[go: up one dir, main page]

CN111368384B - Method and device for predicting antenna engineering parameters - Google Patents

Method and device for predicting antenna engineering parameters Download PDF

Info

Publication number
CN111368384B
CN111368384B CN201811502499.0A CN201811502499A CN111368384B CN 111368384 B CN111368384 B CN 111368384B CN 201811502499 A CN201811502499 A CN 201811502499A CN 111368384 B CN111368384 B CN 111368384B
Authority
CN
China
Prior art keywords
antenna
data
engineering
model
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811502499.0A
Other languages
Chinese (zh)
Other versions
CN111368384A (en
Inventor
喻国军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201811502499.0A priority Critical patent/CN111368384B/en
Publication of CN111368384A publication Critical patent/CN111368384A/en
Application granted granted Critical
Publication of CN111368384B publication Critical patent/CN111368384B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供用于预测或纠正天线工程参数的方法及设备,该方法包括:先基于第一地理区域内的包含第一设备天线的工程参数的工程参数集、包含第一设备天线的配置数据的配置数据集以及终端向所述第一设备天线上传的测量报告集进行模型训练,得到天线工程参数预测模型,再将第二地理区域内第二设备天线的配置数据以及终端向所述第二设备天线上传的测量报告数据输入至所述天线工程参数预测模型,获得第二设备天线的工程参数的预测结果或纠正第二设备天线的工程参数。该方法能够以更低的成本实现更准确的天线工程参数的预测和纠正。

Figure 201811502499

The present application provides a method and device for predicting or correcting antenna engineering parameters. The method includes: first, based on an engineering parameter set including engineering parameters of the first device antenna in a first geographical area, and a set of engineering parameters including configuration data of the first device antenna Perform model training on the configuration data set and the measurement report set uploaded by the terminal to the antenna of the first device to obtain an antenna engineering parameter prediction model, and then send the configuration data of the antenna of the second device in the second geographical area and the terminal to the second device. The measurement report data uploaded by the antenna is input into the antenna engineering parameter prediction model to obtain the prediction result of the engineering parameter of the second device antenna or correct the engineering parameter of the second device antenna. This method enables more accurate prediction and correction of antenna engineering parameters at lower cost.

Figure 201811502499

Description

预测天线工程参数的方法及设备Method and device for predicting antenna engineering parameters

技术领域technical field

本发明涉及通信技术领域,尤其涉及天线工程参数预测模型的训练方法及设备、基于天线工程参数预测模型预测工程参数的方法及设备。The invention relates to the field of communication technologies, in particular to a training method and device for an antenna engineering parameter prediction model, and a method and device for predicting engineering parameters based on the antenna engineering parameter prediction model.

背景技术Background technique

长期演进(Long Term Evolution,LTE)是由第三代合作伙伴计划(3rdGeneration Partnership Project,3GPP)组织制定的通用移动通信系统(UniversalMobile Telecommunications System,UMTS)技术标准的长期演进。随着LTE网络建设规模不断扩大,LTE用户剧增,基站的工程参数(本文中“工程参数”可简称“工参”)的准确性在日常网络优化调整中显得愈发重要。基站的工程参数是指无线网络规划中与基站射频天线相关的参数,例如,天线的经纬度、方位角、下倾角等等。基站的工程参数的准确性关系到网络数据及网络覆盖的准确性,对用户终端感知和网络问题分析产生极其重要的影响。Long Term Evolution (Long Term Evolution, LTE) is the long-term evolution of the Universal Mobile Telecommunications System (UMTS) technical standard formulated by the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP). As the scale of LTE network construction continues to expand and the number of LTE users increases dramatically, the accuracy of base station engineering parameters ("engineering parameters" may be referred to as "engineering parameters" in this article) becomes more and more important in daily network optimization and adjustment. The engineering parameters of the base station refer to parameters related to the radio frequency antenna of the base station in the wireless network planning, for example, the longitude and latitude, azimuth angle, downtilt angle of the antenna and so on. The accuracy of the engineering parameters of the base station is related to the accuracy of network data and network coverage, and has an extremely important impact on user terminal perception and network problem analysis.

但传统的工程参数准确性核查一直是网络优化中的一大短板,现有的一种做法是通过人工上站的方式测试、分析和验证工程参数的准确性。然而,这种人工核查工程参数的方式会存在一些人工引入的误差,难以保证工参数据的及时性和完整性,因此核查效率低且准确性差。现有的另一种做法是在基站处安装定位设备,如全球定位系统(GlobalPositioning System,GPS)设备,通过定位设备获得基站射频天线的位置信息发送给网管设备,然后由网管设备根据基站射频天线的位置信息生成工参。然而,这种方式会带来较大的设备开销,且有些基站设备可能安装在室内,而这种情况下定位设备在室内定位精度不高,导致据此产生的工参准确性较差。However, the traditional verification of the accuracy of engineering parameters has always been a major shortcoming in network optimization. One of the existing methods is to test, analyze and verify the accuracy of engineering parameters by manually going to the station. However, this method of manually checking engineering parameters will have some artificially introduced errors, and it is difficult to ensure the timeliness and integrity of the engineering parameter data, so the checking efficiency is low and the accuracy is poor. Another existing practice is to install a positioning device at the base station, such as a global positioning system (Global Positioning System, GPS) device, obtain the position information of the base station radio frequency antenna through the positioning device and send it to the network management device, and then the network management device is based on the base station radio frequency antenna. The location information of the generated work parameters. However, this method will bring a large equipment overhead, and some base station equipment may be installed indoors. In this case, the positioning equipment has low indoor positioning accuracy, resulting in poor accuracy of the resulting work parameters.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供了预测天线工程参数的方法及设备,能够克服现有技术的缺陷,实现比较准确的、低成本的工参生成方案。The embodiments of the present invention provide a method and device for predicting engineering parameters of an antenna, which can overcome the defects of the prior art and realize a relatively accurate and low-cost generation scheme of engineering parameters.

第一方面,本发明实施例提供了一种预测天线工程参数的方法,该方法包括天线工参预测模型的训练方法,该方法具体包括:获取第一工程参数集、第一配置数据集、以及终端向第一设备天线上传的第一测量报告数据集;其中,所述第一工程参数集包括所述第一设备天线的工程参数,所述第一设备天线的工程参数包括所述第一设备天线的位置数据(例如第一设备天线的经度、纬度、海拔高度等等)和姿态数据(例如第一设备天线的下倾角、方位角等等)中的至少一个;所述第一配置数据集包括所述第一设备天线的配置数据,所述第一设备天线的配置数据表示所述第一设备天线的网络参数的配置信息;所述第一测量报告数据集中的测量报告(Measurement Report,MR)数据包括所述终端的位置数据(例如终端的经度、纬度、海拔高度等等)和信号接收功率(Reference Signal ReceivedPower,RSRP)数据;其中,所述第一设备天线可以是第一地理区域内的多个设备天线中的任意设备天线;根据所述第一设备天线的工程参数、所述第一设备天线的配置数据和所述第一测量报告数据集进行模型训练,获得天线工参预测模型(本文中可简称为工参预测模型);所述天线工参预测模型用于,根据第二配置数据集、终端向第二设备天线上传的第二测量报告数据集,输出所述第二设备天线的工程参数。其中,所述第二设备天线可以是第二地理区域内的设备天线,所述第二地理区域可以不同于所述第一地理区域。In a first aspect, an embodiment of the present invention provides a method for predicting engineering parameters of an antenna. The method includes a method for training an antenna engineering parameter prediction model. The method specifically includes: acquiring a first engineering parameter set, a first configuration data set, and The first measurement report data set uploaded by the terminal to the first device antenna; wherein the first engineering parameter set includes the engineering parameters of the first device antenna, and the engineering parameters of the first device antenna include the first device at least one of antenna location data (eg, longitude, latitude, altitude, etc. of the first device antenna) and attitude data (eg, downtilt, azimuth, etc. of the first device antenna); the first set of configuration data Including the configuration data of the first device antenna, the configuration data of the first device antenna represents the configuration information of the network parameters of the first device antenna; the measurement report (Measurement Report, MR in the first measurement report data set) ) data includes the location data of the terminal (for example, the longitude, latitude, altitude, etc. of the terminal) and signal received power (Reference Signal Received Power, RSRP) data; wherein, the first device antenna may be within a first geographic area Any device antenna among the multiple device antennas; perform model training according to the engineering parameters of the first device antenna, the configuration data of the first device antenna, and the first measurement report data set, and obtain an antenna operating parameter prediction model (It may be referred to as an engineering parameter prediction model in this paper); the antenna engineering parameter prediction model is used to output the second device according to the second configuration data set and the second measurement report data set uploaded by the terminal to the antenna of the second device. The engineering parameters of the antenna. Wherein, the second device antenna may be a device antenna in a second geographic area, and the second geographic area may be different from the first geographic area.

可以看到,本发明实施例能够通过模型训练的方式基于现成的样本数据(例如MR数据、配置数据、工参数据等)构建用于预测设备天线的工参的模型。这样,后续应用该模型将可实现基于MR数据和配置数据获得设备天线可信度较高的预测工参。所以,实施本发明实施例的技术方案能够克服现有技术的缺陷,有效降低设备天线工参的获取成本,提升工参的准确度。It can be seen that the embodiment of the present invention can build a model for predicting the operating parameters of the device antenna based on ready-made sample data (eg, MR data, configuration data, operating parameter data, etc.) by means of model training. In this way, the subsequent application of the model will enable to obtain the predicted operating parameters of the equipment antenna with high reliability based on the MR data and configuration data. Therefore, implementing the technical solutions of the embodiments of the present invention can overcome the defects of the prior art, effectively reduce the acquisition cost of the equipment antenna engineering parameters, and improve the accuracy of the engineering parameters.

