 14616 第156行:36 409 1936 2744 5965 14651 14658Line 156: 36 409 1936 2744 5965 14651 14658 第157行:16 336 2142 5199 8064 14658 14700Line 157: 16 336 2142 5199 8064 14658 14700 第158行:282 645 4043 6655 14735 14742Line 158: 282 645 4043 6655 14735 14742 第159行:72 414 1218 5767 6731 14742 14784Line 159: 72 414 1218 5767 6731 14742 14784 第160行:437 1376 3571 7259 14804 14826Line 160: 437 1376 3571 7259 14804 14826 第161行:49 508 2310 5292 6720 14826 14868Line 161: 49 508 2310 5292 6720 14826 14868 第162行:19 149 823 3103 6752 14889 14910Line 162: 19 149 823 3103 6752 14889 14910 第163行:96 2481 5351 6930 14910 14952Line 163: 96 2481 5351 6930 14910 14952 第164行:374 774 5046 7667 14984 14994Line 164: 374 774 5046 7667 14984 14994 第165行:110 1642 4138 6129 15035 15036Line 165: 110 1642 4138 6129 15035 15036 第166行:93 744 3776 6520 14539 15078Line 166: 93 744 3776 6520 14539 15078 第167行:28 420 2226 5208 7938 15078 15120Line 167: 28 420 2226 5208 7938 15078 15120 第168行:200 877 4676 6187 15152 15162Line 168: 200 877 4676 6187 15152 15162 第169行:29 470 1227 3796 6964 15200 15204Line 169: 29 470 1227 3796 6964 15200 15204 第170行:67 760 3700 14475 15208 15246Line 170: 67 760 3700 14475 15208 15246 第171行:9 316 1700 4116 7224 15246 15288Line 171: 9 316 1700 4116 7224 15246 15288 第172行:432 2088 3528 6678 15036 15330Line 172: 432 2088 3528 6678 15036 15330 第173行:23 243 771 4466 15325 15330 15372Line 173: 23 243 771 4466 15325 15330 15372 第174行:97 683 3212 7043 10869 15414Line 174: 97 683 3212 7043 10869 15414 第175行:5 196 2408 4461 6887 12638 15456Line 175: 5 196 2408 4461 6887 12638 15456 第176行:8 248 650 3936 6171 15481 15498Line 176: 8 248 650 3936 6171 15481 15498 第177行:536 2100 5124 15414 15498 15540Line 177: 536 2100 5124 15414 15498 15540 第178行:17 382 2197 3192 7317 14532 15582Line 178: 17 382 2197 3192 7317 14532 15582 第179行:521 1236 3242 5834 15598 15624Line 179: 521 1236 3242 5834 15598 15624 第180行:56 257 966 4291 7588 15624 15666Line 180: 56 257 966 4291 7588 15624 15666 第181行:627 2446 5100 6635 15701 15708Line 181: 627 2446 5100 6635 15701 15708 第182行:13 623 1203 5259 15544 15713 15750Line 182: 13 623 1203 5259 15544 15713 15750 第183行:61 589 1806 4872 15372 15750 15792Line 183: 61 589 1806 4872 15372 15750 15792 第184行:62 754 3694 6844 15815 15834Line 184: 62 754 3694 6844 15815 15834 第185行:86 897 5434 15564 15834 15876Line 185: 86 897 5434 15564 15834 15876 第186行:2 468 893 3437 6142 15905 15918Line 186: 2 468 893 3437 6142 15905 15918 第187行:30 314 1748 2884 7275 15947 15960Line 187: 30 314 1748 2884 7275 15947 15960 第188行:134 608 3018 6627 11853 16002Line 188: 134 608 3018 6627 11853 16002 第189行:67 652 1669 4735 7759 16033 16044Line 189: 67 652 1669 4735 7759 16033 16044 第190行:16 639 2352 5334 12194 16044 16086Line 190: 16 639 2352 5334 12194 16044 16086 第191行:261 2490 3846 5670 15960 16128Line 191: 261 2490 3846 5670 15960 16128 第192行:365 768 4400 5889 16129 16170Line 192: 365 768 4400 5889 16129 16170 第193行:294 2016 5421 16124 16170 16212Line 193: 294 2016 5421 16124 16170 16212 第194行:120 900 3065 7325 13371 16254Line 194: 120 900 3065 7325 13371 16254 第195行:56 816 3108 6006 16254 16296Line 195: 56 816 3108 6006 16254 16296 第196行:80 631 4376 6464 16303 16338Line 196: 80 631 4376 6464 16303 16338 第197行:208 2039 3990 16249 16338 16380Line 197: 208 2039 3990 16249 16338 16380 第198行:88 694 4255 6577 16384 16422Line 198: 88 694 4255 6577 16384 16422 第199行:10 187 2161 4767 7769 16422 16464Line 199: 10 187 2161 4767 7769 16422 16464 第200行:117 779 3849 5561 10083 16506Line 200: 117 779 3849 5561 10083 16506 第201行:23 454 1302 4452 13194 16506 16548Line 201: 23 454 1302 4452 13194 16506 16548 第202行:143 879 3160 6005 16487 16590Line 202: 143 879 3160 6005 16487 16590 第203行:34 309 1878 3928 16578 16625 16632Line 203: 34 309 1878 3928 16578 16625 16632 第204行:85 863 2852 7086 16330 16674Line 204: 85 863 2852 7086 16330 16674 第205行:210 1504 4368 7434 16674 16716Line 205: 210 1504 4368 7434 16674 16716 第206行:14 472 1209 3864 16247 16730 16758Line 206: 14 472 1209 3864 16247 16730 16758 第207行:121 908 4836 5928 16777 16800Line 207: 121 908 4836 5928 16777 16800 第208行:112 924 4158 15402 16800 16842Line 208: 112 924 4158 15402 16800 16842 第209行:73 634 3574 16636 16845 16884Line 209: 73 634 3574 16636 16845 16884 第210行:97 819 4567 15990 16663 16926Line 210: 97 819 4567 15990 16663 16926 第211行:92 691 4706 6309 16952 16968Line 211: 92 691 4706 6309 16952 16968 第212行:0 504 2478 5460 14448 16968 17010Line 212: 0 504 2478 5460 14448 16968 17010 第213行:36 202 1712 3961 7532 16896 17010;Line 213: 36 202 1712 3961 7532 16896 17010; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 13.一种低密度奇偶校验LDPC码的编码装置,其特征在于,所述装置包括:13. A coding device of a low-density parity-check LDPC code, characterized in that the device comprises: 生成模块,用于获取k个信息比特,其中k=8064;A generating module, configured to obtain k information bits, where k=8064; 编码模块,用于根据奇偶校验H矩阵,对所述k个信息比特进行LDPC编码,获得编码后的码字C,所述码字C的码长为n,码率R为k/n,n为大于k的正整数;其中,所述H矩阵为(n+s-k)×(n+s)的奇偶校验矩阵,所述H矩阵被划分为大小为Z×Z的子方阵,所述Z取值为64或42,所述子方阵为单位矩阵的循环移位或空矩阵,s为待缩短比特与所述H矩阵所对应的列数,且为Z的正整数倍;An encoding module, configured to perform LDPC encoding on the k information bits according to the parity check H matrix to obtain an encoded code word C, the code length of the code word C is n, and the code rate R is k/n, n is a positive integer greater than k; wherein, the H matrix is a parity check matrix of (n+s-k)×(n+s), and the H matrix is divided into sub-square matrices whose size is Z×Z, so The value of Z is 64 or 42, the sub-square matrix is a cyclic shift of the unit matrix or an empty matrix, and s is the number of columns corresponding to the bits to be shortened and the H matrix, and is a positive integer multiple of Z; 所述装置还包括:The device also includes: 填充模块,用于在所述k个信息比特前填充s个待缩短比特,得到(s+k)个待编码比特,所述s个待缩短比特的值为0;A filling module, configured to fill s bits to be shortened before the k information bits to obtain (s+k) bits to be encoded, and the value of the s bits to be shortened is 0; 所述编码模块,用于对所述(s+k)个待编码比特进行LDPC编码,获得编码后的码字C1,所述码字C1的码长为(s+n),所述码字C1包括所述s个待缩短比特、k个信息比特和(n-k)个奇偶校验比特;The encoding module is configured to perform LDPC encoding on the (s+k) bits to be encoded to obtain an encoded codeword C 1 , the code length of the codeword C 1 is (s+n), and the Codeword C 1 includes said s bits to be shortened, k information bits and (nk) parity bits; 删除模块:用于删除所述码字C1中的所述s个待缩短比特,得到所述码字C,其中,所述s个待缩短比特与所述H矩阵的前s列相对应。A deletion module: used to delete the s bits to be shortened in the codeword C1 to obtain the codeword C, wherein the s bits to be shortened correspond to the first s columns of the H matrix. 14.根据权利要求13所述的装置,其特征在于,所述装置应用于60吉赫兹GHz的无线局域网通信系统中。14. The device according to claim 13, characterized in that the device is applied in a 60 GHz wireless local area network communication system. 15.根据权利要求13所述的编码装置,其特征在于,所述码长n=9216,所述码率为R=7/8,所述Z=64,所述s=128时,所述H矩阵表示为:15. The encoding device according to claim 13, characterized in that, when the code length n=9216, the code rate R=7/8, the Z=64, and the s=128, the The H matrix is expressed as: 第0行:43 103 292 985 1077 1885 2266 2378 3195 3618 3740 4088 4595 51335301 6091 6297 6593 7029 7542 7841 7949 8128Line 0: 43 103 292 985 1077 1885 2266 2378 3195 3618 3740 4088 4595 51335301 6091 6297 6593 7029 7542 7841 7949 8128 第1行:57 90 410 781 1235 1556 1958 2541 2823 3307 3845 4145 4716 53535509 6023 6191 6995 7122 7393 7666 8176 8192Line 1: 57 90 410 781 1235 1556 1958 2541 2823 3307 3845 4145 4716 53535509 6023 6191 6995 7122 7393 7666 8176 8192 第2行:22 115 195 875 1308 1800 2333 2372 2875 3265 3981 4099 4756 51115617 5792 6367 6673 7043 7635 7811 7960 8256Line 2: 22 115 195 875 1308 1800 2333 2372 2875 3265 3981 4099 4756 51115617 5792 6367 6673 7043 7635 7811 7960 8256 第3行:27 79 374 897 1267 1766 2159 2655 3048 3395 3657 4053 4910 49645501 6184 6629 6719 7292 7445 8213 8277 8320Line 3: 27 79 374 897 1267 1766 2159 2655 3048 3395 3657 4053 4910 49645501 6184 6629 6719 7292 7445 8213 8277 8320 第4行:61 102 448 832 1389 1728 2112 2809 3008 3456 3840 4288 4893 51205568 5952 6550 6848 7104 7336 7680 8064 8384Line 4: 61 102 448 832 1389 1728 2112 2809 3008 3456 3840 4288 4893 51205568 5952 6550 6848 7104 7336 7680 8064 8384 第5行:12 123 477 703 1458 1535 2032 2592 3024 3263 3647 4137 4479 51235409 6053 6222 6956 7563 7691 8328 8388 8448Line 5: 12 123 477 703 1458 1535 2032 2592 3024 3263 3647 4137 4479 51235409 6053 6222 6956 7563 7691 8328 8388 8448 第6行:36 125 345 704 1180 1567 1920 2528 2752 3462 3648 4466 4480 49285376 5760 6272 6656 7309 7759 8122 8448 8512Line 6: 36 125 345 704 1180 1567 1920 2528 2752 3462 3648 4466 4480 49285376 5760 6272 6656 7309 7759 8122 8448 8512 第7行:109 142 632 678 1130 1503 2202 2316 2746 2919 3476 3669 4226 44854955 5649 6116 6289 6989 7390 8117 8575 8576Line 7: 109 142 632 678 1130 1503 2202 2316 2746 2919 3476 3669 4226 44854955 5649 6116 6289 6989 7390 8117 8575 8576 第8行:43 83 397 895 1293 1677 2061 2573 3102 3405 3959 4237 4685 52555681 6193 6413 6859 7245 7704 7885 8420 8640Line 8: 43 83 397 895 1293 1677 2061 2573 3102 3405 3959 4237 4685 52555681 6193 6413 6859 7245 7704 7885 8420 8640 第9行:4 65 595 670 1420 1769 2019 2663 3140 3431 3855 4377 4706 5451 55795953 6371 6810 7091 7465 8526 8671 8704Line 9: 4 65 595 670 1420 1769 2019 2663 3140 3431 3855 4377 4706 5451 55795953 6371 6810 7091 7465 8526 8671 8704 第10行:20 88 404 1080 1328 1601 1923 2398 2974 3294 3829 4343 4823 50425756 5984 6417 6730 7177 7582 8016 87348768Line 10: 20 88 404 1080 1328 1601 1923 2398 2974 3294 3829 4343 4823 50425756 5984 6417 6730 7177 7582 8016 87348768 第11行:5 69 517 901 1349 1797 2181 2629 2693 3077 3578 3909 4608 47415189 5637 6021 6469 7098 7301 7749 8773 8832Line 11: 5 69 517 901 1349 1797 2181 2629 2693 3077 3578 3909 4608 47415189 5637 6021 6469 7098 7301 7749 8773 8832 第12行:48 188 320 768 1216 1600 2129 2496 3090 3570 3776 4160 4608 52445504 5888 6551 6942 7168 7616 7908 8865 8896Line 12: 48 188 320 768 1216 1600 2129 2496 3090 3570 3776 4160 4608 52445504 5888 6551 6942 7168 7616 7908 8865 8896 第13行:30 255 534 942 1206 1703 1984 2463 2816 3375 3719 4174 4544 49925727 5847 6443 6823 7483 8016 8631 8775 8960Line 13: 30 255 534 942 1206 1703 1984 2463 2816 3375 3719 4174 4544 49925727 5847 6443 6823 7483 8016 8631 8775 8960 第14行:30 96 230 722 1101 1657 2364 2487 2908 3252 3794 4266 4584 49015348 5834 6261 6629 7204 7582 8919 8996 9024Line 14: 30 96 230 722 1101 1657 2364 2487 2908 3252 3794 4266 4584 49015348 5834 6261 6629 7204 7582 8919 8996 9024 第15行:22 107 295 751 1127 1794 2108 2579 2967 3343 4010 4170 4517 52475430 5790 6247 6750 7247 7527 8359 8679 9088Line 15: 22 107 295 751 1127 1794 2108 2579 2967 3343 4010 4170 4517 52475430 5790 6247 6750 7247 7527 8359 8679 9088 第16行:40 88 471 1027 1508 1884 2095 2432 2944 3589 3963 4405 4748 50565440 5824 6336 6784 8128 8910 9071 9088 9152Line 16: 40 88 471 1027 1508 1884 2095 2432 2944 3589 3963 4405 4748 50565440 5824 6336 6784 8128 8910 9071 9088 9152 第17行:35 98 265 1016 1348 1706 2294 2775 3250 4032 4303 4816 5118 53305920 6480 6855 7504 7863 8268 9042 9176 9216Line 17: 35 98 265 1016 1348 1706 2294 2775 3250 4032 4303 4816 5118 53305920 6480 6855 7504 7863 8268 9042 9176 9216 第18行:113 128 576 960 1408 1856 2240 3136 3520 3968 4352 4800 5302 56966080 6528 6912 7360 7936 8576 8832 9216 9280Line 18: 113 128 576 960 1408 1856 2240 3136 3520 3968 4352 4800 5302 56966080 6528 6912 7360 7936 8576 8832 9216 9280 第19行:38 65 561 819 1164 1548 2204 2892 3340 3724 4439 4658 5004 55505936 6478 6732 7757 8012 8244 9199 9271 9280;Line 19: 38 65 561 819 1164 1548 2204 2892 3340 3724 4439 4658 5004 55505936 6478 6732 7757 8012 8244 9199 9271 9280; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 16.