本发明实施例中,第一地理区域表示用于模型训练的样本数据所对应的一个或多个设备天线所在地理位置范围。若用于模型训练的样本数据对应多个设备天线,那么可以称所述多个设备天线为第一地理区域内的多个设备天线,以此类推,可以称本实施例中的第一设备天线为第一地理区域内的第一设备天线,多个设备天线中除第一设备天线外的其他设备天线可以称为第一地理区域内的其他设备天线,以此类推。In this embodiment of the present invention, the first geographic area represents a geographic location range where one or more device antennas corresponding to the sample data used for model training are located. If the sample data used for model training corresponds to multiple device antennas, the multiple device antennas may be referred to as multiple device antennas in the first geographic area, and so on, the first device antennas in this embodiment may be referred to as is the first device antenna in the first geographical area, other device antennas in the multiple device antennas except the first device antenna may be referred to as other device antennas in the first geographical area, and so on.

基于第一方面,在第一种实施方式中,所述天线工参预测模型包括天线工参生成模型(本文中可简称为工参生成模型);所述根据所述第一设备天线的工程参数、所述第一设备天线的配置数据和所述第一测量报告数据集进行模型训练,获得天线工参预测模型,包括:根据所述第一设备天线的配置数据和所述第一测量报告数据集,获得所述第一设备天线的第一样本特征数据;所述第一样本特征数据包括隶属所述第一设备天线的小区或远端射频单元(Radio Remote Unit,RRU)的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据;根据所述第一设备天线的配置数据,获得所述第一设备天线的天线类型;根据所述第一设备天线的工程参数和第一特征集合进行模型训练,获得所述天线工参生成模型;所述第一特征集合包括所述第一样本特征数据和所述第一设备天线的天线类型,所述天线工参生成模型用于根据输入的第一特征集合输出工程参数。Based on the first aspect, in a first implementation manner, the antenna engineering parameter prediction model includes an antenna engineering parameter generation model (herein may simply be referred to as an engineering parameter generation model); the engineering parameters based on the antenna of the first device , Perform model training on the configuration data of the first device antenna and the first measurement report data set to obtain an antenna operating parameter prediction model, including: according to the configuration data of the first device antenna and the first measurement report data set to obtain the first sample feature data of the first device antenna; the first sample feature data includes a plurality of cells belonging to the first device antenna or a remote radio unit (Radio Remote Unit, RRU) Signal received power data, and position data of the terminal corresponding to each signal received power data in the plurality of signal received power data; according to the configuration data of the first device antenna, the antenna type of the first device antenna is obtained; according to Model training is performed on the engineering parameters of the first device antenna and the first feature set to obtain the antenna engineering parameter generation model; the first feature set includes the first sample feature data and the first device antenna. Antenna type, the antenna engineering parameter generation model is used to output engineering parameters according to the input first feature set.

其中,所述天线工参生成模型例如为神经网络(Neural Networks,NN)算法模型。天线工参生成模型的训练过程例如可通过下式表示:Wherein, the antenna engineering parameter generation model is, for example, a neural network (Neural Networks, NN) algorithm model. For example, the training process of the antenna parameter generation model can be expressed by the following formula:

(Latitude,Longtitude)=NN(Feature1056,AntennaType,Wnn1)(Latitude, Longtitude)=NN(Feature 1056 , AntennaType, W nn1 )

其中,Latitude表示设备天线的工参中的纬度值,Longtitude表示设备天线的工参中的经度值,NN表示神经网络算法,Feature1056表示第一样本特征数据,AntennaType表示设备天线的类型,Wnn1表示工参生成模型中的模型参数。Among them, Latitude represents the latitude value in the industrial parameter of the device antenna, Longtitude represents the longitude value in the industrial parameter of the device antenna, NN represents the neural network algorithm, Feature 1056 represents the first sample feature data, AntennaType represents the type of the device antenna, W nn1 represents the model parameters in the work parameter generation model.

对于不同的设备天线,其对应的Latitude、Longtitude、Feature1056、AntennaType数据也各有差异,根据这些数据作为工参生成模型的输入数据,即可对模型进行训练计算出Wnn1(例如本样例中可以利用梯度下降法计算出Wnn1),从而获得经过训练的工参生成模型。For different device antennas, the corresponding Latitude, Longtitude, Feature 1056 , and AntennaType data are also different. According to these data as the input data of the model generation model, the model can be trained to calculate W nn1 (for example, this sample The gradient descent method can be used to calculate W nn1 ) in , so as to obtain the trained model for generating parameters.

可以看到,本发明实施例能够基于现成的样本数据(例如MR数据、配置数据、工参数据等)进行数据提取,获得工参生成模型的输入数据(例如第一样本特征数据、设备天线的类型数据、设备天线的工参数据等等,从而基于这些数据训练出用于预测设备天线的工参预测模型(这里的工参预测模型可视为工参生成模型),而应用该模型将可实现生成设备天线的工参,从而获得可信度较高的预测工参。所以,实施本发明实施例能够适应于各种样本数据场景进行有效进行数据筛选,提升模型训练的效率和准确性。从而能够提升后续基于该模型进行设备天线的工参预测的准确度,有效降低设备天线工参的获取成本。It can be seen that the embodiment of the present invention can perform data extraction based on ready-made sample data (such as MR data, configuration data, engineering parameter data, etc.), and obtain the input data of the engineering parameter generation model (such as first sample feature data, device antenna, etc.). The type data of the equipment antenna, the working parameter data of the equipment antenna, etc., so as to train the working parameter prediction model for predicting the equipment antenna based on these data (the working parameter prediction model here can be regarded as the working parameter generation model), and the application of this model will It can realize the generation of the engineering parameters of the device antenna, thereby obtaining the predicted engineering parameters with higher reliability. Therefore, the implementation of the embodiment of the present invention can be adapted to various sample data scenarios to effectively perform data screening, and improve the efficiency and accuracy of model training. Therefore, the accuracy of the subsequent prediction of the working parameters of the equipment antenna based on the model can be improved, and the cost of obtaining the working parameters of the equipment antenna can be effectively reduced.

基于第一方面的第一种实施方式,在可能的实施例中,训练集中的MR数据数量较大时,占据内存较大,会导致共天线小区的MR数据很多。而不同的设备天线对应的共天线的小区列表也有差异,小区数目不固定。为了更好地进行模型的训练(如避免过拟合、提高运算速度和效率),本发明实施例可为不同的设备天线的共天线小区对应的MR数据设计统一的训练数据模板,这样,就可将各个设备天线的共天线小区对应的MR数据基于所述训练数据模板进行筛选和归并,获得各个设备天线的共天线小区的样本特征数据(这里可称为第一样本特征数据)。Based on the first implementation of the first aspect, in a possible embodiment, when the amount of MR data in the training set is large, it occupies a large amount of memory, resulting in a large amount of MR data in a common antenna cell. However, the cell lists of common antennas corresponding to different device antennas are also different, and the number of cells is not fixed. In order to better perform model training (eg, avoid overfitting, improve computing speed and efficiency), the embodiment of the present invention may design a unified training data template for the MR data corresponding to the common antenna cells of different equipment antennas. The MR data corresponding to the common antenna cells of each device antenna may be screened and merged based on the training data template to obtain sample feature data of the common antenna cells of each device antenna (herein may be referred to as first sample feature data).

一种获得设备天线的第一样本特征数据的过程中,所述根据所述第一设备天线的配置数据和所述第一测量报告数据集,获得第一样本特征数据包括:根据所述第一设备天线的配置数据,确定隶属所述第一设备天线的小区或RRU;从所述测量报告数据集中,确定所述小区或RRU对应的测量报告数据;根据所述小区或RRU对应的测量报告数据进行特征提取,获得所述第一样本特征数据。In a process of obtaining first sample feature data of a device antenna, the obtaining first sample feature data according to the configuration data of the first device antenna and the first measurement report data set includes: according to the The configuration data of the first device antenna is used to determine the cell or RRU belonging to the first device antenna; from the measurement report data set, the measurement report data corresponding to the cell or RRU is determined; according to the measurement corresponding to the cell or RRU Feature extraction is performed on the report data to obtain the first sample feature data.