根据权利要求13所述的编码装置,其特征在于,所述码长n=9984,所述码率为R=13/16,所述Z=64,所述s=192时,所述H矩阵表示为:16. The encoding device according to claim 13, characterized in that, when the code length n=9984, the code rate R=13/16, the Z=64, and the s=192, the The H matrix is expressed as: 第0行:17 156 413 1371 2211 2561 3397 3910 4614 6070 6244 6662 7213 74308128Line 0: 17 156 413 1371 2211 2561 3397 3910 4614 6070 6244 6662 7213 74308128 第1行:29 103 179 758 1203 1907 3000 3591 4505 4927 5363 6400 7000 76038179 8192Line 1: 29 103 179 758 1203 1907 3000 3591 4505 4927 5363 6400 7000 76038179 8192 第2行:19 155 800 1344 2112 2688 3936 4160 4992 5504 6860 7168 7334 79738256Line 2: 19 155 800 1344 2112 2688 3936 4160 4992 5504 6860 7168 7334 79738256 第3行:48 135 999 1628 2045 2709 3763 4032 5153 5591 6272 6912 7959 83098320Line 3: 48 135 999 1628 2045 2709 3763 4032 5153 5591 6272 6912 7959 83098320 第4行:4 89 376 939 1303 1936 2829 3232 4458 4612 5953 6685 6824 7484 83548384Line 4: 4 89 376 939 1303 1936 2829 3232 4458 4612 5953 6685 6824 7484 83548384 第5行:96 180 862 1675 2317 3045 3599 3968 5146 5561 6331 7090 8069 83848448Line 5: 96 180 862 1675 2317 3045 3599 3968 5146 5561 6331 7090 8069 83848448 第6行:43 148 705 1146 1849 2901 3887 4300 4931 5987 6343 7160 7789 84888512Line 6: 43 148 705 1146 1849 2901 3887 4300 4931 5987 6343 7160 7789 84888512 第7行:2 130 576 2010 2335 2705 3782 4163 5097 5832 6208 6848 8192 85128576Line 7: 2 130 576 2010 2335 2705 3782 4163 5097 5832 6208 6848 8192 85128576 第8行:90 263 510 1630 1821 2670 3390 4148 4734 5385 6384 7354 8089 86378640Line 8: 90 263 510 1630 1821 2670 3390 4148 4734 5385 6384 7354 8089 86378640 第9行:61 114 581 1337 2389 2533 3223 3946 4716 5565 6061 7606 7788 86988704Line 9: 61 114 581 1337 2389 2533 3223 3946 4716 5565 6061 7606 7788 86988704 第10行:2 96 376 534 1507 1974 2550 3318 4014 4700 5750 6150 6724 75428158 8768Line 10: 2 96 376 534 1507 1974 2550 3318 4014 4700 5750 6150 6724 75428158 8768 第11行:26 99 169 512 1428 1792 2771 3868 4024 4993 5741 6080 6720 86408768 8832Line 11: 26 99 169 512 1428 1792 2771 3868 4024 4993 5741 6080 6720 86408768 8832 第12行:6 186 384 1088 2556 2560 3514 4584 4888 5368 6107 7148 7627 76808896Line 12: 6 186 384 1088 2556 2560 3514 4584 4888 5368 6107 7148 7627 76808896 第13行:119 150 883 1230 2059 2926 3313 4130 5262 5383 6270 6899 7738 89358960Line 13: 119 150 883 1230 2059 2926 3313 4130 5262 5383 6270 6899 7738 89358960 第14行:116 192 960 1674 2434 3008 3712 4593 5213 5824 6768 7546 8061 89609024Line 14: 116 192 960 1674 2434 3008 3712 4593 5213 5824 6768 7546 8061 89609024 第15行:19 115 131 450 1197 2280 3078 3699 4460 4657 5766 6540 7254 75209080 9088Line 15: 19 115 131 450 1197 2280 3078 3699 4460 4657 5766 6540 7254 75209080 9088 第16行:57 170 889 1759 2297 2937 3715 4409 5113 5753 6642 7161 8050 91459152Line 16: 57 170 889 1759 2297 2937 3715 4409 5113 5753 6642 7161 8050 91459152 第17行:35 115 136 904 1544 2312 2952 3656 4424 5128 5768 6472 7944 87129160 9216Line 17: 35 115 136 904 1544 2312 2952 3656 4424 5128 5768 6472 7944 87129160 9216 第18行:98 256 1243 1600 2368 3072 3776 4480 5184 5888 6528 7232 8000 92169280Line 18: 98 256 1243 1600 2368 3072 3776 4480 5184 5888 6528 7232 8000 92169280 第19行:108 227 988 1106 2055 3109 3291 4943 5104 5631 6031 6946 8202 93319344Line 19: 108 227 988 1106 2055 3109 3291 4943 5104 5631 6031 6946 8202 93319344 第20行:72 149 788 1730 2443 2671 3449 4500 4793 5433 6463 6841 7673 94019408Line 20: 72 149 788 1730 2443 2671 3449 4500 4793 5433 6463 6841 7673 94019408 第21行:1 168 768 1472 2176 2816 3584 4288 5210 5632 6400 7292 7872 94089472Line 21: 1 168 768 1472 2176 2816 3584 4288 5210 5632 6400 7292 7872 94089472 第22行:30 102 145 444 1399 2407 3192 3330 4083 4845 5493 6309 7385 88789523 9536Line 22: 30 102 145 444 1399 2407 3192 3330 4083 4845 5493 6309 7385 88789523 9536 第23行:110 264 680 1557 1989 3033 3461 4335 4869 5665 6341 6981 7749 95419600Line 23: 110 264 680 1557 1989 3033 3461 4335 4869 5665 6341 6981 7749 95419600 第24行:48 110 148 1079 1209 2164 2953 3444 4415 4778 5472 6631 6800 73697707 9664Line 24: 48 110 148 1079 1209 2164 2953 3444 4415 4778 5472 6631 6800 73697707 9664 第25行:122 154 704 1408 2249 2752 3520 4224 5328 5568 6691 7464 7808 96649728Line 25: 122 154 704 1408 2249 2752 3520 4224 5328 5568 6691 7464 7808 96649728 第26行:172 497 639 1456 2175 2617 3341 4055 4863 5920 6173 6924 7864 97369792Line 26: 172 497 639 1456 2175 2617 3341 4055 4863 5920 6173 6924 7864 97369792 第27行:8 98 138 1060 1216 1920 3155 3479 4221 4800 5650 6144 7002 79079815 9856Line 27: 8 98 138 1060 1216 1920 3155 3479 4221 4800 5650 6144 7002 79079815 9856 第28行:20 65 214 574 1556 1891 2826 3703 4265 5053 5765 6132 7398 76299911 9920Line 28: 20 65 214 574 1556 1891 2826 3703 4265 5053 5765 6132 7398 76299911 9920 第29行:19 171 959 1280 2048 2624 3582 4096 5295 5902 6485 7040 7911 99209984Line 29: 19 171 959 1280 2048 2624 3582 4096 5295 5902 6485 7040 7911 99209984 第30行:55 94 684 1480 1758 2756 3814 4265 4754 5834 6531 8740 8848 999410048Line 30: 55 94 684 1480 1758 2756 3814 4265 4754 5834 6531 8740 8848 999410048 第31行:73 320 1024 1664 2432 3136 3840 4544 5248 5952 6592 7296 806410048 10112Line 31: 73 320 1024 1664 2432 3136 3840 4544 5248 5952 6592 7296 806410048 10112 第32行:58 167 688 1864 2182 3237 3562 4401 4976 5488 6483 7053 7830 964810112;Line 32: 58 167 688 1864 2182 3237 3562 4401 4976 5488 6483 7053 7830 964810112; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 17.根据权利要求13所述的编码装置,其特征在于,所述码长n=10752,所述码率为R=3/4,所述Z=64,所述s=256时,所述H矩阵表示为:17. The coding device according to claim 13, characterized in that, when the code length n=10752, the code rate R=3/4, the Z=64, and the s=256, the The H matrix is expressed as: 第0行:53 199 1356 1994 3149 3624 4661 6453 7300 7458 7839 8128Line 0: 53 199 1356 1994 3149 3624 4661 6453 7300 7458 7839 8128 第1行:8 234 1096 1992 3080 3976 6024 7432 7870 8072 8136 8192Line 1: 8 234 1096 1992 3080 3976 6024 7432 7870 8072 8136 8192 第2行:113 234 1495 1914 3270 3613 5526 6582 7061 8067 8233 8256Line 2: 113 234 1495 1914 3270 3613 5526 6582 7061 8067 8233 8256 第3行:89 168 533 896 1792 3025 4354 4861 5824 6848 7945 8256 8320Line 3: 89 168 533 896 1792 3025 4354 4861 5824 6848 7945 8256 8320 第4行:5 238 1087 1600 2624 3520 5075 6239 6968 7558 8359 8384Line 4: 5 238 1087 1600 2624 3520 5075 6239 6968 7558 8359 8384 第5行:29 224 830 1550 2590 4015 4693 5504 6500 7884 8390 8448Line 5: 29 224 830 1550 2590 4015 4693 5504 6500 7884 8390 8448 第6行:18 255 1147 1630 2738 4041 5187 5441 7002 7767 8504 8512Line 6: 18 255 1147 1630 2738 4041 5187 5441 7002 7767 8504 8512 第7行:69 194 1154 2114 3138 4098 4994 6082 7282 7405 8514 8576Line 7: 69 194 1154 2114 3138 4098 4994 6082 7282 7405 8514 8576 第8行:243 789 1709 2557 3491 4541 5812 6692 7580 8447 8640Line 8: 243 789 1709 2557 3491 4541 5812 6692 7580 8447 8640 第9行:55 155 1212 1537 2543 4231 5031 5577 6739 8577 8641 8704Line 9: 55 155 1212 1537 2543 4231 5031 5577 6739 8577 8641 8704 第10行:78 485 1398 2254 3439 4238 5134 6222 7118 7374 8595 8768Line 10: 78 485 1398 2254 3439 4238 5134 6222 7118 7374 8595 8768 第11行:126 320 1280 2304 3264 4288 5184 6272 7168 8704 8768 8832Line 11: 126 320 1280 2304 3264 4288 5184 6272 7168 8704 8768 8832 第12行:127 197 551 2358 2632 3733 5191 5563 7039 7660 8868 8896Line 12: 127 197 551 2358 2632 3733 5191 5563 7039 7660 8868 8896 第13行:0 235 686 3069 3819 3952 4756 4982 5590 6625 8918 8960Line 13: 0 235 686 3069 3819 3952 4756 4982 5590 6625 8918 8960 第14行:72 187 1427 2159 2730 3863 4586 5882 6506 7937 9002 9024Line 14: 72 187 1427 2159 2730 3863 4586 5882 6506 7937 9002 9024 第15行:49 217 704 1949 3135 3648 3776 4785 5917 6801 9024 9088Line 15: 49 217 704 1949 3135 3648 3776 4785 5917 6801 9024 9088 第16行:21 191 863 1970 2659 3579 4544 5479 7129 7525 9115 9152Line 16: 21 191 863 1970 2659 3579 4544 5479 7129 7525 9115 9152 第17行:40 177 562 2203 2710 4109 5070 5912 6892 7527 9063 9216Line 17: 40 177 562 2203 2710 4109 5070 5912 6892 7527 9063 9216 第18行:41 246 640 1895 3493 3886 5124 5747 6528 7488 9216 9280Line 18: 41 246 640 1895 3493 3886 5124 5747 6528 7488 9216 9280 第19行:26 250 695 2205 2858 3543 4522 6342 6956 9195 9299 9344Line 19: 26 250 695 2205 2858 3543 4522 6342 6956 9195 9299 9344 第20行:80 138 1116 1821 2816 4132 4608 5632 6656 7680 9344 9408Line 20: 80 138 1116 1821 2816 4132 4608 5632 6656 7680 9344 9408 第21行:78 220 1429 2450 2557 3727 3801 5053 5665 6461 7869 9472Line 21: 78 220 1429 2450 2557 3727 3801 5053 5665 6461 7869 9472 第22行:112 174 989 1729 2960 4672 4946 6227 6720 8736 9472 9536Line 22: 112 174 989 1729 2960 4672 4946 6227 6720 8736 9472 9536 第23行:121 128 576 1624 2560 3690 5434 6004 7108 8192 9573 9600Line 23: 121 128 576 1624 2560 3690 5434 6004 7108 8192 9573 9600 第24行:106 154 455 1013 1597 2810 3959 5293 5823 6478 7935 9627 9664Line 24: 106 154 455 1013 1597 2810 3959 5293 5823 6478 7935 9627 9664 第25行:114 197 1244 1704 3256 4318 4454 6162 6407 7786 9431 9728Line 25: 114 197 1244 1704 3256 4318 4454 6162 6407 7786 9431 9728 第26行:64 384 1344 2368 3328 4413 5248 6360 7232 9664 9728 9792Line 26: 64 384 1344 2368 3328 4413 5248 6360 7232 9664 9728 9792 第27行:131 280 1179 2490 2970 4178 4880 5839 7276 7643 8319 9856Line 27: 131 280 1179 2490 2970 4178 4880 5839 7276 7643 8319 9856 第28行:67 228 1343 2048 3166 4032 6004 6284 6976 8000 9856 9920Line 28: 67 228 1343 2048 3166 4032 6004 6284 6976 8000 9856 9920 第29行:147 400 1064 2158 2930 4427 4635 5455 7349 8062 9980 9984Line 29: 147 400 1064 2158 2930 4427 4635 5455 7349 8062 9980 9984 第30行:24 128 960 1728 1856 3374 4800 5888 6912 9818 9984 10048Line 30: 24 128 960 1728 1856 3374 4800 5888 6912 9818 9984 10048 第31行:21 201 1233 2080 2944 3840 4864 6305 7040 7168 8033 10112Line 31: 21 201 1233 2080 2944 3840 4864 6305 7040 7168 8033 10112 第32行:6 225 950 1835 2609 4279 5299 5644 6672 9804 10146 10176Line 32: 6 225 950 1835 2609 4279 5299 5644 6672 9804 10146 10176 第33行:159 361 633 2296 3255 3696 6085 7696 8088 10095 10232 10240Line 33: 159 361 633 2296 3255 3696 6085 7696 8088 10095 10232 10240 第34行:43 137 1309 2397 2752 4329 4676 6207 6865 7616 10048 10304Line 34: 43 137 1309 2397 2752 4329 4676 6207 6865 7616 10048 10304 第35行:49 215 710 2100 2870 4204 4914 5618 6811 7727 10367 10368Line 35: 49 215 710 2100 2870 4204 4914 5618 6811 7727 10367 10368 第36行:117 131 901 2002 3446 4079 5138 6125 6603 7563 9562 10432Line 36: 117 131 901 2002 3446 4079 5138 6125 6603 7563 9562 10432 第37行:125 256 1216 2176 3200 4160 5056 6144 10240 10368 10432 10496Line 37: 125 256 1216 2176 3200 4160 5056 6144 10240 10368 10432 10496 第38行:69 345 834 2396 3335 4013 5410 5738 6577 9439 10551 10560Line 38: 69 345 834 2396 3335 4013 5410 5738 6577 9439 10551 10560 第39行:112 162 730 1711 2912 3631 4841 5743 7194 7791 10607 10624Line 39: 112 162 730 1711 2912 3631 4841 5743 7194 7791 10607 10624 第40行:57 188 832 2346 3088 3712 4736 5760 6784 10514 10624 10688Line 40: 57 188 832 2346 3088 3712 4736 5760 6784 10514 10624 10688 第41行:34 243 599 1485 3310 3518 4486 5389 6777 9335 10694 10752Line 41: 34 243 599 1485 3310 3518 4486 5389 6777 9335 10694 10752 第42行:92 317 1534 1745 2290 2775 4590 6022 6654 8932 10766 10816Line 42: 92 317 1534 1745 2290 2775 4590 6022 6654 8932 10766 10816 第43行:189 420 1058 1954 3042 3938 5367 5986 7970 10269 10850 10880Line 43: 189 420 1058 1954 3042 3938 5367 5986 7970 10269 10850 10880 第44行:140 448 1408 2432 3392 4352 5312 6336 7296 9184 10880 10944Line 44: 140 448 1408 2432 3392 4352 5312 6336 7296 9184 10880 10944 第45行:1 146 788 2900 4434 4948 5355 6040 7892 10628 10810 10944;Line 45: 1 146 788 2900 4434 4948 5355 6040 7892 10628 10810 10944; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 18.根据权利要求13所述的编码装置,其特征在于,所述码长n=12928,所述码率为R=5/8,所述Z=64,所述s=576时,所述H矩阵表示为:18. The coding device according to claim 13, characterized in that, when the code length n=12928, the code rate R=5/8, the Z=64, and the s=576, the The H matrix is expressed as: 第0行:430 1216 3550 3802 5326 6769 8128Line 0: 430 1216 3550 3802 5326 6769 8128 第1行:492 1119 2525 4253 6761 8187 8192Line 1: 492 1119 2525 4253 6761 8187 8192 第2行:98 366 1938 3708 5707 7296 8192 8256Line 2: 98 366 1938 3708 5707 7296 8192 8256 第3行:42 625 2493 2900 4718 6574 8271 8320Line 3: 42 625 2493 2900 4718 6574 8271 8320 第4行:363 2091 3883 6105 7659 8363 8384Line 4: 363 2091 3883 6105 7659 8363 8384 第5行:111 512 2240 3776 3968 5888 8384 8448Line 5: 111 512 2240 3776 3968 5888 8384 8448 第6行:471 1728 3520 5376 7168 8000 8512Line 6: 471 1728 3520 5376 7168 8000 8512 第7行:18 440 2144 4169 5184 7040 8569 8576Line 7: 18 440 2144 4169 5184 7040 8569 8576 第8行:58 482 1324 2794 4922 6387 8629 8640Line 8: 58 482 1324 2794 4922 6387 8629 8640 第9行:129 2334 3969 4394 7654 8645 8704Line 9: 129 2334 3969 4394 7654 8645 8704 第10行:103 247 1424 3909 5268 6188 8748 8768Line 10: 103 247 1424 3909 5268 6188 8748 8768 第11行:66 217 1676 3261 5511 6582 8768 8832Line 11: 66 217 1676 3261 5511 6582 8768 8832 第12行:428 2332 2946 4510 7232 8849 8896Line 12: 428 2332 2946 4510 7232 8849 8896 第13行:465 2296 5859 7552 8064 8896 8960Line 13: 465 2296 5859 7552 8064 8896 8960 第14行:570 1049 2612 5834 7876 9022 9024Line 14: 570 1049 2612 5834 7876 9022 9024 第15行:427 1159 3167 5594 7081 9063 9088Line 15: 427 1159 3167 5594 7081 9063 9088 第16行:34 311 1344 5125 7054 8084 9088 9152Line 16: 34 311 1344 5125 7054 8084 9088 9152 第17行:262 1280 3846 4928 6784 9171 9216Line 17: 262 1280 3846 4928 6784 9171 9216 第18行:415 1882 2880 4736 7606 9257 9280Line 18: 415 1882 2880 4736 7606 9257 9280 第19行:224 1809 2562 5315 6814 9293 9344Line 19: 224 1809 2562 5315 6814 9293 9344 第20行:472 768 4141 5918 6808 9363 9408Line 20: 472 768 4141 5918 6808 9363 9408 第21行:701 905 3352 5385 7157 9451 9472Line 21: 701 905 3352 5385 7157 9451 9472 第22行:159 2188 3593 4863 6463 9479 9536Line 22: 159 2188 3593 4863 6463 9479 9536 