举例来说,在一种具体实现中,各小区的RSRP值的取值范围例如为{1,4,7,…,97},对于单个设备天线,例如设备天线1,可将设备天线1的共天线小区的MR数据中,服务小区(例如为小区1)的RSRP取值为某个预定值(例如预定值为7,当然也可以选择其他任意值)的所有MR数据的用户设备(User Equipment,UE)的经纬度加起来求均值,得到中心点,那么该中心点可近似视为基站设备可能的经纬度位置。然后,从中心点出发均匀地向多个方向(例如8个方向)延伸出射线。那么,可从设备天线1的共天线小区中各个小区的MR数据中,查找服务小区的RSRP值分别为1,4,7,…,97(共33个)时,分别离各个方向射线的取值相同的位置点距离最近的MR数据(如果不存在这样的MR数据,可以用全0来构造一个MR数据来代替)。这样,总共找出8×33=264组的MR数据。然后,对于264组低维度的MR数据中的每一组,选择抽取UE所在的经度、UE所在的纬度、UE所在的高度、小区1的天线到达角度(Angle ofarrival,AOA)等特征中的两个或多个组成共天线小区的第一样本特征数据。例如,同时抽取UE所在的经度、UE所在的纬度、UE所在的高度、小区1的AOA这4个特征时,就生成了4×264=1056个子特征,由这样的1056个子特征构成的第一样本特征数据可记作“Feature1056”。For example, in a specific implementation, the value range of the RSRP value of each cell is {1, 4, 7, ..., 97}. For a single device antenna, such as device antenna 1, the value of device antenna 1 can be In the MR data of the shared-antenna cell, the RSRP value of the serving cell (for example, cell 1) is a certain predetermined value (for example, the predetermined value is 7, of course, any other value can also be selected) User Equipment (User Equipment) of all MR data. , the longitude and latitude of the UE) are averaged to obtain the center point, then the center point can be approximately regarded as the possible longitude and latitude position of the base station equipment. Then, from the center point, the rays are uniformly extended in multiple directions (eg, 8 directions). Then, from the MR data of each cell in the common antenna cell of the device antenna 1, it can be found that when the RSRP values of the serving cells are 1, 4, 7, ..., 97 (33 in total), the values of the rays from each direction can be obtained. The position with the same value is the closest MR data (if there is no such MR data, all 0s can be used to construct an MR data instead). In this way, 8×33=264 sets of MR data are found in total. Then, for each of the 264 sets of low-dimensional MR data, two of the features such as the longitude where the UE is located, the latitude where the UE is located, the height where the UE is located, and the angle of arrival (AOA) of the antenna of cell 1 are selected and extracted. One or more pieces of first sample characteristic data forming a common antenna cell. For example, when the four features of the longitude where the UE is located, the latitude where the UE is located, the altitude where the UE is located, and the AOA of cell 1 are simultaneously extracted, 4×264=1056 sub-features are generated, and the first sub-feature composed of such 1056 sub-features is generated. The sample feature data can be recorded as "Feature 1056 ".

可以看出,实施本实施例能够适应各种各样的样本数据场景,提高模型训练过程的运算速度和效率,从而训练出更好的工参生成模型。It can be seen that the implementation of this embodiment can adapt to various sample data scenarios, improve the operation speed and efficiency of the model training process, and thereby train a better model for generating work parameters.

基于第一方面,在第二种实施方式,所述天线工参预测模型除了天线工参生成模型外,还包括天线工参纠正模型(本文中还可简称为工参纠正模型);这种情况下,所述工程参数集还包括至少一个其他设备天线的工程参数;所述配置数据集还包括所述至少一个其他设备天线的配置数据;所述至少一个其他设备天线表示所述多个设备天线中除所述第一设备天线外的设备天线;Based on the first aspect, in the second embodiment, in addition to the antenna working parameter generation model, the antenna working parameter prediction model also includes an antenna working parameter correction model (herein, it may also be referred to as a working parameter correction model); in this case , the engineering parameter set further includes engineering parameters of at least one other device antenna; the configuration data set further includes configuration data of the at least one other device antenna; the at least one other device antenna represents the multiple device antennas device antennas other than the first device antenna in ;

相应的,所述根据所述第一设备天线的工程参数和第一特征集合进行模型训练,获得所述天线工参生成模型之后,所述方法还包括:根据所述配置数据集和所述测量报告数据集,获得所述第一设备天线的第二样本特征数据,所述第二样本特征数据包括所述至少一个其他设备天线的小区或RRU的多个信号接收功率数据、以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据和所述第一设备天线的小区或RRU的信号接收功率数据;根据所述天线工参生成模型,获得所述第一设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果;根据所述工程参数集和第二特征集合进行模型训练,获得所述天线工参纠正模型;所述第二特征集合包括所述第二样本特征数据、所述第一设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果,所述天线工参纠正模型用于根据输入的第二特征集合输出工程参数。Correspondingly, after the model training is performed according to the engineering parameters of the antenna of the first device and the first feature set, and the model for generating the engineering parameters of the antenna is obtained, the method further includes: according to the configuration data set and the measurement A data set is reported, and second sample characteristic data of the first device antenna is obtained, where the second sample characteristic data includes a plurality of received signal power data of a cell or an RRU of the at least one other device antenna, and the plurality of The position data of the terminal corresponding to each signal received power data in the signal received power data and the signal received power data of the cell or RRU of the antenna of the first device; Prediction results of engineering parameters and prediction results of engineering parameters of the at least one other device antenna; perform model training according to the engineering parameter set and the second feature set to obtain the antenna engineering parameter correction model; the second feature set Including the second sample feature data, the prediction result of the engineering parameter of the first device antenna, and the prediction result of the engineering parameter of the at least one other device antenna, the antenna engineering parameter correction model is used according to the input second. The feature set outputs engineering parameters.

其中,所述天线工参纠正模型例如为神经网络(Neural Networks,NN)算法模型。该工参纠正模型的训练过程例如可通过下式表示:Wherein, the antenna working parameter correction model is, for example, a neural network (Neural Networks, NN) algorithm model. For example, the training process of the work parameter correction model can be expressed by the following formula:

(Latitude,Longtitude)=NN((Featurejoin_i,Featurebasic_i),Wnn2)(Latitude, Longtitude)=NN((Feature join_i ,Feature basic_i ),W nn2 )

其中,Latitude表示设备天线i的工参中的纬度值,Longtitude表示设备天线i的工参中的经度值,NN表示神经网络算法,Featurejoin_i表示设备天线的top N天线的第二样本特征数据,Featurebasic_i表示设备天线i的(1+Top N)天线组的预测工参,Wnn2表示工参纠正模型中的模型参数。Among them, Latitude represents the latitude value in the industrial parameter of the device antenna i, Longtitude represents the longitude value in the industrial parameter of the device antenna i, NN represents the neural network algorithm, Feature join_i represents the second sample feature data of the top N antenna of the device antenna, Feature basic_i represents the predicted operating parameters of the (1+Top N) antenna group of the device antenna i, and W nn2 represents the model parameters in the operating parameter correction model.

所以,对于不同的设备天线,其对应的Latitude、Longtitude、Featurejoin_i、Featurebasic_i数据也各有差异,根据这些数据作为工参纠正模型的输入数据,即可对模型进行训练计算出Wnn2(例如本样例中可以利用梯度下降法计算出Wnn2),从而获得经过训练的工参纠正模型。Therefore, for different device antennas, the corresponding data of Latitude, Longtitude, Feature join_i and Feature basic_i are also different. According to these data as the input data of the correction model, the model can be trained to calculate W nn2 (for example, In this example, the gradient descent method can be used to calculate W nn2 ), so as to obtain a trained model for correcting the working parameters.

可以看到,本发明实施例既能够基于现成的样本数据(例如MR数据、配置数据、工参数据等)进行数据提取,又能够根据第一方面的第一种实施方式所训练的工参生成模型获得第一设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果,从而形成天线工参纠正模型的输入数据(例如所述第二样本特征数据、所述第一设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果、工程参数集等等),从而基于这些数据进一步训练出所述天线工参纠正模型,该工参纠正模型能够实现对工参生成模型的预测工参进行进一步纠正,从而获得更高可信度的预测工参。本实施例的天线工参预测模型包括天线工参生成模型和天线工参纠正模型,应用该模型将可实现生成和纠正设备天线的工参,从而获得可信度较高的预测工参。实施本发明实施例能够适应于各种样本数据场景进行有效进行数据筛选,提升模型训练的效率和准确性。从而能够提升后续基于该模型进行设备天线的工参预测的准确度,有效降低设备天线工参的获取成本。It can be seen that the embodiment of the present invention can not only perform data extraction based on ready-made sample data (such as MR data, configuration data, engineering parameter data, etc.) The model obtains the prediction result of the engineering parameter of the first device antenna and the prediction result of the engineering parameter of the at least one other device antenna, thereby forming the input data of the antenna engineering parameter correction model (for example, the second sample feature data, the first The prediction result of the engineering parameters of a device antenna and the prediction result of the engineering parameters of the at least one other device antenna, the engineering parameter set, etc.), so as to further train the antenna engineering parameter correction model based on these data. The model can further correct the predicted working parameters of the working parameter generation model, so as to obtain the predicted working parameters with higher reliability. The antenna working parameter prediction model in this embodiment includes an antenna working parameter generation model and an antenna working parameter correction model. By applying this model, the working parameters of the device antenna can be generated and corrected, thereby obtaining predicted working parameters with high reliability. Implementing the embodiments of the present invention can be adapted to various sample data scenarios to effectively perform data screening, and improve the efficiency and accuracy of model training. Therefore, the accuracy of subsequent prediction of the working parameters of the equipment antenna based on the model can be improved, and the cost of obtaining the working parameters of the equipment antenna can be effectively reduced.

基于第一方面的第二种实施方式,在可能的实施例中,所述至少一个其他设备天线为与所述第一设备天线周边的top N个设备天线,所述top N个设备天线表示所述多个设备天线中与所述第一设备天线最相关的N个的设备天线,N为大于等于1的整数。Based on the second implementation manner of the first aspect, in a possible embodiment, the at least one other device antenna is top N device antennas surrounding the first device antenna, and the top N device antennas represent all N device antennas most related to the first device antenna among the plurality of device antennas, where N is an integer greater than or equal to 1.