第23行:29 342 1979 3328 5430 7939 9536 9600Line 23: 29 342 1979 3328 5430 7939 9536 9600 第24行:46 426 872 4397 6046 7360 9659 9664Line 24: 46 426 872 4397 6046 7360 9659 9664 第25行:48 405 1655 4228 4330 7761 8048 9728Line 25: 48 405 1655 4228 4330 7761 8048 9728 第26行:138 223 960 2913 5241 6895 9728 9792Line 26: 138 223 960 2913 5241 6895 9728 9792 第27行:267 892 4134 4521 6322 9828 9856Line 27: 267 892 4134 4521 6322 9828 9856 第28行:256 1984 3712 5696 7488 9856 9920Line 28: 256 1984 3712 5696 7488 9856 9920 第29行:442 2369 2877 4879 7784 9954 9984Line 29: 442 2369 2877 4879 7784 9954 9984 第30行:4 317 2289 3392 5686 7489 9984 10048Line 30: 4 317 2289 3392 5686 7489 9984 10048 第31行:28 549 1472 3990 6159 7490 10056 10112Line 31: 28 549 1472 3990 6159 7490 10056 10112 第32行:275 2084 3327 4309 6680 10116 10176Line 32: 275 2084 3327 4309 6680 10116 10176 第33行:122 278 1266 2688 5217 6400 10176 10240Line 33: 122 278 1266 2688 5217 6400 10176 10240 第34行:25 138 1228 3057 5042 7277 10247 10304Line 34: 25 138 1228 3057 5042 7277 10247 10304 第35行:86 136 1733 2760 4969 6560 10312 10368Line 35: 86 136 1733 2760 4969 6560 10312 10368 第36行:64 656 2304 4032 5952 7872 10368 10432Line 36: 64 656 2304 4032 5952 7872 10368 10432 第37行:327 2417 3713 4396 6940 10441 10496Line 37: 327 2417 3713 4396 6940 10441 10496 第38行:28 380 1088 3055 5137 6615 10496 10560Line 38: 28 380 1088 3055 5137 6615 10496 10560 第39行:340 1503 3459 4733 6621 10604 10624Line 39: 340 1503 3459 4733 6621 10604 10624 第40行:518 1819 2676 5453 8479 10632 10688Line 40: 518 1819 2676 5453 8479 10632 10688 第41行:319 896 2624 5962 6272 10688 10752Line 41: 319 896 2624 5962 6272 10688 10752 第42行:34 183 1560 4266 4779 7230 10793 10816Line 42: 34 183 1560 4266 4779 7230 10793 10816 第43行:521 1748 3200 4992 6848 10816 10880Line 43: 521 1748 3200 4992 6848 10816 10880 第44行:40 242 1989 2944 5951 6592 10908 10944Line 44: 40 242 1989 2944 5951 6592 10908 10944 第45行:125 269 1325 2688 4288 7719 10992 11008Line 45: 125 269 1325 2688 4288 7719 10992 11008 第46行:0 310 829 3129 5081 6517 11017 11072Line 46: 0 310 829 3129 5081 6517 11017 11072 第47行:570 2004 3648 5632 7424 11072 11136Line 47: 570 2004 3648 5632 7424 11072 11136 第48行:44 310 994 3475 4544 7683 11191 11200Line 48: 44 310 994 3475 4544 7683 11191 11200 第49行:193 2064 2954 4735 7026 11256 11264Line 49: 193 2064 2954 4735 7026 11256 11264 第50行:24 217 793 2727 6128 7363 9668 11328Line 50: 24 217 793 2727 6128 7363 9668 11328 第51行:148 576 2368 4096 6016 7936 11328 11392Line 51: 148 576 2368 4096 6016 7936 11328 11392 第52行:187 720 1153 3009 4837 6657 11396 11456Line 52: 187 720 1153 3009 4837 6657 11396 11456 第53行:0 448 2176 4033 5824 7744 11456 11520Line 53: 0 448 2176 4033 5824 7744 11456 11520 第54行:9 394 1459 4477 5111 6270 11558 11584Line 54: 9 394 1459 4477 5111 6270 11558 11584 第55行:320 1600 3456 5120 6976 11584 11648Line 55: 320 1600 3456 5120 6976 11584 11648 第56行:97 454 2114 4665 6022 7204 11654 11712Line 56: 97 454 2114 4665 6022 7204 11654 11712 第57行:191 938 1566 2816 4608 6464 11712 11776Line 57: 191 938 1566 2816 4608 6464 11712 11776 第58行:46 489 1708 3097 4419 6211 11827 11840Line 58: 46 489 1708 3097 4419 6211 11827 11840 第59行:143 592 2549 4602 5312 7104 11840 11904Line 59: 143 592 2549 4602 5312 7104 11840 11904 第60行:94 330 1029 2560 4741 7624 11907 11968Line 60: 94 330 1029 2560 4741 7624 11907 11968 第61行:436 2187 2856 4491 6276 12008 12032Line 61: 436 2187 2856 4491 6276 12008 12032 第62行:2 394 1792 3584 5440 7331 12032 12096Line 62: 2 394 1792 3584 5440 7331 12032 12096 第63行:108 366 1664 3607 5248 7348 12124 12160Line 63: 108 366 1664 3607 5248 7348 12124 12160 第64行:552 1024 3701 5595 6978 12199 12224Line 64: 552 1024 3701 5595 6978 12199 12224 第65行:20 368 1161 3526 4625 6701 12244 12288Line 65: 20 368 1161 3526 4625 6701 12244 12288 第66行:2 232 1359 3841 4958 6922 12288 12352Line 66: 2 232 1359 3841 4958 6922 12288 12352 第67行:33 518 1490 5443 5819 6235 11321 12416Line 67: 33 518 1490 5443 5819 6235 11321 12416 第68行:503 1536 5056 7592 8072 12416 12480Line 68: 503 1536 5056 7592 8072 12416 12480 第69行:36 233 832 3439 5551 6479 12513 12544Line 69: 36 233 832 3439 5551 6479 12513 12544 第70行:114 490 1631 3328 5302 12359 12580 12608Line 70: 114 490 1631 3328 5302 12359 12580 12608 第71行:498 747 3245 5658 6418 7844 12672Line 71: 498 747 3245 5658 6418 7844 12672 第72行:139 530 2523 3136 4864 7112 12672 12736Line 72: 139 530 2523 3136 4864 7112 12672 12736 第73行:1 515 3167 4047 6007 6861 12799 12800Line 73: 1 515 3167 4047 6007 6861 12799 12800 第74行:3 284 2465 3120 4848 6768 12836 12864Line 74: 3 284 2465 3120 4848 6768 12836 12864 第75行:384 2112 3904 5760 7680 12864 12928Line 75: 384 2112 3904 5760 7680 12864 12928 第76行:57 559 986 3924 4560 6148 12990 12992Line 76: 57 559 986 3924 4560 6148 12990 12992 第77行:10 221 1112 3408 6356 7473 12993 13056Line 77: 10 221 1112 3408 6356 7473 12993 13056 第78行:343 1920 3750 5568 7360 13056 13120Line 78: 343 1920 3750 5568 7360 13056 13120 第79行:234 727 2678 4417 7468 13142 13184Line 79: 234 727 2678 4417 7468 13142 13184 第80行:47 365 1902 3269 5008 6341 13189 13248Line 80: 47 365 1902 3269 5008 6341 13189 13248 第81行:478 1346 2779 5752 7822 8459 13312Line 81: 478 1346 2779 5752 7822 8459 13312 第82行:228 1892 4212 5540 7268 13348 13376Line 82: 228 1892 4212 5540 7268 13348 13376 第83行:176 640 2432 4160 6080 12608 13376 13440Line 83: 176 640 2432 4160 6080 12608 13376 13440 第84行:22 533 1471 3327 5767 6975 13311 13440;Line 84: 22 533 1471 3327 5767 6975 13311 13440; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 19.根据权利要求13所述的编码装置,其特征在于,所述码长n=16128,所述码率为R=1/2,所述Z=64,所述s=960时,所述H矩阵表示为:19. The coding device according to claim 13, characterized in that, when the code length n=16128, the code rate R=1/2, the Z=64, and the s=960, the The H matrix is expressed as: 第0行:384 2304 5312 7680 7936 8128Line 0: 384 2304 5312 7680 7936 8128 第1行:96 798 7691 7940 8156 8192Line 1: 96 798 7691 7940 8156 8192 第2行:83 739 3123 5976 7552 8256Line 2: 83 739 3123 5976 7552 8256 第3行:91 728 2696 7105 8298 8320Line 3: 91 728 2696 7105 8298 8320 第4行:101 851 3881 6331 7612 8384Line 4: 101 851 3881 6331 7612 8384 第5行:328 738 3762 6261 8381 8448Line 5: 328 738 3762 6261 8381 8448 第6行:5 416 1809 3325 8404 8475 8512Line 6: 5 416 1809 3325 8404 8475 8512 第7行:436 1188 4860 7405 7523 8576Line 7: 436 1188 4860 7405 7523 8576 第8行:144 832 6891 8244 8597 8640Line 8: 144 832 6891 8244 8597 8640 第9行:94 991 3257 6667 7855 8704Line 9: 94 991 3257 6667 7855 8704 第10行:331 871 4668 7847 8743 8768Line 10: 331 871 4668 7847 8743 8768 第11行:2 638 1917 3520 7340 8640 8832Line 11: 2 638 1917 3520 7340 8640 8832 第12行:43 343 1805 5174 8775 8882 8896Line 12: 43 343 1805 5174 8775 8882 8896 第13行:114 911 4419 6607 8898 8960Line 13: 114 911 4419 6607 8898 8960 第14行:77 890 2624 6352 8960 9024Line 14: 77 890 2624 6352 8960 9024 第15行:49 206 653 3342 6953 9037 9088Line 15: 49 206 653 3342 6953 9037 9088 第16行:104 906 3705 6408 9096 9152Line 16: 104 906 3705 6408 9096 9152 第17行:546 714 3472 8080 9168 9216Line 17: 546 714 3472 8080 9168 9216 第18行:62 161 1051 5039 5828 6303 9280Line 18: 62 161 1051 5039 5828 6303 9280 第19行:32 338 1984 5056 9216 9280 9344Line 19: 32 338 1984 5056 9216 9280 9344 第20行:103 698 2196 3243 7449 8114 9408Line 20: 103 698 2196 3243 7449 8114 9408 第21行:39 459 687 2646 5585 9430 9472Line 21: 39 459 687 2646 5585 9430 9472 第22行:33 368 1303 4329 6553 9505 9536Line 22: 33 368 1303 4329 6553 9505 9536 第23行:83 786 4697 6788 9392 9600Line 23: 83 786 4697 6788 9392 9600 第24行:64 864 3852 5589 9573 9664Line 24: 64 864 3852 5589 9573 9664 第25行:91 247 709 2497 5863 9655 9728Line 25: 91 247 709 2497 5863 9655 9728 第26行:41 77 2387 2901 9685 9749 9792Line 26: 41 77 2387 2901 9685 9749 9792 第27行:212 942 2807 5715 8971 9856Line 27: 212 942 2807 5715 8971 9856 第28行:57 550 1683 4165 8561 9856 9920Line 28: 57 550 1683 4165 8561 9856 9920 第29行:58 259 682 4136 6144 9977 9984Line 29: 58 259 682 4136 6144 9977 9984 第30行:58 144 2272 5358 9255 10002 10048Line 30: 58 144 2272 5358 9255 10002 10048 第31行:191 754 4009 6995 10098 10112Line 31: 191 754 4009 6995 10098 10112 第32行:116 822 3702 9802 10166 10176Line 32: 116 822 3702 9802 10166 10176 第33行:595 1157 4332 7237 10181 10240Line 33: 595 1157 4332 7237 10181 10240 第34行:102 313 1344 5307 7424 10240 10304Line 34: 102 313 1344 5307 7424 10240 10304 第35行:305 681 4395 6063 10306 10368Line 35: 305 681 4395 6063 10306 10368 第36行:565 2747 4612 8048 10368 10432Line 36: 565 2747 4612 8048 10368 10432 第37行:160 846 3529 8024 10478 10496Line 37: 160 846 3529 8024 10478 10496 第38行:8 602 1239 2969 6278 10502 10560Line 38: 8 602 1239 2969 6278 10502 10560 第39行:481 743 3912 5669 9122 10624Line 39: 481 743 3912 5669 9122 10624 第40行:28 475 896 3904 7657 10624 10688Line 40: 28 475 896 3904 7657 10624 10688 第41行:95 525 2437 4691 5808 10727 10752Line 41: 95 525 2437 4691 5808 10727 10752 第42行:58 207 1620 3008 6935 10752 10816Line 42: 58 207 1620 3008 6935 10752 10816 第43行:95 755 5271 7778 10841 10880Line 43: 95 755 5271 7778 10841 10880 第44行:31 214 953 2776 5984 10912 10944Line 44: 31 214 953 2776 5984 10912 10944 第45行:95 670 3502 6622 10974 11008Line 45: 95 670 3502 6622 10974 11008 第46行:583 2176 5184 10560 11008 11072Line 46: 583 2176 5184 10560 11008 11072 第47行:29 280 1302 3542 5658 9657 11136Line 47: 29 280 1302 3542 5658 9657 11136 第48行:526 1728 4800 7744 11136 11200Line 48: 526 1728 4800 7744 11136 11200 第49行:62 912 1460 4352 7894 11215 11264Line 49: 62 912 1460 4352 7894 11215 11264 第50行:117 628 2623 5631 11294 11328Line 50: 117 628 2623 5631 11294 11328 第51行:120 1469 3806 6503 11387 11392Line 51: 120 1469 3806 6503 11387 11392 第52行:67 959 2867 6169 11392 11456Line 52: 67 959 2867 6169 11392 11456 第53行:81 626 2846 7657 11509 11520Line 53: 81 626 2846 7657 11509 11520 第54行:501 757 4250 6341 11520 11584Line 54: 501 757 4250 6341 11520 11584 第55行:21 385 2174 4595 7511 11584 11648Line 55: 21 385 2174 4595 7511 11584 11648 第56行:36 403 927 4777 6511 11649 11712Line 56: 36 403 927 4777 6511 11649 11712 第57行:23 461 1739 4421 11124 11712 11776Line 57: 23 461 1739 4421 11124 11712 11776 第58行:18 173 1146 2977 11077 11810 11840Line 58: 18 173 1146 2977 11077 11810 11840 第59行:76 875 3392 6995 11840 11904Line 59: 76 875 3392 6995 11840 11904 第60行:98 731 2816 6208 11904 11968Line 60: 98 731 2816 6208 11904 11968 第61行:57 323 2376 3095 6369 10817 12032Line 61: 57 323 2376 3095 6369 10817 12032 第62行:229 721 4354 6687 12063 12096Line 62: 229 721 4354 6687 12063 12096 第63行:58 165 1581 3776 7188 12096 12160Line 63: 58 165 1581 3776 7188 12096 12160 第64行:368 815 3832 5766 12027 12224Line 64: 368 815 3832 5766 12027 12224 第65行:40 128 1046 3840 6976 12224 12288Line 65: 40 128 1046 3840 6976 12224 12288 第66行:94 811 5504 12201 12294 12352Line 66: 94 811 5504 12201 12294 12352 第67行:313 1206 4917 5464 6109 12416Line 67: 313 1206 4917 5464 6109 12416 第68行:56 273 2464 3366 5478 6566 12480Line 68: 56 273 2464 3366 5478 6566 12480 第69行:10 518 1792 5342 9792 12480 12544Line 69: 10 518 1792 5342 9792 12480 12544 第70行:617 1140 3200 12416 12590 12608Line 70: 617 1140 3200 12416 12590 12608 第71行:16 432 1216 4288 4992 7296 12672Line 71: 16 432 1216 4288 4992 7296 12672 第72行:89 690 4089 7909 12680 12736Line 72: 89 690 4089 7909 12680 12736 第73行:61 448 2368 5376 12608 12736 12800Line 73: 61 448 2368 5376 12608 12736 12800 第74行:29 545 2328 3017 5733 12825 12864Line 74: 29 545 2328 3017 5733 12825 12864 第75行:59 407 912 2499 7121 11490 12928Line 75: 59 407 912 2499 7121 11490 12928 第76行:569 890 3145 5824 12928 12992Line 76: 569 890 3145 5824 12928 12992 第77行:106 778 4122 6685 13014 13056Line 77: 106 778 4122 6685 13014 13056 第78行:21 575 1642 4714 7658 12906 13120Line 78: 21 575 1642 4714 7658 12906 13120 第79行:360 2112 5120 13056 13120 13184Line 79: 360 2112 5120 13056 13120 13184 第80行:88 781 2587 5518 8363 13248Line 80: 88 781 2587 5518 8363 13248 第81行:202 2002 5186 6735 13248 13312Line 81: 202 2002 5186 6735 13248 13312 第82行:5 372 2129 5239 13214 13330 13376Line 82: 5 372 2129 5239 13214 13330 13376 第83行:95 938 3338 6079 13439 13440Line 83: 95 938 3338 6079 13439 13440 第84行:113 886 3448 5950 13441 13504Line 84: 113 886 3448 5950 13441 13504 第85行:327 775 3712 6789 9495 13568Line 85: 327 775 3712 6789 9495 13568 第86行:124 719 3032 6541 13576 13632Line 86: 124 719 3032 6541 13576 13632 第87行:17 256 2048 5911 13504 13632 13696Line 87: 17 256 2048 5911 13504 13632 13696 第88行:7 79 1011 2635 5680 13031 13760Line 88: 7 79 1011 2635 5680 13031 13760 第89行:11 192 1856 4928 12352 13760 13824Line 89: 11 192 1856 4928 12352 13760 13824 第90行:9 119 775 3304 6762 13831 13888Line 90: 9 119 775 3304 6762 13831 13888 第91行:25 508 2090 3493 13711 13888 13952Line 91: 25 508 2090 3493 13711 13888 13952 第92行:31 144 1368 5087 7250 11968 14016Line 92: 31 144 1368 