例如,在一些实施例中,top N天线为第一设备天线周边多个设备天线中的,与第一设备天线的空间距离最周边的N个设备天线。;在又一些实施例中,top N天线为第一设备天线的周边多个设备天线中,与第一设备天线的信号重叠程度最大的N个设备天线;在又一些实施例中,top N天线为第一设备天线的周边多个设备天线中,终端切换次数最多的N个设备天线,等等。For example, in some embodiments, the top N antennas are among the plurality of device antennas around the first device antenna, the N device antennas that are the most peripheral in spatial distance from the first device antenna. In still other embodiments, the top N antennas are the N device antennas with the largest degree of signal overlap with the first device antenna among the plurality of device antennas surrounding the first device antenna; in still other embodiments, the top N antennas It is the N device antennas with which the terminal switches the most times among the surrounding multiple device antennas of the first device antenna, and so on.

本发明实施例基于第一设备天线最相关的N个的设备天线进行工参纠正模型的训练,有利于基于第一设备天线最相关的N个的设备天线的工参对第一设备天线的预测工参进行纠正,从而训练出较好的工参纠正模型,提升工参纠正模型的预算速度和预测准确性。所以实施本实施例有利于整体提高工参预测模型(即包括工参生成模型和工参纠正模型)预测结果的可信度。The embodiment of the present invention performs the training of the working parameter correction model based on the most relevant N device antennas of the first device antenna, which is beneficial to the prediction of the first device antenna based on the working parameters of the most relevant N device antennas of the first device antenna Work parameters are corrected, so as to train a better work parameter correction model, and improve the budget speed and prediction accuracy of the work parameter correction model. Therefore, implementing this embodiment is beneficial to improve the reliability of the prediction result of the work parameter prediction model (ie, including the work parameter generation model and the work parameter correction model) as a whole.

基于第一方面的第二种实施方式,在可能的实施例中,所述根据所述配置数据集和所述测量报告数据集,获得第二样本特征数据,包括:根据所述配置数据集,确定隶属所述第一设备天线的小区或RRU,和隶属于所述top N个设备天线的小区或RRU;根据所述第一测量报告数据集,设置所述top N个设备天线的小区或RRU中任一设备天线的小区或RRU分别对应至少一个测量报告数据,所述至少一个测量报告数据中每个测量报告数据包括所述任一设备天线的小区或RRU的信号接收功率数据、所述第一设备天线的小区或RRU的信号接收功率数据以及所述终端的位置数据;根据所述top N个设备天线的小区或RRU中各个设备天线的小区或RRU对应的测量报告数据进行特征提取,获得所述第二样本特征数据。Based on the second implementation manner of the first aspect, in a possible embodiment, the obtaining second sample feature data according to the configuration data set and the measurement report data set includes: according to the configuration data set, Determine the cells or RRUs that belong to the first device antenna, and the cells or RRUs that belong to the top N device antennas; set the cells or RRUs of the top N device antennas according to the first measurement report data set The cell or RRU of any device antenna corresponds to at least one measurement report data, and each measurement report data in the at least one measurement report data includes the signal received power data of the cell or RRU of any device antenna, the Signal received power data of a cell of a device antenna or RRU and position data of the terminal; extract features according to the cells of the top N device antennas or the measurement report data corresponding to the cells of each device antenna in the RRU or the RRU, and obtain the second sample feature data.

其中,第二样本特征数据表征了不同的设备天线在UE的同一次测量中(即在同一UE地理位置)各自呈现的测量特征(或称天线联合测量特征)。The second sample feature data represents the measurement features (or joint antenna measurement features) presented by different device antennas in the same UE measurement (ie, in the same UE geographic location).

例如,在一种具体实现中,对于任意设备天线的top N天线,例如设备天线A的topN天线,分别根据该设备天线A的各个邻天线的共天线小区列表确定出一个小区,称该小区为设备天线A的一个邻小区,那么,N个邻天线将分别对应确定出N个邻小区,这样的N个邻小区可称为设备天线A的top N邻小区。比如,对于设备天线A的top N天线中的第一邻天线,如果该第一邻天线的共天线小区中的小区有多个,则可示例性地选取在该第一邻天线的低纬度的MR数据中,出现次数最多的小区作为该第一邻天线对应的邻小区。以此类推,可分别确定出top N天线中的各个邻天线对应的邻小区,即设备天线A的top N邻小区。那么,针对任意设备天线的top N邻小区中的任一邻小区,例如设备天线A的top N邻小区中的任一邻小区,可以从设备天线A的多个MR数据中选取M个MR数据,将所述M个MR数据与该邻小区关联。其中,所述M个MR数据中的任一个均包含该邻小区的测量特征信息(例如该邻小区的RSRP、该邻小区的AOA,等等),示例性的,M个低维度的MR数据中邻小区的RSRP值可以各有差异,所述M为大于等于1的整数。这样,可以分别从所述M个低维度的MR数据中各个低维度的MR数据中提取设备天线A的第二样本特征数据,每个样本特征数据可包括UE的定位信息(如UE所在的经度、UE所在的纬度、UE所在的海拔高度等等)、服务小区的RSRP、服务小区的AOA、邻小区的RSRP、邻小区的AOA等等中的两个或两个以上。也就是说,基于上面描述,可以确定出topN邻小区中的任一邻小区关联的M个低维度的MR数据,以及基于M个低维度的MR数据确定M个第二样本特征数据。为了描述方便,可记设备天线i的top N邻小区的M个第二样本特征数据为“Featurejoin_i”,设备天线i是所述多个设备天线中的任意设备天线。For example, in a specific implementation, for the top N antennas of any device antenna, such as the topN antennas of device antenna A, a cell is determined according to the shared antenna cell list of each adjacent antenna of the device antenna A, and the cell is called A neighboring cell of device antenna A, then N neighboring cells will be determined correspondingly to N neighboring cells, and such N neighboring cells may be referred to as the top N neighboring cells of device antenna A. For example, for the first adjacent antenna in the top N antennas of the device antenna A, if there are multiple cells in the common antenna cell of the first adjacent antenna, exemplarily select the first adjacent antenna at a low latitude of the first adjacent antenna. In the MR data, the cell with the largest number of occurrences is used as the adjacent cell corresponding to the first adjacent antenna. By analogy, the neighboring cells corresponding to each neighboring antenna in the top N antennas, that is, the top N neighboring cells of the device antenna A can be determined respectively. Then, for any adjacent cell in the top N adjacent cells of any device antenna, for example, any adjacent cell in the top N adjacent cells of the device antenna A, M pieces of MR data can be selected from the multiple MR data of the device antenna A , and associate the M pieces of MR data with the neighboring cell. Wherein, any one of the M pieces of MR data includes the measurement feature information of the adjacent cell (for example, the RSRP of the adjacent cell, the AOA of the adjacent cell, etc.), exemplarily, the M pieces of low-dimensional MR data The RSRP values of the neighboring cells may be different, and the M is an integer greater than or equal to 1. In this way, the second sample feature data of the device antenna A can be extracted from the respective low-dimensional MR data of the M low-dimensional MR data, and each sample feature data can include the positioning information of the UE (such as the longitude where the UE is located). , the latitude where the UE is located, the altitude where the UE is located, etc.), two or more of the RSRP of the serving cell, the AOA of the serving cell, the RSRP of the neighboring cell, the AOA of the neighboring cell, and so on. That is, based on the above description, M low-dimensional MR data associated with any one of the topN neighboring cells may be determined, and M second sample feature data may be determined based on the M low-dimensional MR data. For the convenience of description, the M second sample feature data of the top N neighboring cells of the device antenna i may be recorded as "Featurejoin_i", and the device antenna i is any device antenna among the plurality of device antennas.

可以看出,实施本实施例能够适应各种各样的样本数据场景,提高模型训练过程的运算速度和效率,从而训练出更好的工参纠正模型。It can be seen that the implementation of this embodiment can adapt to various sample data scenarios, improve the operation speed and efficiency of the model training process, and thereby train a better model for correcting the working parameters.

基于第一方面的第一种实施方式和第二种实施方式,在可能的实施例中,在进行模型训练之前,还可以对设备天线的共天线小区对应的MR数据进行特征信息选取,从而获得共天线小区的低维度的MR数据。Based on the first implementation manner and the second implementation manner of the first aspect, in a possible embodiment, before performing model training, feature information selection may also be performed on the MR data corresponding to the common antenna cell of the device antenna, so as to obtain Low-dimensional MR data for common antenna cells.

也就是说,在可选的实施例,对共天线的各小区对应的MR数据进行K个维度的特征信息选取,获得低维度的MR数据,K为大于等于2的整数。That is, in an optional embodiment, feature information selection of K dimensions is performed on MR data corresponding to each cell with a common antenna to obtain low-dimensional MR data, where K is an integer greater than or equal to 2.

举例来说,在一些实施例中,需要选取的K个维度的特征信息包括以下的两种或两种以上:UE所在的位置信息,例如包括UE所在的经度、UE所在的纬度,可选的还包括UE所在的高度等等;共天线的小区各自的ID,例如小区1(例如小区1为服务小区)的ID、小区2的ID…小区J的ID等等,J为大于等于1的整数。共天线的小区各自的RSRP,例如小区1的RSRP、小区2的RSRP…小区N的RSRP等等。共天线的小区各自的AOA,例如小区1的AOA、小区2的AOA…小区N的AOA等等。For example, in some embodiments, the feature information of the K dimensions to be selected includes two or more of the following: location information where the UE is located, for example, including the longitude where the UE is located, the latitude where the UE is located, and optionally It also includes the height of the UE, etc.; the respective IDs of the cells with the same antenna, such as the ID of cell 1 (for example, cell 1 is the serving cell), the ID of cell 2... the ID of cell J, etc., J is an integer greater than or equal to 1 . The respective RSRPs of cells with a common antenna, for example, the RSRP of cell 1, the RSRP of cell 2, the RSRP of cell N, and so on. The respective AOAs of cells with a common antenna, such as the AOA of cell 1, the AOA of cell 2, the AOA of cell N, and so on.

相应的,这种情况下,所述根据所述第一设备天线的配置数据和所述测量报告数据集,获得第一样本特征数据具体包括:根据所述第一设备天线的配置数据,确定隶属所述第一设备天线的小区或RRU;从所述测量报告数据集中,确定所述小区或RRU对应的低维度的测量报告数据;根据所述小区或RRU对应的低维度的测量报告数据进行特征提取,获得所述第一样本特征数据。Correspondingly, in this case, the obtaining the first sample feature data according to the configuration data of the first device antenna and the measurement report data set specifically includes: determining according to the configuration data of the first device antenna A cell or RRU belonging to the antenna of the first device; from the measurement report data set, determine the low-dimensional measurement report data corresponding to the cell or RRU; perform the measurement according to the low-dimensional measurement report data corresponding to the cell or RRU Feature extraction to obtain the first sample feature data.

相应的,这种情况下,所述根据所述配置数据集和所述测量报告数据集,获得第二样本特征数据,具体包括:根据所述配置数据集,确定隶属所述第一设备天线的小区或RRU,和隶属于所述top N个设备天线的小区或RRU;根据所述第一测量报告数据集,设置所述topN个设备天线的小区或RRU中任一设备天线的小区或RRU分别对应至少一个低维度的测量报告数据,所述至少一个低维度的测量报告数据中每个低维度的测量报告数据包括所述任一设备天线的小区或RRU的信号接收功率数据、所述第一设备天线的小区或RRU的信号接收功率数据以及所述终端的位置数据。根据所述top N个设备天线的小区或RRU中各个设备天线的小区或RRU对应的测量报告数据进行特征提取,获得所述第二样本特征数据。Correspondingly, in this case, the obtaining the second sample feature data according to the configuration data set and the measurement report data set specifically includes: determining, according to the configuration data set, the antenna belonging to the first device. Cells or RRUs, and cells or RRUs belonging to the top N device antennas; according to the first measurement report data set, set the cells or RRUs of the topN device antennas or any device antenna in the RRU, respectively Corresponding to at least one low-dimensional measurement report data, each low-dimensional measurement report data in the at least one low-dimensional measurement report data includes signal received power data of a cell or RRU of any device antenna, the first The signal reception power data of the cell or RRU of the device antenna and the location data of the terminal. Feature extraction is performed according to the cells of the top N device antennas or the measurement report data corresponding to the cells or RRUs of each device antenna in the RRU to obtain the second sample feature data.

可以看出,实施本发明实施例有利于减低计算复杂度,提高模型训练的效率。It can be seen that implementing the embodiments of the present invention is beneficial to reduce computational complexity and improve model training efficiency.

第二方面,本发明实施例提供了一种预测天线工程参数的方法,该方法包括基于天线工参预测模型预测工参的方法,该方法具体包括:获取第二配置数据集、终端向所述第二设备天线上传的第二测量报告数据集;其中,所述第二配置数据集包括所述第二设备天线的配置数据,所述第二设备天线的配置数据表示所述第二设备天线的网络参数的配置信息;所述第二测量报告数据集中的测量报告数据包括所述终端的位置数据(例如终端的经度、纬度、海拔高度等等)和信号接收功率数据(简称RSRP数据);其中,所述第二设备天线可以是第二地理区域内的多个设备天线中的任意设备天线;将所述第二配置数据集和所述第二测量报告数据集输入至天线工参预测模型(本文中可简称为工参预测模型),获得所述第二设备天线的工程参数的预测结果;其中,所述天线工参预测模型是根据第一工程参数集、第一配置数据集、以及终端向第一设备天线上传的第一测量报告数据集进行训练而得到的;所述第二设备天线的工程参数包括所述第一设备天线的位置数据(例如第二设备天线的经度、纬度、海拔高度等等)和姿态数据(例如第二设备天线的下倾角、方位角等等)中的至少一个;所述第一设备天线可以是第一地理区域内的多个设备天线中的任意设备天线,所述第二地理区域可以不同于所述第一地理区域。In a second aspect, an embodiment of the present invention provides a method for predicting engineering parameters of an antenna. The method includes a method for predicting engineering parameters based on an antenna engineering parameter prediction model. The method specifically includes: acquiring a second configuration data set, and sending the terminal to the A second measurement report data set uploaded by the second device antenna; wherein the second configuration data set includes configuration data of the second device antenna, and the configuration data of the second device antenna represents the configuration data of the second device antenna. Configuration information of network parameters; the measurement report data in the second measurement report data set includes the location data of the terminal (for example, the terminal's longitude, latitude, altitude, etc.) and signal received power data (referred to as RSRP data); wherein , the second device antenna may be any device antenna among multiple device antennas in the second geographic area; the second configuration data set and the second measurement report data set are input into the antenna operating parameter prediction model ( This paper may be referred to as the engineering parameter prediction model) to obtain the prediction result of the engineering parameters of the antenna of the second device; wherein, the antenna engineering parameter prediction model is based on the first engineering parameter set, the first configuration data set, and the terminal Obtained by training the first measurement report data set uploaded to the first device antenna; the engineering parameters of the second device antenna include the location data of the first device antenna (such as the longitude, latitude, altitude of the second device antenna) at least one of altitude, etc.) and attitude data (eg, downtilt, azimuth, etc. of a second device antenna); the first device antenna may be any of a plurality of device antennas within the first geographic area , the second geographic area may be different from the first geographic area.

其中,所述第一工程参数集包括所述第一设备天线的工程参数,所述第一设备天线的工程参数包括所述第一设备天线的位置数据和姿态数据中的至少一个;所述第一配置数据集包括所述第一设备天线的配置数据,所述第一设备天线的配置数据表示所述第一设备天线的网络参数的配置信息;所述第一测量报告数据集中的测量报告数据包括所述终端的位置数据和信号接收功率数据;所述第一设备天线为所述第一地理区域内的多个设备天线中的任意设备天线。The first engineering parameter set includes engineering parameters of the first device antenna, and the engineering parameters of the first device antenna include at least one of position data and attitude data of the first device antenna; the first device antenna A configuration data set includes configuration data of the first device antenna, where the configuration data of the first device antenna represents configuration information of network parameters of the first device antenna; measurement report data in the first measurement report data set The location data and signal reception power data of the terminal are included; the first device antenna is any device antenna among multiple device antennas in the first geographic area.

可以看到,本发明实施例能够通过预先训练好的天线工参预测模型,基于现成的样本数据(例如MR数据、配置数据等)输入至该模型,即可实现获得设备天线的较准确的工参。所以,实施本发明实施例的技术方案能够克服现有技术的缺陷,有效降低设备天线工参的获取成本,提升工参的准确度。It can be seen that in the embodiment of the present invention, a pre-trained antenna operating parameter prediction model can be input into the model based on ready-made sample data (such as MR data, configuration data, etc.), and a more accurate operating parameter of the device antenna can be obtained. Ref. Therefore, implementing the technical solutions of the embodiments of the present invention can overcome the defects of the prior art, effectively reduce the acquisition cost of the equipment antenna engineering parameters, and improve the accuracy of the engineering parameters.

本发明实施例中,第二地理区域表示在实际应用中,需要预测工参的一个或多个设备天线所在地理位置范围。若用于工参预测的样本数据对应的多个设备天线,那么可以称所述多个设备天线为第二地理区域内的多个设备天线,以此类推,可以称本实施例中的第二设备天线为第二地理区域内的第二设备天线,多个设备天线中除第二设备天线外的其他设备天线可以称为第二地理区域内的其他设备天线。其中,第二地理区域所表示的地理位置范围可以不同于第一地理区域所表示的地理位置范围,也就是说,所述第二地理区域的第二设备天线可以不同于第一地理区域的第一设备天线,所述第二地理区域的多个设备天线可以不同于第一地理区域的多个设备天线。In the embodiment of the present invention, the second geographic area represents the geographic location range where one or more device antennas that need to predict the industrial parameters are located in practical applications. If there are multiple device antennas corresponding to the sample data used for the prediction of industrial parameters, the multiple device antennas may be referred to as multiple device antennas in the second geographical area, and so on, the second device antennas in this embodiment may be referred to as The device antenna is the second device antenna in the second geographical area, and other device antennas in the multiple device antennas except the second device antenna may be referred to as other device antennas in the second geographical area. Wherein, the geographic location range represented by the second geographic area may be different from the geographic location range represented by the first geographic area, that is, the second device antenna of the second geographic area may be different from the first geographic area. A device antenna, the plurality of device antennas of the second geographic area may be different from the plurality of device antennas of the first geographic area.