5087 7250 11968 14016 第93行:43 495 1586 4526 5986 14010 14080Line 93: 43 495 1586 4526 5986 14010 14080 第94行:461 1896 3968 7040 14080 14144Line 94: 461 1896 3968 7040 14080 14144 第95行:73 487 805 4909 12655 14186 14208Line 95: 73 487 805 4909 12655 14186 14208 第96行:48 143 1626 4520 6401 14214 14272Line 96: 48 143 1626 4520 6401 14214 14272 第97行:26 497 1024 4160 7168 14016 14336Line 97: 26 497 1024 4160 7168 14016 14336 第98行:63 627 2005 4227 12391 14272 14400Line 98: 63 627 2005 4227 12391 14272 14400 第99行:64 776 5432 14370 14449 14464Line 99: 64 776 5432 14370 14449 14464 第100行:78 667 3618 13195 13498 14528Line 100: 78 667 3618 13195 13498 14528 第101行:295 1536 4608 8512 14528 14592Line 101: 295 1536 4608 8512 14528 14592 第102行:549 1514 4966 14509 14592 14656Line 102: 549 1514 4966 14509 14592 14656 第103行:214 878 3620 6054 14696 14720Line 103: 214 878 3620 6054 14696 14720 第104行:405 1513 3584 7221 14720 14784Line 104: 405 1513 3584 7221 14720 14784 第105行:64 806 2881 6080 14814 14848Line 105: 64 806 2881 6080 14814 14848 第106行:117 935 5406 5519 14881 14912Line 106: 117 935 5406 5519 14881 14912 第107行:32 129 620 2752 7044 14912 14976Line 107: 32 129 620 2752 7044 14912 14976 第108行:436 576 3448 6464 14976 15040Line 108: 436 576 3448 6464 14976 15040 第109行:33 398 1922 2736 5921 15081 15104Line 109: 33 398 1922 2736 5921 15081 15104 第110行:257 1408 4480 7360 7789 15168Line 110: 257 1408 4480 7360 7789 15168 第111行:5 280 661 4089 6114 15207 15232Line 111: 5 280 661 4089 6114 15207 15232 第112行:294 928 5152 13721 15252 15296Line 112: 294 928 5152 13721 15252 15296 第113行:229 2503 2905 6263 15129 15360Line 113: 229 2503 2905 6263 15129 15360 第114行:20 304 1664 4736 14464 15360 15424Line 114: 20 304 1664 4736 14464 15360 15424 第115行:52 701 1472 4544 7488 15454 15488Line 115: 52 701 1472 4544 7488 15454 15488 第116行:15 222 883 3176 6856 15493 15552Line 116: 15 222 883 3176 6856 15493 15552 第117行:24 553 2268 3287 7346 15319 15616Line 117: 24 553 2268 3287 7346 15319 15616 第118行:1 457 1742 6869 15573 15637 15680Line 118: 1 457 1742 6869 15573 15637 15680 第119行:33 540 1666 3656 7255 14866 15744Line 119: 33 540 1666 3656 7255 14866 15744 第120行:43 223 891 4773 7431 15760 15808Line 120: 43 223 891 4773 7431 15760 15808 第121行:333 637 3143 5817 11340 15872Line 121: 333 637 3143 5817 11340 15872 第122行:24 196 1280 4416 15808 15872 15936Line 122: 24 196 1280 4416 15808 15872 15936 第123行:102 671 3973 6427 14980 16000Line 123: 102 671 3973 6427 14980 16000 第124行:64 2071 3939 6912 16000 16064Line 124: 64 2071 3939 6912 16000 16064 第125行:68 852 2944 8148 15104 16128Line 125: 68 852 2944 8148 15104 16128 第126行:178 760 5058 16102 16170 16192Line 126: 178 760 5058 16102 16170 16192 第127行:108 813 4956 9673 15963 16256Line 127: 108 813 4956 9673 15963 16256 第128行:7 261 2618 4601 6204 16313 16320Line 128: 7 261 2618 4601 6204 16313 16320 第129行:122 687 5755 7566 15740 16384Line 129: 122 687 5755 7566 15740 16384 第130行:1 350 2234 4864 7872 16384 16448Line 130: 1 350 2234 4864 7872 16384 16448 第131行:641 2365 4172 6767 16454 16512Line 131: 641 2365 4172 6767 16454 16512 第132行:496 1088 4224 15985 16512 16576Line 132: 496 1088 4224 15985 16512 16576 第133行:24 621 1930 4096 16236 16627 16640Line 133: 24 621 1930 4096 16236 16627 16640 第134行:21 406 1015 4087 7159 16663 16704Line 134: 21 406 1015 4087 7159 16663 16704 第135行:614 1958 15718 16230 16742 16768Line 135: 614 1958 15718 16230 16742 16768 第136行:57 320 2240 5248 8000 16768 16832Line 136: 57 320 2240 5248 8000 16768 16832 第137行:21 174 899 4832 7040 16320 16896Line 137: 21 174 899 4832 7040 16320 16896 第138行:38 404 1360 3118 6634 16946 16960Line 138: 38 404 1360 3118 6634 16946 16960 第139行:0 512 2432 8192 8768 16960 17024Line 139: 0 512 2432 8192 8768 16960 17024 第140行:33 384 1261 3732 6804 16837 17024;Line 140: 33 384 1261 3732 6804 16837 17024; 其中,第i行的数字表示所述H矩阵中第64i行中值为1的列位置,且所述H矩阵中第64i行至64i+63行中值为1的列位置为第64i行中值为1的列位置根据循环移位矩阵循环移位得到。Wherein, the number in the i-th row represents the column position with a value of 1 in the 64i row in the H matrix, and the column position with a value of 1 in the 64i row to 64i+63 row in the H matrix is in the 64i row The column position with a value of 1 is obtained by cyclic shifting according to the cyclic shift matrix. 20.根据权利要求13所述的编码装置,其特征在于,所述码长n=9240,所述码率为R=7/8,所述Z=42,所述s=126时,所述H矩阵表示为:20. The encoding device according to claim 13, characterized in that, when the code length n=9240, the code rate R=7/8, the Z=42, and the s=126, the The H matrix is expressed as: 第0行:27 42 378 913 1260 1680 2100 2562 2982 3150 3402 3864 4242 47045124 5586 6006 6426 6846 7308 7728 8020 8106Line 0: 27 42 378 913 1260 1680 2100 2562 2982 3150 3402 3864 4242 47045124 5586 6006 6426 6846 7308 7728 8020 8106 第1行:120 435 580 1345 1654 2069 2330 2910 3091 4307 4426 4867 5472 58686196 6618 6988 7627 7996 8098 8128 8148Line 1: 120 435 580 1345 1654 2069 2330 2910 3091 4307 4426 4867 5472 58686196 6618 6988 7627 7996 8098 8128 8148 第2行:85 170 683 1014 1544 1914 2226 2870 3382 3920 4183 4368 4830 55196040 6306 6558 6888 7393 7686 7854 8190Line 2: 85 170 683 1014 1544 1914 2226 2870 3382 3920 4183 4368 4830 55196040 6306 6558 6888 7393 7686 7854 8190 第3行:13 80 110 840 1253 1780 2195 2528 2873 3465 3621 4082 4607 51955267 5901 6164 6691 6888 7169 7889 8211 8232Line 3: 13 80 110 840 1253 1780 2195 2528 2873 3465 3621 4082 4607 51955267 5901 6164 6691 6888 7169 7889 8211 8232 第4行:28 54 502 672 1176 1512 2058 2560 2856 3276 3738 4337 4785 49985557 5945 6462 6678 7224 7604 8022 8232 8274Line 4: 28 54 502 672 1176 1512 2058 2560 2856 3276 3738 4337 4785 49985557 5945 6462 6678 7224 7604 8022 8232 8274 第5行:44 91 502 1036 1349 2011 2277 3017 3422 3580 4156 4492 5197 55015894 6600 6700 7319 7488 8051 8304 8316Line 5: 44 91 502 1036 1349 2011 2277 3017 3422 3580 4156 4492 5197 55015894 6600 6700 7319 7488 8051 8304 8316 第6行:34 119 322 497 927 1392 2017 2452 2853 3289 3561 4260 4648 50145233 5854 6115 6863 7118 7782 7949 8350 8358Line 6: 34 119 322 497 927 1392 2017 2452 2853 3289 3561 4260 4648 50145233 5854 6115 6863 7118 7782 7949 8350 8358 第7行:51 246 666 1304 1506 2052 2430 2850 3270 3732 4152 4659 4992 54966051 6294 6769 7357 7596 8265 8394 8400Line 7: 51 246 666 1304 1506 2052 2430 2850 3270 3732 4152 4659 4992 54966051 6294 6769 7357 7596 8265 8394 8400 第8行:40 99 618 1097 1434 2083 2961 3152 3196 3511 3892 4110 4398 48545597 5972 6404 7036 7149 7432 7880 8442Line 8: 40 99 618 1097 1434 2083 2961 3152 3196 3511 3892 4110 4398 48545597 5972 6404 7036 7149 7432 7880 8442 第9行:13 48 270 804 1098 1392 1993 2358 2628 2778 3198 3660 4038 47715299 5382 6089 6222 6959 7285 7780 8448 8484Line 9: 13 48 270 804 1098 1392 1993 2358 2628 2778 3198 3660 4038 47715299 5382 6089 6222 6959 7285 7780 8448 8484 第10行:13 84 241 546 1000 1284 1932 2310 2730 3482 3803 4180 4536 49145334 5796 6295 6636 7140 7907 8316 8420 8526Line 10: 13 84 241 546 1000 1284 1932 2310 2730 3482 3803 4180 4536 49145334 5796 6295 6636 7140 7907 8316 8420 8526 第11行:44 120 876 1084 1555 1794 2400 2646 3328 3643 4237 4356 4813 56575763 6266 6785 6999 7601 7842 8563 8568Line 11: 44 120 876 1084 1555 1794 2400 2646 3328 3643 4237 4356 4813 56575763 6266 6785 6999 7601 7842 8563 8568 第12行:108 286 748 1268 1588 2158 2470 2638 2932 3338 3861 4192 4654 51205633 5956 6334 6754 7450 7636 8518 8610Line 12: 108 286 748 1268 1588 2158 2470 2638 2932 3338 3861 4192 4654 51205633 5956 6334 6754 7450 7636 8518 8610 第13行:60 294 756 1218 1596 2104 2478 2969 3318 3780 4200 4662 5040 55026022 6342 6762 7375 7644 8568 8610 8652Line 13: 60 294 756 1218 1596 2104 2478 2969 3318 3780 4200 4662 5040 5502 6022 6342 6762 7375 7644 8568 8610 8652 第14行:59 343 758 1140 1396 1946 2334 2605 2725 3110 3601 4056 4427 50375312 6109 6308 6666 6912 7250 7542 8694Line 14: 59 343 758 1140 1396 1946 2334 2605 2725 3110 3601 4056 4427 50375312 6109 6308 6666 6912 7250 7542 8694 第15行:20 69 431 659 1523 1646 2036 2510 2931 3568 3988 4450 4908 53635710 6369 6550 7283 7531 8104 8681 8734 8736Line 15: 20 69 431 659 1523 1646 2036 2510 2931 3568 3988 4450 4908 53635710 6369 6550 7283 7531 8104 8681 8734 8736 第16行:24 56 163 661 1072 1756 1896 2515 3056 3081 3925 4457 4613 51135355 5713 6147 6806 7029 7696 7949 8764 8778Line 16: 24 56 163 661 1072 1756 1896 2515 3056 3081 3925 4457 4613 51135355 5713 6147 6806 7029 7696 7949 8764 8778 第17行:39 61 208 544 1008 1640 1689 1848 2268 2688 3689 3990 4494 48725292 5754 6237 6877 7056 7845 7896 8778 8820Line 17: 39 61 208 544 1008 1640 1689 1848 2268 2688 3689 3990 4494 48725292 5754 6237 6877 7056 7845 7896 8778 8820 第18行:88 146 786 1172 1481 1878 2306 2646 3108 3716 4226 4718 5156 54095985 6442 6969 7069 7650 8661 8820 8862Line 18: 88 146 786 1172 1481 1878 2306 2646 3108 3716 4226 4718 5156 54095985 6442 6969 7069 7650 8661 8820 8862 第19行:6 125 312 627 956 1759 2209 3069 3401 3512 3737 4297 4533 48845285 5944 6212 6642 7184 7466 8856 8877 8904Line 19: 6 125 312 627 956 1759 2209 3069 3401 3512 3737 4297 4533 48845285 5944 6212 6642 7184 7466 8856 8877 8904 第20行:12 46 371 723 1134 1428 1974 2593 3026 3259 3801 4074 4578 50515418 5880 6482 6753 7182 7728 8148 8904 8946Line 20: 12 46 371 723 1134 1428 1974 2593 3026 3259 3801 4074 4578 50515418 5880 6482 6753 7182 7728 8148 8904 8946 第21行:23 70 109 586 1208 1711 1843 2239 2695 3296 3562 4015 4539 52205450 5798 6394 6990 7246 7743 8912 8973 8988Line 21: 23 70 109 586 1208 1711 1843 2239 2695 3296 3562 4015 4539 52205450 5798 6394 6990 7246 7743 8912 8973 8988 第22行:58 266 718 933 1575 1828 2471 2658 3160 3211 3877 3951 4372 48125222 5798 6256 6729 7135 7395 9001 9030Line 22: 58 266 718 933 1575 1828 2471 2658 3160 3211 3877 3951 4372 48125222 5798 6256 6729 7135 7395 9001 9030 第23行:10 76 338 800 968 1319 2183 2522 2942 3362 3824 4664 4959 50845546 5966 6386 6806 7268 7688 8402 9032 9072Line 23: 10 76 338 800 968 1319 2183 2522 2942 3362 3824 4664 4959 50845546 5966 6386 6806 7268 7688 8402 9032 9072 第24行:13 56 238 895 1107 1495 1964 2184 2995 3428 3764 3950 4720 51515516 5746 6489 6585 7347 7598 7831 8573 9114Line 24: 13 56 238 895 1107 1495 1964 2184 2995 3428 3764 3950 4720 51515516 5746 6489 6585 7347 7598 7831 8573 9114 第25行:7 91 411 518 905 1452 1844 2392 2788 3122 3693 4362 4522 4966 53965790 6525 6841 7038 7457 8154 9083 9156Line 25: 7 91 411 518 905 1452 1844 2392 2788 3122 3693 4362 4522 4966 53965790 6525 6841 7038 7457 8154 9083 9156 第26行:34 102 159 537 1238 1377 1923 2393 2771 3603 4050 4679 4917 56996110 6378 6627 7131 7509 7996 9134 9189 9198Line 26: 34 102 159 537 1238 1377 1923 2393 2771 3603 4050 4679 4917 56996110 6378 6627 7131 7509 7996 9134 9189 9198 第27行:71 84 681 1182 1603 1870 2416 2739 3840 4117 4559 5046 5432 57126174 6552 7089 7492 7924 9142 9207 9240Line 27: 71 84 681 1182 1603 1870 2416 2739 3840 4117 4559 5046 5432 57126174 6552 7089 7492 7924 9142 9207 9240 第28行:24 84 407 806 1602 1783 2245 2811 3256 3745 4024 4483 4793 55515673 6172 6951 7659 8056 8101 8484 92629282Line 28: 24 84 407 806 1602 1783 2245 2811 3256 3745 4024 4483 4793 55515673 6172 6951 7659 8056 8101 8484 92629282 第29行:86 420 840 1302 1722 2142 3024 3444 3486 3906 4284 4746 5166 56286048 6468 7350 7770 8988 9072 9282 9324Line 29: 86 420 840 1302 1722 2142 3024 3444 3486 3906 4284 4746 5166 56286048 6468 7350 7770 8988 9072 9282 9324 第30行:121 176 596 985 1058 2125 2594 2820 3620 4249 4920 5276 5598 58466530 7223 7526 7946 8744 9206 9290 9324;Line 30: 121 176 596 985 1058 2125 2594 2820 3620 4249 4920 5276 5598 58466530 7223 7526 7946 8744 9206 9290 9324; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 21.