基于第二方面,在第一种实施方式中,所述天线工参预测模型包括天线工参生成模型(本文中还可简称为工参生成模型);所述将所述第二配置数据集和所述第二测量报告数据集输入至天线工参预测模型,获得所述第二设备天线的工程参数的预测结果,包括:根据所述第二测量报告数据集和所述第二设备天线的配置数据,获得所述第二设备天线的第一样本特征数据;所述第二设备天线的第一样本特征数据包括隶属所述第二设备天线的小区或远端射频单元RRU的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据;根据所述第二设备天线的配置数据,获得所述第二设备天线的天线类型;将所述第一样本特征数据和所述第二设备天线的天线类型输入至所述天线工参生成模型,获得所述第二设备天线的工程参数的第一预测结果。Based on the second aspect, in the first embodiment, the antenna engineering parameter prediction model includes an antenna engineering parameter generation model (herein, it may also be referred to as an engineering parameter generation model); the second configuration data set and the The second measurement report data set is input into the antenna engineering parameter prediction model, and the prediction result of the engineering parameters of the second device antenna is obtained, including: according to the second measurement report data set and the configuration of the second device antenna data to obtain the first sample feature data of the second device antenna; the first sample feature data of the second device antenna includes multiple signals belonging to the cell or remote radio unit RRU of the second device antenna receiving power data, and position data of the terminal corresponding to each signal receiving power data in the plurality of signal receiving power data; obtaining the antenna type of the second device antenna according to the configuration data of the second device antenna; The first sample feature data and the antenna type of the second device antenna are input into the antenna engineering parameter generation model to obtain a first prediction result of the engineering parameters of the second device antenna.

其中,所述天线工参生成模型是根据所述第一地理区域内的所述第一设备天线的工程参数和第一特征集合进行模型训练而得到的;其中,所述第一特征集合包括所述第一设备天线的第一样本特征数据和所述第一设备天线的天线类型,所述第一设备天线的第一样本特征数据包括隶属所述第一设备天线的小区或RRU的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据。The antenna engineering parameter generation model is obtained by performing model training according to engineering parameters of the first device antenna in the first geographical area and a first feature set; wherein the first feature set includes all The first sample feature data of the first device antenna and the antenna type of the first device antenna, and the first sample feature data of the first device antenna includes multiple cells or RRUs belonging to the first device antenna. pieces of signal received power data, and position data of the terminal corresponding to each signal received power data in the plurality of signal received power data.

其中,所述天线工参生成模型例如为神经网络(Neural Networks,NN)算法模型。天线工参生成模型的训练过程例如可通过下式表示:Wherein, the antenna engineering parameter generation model is, for example, a neural network (Neural Networks, NN) algorithm model. For example, the training process of the antenna parameter generation model can be expressed by the following formula:

(Latitude,Longtitude)=NN(Feature1056,AntennaType,Wnn1)(Latitude, Longtitude)=NN(Feature 1056 , AntennaType, W nn1 )

其中,Latitude表示设备天线的工参中的纬度值,Longtitude表示设备天线的工参中的经度值,NN表示神经网络算法,Feature1056表示第一样本特征数据,AntennaType表示设备天线的类型,Wnn1表示工参生成模型中的模型参数。Among them, Latitude represents the latitude value in the industrial parameter of the device antenna, Longtitude represents the longitude value in the industrial parameter of the device antenna, NN represents the neural network algorithm, Feature 1056 represents the first sample feature data, AntennaType represents the type of the device antenna, W nn1 represents the model parameters in the work parameter generation model.

对于不同的设备天线,其对应的Feature1056、AntennaType数据也各有差异,根据这些数据输入至所述工参生成模型,即可获得不同设备天线的工参预测结果。For different equipment antennas, the corresponding Feature 1056 and AntennaType data are also different. Inputting these data into the engineering parameter generation model can obtain the engineering parameter prediction results of different equipment antennas.

可以看到,本发明实施例能够基于现成的样本数据(例如MR数据、配置数据等)进行数据提取,获得工参生成模型的输入数据(例如第一样本特征数据、设备天线的类型数据等等,从而基于这些数据输入至训练好的工参预测模型(这里的工参预测模型可视为工参生成模型),即可实现生成设备天线的预测工参。所以,实施本发明实施例能够适应于各种样本数据场景进行有效进行数据提取,提升基于该模型进行第二设备天线的工参预测的准确度,有效降低第二设备天线工参的获取成本。It can be seen that in this embodiment of the present invention, data extraction can be performed based on ready-made sample data (such as MR data, configuration data, etc.), and input data (such as first sample feature data, device antenna type data, etc.) of the work parameter generation model can be obtained. etc., thereby input to the trained engineering parameter prediction model (the engineering parameter prediction model here can be regarded as the engineering parameter generation model) based on these data, can realize the predicted engineering parameter of the generation equipment antenna. Therefore, implementing the embodiment of the present invention can It is suitable for various sample data scenarios to effectively extract data, improve the accuracy of predicting the working parameters of the second equipment antenna based on the model, and effectively reduce the acquisition cost of the second equipment antenna working parameters.

基于第二方面的第一种实施方式,在可能的实施例中,类似于第一方面的第一种实施方式中获取第一样本特征数据的过程,所述根据所述第二测量报告数据集和所述第二设备天线的配置数据获得第一样本特征数据的过程包括:根据所述第二设备天线的配置数据,确定隶属所述第二设备天线的小区或RRU;从所述第二测量报告数据集中,确定所述小区或RRU对应的测量报告数据;根据所述小区或RRU对应的测量报告数据进行特征提取,获得所述第一样本特征数据。Based on the first implementation manner of the second aspect, in a possible embodiment, similar to the process of acquiring the first sample characteristic data in the first implementation manner of the first aspect, the reporting data according to the second measurement The process of obtaining the first sample feature data from the configuration data of the second device antenna includes: determining a cell or RRU belonging to the second device antenna according to the configuration data of the second device antenna; In the second measurement report data set, determine the measurement report data corresponding to the cell or the RRU; perform feature extraction according to the measurement report data corresponding to the cell or the RRU to obtain the first sample feature data.

可以看出,实施本实施例能够适应各种各样的样本数据场景,提高模型预测过程的运算速度和效率,从而获得准确性较高的预测工参。It can be seen that the implementation of this embodiment can adapt to various sample data scenarios, improve the operation speed and efficiency of the model prediction process, so as to obtain prediction parameters with high accuracy.

基于第二方面,在第二种实施方式中,所述天线工参预测模型除了天线工参生成模型外,还包括天线工参纠正模型(本文中还可简称为工参纠正模型);所述第二配置数据集还包括至少一个其他设备天线的配置数据;所述至少一个其他设备天线表示所述多个设备天线中除所述第二设备天线外的设备天线;所述获得所述第二设备天线的工程参数的第一预测结果之后,所述方法还包括:根据所述第二配置数据集和所述第二测量报告数据集,获得所述第二设备天线的第二样本特征数据,所述第二设备天线的第二样本特征数据包括所述至少一个其他设备天线的小区或RRU的多个信号接收功率数据、以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据和所述第二设备天线的小区或RRU的信号接收功率数据;根据所述天线工参生成模型,获得所述至少一个其他设备天线的工程参数的预测结果;将所述第二样本特征数据、所述第二设备天线的工程参数的第一预测结果和所述至少一个其他设备天线的工程参数的预测结果输入至所述天线工参纠正模型,获得所述第二设备天线的工程参数的第二预测结果。Based on the second aspect, in the second embodiment, the antenna engineering parameter prediction model includes an antenna engineering parameter correction model (also referred to as an engineering parameter correction model in this document) in addition to the antenna engineering parameter generation model; the The second configuration data set further includes configuration data of at least one other device antenna; the at least one other device antenna represents a device antenna other than the second device antenna among the plurality of device antennas; the obtaining the second device antenna After obtaining the first prediction result of the engineering parameters of the device antenna, the method further includes: obtaining second sample feature data of the second device antenna according to the second configuration data set and the second measurement report data set, The second sample feature data of the second device antenna includes multiple signal received power data of the cell or RRU of the at least one other device antenna, and a terminal corresponding to each signal received power data in the multiple signal received power data The location data of the second device antenna and the signal received power data of the cell or RRU of the second device antenna; according to the antenna engineering parameter generation model, obtain the prediction result of the engineering parameters of the at least one other device antenna; The characteristic data, the first prediction result of the engineering parameter of the second device antenna, and the prediction result of the engineering parameter of the at least one other device antenna are input into the antenna engineering parameter correction model, and the engineering parameter of the second device antenna is obtained. The second prediction result for the parameter.

其中,所述天线工参纠正模型是根据所述第一地理区域内的第一工程参数集和第二特征集合进行模型训练而得到的;其中,所述第一工程参数集包括所述第一设备天线的工程参数和所述第一地理区域内的至少一个其他设备天线的工程参数;所述第二特征集合包括所述第一设备天线的第二样本特征数据、所述第一设备天线的工程参数的预测结果和所述第一地理区域内的至少一个其他设备天线的工程参数的预测结果;所述第二样本特征数据包括所述第一地理区域内的至少一个其他设备天线的小区或RRU的多个信号接收功率数据、以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据和所述第一设备天线的小区或RRU的信号接收功率数据;所述第一设备天线的工程参数的预测结果和所述第一地理区域内的至少一个其他设备天线的工程参数的预测结果是根据所述天线工参生成模型而得到的。Wherein, the antenna engineering parameter correction model is obtained by performing model training according to a first engineering parameter set and a second feature set in the first geographical area; wherein, the first engineering parameter set includes the first engineering parameter set. Engineering parameters of the device antenna and engineering parameters of at least one other device antenna in the first geographical area; the second feature set includes second sample feature data of the first device antenna, The prediction result of engineering parameters and the prediction result of engineering parameters of at least one other device antenna in the first geographical area; the second sample characteristic data includes the cell of at least one other device antenna in the first geographical area or Multiple signal received power data of the RRU, as well as the location data of the terminal corresponding to each signal received power data in the multiple signal received power data, and the signal received power data of the cell of the first device antenna or the RRU; The prediction result of the engineering parameter of a device antenna and the prediction result of the engineering parameter of at least one other device antenna in the first geographical area are obtained according to the antenna engineering parameter generation model.

其中,所述天线工参纠正模型例如为神经网络(Neural Networks,NN)算法模型。该工参纠正模型的训练过程例如可通过下式表示:Wherein, the antenna working parameter correction model is, for example, a neural network (Neural Networks, NN) algorithm model. For example, the training process of the work parameter correction model can be expressed by the following formula:

(Latitude,Longtitude)=NN((Featurejoin_i,Featurebasic_i),Wnn2)(Latitude, Longtitude)=NN((Feature join_i ,Feature basic_i ),W nn2 )

其中,Latitude表示设备天线i的工参中的纬度值,Longtitude表示设备天线i的工参中的经度值,NN表示神经网络算法,Featurejoin_i表示设备天线的top N天线的第二样本特征数据,Featurebasic_i表示设备天线i的(1+Top N)天线组的预测工参,Wnn2表示工参纠正模型中的模型参数。Among them, Latitude represents the latitude value in the industrial parameter of the device antenna i, Longtitude represents the longitude value in the industrial parameter of the device antenna i, NN represents the neural network algorithm, Feature join_i represents the second sample feature data of the top N antenna of the device antenna, Feature basic_i represents the predicted operating parameters of the (1+Top N) antenna group of the device antenna i, and W nn2 represents the model parameters in the operating parameter correction model.

所以,对于不同的设备天线,其对应的Featurejoin_i、Featurebasic_i数据也各有差异,根据这些数据输入至所述工参纠正模型,则可通过所述工参纠正模型对设备天线的预测工参进行进一步纠正,从而获得可信度更高的工参预测结果。Therefore, for different equipment antennas, the corresponding data of Feature join_i and Feature basic_i are also different. According to these data input into the engineering parameter correction model, the predicted operating parameters of the equipment antenna can be predicted by the engineering parameter correction model. Further corrections are made to obtain a more reliable prediction result of the industrial parameters.

可以看到,本发明实施例既能够基于现成的样本数据(例如MR数据、配置数据等)进行数据提取,又能够根据第二方面的第一种实施方式获得第二设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果,从而形成天线工参纠正模型的输入数据(例如所述第二样本特征数据、所述第一设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果等等),从而基于这些数据输入至所述天线工参纠正模型,实现对工参生成模型的预测工参进行进一步纠正,从而获得更高可信度的预测工参。本实施例的天线工参预测模型包括天线工参生成模型和天线工参纠正模型,应用该模型将可实现生成和纠正第二设备天线的工参,从而获得可信度较高的预测工参。实施本发明实施例能够适应于各种样本数据场景进行有效进行数据筛选,提升模型训练的效率和准确性。从而能够提升后续基于该模型进行第二设备天线的工参预测的准确度,有效降低第二设备天线工参的获取成本。It can be seen that the embodiment of the present invention can not only perform data extraction based on ready-made sample data (such as MR data, configuration data, etc.), but also obtain the prediction of engineering parameters of the second device antenna according to the first implementation manner of the second aspect The results and the prediction results of the engineering parameters of the at least one other device antenna, thereby forming the input data of the antenna engineering parameter correction model (for example, the second sample feature data, the prediction results of the engineering parameters of the first device antenna and all The prediction result of the engineering parameters of the antenna of at least one other device, etc.), so as to input these data into the antenna engineering parameter correction model to further correct the predicted engineering parameters of the engineering parameter generation model, so as to obtain higher reliability. degree of forecasting parameters. The antenna working parameter prediction model in this embodiment includes an antenna working parameter generation model and an antenna working parameter correction model. By applying this model, it is possible to generate and correct the working parameters of the antenna of the second device, thereby obtaining a predicted working parameter with high reliability. . Implementing the embodiments of the present invention can be adapted to various sample data scenarios to effectively perform data screening, and improve the efficiency and accuracy of model training. Therefore, the accuracy of the subsequent prediction of the working parameters of the antenna of the second device based on the model can be improved, and the cost of obtaining the working parameters of the antenna of the second device can be effectively reduced.

基于第二方面的第二种实施方式,在可能的实施例中,所述至少一个其他设备天线为与所述第二设备天线周边的top N个设备天线,所述top N个设备天线表示所述多个设备天线中与所述第二设备天线最相关的N个的设备天线,N为大于等于1的整数。Based on the second implementation manner of the second aspect, in a possible embodiment, the at least one other device antenna is top N device antennas surrounding the second device antenna, and the top N device antennas represent all N device antennas most related to the second device antenna among the plurality of device antennas, where N is an integer greater than or equal to 1.

例如,在一些实施例中,top N天线为第二设备天线周边多个设备天线中的,与第二设备天线的空间距离最周边的N个设备天线。;在又一些实施例中,top N天线为第二设备天线的周边多个设备天线中,与第二设备天线的信号重叠程度最大的N个设备天线;在又一些实施例中,top N天线为第二设备天线的周边多个设备天线中,终端切换次数最多的N个设备天线,等等。For example, in some embodiments, the top N antennas are among the plurality of device antennas around the second device antenna, the N device antennas in the periphery with the most spatial distance from the second device antenna. In still other embodiments, the top N antennas are the N device antennas with the largest degree of signal overlap with the second device antenna among the surrounding multiple device antennas of the second device antenna; in still other embodiments, the top N antennas Among multiple device antennas surrounding the second device antenna, the N device antennas with which the terminal switches the most times, and so on.

本发明实施例可基于第二设备天线最相关的N个的设备天线,使用工参纠正模型对第二设备天线的工参进行预测,有利于基于第二设备天线最相关的N个的设备天线的工参对第一设备天线的预测工参进行纠正,提升工参纠正模型的预算速度和预测准确性。所以实施本实施例有利于整体提高工参预测模型(即包括工参生成模型和工参纠正模型)预测结果的可信度。In this embodiment of the present invention, based on the most relevant N equipment antennas of the second equipment antenna, the operating parameter correction model can be used to predict the operating parameters of the second equipment antenna, which is beneficial to the N equipment antennas based on the most relevant second equipment antennas. The predicted working parameters of the first equipment antenna are corrected, and the budget speed and prediction accuracy of the working parameter correction model are improved. Therefore, implementing this embodiment is beneficial to improve the reliability of the prediction result of the work parameter prediction model (ie, including the work parameter generation model and the work parameter correction model) as a whole.

基于第二方面的第二种实施方式,在可能的实施例中,类似于第一方面的第二种实施方式中获取第二样本特征数据的过程,所述根据所述第二配置数据集和所述第二测量报告数据集获得第二样本特征数据的过程可包括:根据所述第二配置数据集,确定隶属所述第二设备天线的小区或RRU,和隶属于所述top N个设备天线的小区或RRU;根据所述第二测量报告数据集,设置所述top N个设备天线的小区或RRU中任一设备天线的小区或RRU分别对应至少一个测量报告数据,所述至少一个测量报告数据中每个测量报告数据包括所述任一设备天线的小区的信号接收功率数据、所述第二设备天线的小区的信号接收功率数据以及所述终端的位置数据;根据所述top N个设备天线的小区或RRU中各个设备天线的小区或RRU对应的测量报告数据进行特征提取,获得所述第二样本特征数据。Based on the second implementation manner of the second aspect, in a possible embodiment, similar to the process of acquiring the second sample feature data in the second implementation manner of the first aspect, the second configuration data set and The process of obtaining the second sample feature data from the second measurement report data set may include: determining, according to the second configuration data set, a cell or RRU belonging to the antenna of the second device, and a cell or RRU belonging to the top N devices The cell or RRU of the antenna; according to the second measurement report data set, the cell of the top N device antennas or the cell or RRU of any device antenna in the RRU is set to correspond to at least one measurement report data, and the at least one measurement Each measurement report data in the report data includes the signal received power data of the cell of any device antenna, the signal received power data of the cell of the second device antenna, and the position data of the terminal; according to the top N Feature extraction is performed on the cell of the device antenna or the measurement report data corresponding to the cell of each device antenna or the RRU in the RRU to obtain the second sample feature data.

可以看出,实施本实施例能够适应各种各样的样本数据场景,提高基于模型的工参预测过程的运算速度和效率,从而获得可信度较高的工参预测结果。It can be seen that the implementation of this embodiment can adapt to various sample data scenarios, improve the operation speed and efficiency of the model-based work parameter prediction process, and obtain work parameter prediction results with high reliability.

基于第一方面的第一种实施方式和第二种实施方式,在可能的实施例中,在基于模型进行工参预测时,还可以对设备天线的共天线小区对应的MR数据进行特征信息选取,从而获得共天线小区的低维度的MR数据。Based on the first implementation manner and the second implementation manner of the first aspect, in a possible embodiment, when performing engineering parameter prediction based on the model, feature information selection may also be performed on the MR data corresponding to the common antenna cell of the device antenna , so as to obtain low-dimensional MR data of the co-antenna cell.

也就是说,在可选的实施例,对共天线的各小区对应的MR数据进行K个维度的特征信息选取,获得低维度的MR数据,K为大于等于2的整数。That is, in an optional embodiment, feature information selection of K dimensions is performed on MR data corresponding to each cell with a common antenna to obtain low-dimensional MR data, where K is an integer greater than or equal to 2.

相应的,这种情况下,所述根据所述第二测量报告数据集和所述第二设备天线的配置数据,获得第一样本特征数据,具体包括:根据所述第二设备天线的配置数据,确定隶属所述第二设备天线的小区或RRU;从所述第二测量报告数据集中,确定所述小区或RRU对应的低维度的测量报告数据;根据所述小区或RRU对应的低维度的测量报告数据进行特征提取,获得所述第一样本特征数据。Correspondingly, in this case, the obtaining the first sample feature data according to the second measurement report data set and the configuration data of the antenna of the second device specifically includes: according to the configuration of the antenna of the second device data, determine the cell or RRU belonging to the second device antenna; from the second measurement report data set, determine the low-dimensional measurement report data corresponding to the cell or RRU; according to the low-dimensional corresponding to the cell or RRU Feature extraction is performed on the measurement report data of the first sample to obtain the first sample feature data.

相应的,这种情况下,所述根据所述第二配置数据集和所述第二测量报告数据集,获得第二样本特征数据,具体包括:根据所述第二配置数据集,确定隶属所述第二设备天线的小区或RRU,和隶属于所述top N个设备天线的小区或RRU;根据所述第二测量报告数据集,设置所述top N个设备天线的小区或RRU中任一设备天线的小区或RRU分别对应至少一个低维度的测量报告数据,所述至少一个低维度的测量报告数据中每个测量报告数据包括所述任一设备天线的小区的信号接收功率数据、所述第二设备天线的小区的信号接收功率数据以及所述终端的位置数据;根据所述top N个设备天线的小区或RRU中各个设备天线的小区或RRU对应的低维度的测量报告数据进行特征提取,获得所述第二样本特征数据。Correspondingly, in this case, the obtaining the second sample feature data according to the second configuration data set and the second measurement report data set specifically includes: determining the affiliation according to the second configuration data set The cell or RRU of the second device antenna, and the cell or RRU belonging to the top N device antennas; according to the second measurement report data set, set any one of the cells or RRUs of the top N device antennas The cell or RRU of the device antenna corresponds to at least one low-dimensional measurement report data, and each measurement report data in the at least one low-dimensional measurement report data includes signal received power data of the cell of any device antenna, the Signal received power data of the cell of the second device antenna and position data of the terminal; feature extraction is performed according to the cell of the top N device antennas or the low-dimensional measurement report data corresponding to the cell of each device antenna in the RRU or the RRU , to obtain the second sample feature data.

可以看出,实施本发明实施例有利于减低计算复杂度,提高基于模型进行工参英预测的效率。It can be seen that the implementation of the embodiments of the present invention is beneficial to reduce the computational complexity and improve the efficiency of the model-based prediction of labor and participation.

第三方面,本发明实施例提供了一种计算设备,该计算设备包括:数据获取模块和模型训练模块。其中:In a third aspect, an embodiment of the present invention provides a computing device, where the computing device includes: a data acquisition module and a model training module. in:

数据获取模块,用于获取第一地理区域内的第一工程参数集、第一配置数据集、以及终端向所述第一地理区域内的多个设备天线中的第一设备天线上传的第一测量报告数据集;其中,所述第一工程参数集包括所述第一设备天线的工程参数,所述第一设备天线的工程参数包括所述第一设备天线的位置数据和姿态数据中的至少一个;所述第一配置数据集包括所述第一设备天线的配置数据,所述第一设备天线的配置数据表示所述第一设备天线的网络参数的配置信息;所述第一测量报告数据集中的测量报告数据包括所述终端的位置数据和信号接收功率数据;所述第一设备天线为所述多个设备天线中的任意设备天线;A data acquisition module, configured to acquire a first engineering parameter set, a first configuration data set in a first geographical area, and a first data set uploaded by the terminal to the first device antenna among the plurality of device antennas in the first geographical area A measurement report data set; wherein the first engineering parameter set includes engineering parameters of the first device antenna, and the engineering parameters of the first device antenna include at least one of position data and attitude data of the first device antenna One; the first configuration data set includes configuration data of the antenna of the first device, and the configuration data of the antenna of the first device represents the configuration information of the network parameters of the antenna of the first device; the first measurement report data The centralized measurement report data includes position data and signal received power data of the terminal; the first device antenna is any device antenna among the multiple device antennas;

模型训练模块,用于根据所述第一设备天线的工程参数、所述第一设备天线的配置数据和所述测量报告数据集进行模型训练,获得天线工参预测模型;所述天线工参预测模型用于,根据终端向第二地理区域内的第二配置数据集、终端向所述第二地理区域内的第二设备天线上传的第二测量报告数据集,输出所述第二设备天线的工程参数。A model training module, configured to perform model training according to the engineering parameters of the first device antenna, the configuration data of the first device antenna, and the measurement report data set to obtain an antenna engineering parameter prediction model; the antenna engineering parameter prediction The model is used to output the data of the second device antenna according to the second configuration data set in the second geographical area by the terminal and the second measurement report data set uploaded by the terminal to the second device antenna in the second geographical area. engineering parameters.

所述计算设备的各个功能模块具体可用于实现第一方面所描述的方法。Each functional module of the computing device can be specifically used to implement the method described in the first aspect.

第四方面,本发明实施例提供了又一种计算设备,包括:数据获取模块和工参预测模块。其中:In a fourth aspect, an embodiment of the present invention provides yet another computing device, including: a data acquisition module and an industrial parameter prediction module. in:

数据获取模块,用于获取第二地理区域内的第二配置数据集、终端向所述第二地理区域内的第二设备天线上传的第二测量报告数据集;其中,所述第二配置数据集包括所述第二设备天线的配置数据,所述第二设备天线的配置数据表示所述第二设备天线的网络参数的配置信息;所述第二测量报告数据集中的测量报告数据包括所述终端的位置数据和信号接收功率数据;所述第二设备天线为所述第二地理区域内的多个设备天线中的任意设备天线;a data acquisition module, configured to acquire a second configuration data set in a second geographical area and a second measurement report data set uploaded by the terminal to the second device antenna in the second geographical area; wherein the second configuration data The set includes configuration data of the second device antenna, and the configuration data of the second device antenna represents configuration information of network parameters of the second device antenna; the measurement report data in the second measurement report data set includes the position data and signal received power data of the terminal; the second device antenna is any device antenna among multiple device antennas in the second geographic area;

工参预测模块,用于将所述第二配置数据集和所述第二测量报告数据集输入至天线工参预测模型,获得所述第二设备天线的工程参数的预测结果;其中,所述天线工参预测模型是根据第一地理区域内的第一工程参数集、第一配置数据集、以及终端向所述第一地理区域内的多个设备天线中的第一设备天线上传的第一测量报告数据集进行训练而得到的;所述第二设备天线的工程参数包括所述第一设备天线的位置数据和姿态数据中的至少一个。an engineering parameter prediction module, configured to input the second configuration data set and the second measurement report data set into an antenna engineering parameter prediction model, and obtain a prediction result of the engineering parameters of the antenna of the second device; wherein, the The antenna engineering parameter prediction model is based on the first engineering parameter set in the first geographical area, the first configuration data set, and the first device antenna uploaded by the terminal to the first device antenna among the plurality of device antennas in the first geographical area. The measurement report data set is obtained by training; the engineering parameters of the second device antenna include at least one of position data and attitude data of the first device antenna.

所述计算设备的各个功能模块具体可用于实现第二方面所描述的方法。Each functional module of the computing device can be specifically used to implement the method described in the second aspect.

第五方面,本发明实施例提供了一种用于训练天线工参预测模型的计算设备,该计算设备包括:存储器和处理器。所述存储器用于存储样本数据和程序代码,处理器用于执行所述程序代码,以实现第一方面所描述的方法。In a fifth aspect, an embodiment of the present invention provides a computing device for training an antenna working parameter prediction model, where the computing device includes: a memory and a processor. The memory is used to store sample data and program codes, and the processor is used to execute the program codes to implement the method described in the first aspect.

第六方面,本发明实施例提供了一种用于基于天线工参预测模型预测工参的计算设备,该计算设备包括:存储器和处理器。所述存储器用于存储样本数据和程序代码,处理器用于执行所述程序代码,以实现第二方面所描述的方法In a sixth aspect, an embodiment of the present invention provides a computing device for predicting operating parameters based on an antenna operating parameter prediction model, the computing device including: a memory and a processor. The memory is used to store sample data and program codes, and the processor is used to execute the program codes to implement the method described in the second aspect

第七方面,本发明实施例提供了一种系统,该系统包括如第三方面所描述的设备和如第四方面所描述的设备;或者,该系统包括如第五方面所描述的设备和如第六方面所描述的设备。其中:In a seventh aspect, an embodiment of the present invention provides a system, where the system includes the device described in the third aspect and the device described in the fourth aspect; or, the system includes the device described in the fifth aspect and the device described in the fourth aspect. The device described in the sixth aspect. in:

所述用于训练天线工参预测模型的计算设备具体用于,获取第一地理区域内的第一工程参数集、第一配置数据集、以及终端向所述第一地理区域内的多个设备天线中的第一设备天线上传的第一测量报告数据集;根据所述第一设备天线的工程参数、