根据权利要求13所述的编码装置,其特征在于,所述码长n=9954,所述码率为R=13/16,所述Z=42,所述s=210时,所述H矩阵表示为:21. The encoding device according to claim 13, characterized in that, when the code length n=9954, the code rate R=13/16, the Z=42, and the s=210, the The H matrix is expressed as: 第0行:48 749 1801 2039 2142 2856 3612 4242 4956 5628 6426 7056 7812 80228106Line 0: 48 749 1801 2039 2142 2856 3612 4242 4956 5628 6426 7056 7812 80228106 第1行:14 141 410 1080 2350 2536 3310 4312 4923 5279 6078 6898 7923 81378148Line 1: 14 141 410 1080 2350 2536 3310 4312 4923 5279 6078 6898 7923 81378148 第2行:40 184 459 1581 1953 2727 3399 4029 4827 5945 6462 6843 7515 81878190Line 2: 40 184 459 1581 1953 2727 3399 4029 4827 5945 6462 6843 7515 81878190 第3行:47 150 714 1428 2100 2968 3849 4564 4914 5792 6384 7225 7770 81908232Line 3: 47 150 714 1428 2100 2968 3849 4564 4914 5792 6384 7225 7770 81908232 第4行:186 344 1069 2282 2578 3154 3935 5013 5370 5972 6686 7358 8237 8274Line 4: 186 344 1069 2282 2578 3154 3935 5013 5370 5972 6686 7358 8237 8274 第5行:7 114 399 1113 2510 2583 3852 4341 5047 5803 6111 7252 7664 82958316Line 5: 7 114 399 1113 2510 2583 3852 4341 5047 5803 6111 7252 7664 82958316 第6行:19 177 776 1450 1864 2656 3311 4478 5263 5759 6390 6776 7935 83308358Line 6: 19 177 776 1450 1864 2656 3311 4478 5263 5759 6390 6776 7935 83308358 第7行:161 462 1218 1806 2730 3645 4166 4994 5857 6174 6989 7537 8358 8400Line 7: 161 462 1218 1806 2730 3645 4166 4994 5857 6174 6989 7537 8358 8400 第8行:51 86 459 1617 2115 3121 3568 3903 4783 5515 6633 6672 7514 84208442Line 8: 51 86 459 1617 2115 3121 3568 3903 4783 5515 6633 6672 7514 84208442 第9行:167 334 1653 2011 2712 3500 4317 4610 5695 6267 7138 7737 8482 8484Line 9: 167 334 1653 2011 2712 3500 4317 4610 5695 6267 7138 7737 8482 8484 第10行:151 861 1717 2058 2932 3570 4398 4872 5586 6342 7346 7953 84848526Line 10: 151 861 1717 2058 2932 3570 4398 4872 5586 6342 7346 7953 84848526 第11行:59 108 491 1451 2152 3133 3779 4171 4705 5558 6012 6679 7532 85498568Line 11: 59 108 491 1451 2152 3133 3779 4171 4705 5558 6012 6679 7532 85498568 第12行:52 267 590 1264 1683 2481 3656 4440 4581 5920 6242 6955 7951 85718610Line 12: 52 267 590 1264 1683 2481 3656 4440 4581 5920 6242 6955 7951 85718610 第13行:51 122 750 1155 1818 2754 3255 4241 4683 5313 6222 6830 7425 86318652Line 13: 51 122 750 1155 1818 2754 3255 4241 4683 5313 6222 6830 7425 86318652 第14行:0 126 798 1470 2226 2940 3713 4326 4998 5712 6513 7140 7854 86528694Line 14: 0 126 798 1470 2226 2940 3713 4326 4998 5712 6513 7140 7854 86528694 第15行:1 177 992 1259 2417 2887 3329 4137 5245 5412 6271 7069 7874 87358736Line 15: 1 177 992 1259 2417 2887 3329 4137 5245 5412 6271 7069 7874 87358736 第16行:112 544 924 1344 1974 2916 3600 4158 5082 5544 6258 6972 7686 87368778Line 16: 112 544 924 1344 1974 2916 3600 4158 5082 5544 6258 6972 7686 87368778 第17行:154 803 1222 1895 2774 3180 4105 5235 5851 5994 6732 7889 88138820Line 17: 154 803 1222 1895 2774 3180 4105 5235 5851 5994 6732 7889 88138820 第18行:42 210 882 1554 2268 3024 3696 4410 5082 5796 6510 7224 7938 88208862Line 18: 42 210 882 1554 2268 3024 3696 4410 5082 5796 6510 7224 7938 88208862 第19行:186 518 1734 2248 3437 4094 4606 5357 6172 7216 7571 8102 88928904Line 19: 186 518 1734 2248 3437 4094 4606 5357 6172 7216 7571 8102 88928904 第20行:66 133 559 1273 1903 2986 3457 4087 4843 5528 6344 6859 7573 89178946Line 20: 66 133 559 1273 1903 2986 3457 4087 4843 5528 6344 6859 7573 89178946 第21行:91 355 588 1479 2403 3034 3749 4247 4988 5460 6216 6888 7602 89468988Line 21: 91 355 588 1479 2403 3034 3749 4247 4988 5460 6216 6888 7602 89468988 第22行:14 181 299 1159 1983 3035 3240 3978 4729 5671 5922 7120 7823 90059030Line 22: 14 181 299 1159 1983 3035 3240 3978 4729 5671 5922 7120 7823 90059030 第23行:45 156 479 986 2053 3785 3842 5164 5630 6473 7169 7468 8025 80809072Line 23: 45 156 479 986 2053 3785 3842 5164 5630 6473 7169 7468 8025 80809072 第24行:125 187 672 1386 2016 2814 3528 4200 5073 5668 6300 7014 7728 90729114Line 24: 125 187 672 1386 2016 2814 3528 4200 5073 5668 6300 7014 7728 90729114 第25行:115 250 692 1133 2168 2671 3203 3872 4836 5744 6339 6870 7436 91149156Line 25: 115 250 692 1133 2168 2671 3203 3872 4836 5744 6339 6870 7436 91149156 第26行:195 992 1008 1856 2721 3726 4490 4698 5470 6094 7142 7512 91569198Line 26: 195 992 1008 1856 2721 3726 4490 4698 5470 6094 7142 7512 91569198 第27行:43 131 366 1355 1945 2436 3245 4070 4536 5613 6076 6947 7786 92199240Line 27: 43 131 366 1355 1945 2436 3245 4070 4536 5613 6076 6947 7786 92199240 第28行:4 122 646 1661 2320 2586 3497 4041 5155 5496 5981 7284 7415 90379282Line 28: 4 122 646 1661 2320 2586 3497 4041 5155 5496 5981 7284 7415 90379282 第29行:52 184 857 1273 2387 2814 3333 4201 4853 5388 6496 6774 7624 93169324Line 29: 52 184 857 1273 2387 2814 3333 4201 4853 5388 6496 6774 7624 93169324 第30行:57 192 560 1551 1794 3104 3651 3978 4682 5457 6200 7223 7735 93549366Line 30: 57 192 560 1551 1794 3104 3651 3978 4682 5457 6200 7223 7735 93549366 第31行:138 630 1302 1932 2857 3486 4116 5092 5502 6415 6930 7644 93669408Line 31: 138 630 1302 1932 2857 3486 4116 5092 5502 6415 6930 7644 93669408 第32行:165 909 1176 2075 2646 3318 4419 4746 5418 6211 6814 7999 94219450Line 32: 165 909 1176 2075 2646 3318 4419 4746 5418 6211 6814 7999 94219450 第33行:27 207 950 1426 1754 3099 3461 3910 4925 5434 6137 6720 7703 94859492Line 33: 27 207 950 1426 1754 3099 3461 3910 4925 5434 6137 6720 7703 94859492 第34行:148 300 1073 1721 2559 3373 4012 5181 5315 6427 6735 7997 92639534Line 34: 148 300 1073 1721 2559 3373 4012 5181 5315 6427 6735 7997 92639534 第35行:38 96 700 1375 2184 3276 4359 4890 5334 6132 7284 7392 8064 95349576Line 35: 38 96 700 1375 2184 3276 4359 4890 5334 6132 7284 7392 8064 95349576 第36行:6 130 550 1101 1722 2520 3393 3906 4620 5549 6697 6780 7606 96129618Line 36: 6 130 550 1101 1722 2520 3393 3906 4620 5549 6697 6780 7606 96129618 第37行:4 199 603 1023 2241 2808 3224 4006 4824 5926 6043 6658 7824 96459660Line 37: 4 199 603 1023 2241 2808 3224 4006 4824 5926 6043 6658 7824 96459660 第38行:36 133 761 1891 2096 2394 3414 3864 4789 5728 6083 7022 7566 94969702Line 38: 36 133 761 1891 2096 2394 3414 3864 4789 5728 6083 7022 7566 94969702 第39行:35 261 428 1549 2102 2510 3594 3973 4544 5314 6368 7034 7387 97399744Line 39: 35 261 428 1549 2102 2510 3594 3973 4544 5314 6368 7034 7387 97399744 第40行:65 168 840 1512 2454 2982 3654 4368 5040 5754 6583 7182 7896 97449786Line 40: 65 168 840 1512 2454 2982 3654 4368 5040 5754 6583 7182 7896 97449786 第41行:83 84 826 1396 2203 2752 3532 4375 4704 5376 6527 6997 7434 96609828Line 41: 83 84 826 1396 2203 2752 3532 4375 4704 5376 6527 6997 7434 96609828 第42行:88 248 1021 1486 1766 2999 3151 4141 4620 5906 6007 6917 7646 98619870Line 42: 88 248 1021 1486 1766 2999 3151 4141 4620 5906 6007 6917 7646 98619870 第43行:38 185 773 1557 2201 2915 3800 4301 5037 5687 6485 7115 9825 98879912Line 43: 38 185 773 1557 2201 2915 3800 4301 5037 5687 6485 7115 9825 98879912 第44行:71 149 393 1197 1678 2606 2976 3693 4501 4771 5812 6318 6674 73769954Line 44: 71 149 393 1197 1678 2606 2976 3693 4501 4771 5812 6318 6674 73769954 第45行:81 208 887 1145 2286 2848 3203 4523 4634 5261 6587 7061 7687 99659996Line 45: 81 208 887 1145 2286 2848 3203 4523 4634 5261 6587 7061 7687 99659996 第46行:41 114 631 1209 2355 2477 2634 3471 4274 5183 5238 6095 6885 778610038Line 46: 41 114 631 1209 2355 2477 2634 3471 4274 5183 5238 6095 6885 778610038 第47行:108 1315 1611 1834 2321 3077 3749 4463 5135 5849 6563 7277 799110049 10080Line 47: 108 1315 1611 1834 2321 3077 3749 4463 5135 5849 6563 7277 799110049 10080 第48行:98 252 924 1596 2352 3108 3780 4494 5166 5880 6594 7308 9912 1008010122Line 48: 98 252 924 1596 2352 3108 3780 4494 5166 5880 6594 7308 9912 1008010122 第49行:109 199 521 1313 1865 2789 3419 4049 4894 5616 6617 7318 753510013 10122;Line 49: 109 199 521 1313 1865 2789 3419 4049 4894 5616 6617 7318 753510013 10122; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 22.根据权利要求13所述的编码装置,其特征在于,所述码长n=10752,所述码率为R=3/4,所述Z=42,所述s=294时,所述H矩阵表示为:22. The encoding device according to claim 13, characterized in that, when the code length n=10752, the code rate R=3/4, the Z=42, and the s=294, the The H matrix is expressed as: 第0行:72 241 462 1386 3402 4452 5749 6504 7571 7812 8096 8106Line 0: 72 241 462 1386 3402 4452 5749 6504 7571 7812 8096 8106 第1行:33 89 439 1253 2965 3161 4248 5697 6830 7833 8140 8148Line 1: 33 89 439 1253 2965 3161 4248 5697 6830 7833 8140 8148 第2行:201 786 1893 2541 3251 4341 5663 6589 7787 8165 8190Line 2: 201 786 1893 2541 3251 4341 5663 6589 7787 8165 8190 第3行:146 672 1512 2520 3712 4578 5628 6678 7518 8190 8232Line 3: 146 672 1512 2520 3712 4578 5628 6678 7518 8190 8232 第4行:93 280 2121 2213 3550 4579 5512 6328 7274 7801 8274Line 4: 93 280 2121 2213 3550 4579 5512 6328 7274 7801 8274 第5行:106 672 1998 2903 3620 4410 5418 6342 7573 8274 8316Line 5: 106 672 1998 2903 3620 4410 5418 6342 7573 8274 8316 第6行:150 544 1372 2290 3138 4559 6029 6831 7223 8347 8358Line 6: 150 544 1372 2290 3138 4559 6029 6831 7223 8347 8358 第7行:99 630 2038 2883 3858 4521 5886 6607 8241 8386 8400Line 7: 99 630 2038 2883 3858 4521 5886 6607 8241 8386 8400 第8行:38 227 978 1896 2177 3278 4668 5203 6859 7112 8022 8442Line 8: 38 227 978 1896 2177 3278 4668 5203 6859 7112 8022 8442 第9行:204 429 1353 2319 3369 4654 5469 6393 7531 8451 8484Line 9: 204 429 1353 2319 3369 4654 5469 6393 7531 8451 8484 第10行:272 840 1764 2856 3780 4830 5796 6893 7854 8484 8526Line 10: 272 840 1764 2856 3780 4830 5796 6893 7854 8484 8526 第11行:169 600 1218 2246 3192 4421 5166 6333 7411 8566 8568Line 11: 169 600 1218 2246 3192 4421 5166 6333 7411 8566 8568 第12行:73 177 1130 1215 2181 3441 4789 5425 6697 7888 8598 8610Line 12: 73 177 1130 1215 2181 3441 4789 5425 6697 7888 8598 8610 第13行:22 87 961 1602 2402 3577 4820 5765 6644 7406 8610 8652Line 13: 22 87 961 1602 2402 3577 4820 5765 6644 7406 8610 8652 第14行:59 150 411 1428 2438 3711 4281 6087 6452 7140 8670 8694Line 14: 59 150 411 1428 2438 3711 4281 6087 6452 7140 8670 8694 第15行:121 282 1562 2196 2639 3224 4779 5326 6452 8717 8736Line 15: 121 282 1562 2196 2639 3224 4779 5326 6452 8717 8736 第16行:189 645 1422 2512 3143 4303 5924 6532 7340 8025 8778Line 16: 189 645 1422 2512 3143 4303 5924 6532 7340 8025 8778 第17行:99 592 2128 3369 3532 4991 5506 6556 7671 8782 8820Line 17: 99 592 2128 3369 3532 4991 5506 6556 7671 8782 8820 第18行:206 882 1848 2940 3864 4914 5880 6888 7896 8820 8862Line 18: 206 882 1848 2940 3864 4914 5880 6888 7896 8820 8862 第19行:47 185 496 1987 2701 3163 4934 5171 6275 7479 8864 8904Line 19: 47 185 496 1987 2701 3163 4934 5171 6275 7479 8864 8904 第20行:203 449 1941 2346 3609 4284 5511 6659 7292 8904 8946Line 20: 203 449 1941 2346 3609 4284 5511 6659 7292 8904 8946 第21行:261 363 2175 2398 3258 4475 5355 6406 7527 8975 8988Line 21: 261 363 2175 2398 3258 4475 5355 6406 7527 8975 8988 第22行:20 43 261 1528 2531 3990 4159 5351 6095 7103 8756 9030Line 22: 20 43 261 1528 2531 3990 4159 5351 6095 7103 8756 9030 第23行:84 295 1629 2671 3263 4664 6201 6756 7381 9041 9072Line 23: 84 295 1629 2671 3263 4664 6201 6756 7381 9041 9072 第24行:4 290 1018 1596 2646 3807 4620 5876 6762 7644 9072 9114Line 24: 4 290 1018 1596 2646 3807 4620 5876 6762 7644 9072 9114 第25行:55 153 331 1301 2633 2914 3230 5066 5590 6368 9152 9156Line 25: 55 153 331 1301 2633 2914 3230 5066 5590 6368 9152 9156 第26行:173 546 1452 2978 3444 4546 5805 6468 7350 9156 9198Line 26: 173 546 1452 2978 3444 4546 5805 6468 7350 9156 9198 第27行:223 545 1709 2593 3983 4168 5464 6895 7682 9210 9240Line 27: 223 545 1709 2593 3983 4168 5464 6895 7682 9210 9240 第28行:2 129 732 1319 2809 3986 5000 5753 6220 7903 9244 9282Line 28: 2 129 732 1319 2809 3986 5000 5753 6220 7903 9244 9282 第29行:277 350 1489 2577 3290 4382 6150 7015 7280 9296 9324Line 29: 277 350 1489 2577 3290 4382 6150 7015 7280 9296 9324 第30行:244 682 1302 2383 3661 4898 5686 6300 7310 9324 9366Line 30: 244 682 1302 2383 3661 4898 5686 6300 7310 9324 9366 第31行:93 852 1260 2268 3325 4242 5292 6856 7712 9366 9408Line 31: 93 852 1260 2268 3325 4242 5292 6856 7712 9366 9408 第32行:39 213 897 1193 2702 3108 4926 5921 7137 8414 9434 9450Line 32: 39 213 897 1193 2702 3108 4926 5921 7137 8414 9434 9450 第33行:37 244 756 1779 2688 3612 4662 5712 6804 7686 9477 9492Line 33: 37 244 756 1779 2688 3612 4662 5712 6804 7686 9477 9492 第34行:164 317 1339 2388 4054 4349 5357 6288 7955 9524 9534Line 34: 164 317 1339 2388 4054 4349 5357 6288 7955 9524 9534 第35行:41 135 470 2093 2795 3939 4908 5967 6414 7380 9551 9576Line 35: 41 135 470 2093 2795 3939 4908 5967 6414 7380 9551 9576 第36行:262 924 1890 2982 3906 4956 6028 6930 7938 9576 9618Line 36: 262 924 1890 2982 3906 4956 6028 6930 7938 9576 9618 第37行:150 802 1501 2663 4062 4410 5290 6242 7719 9627 9660Line 37: 150 802 1501 2663 4062 4410 5290 6242 7719 9627 9660 第38行:239 798 1680 2772 3696 4746 5754 7060 8400 9660 9702Line 38: 239 798 1680 2772 3696 4746 5754 7060 8400 9660 9702 第39行:54 134 256 1735 2230 4155 4762 5960 6726 7497 9708 9744Line 39: 54 134 256 1735 2230 4155 4762 5960 6726 7497 9708 9744 第40行:286 1077 2073 2488 3580 4546 5596 6646 7486 9754 9786Line 40: 286 1077 2073 2488 3580 4546 5596 6646 7486 9754 9786 第41行:3 134 935 1814 2906 3830 4880 5846 6854 7991 9794 9828Line 41: 3 134 935 1814 2906 3830 4880 5846 6854 7991 9794 9828 第42行:21 188 966 1932 3024 3948 4998 5922 6972 8004 9828 9870Line 42: 21 188 966 1932 3024 3948 4998 5922 6972 8004 9828 9870 第43行:42 847 1810 2562 4130 4960 5670 6720 7560 9891 9912Line 43: 42 847 1810 2562 4130 4960 5670 6720 7560 9891 9912 第44行:79 249 578 1160 2126 3456 4192 5132 6589 7617 9937 9954Line 44: 79 249 578 1160 2126 3456 4192 5132 6589 7617 9937 9954 第45行:70 163 714 1554 4112 4842 5758 6969 7602 8064 9954 9996Line 45: 70 163 714 1554 4112 4842 5758 6969 7602 8064 9954 9996 第46行:151 1159 1640 3094 3334 4341 5568 6515 7263 10027 10038Line 46: 151 1159 1640 3094 3334 4341 5568 6515 7263 10027 10038 第47行:75 285 1832 2870 3903 5110 5389 6132 7887 10038 10080Line 47: 75 285 1832 2870 3903 5110 5389 6132 7887 10038 10080 第48行:70 267 1781 3037 3670 4607 5407 6946 7957 10114 10122Line 48: 70 267 1781 3037 3670 4607 5407 6946 7957 10114 10122 第49行:98 571 1358 2184 3545 4200 5298 6363 7453 10122 10164Line 49: 98 571 1358 2184 3545 4200 5298 6363 7453 10122 10164 第50行:114 973 1881 2346 4098 4399 5556 6153 7231 10205 10206Line 50: 114 973 1881 2346 4098 4399 5556 6153 7231 10205 10206 第51行:141 620 1186 3398 5073 5424 6503 7735 8069 10232 10248Line 51: 141 620 1186 3398 5073 5424 6503 7735 8069 10232 10248 第52行:39 245 405 2234 3494 3873 4386 5223 6189 8049 10263 10290Line 52: 39 245 405 2234 3494 3873 4386 5223 6189 8049 10263 10290 第53行:64 154 630 1470 2436 3842 5036 5544 6594 7434 10290 10332Line 53: 64 154 630 1470 2436 3842 5036 5544 6594 7434 10290 10332 第54行:197 765 1664 3017 3415 4625 5254 6990 7926 10370 10374Line 54: 197 765 1664 3017 3415 4625 5254 6990 7926 10370 10374 第55行:110 1164 1638 2730 3654 4704 5810 7054 7728 10374 10416Line 55: 110 1164 1638 2730 3654 4704 5810 7054 7728 10374 10416 第56行:99 1099 1422 2748 4024 4294 5286 6798 7766 10457 10458Line 56: 99 1099 1422 2748 4024 4294 5286 6798 7766 10457 10458 第57行:204 731 1428 2846 3751 5211 5992 6510 7626 10458 10500Line 57: 204 731 1428 2846 3751 5211 5992 6510 7626 10458 10500 第58行:168 504 1541 2352 3910 4842 5866 6426 7308 10528 10542Line 58: 168 504 1541 2352 3910 4842 5866 6426 7308 10528 10542 第59行:16 69 809 1861 3047 3150 4498 5636 6604 7182 10560 10584Line 59: 16 69 809 1861 3047 3150 4498 5636 6604 7182 10560 10584 第60行:95 266 1274 2306 3456 4122 5226 6111 9007 10592 10626Line 60: 95 266 1274 2306 3456 4122 5226 6111 9007 10592 10626 第61行:202 372 1717 2831 3306 4213 5130 6981 7240 9007 10668Line 61: 202 372 1717 2831 3306 4213 5130 6981 7240 9007 10668 第62行:82 229 1008 1974 3087 3990 5040 5964 7058 7980 10668 10710Line 62: 82 229 1008 1974 3087 3990 5040 5964 7058 7980 10668 10710 第63行:224 378 1591 2740 3318 4745 5376 6258 10649 10715 10752Line 63: 224 378 1591 2740 3318 4745 5376 6258 10649 10715 10752 第64行:236 1023 1218 2452 3522 4204 5468 6130 7179 10758 10794Line 64: 236 1023 1218 2452 3522 4204 5468 6130 7179 10758 10794 第65行:143 280 2057 2999 3753 4455 5138 6796 7436 10808 10836Line 65: 143 280 2057 2999 3753 4455 5138 6796 7436 10808 10836 第66行:84 882 1722 2814 3738 4788 6256 7162 10626 10836 10878Line 66: 84 882 1722 2814 3738 4788 6256 7162 10626 10836 10878 第67行:230 254 1745 2499 3792 4734 5609 6179 7188 8741 10920Line 67: 230 254 1745 2499 3792 4734 5609 6179 7188 8741 10920 第68行:7 201 1083 2049 3099 4065 5100 6039 7047 8181 10953 10962Line 68: 7 201 1083 2049 3099 4065 5100 6039 7047 8181 10953 10962 第69行:0 210 1092 2058 2604 3627 4074 5082 6048 7056 10962 11004Line 69: 0 210 1092 2058 2604 3627 4074 5082 6048 7056 10962 11004 第70行:213 1077 1946 2400 3492 4500 6074 6698 7398 10899 11004;Line 70: 213 1077 1946 2400 3492 4500 6074 6698 7398 10899 11004; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 23.根据权利要求13所述的编码装置,其特征在于,所述码长n=12936,所述码率为R=5/8,所述Z=42,所述s=504时,所述H矩阵表示为:23. The coding device according to claim 13, characterized in that, when the code length n=12936, the code rate R=5/8, the Z=42, and the s=504, the The H matrix is expressed as: 第0行:11 239 1276 1605 4020 5316 7189 7320 8106Line 0: 11 239 1276 1605 4020 5316 7189 7320 8106 第1行:72 1042 2455 3948 5796 7644 8106 8148Line 1: 72 1042 2455 3948 5796 7644 8106 8148 第2行:121 399 3219 3290 5455 6902 8174 8190Line 2: 121 399 3219 3290 5455 6902 8174 8190 第3行:284 450 1800 4067 5565 6725 8221 8232Line 3: 284 450 1800 4067 5565 6725 8221 8232 第4行:34 212 1153 1801 3435 6530 6963 7354 8274Line 4: 34 212 1153 1801 3435 6530 6963 7354 8274 第5行:51 849 2571 4523 6015 7905 8283 8316Line 5: 51 849 2571 4523 6015 7905 8283 8316 第6行:35 261 939 3041 4176 5940 7911 8356 8358Line 6: 35 261 939 3041 4176 5940 7911 8356 8358 第7行:205 795 3331 4200 6170 7350 8358 8400Line 7: 205 795 3331 4200 6170 7350 8358 8400 第8行:36 258 644 2338 5003 5923 6730 7125 8442Line 8: 36 258 644 2338 5003 5923 6730 7125 8442 第9行:53 498 1696 2630 4694 6605 8482 8484Line 9: 53 498 1696 2630 4694 6605 8482 8484 第10行:19 377 1870 4168 5482 7246 8484 8526Line 10: 19 377 1870 4168 5482 7246 8484 8526 第11行:32 89 359 2099 3708 5598 7404 8538 8568Line 11: 32 89 359 2099 3708 5598 7404 8538 8568 第12行:76 294 1680 4353 5469 7555 7938 8610Line 12: 76 294 1680 4353 5469 7555 7938 8610 第13行:52 503 3132 3713 5178 6877 8614 8652Line 13: 52 503 3132 3713 5178 6877 8614 8652 第14行:26 473 1669 3524 5654 6943 7195 8694Line 14: 26 473 1669 3524 5654 6943 7195 8694 第15行:130 1387 2254 3510 6893 8658 8718 8736Line 15: 130 1387 2254 3510 6893 8658 8718 8736 第16行:334 826 2268 4794 5754 7602 8568 8778Line 16: 334 826 2268 4794 5754 7602 8568 8778 第17行:241 1036 2566 5163 5673 8751 8792 8820Line 17: 241 1036 2566 5163 5673 8751 8792 8820 第18行:35 77 434 2583 3320 5130 7741 8849 8862Line 18: 35 77 434 2583 3320 5130 7741 8849 8862 第19行:8 192 836 3370 4490 6200 7766 8900 8904Line 19: 8 192 836 3370 4490 6200 7766 8900 8904 第20行:32 230 966 2772 4750 6258 8736 8904 8946Line 20: 32 230 966 2772 4750 6258 8736 8904 8946 第21行:53 717 2685 3866 6485 7891 8983 8988Line 21: 53 717 2685 3866 6485 7891 8983 8988 第22行:0 229 1134 2898 5082 6342 7879 8988 9030Line 22: 0 229 1134 2898 5082 6342 7879 8988 9030 第23行:59 490 2939 4258 5847 7656 9064 9072Line 23: 59 490 2939 4258 5847 7656 9064 9072 第24行:21 100 434 1574 3960 5106 7712 9093 9114Line 24: 21 100 434 1574 3960 5106 7712 9093 9114 第25行:34 93 1193 2117 3797 6057 7493 9131 9156Line 25: 34 93 1193 2117 3797 6057 7493 9131 9156 第26行:1 310 1295 2604 4494 6048 8064 9156 9198Line 26: 1 310 1295 2604 4494 6048 8064 9156 9198 第27行:14 213 714 2855 4368 6365 7930 9216 9240Line 27: 14 213 714 2855 4368 6365 7930 9216 9240 第28行:40 336 2142 3822 5904 7518 7595 9282Line 28: 40 336 2142 3822 5904 7518 7595 9282 第29行:170 487 2170 4229 5293 7279 9296 9324Line 29: 170 487 2170 4229 5293 7279 9296 9324 第30行:13 94 1184 2394 4074 6284 6720 8232 9366Line 30: 13 94 1184 2394 4074 6284 6720 8232 9366 第31行:201 443 2118 3563 5124 9351 9374 9408Line 31: 201 443 2118 3563 5124 9351 9374 9408 第32行:10 340 1006 2399 4451 5930 8182 9271 9450Line 32: 10 340 1006 2399 4451 5930 8182 9271 9450 第33行:185 681 1848 4205 5347 7111 9463 9492Line 33: 185 681 1848 4205 5347 7111 9463 9492 第34行:69 350 1994 4297 5288 7810 9500 9534Line 34: 69 350 1994 4297 5288 7810 9500 9534 第35行:141 1075 2700 5167 6554 7452 9571 9576Line 35: 141 1075 2700 5167 6554 7452 9571 9576 第36行:104 423 2445 4334 6337 7191 7420 9618Line 36: 104 423 2445 4334 6337 7191 7420 9618 第37行:171 467 2788 4991 5563 9595 9637 9660Line 37: 171 467 2788 4991 5563 9595 9637 9660 第38行:44 460 1919 4029 6575 9596 9685 9702Line 38: 44 460 1919 4029 6575 9596 9685 9702 第39行:295 517 2310 4678 5864 7770 9702 9744Line 39: 295 517 2310 4678 5864 7770 9702 9744 第40行:15 314 1350 1617 3509 5260 7982 9765 9786Line 40: 15 314 1350 1617 3509 5260 7982 9765 9786 第41行:52 874 2494 3316 5541 7259 9786 9828Line 41: 52 874 2494 3316 5541 7259 9786 9828 第42行:70 460 1932 5034 5622 7308 9156 9870Line 42: 70 460 1932 5034 5622 7308 9156 9870 第43行:21 347 1643 3449 6824 7659 9878 9912Line 43: 21 347 1643 3449 6824 7659 9878 9912 第44行:40 195 446 3071 3612 6027 8030 9912 9954Line 44: 40 195 446 3071 3612 6027 8030 9912 9954 第45行:145 434 1639 4833 5977 8045 9982 9996Line 45: 145 434 1639 4833 5977 8045 9982 9996 第46行:9 251 1302 3066 4746 6510 9861 9996 10038Line 46: 9 251 1302 3066 4746 6510 9861 9996 10038 第47行:62 480 2790 4390 5236 8427 10043 10080Line 47: 62 480 2790 4390 5236 8427 10043 10080 第48行:73 387 1974 3769 6193 7495 10080 10122Line 48: 73 387 1974 3769 6193 7495 10080 10122 第49行:136 638 3082 4323 5573 7154 10149 10164Line 49: 136 638 3082 4323 5573 7154 10149 10164 第50行:50 400 1826 4599 6092 7433 9945 10206Line 50: 50 400 1826 4599 6092 7433 9945 10206 第51行:37 312 1024 2830 4636 6335 10180 10222 10248Line 51: 37 312 1024 2830 4636 6335 10180 10222 10248 第52行:23 93 837 2436 4284 6542 7980 9324 10290Line 52: 23 93 837 2436 4284 6542 7980 9324 10290 第53行:5 201 1511 2226 3864 5670 10284 10309 10332Line 53: 5 201 1511 2226 3864 5670 10284 10309 10332 第54行:160 630 2837 4242 5964 7938 10332 10374Line 54: 160 630 2837 4242 5964 7938 10332 10374 第55行:125 1349 1940 3649 5058 6822 10415 10416Line 55: 125 1349 1940 3649 5058 6822 10415 10416 第56行:285 615 2071 5062 5801 9264 10451 10458Line 56: 285 615 2071 5062 5801 9264 10451 10458 第57行:216 898 3168 3685 5513 7010 10496 10500Line 57: 216 898 3168 3685 5513 7010 10496 10500 第58行:74 458 2058 4989 6035 7434 10534 10542Line 58: 74 458 2058 4989 6035 7434 10534 10542 第59行:147 339 2158 3570 5418 7619 10551 10584Line 59: 147 339 2158 3570 5418 7619 10551 10584 第60行:265 504 3413 4539 5838 9432 10500 10626Line 60: 265 504 3413 4539 5838 9432 10500 10626 第61行:66 400 2138 3407 6433 8259 10654 10668Line 61: 66 400 2138 3407 6433 8259 10654 10668 第62行:80 492 2199 3603 6358 7250 10702 10710Line 62: 80 492 2199 3603 6358 7250 10702 10710 第63行:57 1328 2427 4405 5218 10621 10745 10752Line 63: 57 1328 2427 4405 5218 10621 10745 10752 第64行:81 356 3016 3597 6229 7951 8606 10794Line 64: 81 356 3016 3597 6229 7951 8606 10794 第65行:0 348 546 2352 4032 6488 7812 10794 10836Line 65: 0 348 546 2352 4032 6488 7812 10794 10836 第66行:165 321 1825 4104 5180 7049 10838 10878Line 66: 165 321 1825 4104 5180 7049 10838 10878 第67行:357 1231 2364 4954 6651 8014 9853 10920Line 67: 357 1231 2364 4954 6651 8014 9853 10920 第68行:55 348 1956 5109 5768 7498 10961 10962Line 68: 55 348 1956 5109 5768 7498 10961 10962 第69行:168 1260 3024 5634 6468 10878 10962 11004Line 69: 168 1260 3024 5634 6468 10878 10962 11004 第70行:59 450 4576 5512 8071 10868 11026 11046Line 70: 59 450 4576 5512 8071 10868 11026 11046 第71行:216 954 3342 3906 5712 7560 11046 11088Line 71: 216 954 3342 3906 5712 7560 11046 11088 第72行:72 480 1722 3552 5250 7056 10088 11130Line 72: 72 480 1722 3552 5250 7056 10088 11130 第73行:281 405 2291 3905 6669 11102 11130 11172Line 73: 281 405 2291 3905 6669 11102 11130 11172 第74行:33 296 1228 2740 4621 6114 7140 9768 11214Line 74: 33 296 1228 2740 4621 6114 7140 9768 11214 第75行:49 1131 1562 4644 6892 10785 11254 11256Line 75: 49 1131 1562 4644 6892 10785 11254 11256 第76行:26 215 1103 2646 4536 6090 11173 11256 11298Line 76: 26 215 1103 2646 4536 6090 11173 11256 11298 第77行:169 392 2921 3752 6384 7828 11324 11340Line 77: 169 392 2921 3752 6384 7828 11324 11340 第78行:104 414 2023 3270 5696 7032 10614 11382Line 78: 104 414 2023 3270 5696 7032 10614 11382 第79行:0 462 2321 3990 6958 7686 11382 11424Line 79: 0 462 2321 3990 6958 7686 11382 11424 第80行:38 147 1077 1891 3392 6448 7703 11340 11466Line 80: 38 147 1077 1891 3392 6448 7703 11340 11466 第81行:49 407 1977 4450 5415 7178 11505 11508Line 81: 49 407 1977 4450 5415 7178 11505 11508 第82行:66 410 2745 4487 5418 6868 11424 11550Line 82: 66 410 2745 4487 5418 6868 11424 11550 第83行:123 1455 1754 4752 6998 11509 11581 11592Line 83: 123 1455 1754 4752 6998 11509 11581 11592 第84行:57 404 2210 4179 5830 7584 8510 11634Line 84: 57 404 2210 4179 5830 7584 8510 11634 第85行:148 434 2253 5057 5642 7823 11648 11676Line 85: 148 434 2253 5057 5642 7823 11648 11676 第86行:0 126 1050 2975 4838 6300 11597 11676 11718Line 86: 0 126 1050 2975 4838 6300 11597 11676 11718 第87行:218 1552 1564 3671 5345 10431 11755 11760Line 87: 218 1552 1564 3671 5345 10431 11755 11760 第88行:64 703 2882 3712 7118 7267 8670 11802Line 88: 64 703 2882 3712 7118 7267 8670 11802 第89行:52 381 2269 4874 5909 9492 11802 11844Line 89: 52 381 2269 4874 5909 9492 11802 11844 第90行:8 252 588 2612 2675 4116 5880 7353 11886Line 90: 8 252 588 2612 2675 4116 5880 7353 11886 第91行:43 441 1699 3360 5340 7014 11922 11928Line 91: 43 441 1699 3360 5340 7014 11922 11928 第92行:221 477 3267 4107 5214 11794 11941 11970Line 92: 221 477 3267 4107 5214 11794 11941 11970 第93行:18 316 1344 3111 4788 6552 9660 11970 12012Line 93: 18 316 1344 3111 4788 6552 9660 11970 12012 第94行:118 672 2478 4326 6224 8022 10668 12054Line 94: 118 672 2478 4326 6224 8022 10668 12054 第95行:4 277 519 3055 3811 5379 11852 12095 12096Line 95: 4 277 519 3055 3811 5379 11852 12095 12096 第96行:26 264 1404 3108 4830 6594 11592 12096 12138Line 96: 26 264 1404 3108 4830 6594 11592 12096 12138 第97行:169 868 3763 5725 8081 12045 12155 12180Line 97: 169 868 3763 5725 8081 12045 12155 12180 第98行:56 380 2885 3640 5741 7070 7541 12222Line 98: 56 380 2885 3640 5741 7070 7541 12222 第99行:177 403 1734 4245 6763 12201 12252 12264Line 99: 177 403 1734 4245 6763 12201 12252 12264 第100行:85 399 2055 3918 6608 11379 11799 12306Line 100: 85 399 2055 3918 6608 11379 11799 12306 第101行:274 1092 2856 4662 6860 10248 12306 12348Line 101: 274 1092 2856 4662 6860 10248 12306 12348 第102行:48 895 2199 4585 6770 7334 12376 12390Line 102: 48 895 2199 4585 6770 7334 12376 12390 第103行:37 257 1430 3152 4916 6680 12188 12392 12432Line 103: 37 257 1430 3152 4916 6680 12188 12392 12432 第104行:190 331 3202 4063 5974 11952 12286 12474Line 104: 190 331 3202 4063 5974 11952 12286 12474 第105行:7 252 1470 3192 4956 7854 12432 12474 12516Line 105: 7 252 1470 3192 4956 7854 12432 12474 12516 第106行:166 756 2520 4410 6418 10752 11508 12558Line 106: 166 756 2520 4410 6418 10752 11508 12558 第107行:85 577 2553 4928 6683 7619 12562 12600Line 107: 85 577 2553 4928 6683 7619 12562 12600 第108行:21 341 882 3187 4578 6174 8316 12600 12642Line 108: 21 341 882 3187 4578 6174 8316 12600 12642 第109行:370 731 1905 3679 6070 7291 12683 12684Line 109: 370 731 1905 3679 6070 7291 12683 12684 第110行:299 575 2026 4120 6821 7075 8860 12726Line 110: 299 575 2026 4120 6821 7075 8860 12726 第111行:20 328 773 3258 4505 6684 7779 12740 12768Line 111: 20 328 773 3258 4505 6684 7779 12740 12768 第112行:54 429 2516 3977 5795 11885 12725 12810Line 112: 54 429 2516 3977 5795 11885 12725 12810 第113行:22 254 1176 2940 4874 6384 12768 12810 12852Line 113: 22 254 1176 2940 4874 6384 12768 12810 12852 第114行:15 160 1338 1629 3459 5414 11447 12852 12894Line 114: 15 160 1338 1629 3459 5414 11447 12852 12894 第115行:21 234 1466 3014 4132 6151 12852 12931 12936Line 115: 21 234 1466 3014 4132 6151 12852 12931 12936 第116行:344 1493 2688 4807 6132 11172 12936 12978Line 116: 344 1493 2688 4807 6132 11172 12936 12978 第117行:74 1171 1806 3528 9072 12516 12999 13020Line 117: 74 1171 1806 3528 9072 12516 12999 13020 第118行:159 996 1764 3848 5491 8423 11112 13062Line 118: 159 996 1764 3848 5491 8423 11112 13062 第119行:165 473 2530 3841 5324 13032 13074 13104Line 119: 165 473 2530 3841 5324 13032 13074 13104 第120行:54 490 2727 3811 5626 10361 13023 13146Line 120: 54 490 2727 3811 5626 10361 13023 13146 第121行:33 84 924 2730 4719 6216 9408 13146 13188Line 121: 33 84 924 2730 4719 6216 9408 13146 13188 第122行:68 468 1881 4704 6984 7744 13198 13230Line 122: 68 468 1881 4704 6984 7744 13198 13230 第123行:9 200 602 2392 3937 7448 12532 13242 13272Line 123: 9 200 602 2392 3937 7448 12532 13242 13272 第124行:6 264 1224 2988 4710 6432 11045 13278 13314Line 124: 6 264 1224 2988 4710 6432 11045 13278 13314 第125行:33 218 1394 3481 4880 6644 13145 13322 13356Line 125: 33 218 1394 3481 4880 6644 13145 13322 13356 第126行:313 1512 3301 4998 6762 13140 13356 13398Line 126: 313 1512 3301 4998 6762 13140 13356 13398 第127行:6 298 1520 2942 4473 6279 12296 12716 13398;Line 127: 6 298 1520 2942 4473 6279 12296 12716 13398; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 24.根据权利要求13所述的编码装置,其特征在于,所述码长n=16128,所述码率为R=1/2,所述Z=42,所述s=924时,所述H矩阵表示为:24. The encoding device according to claim 13, characterized in that, when the code length n=16128, the code rate R=1/2, the Z=42, and the s=924, the The H matrix is expressed as: 第0行:289 924 4942 5554 7862 8106Line 0: 289 924 4942 5554 7862 8106 第1行:348 803 4359 6838 8132 8148Line 1: 348 803 4359 6838 8132 8148 第2行:86 767 2716 7099 7872 8190Line 2: 86 767 2716 7099 7872 8190 第3行:37 473 1999 4817 7799 8190 8232Line 3: 37 473 1999 4817 7799 8190 8232 第4行:8 555 2727 3888 6453 8273 8274Line 4: 8 555 2727 3888 6453 8273 8274 第5行:194 882 4507 7182 8274 8316Line 5: 194 882 4507 7182 8274 8316 第6行:31 520 1088 5226 7966 8329 8358Line 6: 31 520 1088 5226 7966 8329 8358 第7行:7 312 1561 3451 7943 8373 8400Line 7: 7 312 1561 3451 7943 8373 8400 第8行:19 357 1050 4580 7266 8400 8442Line 8: 19 357 1050 4580 7266 8400 8442 第9行:288 859 5461 6111 8477 8484Line 9: 288 859 5461 6111 8477 8484 第10行:21 494 1974 5040 8022 8484 8526Line 10: 21 494 1974 5040 8022 8484 8526 第11行:25 454 675 2568 6392 8566 8568Line 11: 25 454 675 2568 6392 8566 8568 第12行:5 205 1551 4410 8025 8568 8610Line 12: 5 205 1551 4410 8025 8568 8610 第13行:120 616 2680 6841 8620 8652Line 13: 120 616 2680 6841 8620 8652 第14行:122 794 3357 6300 8148 8694Line 14: 122 794 3357 6300 8148 8694 第15行:136 835 2842 7922 8699 8736Line 15: 136 835 2842 7922 8699 8736 第16行:246 1846 3098 6645 8656 8778Line 16: 246 1846 3098 6645 8656 8778 第17行:563 1019 4017 6362 8818 8820Line 17: 563 1019 4017 6362 8818 8820 第18行:42 530 1554 4751 7825 8820 8862Line 18: 42 530 1554 4751 7825 8820 8862 第19行:262 736 2811 5592 8888 8904Line 19: 262 736 2811 5592 8888 8904 第20行:447 1277 2688 6977 8768 8946Line 20: 447 1277 2688 6977 8768 8946 第21行:80 752 3344 5760 8973 8988Line 21: 80 752 3344 5760 8973 8988 第22行:24 394 1764 4788 7933 8988 9030Line 22: 24 394 1764 4788 7933 8988 9030 第23行:109 2294 5028 6372 9049 9072Line 23: 109 2294 5028 6372 9049 9072 第24行:18 150 943 2892 7832 8940 9114Line 24: 18 150 943 2892 7832 8940 9114 第25行:54 431 853 5006 7158 9114 9156Line 25: 54 431 853 5006 7158 9114 9156 第26行:50 246 1615 5310 6427 9177 9198Line 26: 50 246 1615 5310 6427 9177 9198 第27行:36 563 1596 4214 7077 9213 9240Line 27: 36 563 1596 4214 7077 9213 9240 第28行:32 344 1424 3311 5650 9247 9282Line 28: 32 344 1424 3311 5650 9247 9282 第29行:79 183 1344 4494 7476 9282 9324Line 29: 79 183 1344 4494 7476 9282 9324 第30行:69 684 2856 6973 9072 9366Line 30: 69 684 2856 6973 9072 9366 第31行:40 339 707 3569 9328 9403 9408Line 31: 40 339 707 3569 9328 9403 9408 第32行:35 430 627 4083 6034 7879 9450Line 32: 35 430 627 4083 6034 7879 9450 第33行:513 585 3116 5877 9489 9492Line 33: 513 585 3116 5877 9489 9492 第34行:32 89 814 2522 7558 9505 9534Line 34: 32 89 814 2522 7558 9505 9534 第35行:101 859 3799 6991 9553 9576Line 35: 101 859 3799 6991 9553 9576 第36行:126 1134 4974 8000 9576 9618Line 36: 126 1134 4974 8000 9576 9618 第37行:72 304 1329 3741 6891 9654 9660Line 37: 72 304 1329 3741 6891 9654 9660 第38行:36 210 2118 4830 9408 9660 9702Line 38: 36 210 2118 4830 9408 9660 9702 第39行:76 441 1379 4160 6135 9740 9744Line 39: 76 441 1379 4160 6135 9740 9744 第40行:57 870 3234 7028 9744 9786Line 40: 57 870 3234 7028 9744 9786 第41行:54 855 4202 6243 9819 9828Line 41: 54 855 4202 6243 9819 9828 第42行:65 191 1944 4185 5968 9244 9870Line 42: 65 191 1944 4185 5968 9244 9870 第43行:73 612 3570 6174 9870 9912Line 43: 73 612 3570 6174 9870 9912 第44行:545 2251 3669 6390 9917 9954Line 44: 545 2251 3669 6390 9917 9954 第45行:0 629 2159 3005 7400 9977 9996Line 45: 0 629 2159 3005 7400 9977 9996 第46行:38 413 1932 4998 7980 9996 10038Line 46: 38 413 1932 4998 7980 9996 10038 第47行:426 1339 2924 5874 10078 10080Line 47: 426 1339 2924 5874 10078 10080 第48行:33 467 1103 2606 6935 9865 10122Line 48: 33 467 1103 2606 6935 9865 10122 第49行:13 352 1592 4700 7682 10160 10164Line 49: 13 352 1592 4700 7682 10160 10164 第50行:97 679 3181 6336 10111 10206Line 50: 97 679 3181 6336 10111 10206 第51行:70 586 1848 4914 10164 10206 10248Line 51: 70 586 1848 4914 10164 10206 10248 第52行:85 779 3381 5895 8763 10290Line 52: 85 779 3381 5895 8763 10290 第53行:504 1553 3753 6370 10318 10332Line 53: 504 1553 3753 6370 10318 10332 第54行:110 646 5493 6048 9492 10374Line 54: 110 646 5493 6048 9492 10374 第55行:269 1149 4448 7790 10359 10416Line 55: 269 1149 4448 7790 10359 10416 第56行:24 487 1092 4242 7308 10416 10458Line 56: 24 487 1092 4242 7308 10416 10458 第57行:81 326 2126 4139 10384 10494 10500Line 57: 81 326 2126 4139 10384 10494 10500 第58行:125 785 2922 7164 9930 10542Line 58: 125 785 2922 7164 9930 10542 第59行:0 380 1596 5132 7686 10542 10584Line 59: 0 380 1596 5132 7686 10542 10584 第60行:233 833 3095 8080 10586 10626Line 60: 233 833 3095 8080 10586 10626 第61行:3 567 1442 4530 7098 10626 10668Line 61: 3 567 1442 4530 7098 10626 10668 第62行:580 1436 4617 7260 10690 10710Line 62: 580 1436 4617 7260 10690 10710 第63行:108 828 2771 6471 10751 10752Line 63: 108 828 2771 6471 10751 10752 第64行:227 2326 3519 5922 10752 10794Line 64: 227 2326 3519 5922 10752 10794 第65行:78 571 3383 6797 10825 10836Line 65: 78 571 3383 6797 10825 10836 第66行:37 334 720 4623 5931 8928 10878Line 66: 37 334 720 4623 5931 8928 10878 第67行:84 844 2976 6881 10919 10920Line 67: 84 844 2976 6881 10919 10920 第68行:124 599 3035 5659 10864 10962Line 68: 124 599 3035 5659 10864 10962 第69行:14 462 2394 5376 10920 10962 11004Line 69: 14 462 2394 5376 10920 10962 11004 第70行:51 817 4344 5700 9078 11046Line 70: 51 817 4344 5700 9078 11046 第71行:102 693 2562 6201 11046 11088Line 71: 102 693 2562 6201 11046 11088 第72行:101 647 3458 6922 11104 11130Line 72: 101 647 3458 6922 11104 11130 第73行:19 214 1033 2607 7742 11133 11172Line 73: 19 214 1033 2607 7742 11133 11172 第74行:482 610 3042 5898 11190 11214Line 74: 482 610 3042 5898 11190 11214 第75行:102 1389 3910 7380 11218 11256Line 75: 102 1389 3910 7380 11218 11256 第76行:36 384 2058 5082 7896 11256 11298Line 76: 36 384 2058 5082 7896 11256 11298 第77行:523 2288 3727 6552 11307 11340Line 77: 523 2288 3727 6552 11307 11340 第78行:415 670 5084 7449 11370 11382Line 78: 415 670 5084 7449 11370 11382 第79行:107 973 2940 6685 11382 11424Line 79: 107 973 2940 6685 11382 11424 第80行:77 920 3972 11040 11424 11466Line 80: 77 920 3972 11040 11424 11466 第81行:37 475 1007 6059 11014 11489 11508Line 81: 37 475 1007 6059 11014 11489 11508 第82行:607 1680 4809 7770 11508 11550Line 82: 607 1680 4809 7770 11508 11550 第83行:164 1482 4243 6475 11586 11592Line 83: 164 1482 4243 6475 11586 11592 第84行:24 554 1722 4746 7812 11592 11634Line 84: 24 554 1722 4746 7812 11592 11634 第85行:2 559 1428 5380 7560 11636 11676Line 85: 2 559 1428 5380 7560 11636 11676 第86行:550 2188 3723 10261 11693 11718Line 86: 550 2188 3723 10261 11693 11718 第87行:65 410 2448 3330 10260 11730 11760Line 87: 65 410 2448 3330 10260 11730 11760 第88行:57 816 5378 6384 11760 11802Line 88: 57 816 5378 6384 11760 11802 第89行:53 795 3297 7220 11804 11844Line 89: 53 795 3297 7220 11804 11844 第90行:230 750 2786 5642 8666 11886Line 90: 230 750 2786 5642 8666 11886 第91行:71 736 3549 7132 11924 11928Line 91: 71 736 3549 7132 11924 11928 第92行:193 852 5217 6594 11928 11970Line 92: 193 852 5217 6594 11928 11970 第93行:74 220 2229 4910 7570 12001 12012Line 93: 74 220 2229 4910 7570 12001 12012 第94行:291 785 2965 5578 11880 12054Line 94: 291 785 2965 5578 11880 12054 第95行:304 2014 3784 6905 12079 12096Line 95: 304 2014 3784 6905 12079 12096 第96行:53 607 3379 6487 12031 12138Line 96: 53 607 3379 6487 12031 12138 第97行:61 292 720 3442 12136 12178 12180Line 97: 61 292 720 3442 12136 12178 12180 第98行:39 226 716 2637 6281 12203 12222Line 98: 39 226 716 2637 6281 12203 12222 第99行:348 1765 4077 6029 12236 12264Line 99: 348 1765 4077 6029 12236 12264 第100行:75 763 4053 5718 11199 12306Line 100: 75 763 4053 5718 11199 12306 第101行:88 2391 5334 7498 12264 12348Line 101: 88 2391 5334 7498 12264 12348 第102行:92 918 3627 6777 12384 12390Line 102: 92 918 3627 6777 12384 12390 第103行:69 524 2268 5250 12306 12390 12432Line 103: 69 524 2268 5250 12306 12390 12432 第104行:514 696 3492 5712 10785 12474Line 104: 514 696 3492 5712 10785 12474 第105行:94 612 3166 8100 12512 12516Line 105: 94 612 3166 8100 12512 12516 第106行:120 342 1470 4578 7602 12516 12558Line 106: 120 342 1470 4578 7602 12516 12558 第107行:72 807 2991 5531 12579 12600Line 107: 72 807 2991 5531 12579 12600 第108行:209 713 2531 5689 11097 12642Line 108: 209 713 2531 5689 11097 12642 第109行:352 1176 4326 7686 12642 12684Line 109: 352 1176 4326 7686 12642 12684 第110行:464 1173 4542 6510 12724 12726Line 110: 464 1173 4542 6510 12724 12726 第111行:336 677 4026 10514 12735 12768Line 111: 336 677 4026 10514 12735 12768 第112行:123 835 3444 7453 12768 12810Line 112: 123 835 3444 7453 12768 12810 第113行:74 489 2550 5256 6286 12828 12852Line 113: 74 489 2550 5256 6286 12828 12852 第114行:259 1269 2680 5714 12619 12894Line 114: 259 1269 2680 5714 12619 12894 第115行:388 2396 4885 7350 12894 12936Line 115: 388 2396 4885 7350 12894 12936 第116行:7 731 1726 3121 7658 12936 12978Line 116: 7 731 1726 3121 7658 12936 12978 第117行:110 901 4032 7056 12978 13020Line 117: 110 901 4032 7056 12978 13020 第118行:478 1129 4863 7055 12893 13062Line 118: 478 1129 4863 7055 12893 13062 第119行:7 552 1512 4620 7995 13062 13104Line 119: 7 552 1512 4620 7995 13062 13104 第120行:3 431 1914 3948 7202 13035 13146Line 120: 3 431 1914 3948 7202 13035 13146 第121行:272 1663 4706 13116 13154 13188Line 121: 272 1663 4706 13116 13154 13188 第122行:338 740 3265 5796 8177 13230Line 122: 338 740 3265 5796 8177 13230 第123行:63 398 918 4980 6662 13255 13272Line 123: 63 398 918 4980 6662 13255 13272 第124行:95 920 3822 7607 13272 13314Line 124: 95 920 3822 7607 13272 13314 第125行:15 161 1816 3663 5820 13326 13356Line 125: 15 161 1816 3663 5820 13326 13356 第126行:303 1853 4953 5605 13361 13398Line 126: 303 1853 4953 5605 13361 13398 第127行:109 650 3276 6216 13398 13440Line 127: 109 650 3276 6216 13398 13440 第128行:59 691 2767 5611 9828 13482Line 128: 59 691 2767 5611 9828 13482 第129行:172 2788 5057 6679 13499 13524Line 129: 172 2788 5057 6679 13499 13524 第130行:551 2436 5418 13188 13524 13566Line 130: 551 2436 5418 13188 13524 13566 第131行:310 858 2648 6120 13573 13608Line 131: 310 858 2648 6120 13573 13608 第132行:444 701 3883 7375 13637 13650Line 132: 444 701 3883 7375 13637 13650 第133行:72 883 4104 7170 13680 13692Line 133: 72 883 4104 7170 13680 13692 第134行:22 378 2184 5166 10500 13692 13734Line 134: 22 378 2184 5166 10500 13692 13734 第135行:517 638 3631 5868 13745 13776Line 135: 517 638 3631 5868 13745 13776 第136行:84 1008 4200 7398 13776 13818Line 136: 84 1008 4200 7398 13776 13818 第137行:106 644 2571 5502 13443 13860Line 137: 106 644 2571 5502 13443 13860 第138行:15 334 892 4299 6587 13881 13902Line 138: 15 334 892 4299 6587 13881 13902 第139行:73 206 1774 4656 7702 13940 13944Line 139: 73 206 1774 4656 7702 13940 13944 第140行:212 798 5328 6846 13819 13986Line 140: 212 798 5328 6846 13819 13986 第141行:154 761 3652 12437 14003 14028Line 141: 154 761 3652 12437 14003 14028 第142行:21 152 1900 3486 7298 14028 14070Line 142: 21 152 1900 3486 7298 14028 14070 第143行:37 666 2030 5533 6526 14090 14112Line 143: 37 666 2030 5533 6526 14090 14112 第144行:8 433 2387 4284 12449 14112 14154Line 144: 8 433 2387 4284 12449 14112 14154 第145行:127 750 5207 7618 14161 14196Line 145: 127 750 5207 7618 14161 14196 第146行:13 252 1890 4956 8044 14196 14238Line 146: 13 252 1890 4956 8044 14196 14238 第147行:130 841 3439 7513 14254 14280Line 147: 130 841 3439 7513 14254 14280 第148行:391 1260 5145 7392 14280 14322Line 148: 391 1260 5145 7392 14280 14322 第149行:3 266 1386 4536 7518 13944 14364Line 149: 3 266 1386 4536 7518 13944 14364 第150行:118 1058 3221 6064 14324 14406Line 150: 118 1058 3221 6064 14324 14406 第151行:21 67 843 2842 14404 14410 14448Line 151: 21 67 843 2842 14404 14410 14448 第152行:141 2071 2909 6274 9747 14490Line 152: 141 2071 2909 6274 9747 14490 第153行:296 2351 4692 5761 14497 14532Line 153: 296 2351 4692 5761 14497 14532 第154行:92 920 6235 9435 13458 14574Line 154: 92 920 6235 9435 13458 14574 第155行:108 740 4417 6772 14574 14616Line 155: 108 740 4417 6772 14574 14616 第156行:36 409 1936 2744 5965 14651 14658Line 156: 36 409 1936 2744 5965 14651 14658 第157行:16 336 2142 5199 8064 14658 14700Line 157: 16 336 2142 5199 8064 14658 14700 第158行:282 645 4043 6655 14735 14742Line 158: 282 645 4043 6655 14735 14742 第159行:72 414 1218 5767 6731 14742 14784Line 159: 72 414 1218 5767 6731 14742 14784 第160行:437 1376 3571 7259 14804 14826Line 160: 437 1376 3571 7259 14804 14826 第161行:49 508 2310 5292 6720 14826 14868Line 161: 49 508 2310 5292 6720 14826 14868 第162行:19 149 823 3103 6752 14889 14910Line 162: 19 149 823 3103 6752 14889 14910 第163行:96 2481 5351 6930 14910 14952Line 163: 96 2481 5351 6930 14910 14952 第164行:374 774 5046 7667 14984 14994Line 164: 374 774 5046 7667 14984 14994 第165行:110 1642 4138 6129 15035 15036Line 165: 110 1642 4138 6129 15035 15036 第166行:93 744 3776 6520 14539 15078Line 166: 93 744 3776 6520 14539 15078 第167行:28 420 2226 5208 7938 15078 15120Line 167: 28 420 2226 5208 7938 15078 15120 第168行:200 877 4676 6187 15152 15162Line 168: 200 877 4676 6187 15152 15162 第169行:29 470 1227 3796 6964 15200 15204Line 169: 29 470 1227 3796 6964 15200 15204 第170行:67 760 3700 14475 15208 15246Line 170: 67 760 3700 14475 15208 15246 第171行:9 316 1700 4116 7224 15246 15288Line 171: 9 316 1700 4116 7224 15246 15288 第172行:432 2088 3528 6678 15036 15330Line 172: 432 2088 3528 6678 15036 15330 第173行:23 243 771 4466 15325 15330 15372Line 173: 23 243 771 4466 15325 15330 15372 第174行:97 683 3212 7043 10869 15414Line 174: 97 683 3212 7043 10869 15414 第175行:5 196 2408 4461 6887 12638 15456Line 175: 5 196 2408 4461 6887 12638 15456 第176行:8 248 650 3936 6171 15481 15498Line 176: 8 248 650 3936 6171 15481 15498 第177行:536 2100 5124 15414 15498 15540Line 177: 536 2100 5124 15414 15498 15540 第178行:17 382 2197 3192 7317 14532 15582Line 178: 17 382 2197 3192 7317 14532 15582 第179行:521 1236 3242 5834 15598 15624Line 179: 521 1236 3242 5834 15598 15624 第180行:56 257 966 4291 7588 15624 15666Line 180: 56 257 966 4291 7588 15624 15666 第181行:627 2446 5100 6635 15701 15708Line 181: 627 2446 5100 6635 15701 15708 第182行:13 623 1203 5259 15544 15713 15750Line 182: 13 623 1203 5259 15544 15713 15750 第183行:61 589 1806 4872 15372 15750 15792Line 183: 61 589 1806 4872 15372 15750 15792 第184行:62 754 3694 6844 15815 15834Line 184: 62 754 3694 6844 15815 15834 第185行:86 897 5434 15564 15834 15876Line 185: 86 897 5434 15564 15834 15876 第186行:2 468 893 3437 6142 15905 15918Line 186: 2 468 893 3437 6142 15905 15918 第187行:30 314 1748 2884 7275 15947 15960Line 187: 30 314 1748 2884 7275 15947 15960 第188行:134 608 3018 6627 11853 16002Line 188: 134 608 3018 6627 11853 16002 第189行:67 652 1669 4735 7759 16033 16044Line 189: 67 652 1669 4735 7759 16033 16044 第190行:16 639 2352 5334 12194 16044 16086Line 190: 16 639 2352 5334 12194 16044 16086 第191行:261 2490 3846 5670 15960 16128Line 191: 261 2490 3846 5670 15960 16128 第192行:365 768 4400 5889 16129 16170Line 192: 365 768 4400 5889 16129 16170 第193行:294 2016 5421 16124 16170 16212Line 193: 294 2016 5421 16124 16170 16212 第194行:120 900 3065 7325 13371 16254Line 194: 120 900 3065 7325 13371 16254 第195行:56 816 3108 6006 16254 16296Line 195: 56 816 3108 6006 16254 16296 第196行:80 631 4376 6464 16303 16338Line 196: 80 631 4376 6464 16303 16338 第197行:208 2039 3990 16249 16338 16380Line 197: 208 2039 3990 16249 16338 16380 第198行:88 694 4255 6577 16384 16422Line 198: 88 694 4255 6577 16384 16422 第199行:10 187 2161 4767 7769 16422 16464Line 199: 10 187 2161 4767 7769 16422 16464 第200行:117 779 3849 5561 10083 16506Line 200: 117 779 3849 5561 10083 16506 第201行:23 454 1302 4452 13194 16506 16548Line 201: 23 454 1302 4452 13194 16506 16548 第202行:143 879 3160 6005 16487 16590Line 202: 143 879 3160 6005 16487 16590 第203行:34 309 1878 3928 16578 16625 16632Line 203: 34 309 1878 3928 16578 16625 16632 第204行:85 863 2852 7086 16330 16674Line 204: 85 863 2852 7086 16330 16674 第205行:210 1504 4368 7434 16674 16716Line 205: 210 1504 4368 7434 16674 16716 第206行:14 472 1209 3864 16247 16730 16758Line 206: 14 472 1209 3864 16247 16730 16758 第207行:121 908 4836 5928 16777 16800Line 207: 121 908 4836 5928 16777 16800 第208行:112 924 4158 15402 16800 16842Line 208: 112 924 4158 15402 16800 16842 第209行:73 634 3574 16636 16845 16884Line 209: 73 634 3574 16636 16845 16884 第210行:97 819 4567 15990 16663 16926Line 210: 97 819 4567 15990 16663 16926 第211行:92 691 4706 6309 16952 16968Line 211: 92 691 4706 6309 16952 16968 第212行:0 504 2478 5460 14448 16968 17010Line 212: 0 504 2478 5460 14448 16968 17010 第213行:36 202 1712 3961 7532 16896 17010;Line 213: 36 202 1712 3961 7532 16896 17010; 其中,第i行的数字表示所述H矩阵中第42i行中值为1的列位置,且所述H矩阵中第42i行至第42i+41行中值为1的列位置为第42i行中值为1的列位置根据循环移位矩阵循环移位得到的。Wherein, the number in the i-th row represents the column position with a value of 1 in the 42i row in the H matrix, and the column position with a value of 1 in the 42i row to the 42i+41 row in the H matrix is the 42i row The position of the column whose median value is 1 is obtained by cyclic shifting according to the cyclic shift matrix. 25.一种芯片,其特征在于,包括处理器,所述处理器用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行权利要求1-12中任一项所述的方法。25. A chip, characterized in that it includes a processor, and the processor is used to call and execute instructions stored in the memory from the memory, so that the communication device installed with the chip executes any of claims 1-12. one of the methods described. 26.一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于执行权利要求1-12中任一项所述的方法的指令。26. A computer-readable storage medium, characterized by being used for storing a computer program, the computer program comprising instructions for executing the method according to any one of claims 1-12.
CN201811473706.4A 2018-12-04 2018-12-04 Coding and decoding method and related device of low-density parity check LDPC code Active CN111277354B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811473706.4A CN111277354B (en) 2018-12-04 2018-12-04 Coding and decoding method and related device of low-density parity check LDPC code
PCT/CN2019/122269 WO2020114337A1 (en) 2018-12-04 2019-11-30 Ldpc code encoding and decoding method and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811473706.4A CN111277354B (en) 2018-12-04 2018-12-04 Coding and decoding method and related device of low-density parity check LDPC code

Publications (2)

Publication Number Publication Date
CN111277354A CN111277354A (en) 2020-06-12
CN111277354B true CN111277354B (en) 2023-03-10

Family

ID=70975201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811473706.4A Active CN111277354B (en) 2018-12-04 2018-12-04 Coding and decoding method and related device of low-density parity check LDPC code

Country Status (2)

Country Link
CN (1) CN111277354B (en)
WO (1) WO2020114337A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114095125B (en) * 2021-11-09 2024-07-05 湖南省时空基准科技有限公司 Channel coding method and device for narrowband data broadcasting
CN116436471A (en) * 2021-12-30 2023-07-14 中兴通讯股份有限公司 Encoding and decoding method, communication device and storage medium
CN118694380B (en) * 2024-08-26 2024-12-20 山东云海国创云计算装备产业创新中心有限公司 Codeword decoding method and device, storage medium and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119922A1 (en) * 2016-01-04 2017-07-13 Intel IP Corporation Encoding and decoding using low-density parity-check matrices
CN108023673A (en) * 2016-11-04 2018-05-11 清华大学 A kind of construction of more code length LDPC codes of multi code Rate of Chinese character and coding method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992066B2 (en) * 2004-08-09 2011-08-02 Lg Electronics Inc. Method of encoding and decoding using low density parity check matrix
CN101764621B (en) * 2009-12-30 2012-12-26 西安空间无线电技术研究所 Method for realizing compatibility of short code and subcode in satellite-based (8176, 7156) LDPC coder
US9021341B1 (en) * 2010-06-16 2015-04-28 Marvell International Ltd. LDPC coding in a communication system
US10313054B2 (en) * 2015-01-07 2019-06-04 Avago Technologies International Sales Pte. Limited Low density parity check (LDPC) codes for communication devices and systems
CN108111174B (en) * 2016-11-25 2020-09-11 华为技术有限公司 A kind of LDPC code sending method, receiving method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017119922A1 (en) * 2016-01-04 2017-07-13 Intel IP Corporation Encoding and decoding using low-density parity-check matrices
CN108023673A (en) * 2016-11-04 2018-05-11 清华大学 A kind of construction of more code length LDPC codes of multi code Rate of Chinese character and coding method

Also Published As

Publication number Publication date
WO2020114337A1 (en) 2020-06-11
CN111277354A (en) 2020-06-12

Similar Documents

Publication Publication Date Title
US11646818B2 (en) Method and apparatus for encoding/decoding channel in communication or broadcasting system
CN111277354B (en) Coding and decoding method and related device of low-density parity check LDPC code
JPWO2009060627A1 (en) Encoding method and transmitting apparatus
US20250070800A1 (en) Ldpc encoding and decoding method and related apparatus
US20240030941A1 (en) Encoding and decoding method and apparatus
US20250211365A1 (en) Encoding method, decoding method, communication apparatus, and computer-readable storage medium
JP2025523570A (en) Method and associated apparatus for determining the length of LDPC codewords in UWB systems - Patents.com
TW202404272A (en) Method and apparatus about ldpc encoding/decoding
WO2025001762A1 (en) Decoding method and apparatus, and parameter training method and apparatus
CN108631913A (en) A kind of deinterleaving method and relevant device based on Quasi-cyclic Low-density Parity-check Codes
EP4625909A1 (en) Coding method, decoding method, and apparatus
WO2024103386A1 (en) Communication method based on ldpc code, and communication apparatus
CN110034851B (en) Coding method, coding device and system
CN113708778A (en) Method and communication device for rate matching of LDPC (Low Density parity check)
US20250260512A1 (en) Method for Determining Length of LDPC Codeword in UWB System and Related Apparatus
TW202515154A (en) Encoding or decoding method and communication device
CN101150730A (en) Family of Low Density Parity Check Codes for Video Broadcasting Applications
WO2024067350A1 (en) Method for encoding and decoding concatenated code, and communication apparatus
WO2025167543A1 (en) Ldpc code-based communication method and communication apparatus
WO2024114812A1 (en) Encoding method, decoding method, and communication apparatus
WO2025098077A1 (en) Coding method and communication apparatus
KR101354731B1 (en) Apparatus and method for encoding/decoding a concatenated low density generator matrix code in a communication system
CN107370554A (en) Decoding method and decoder for low density parity check code

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant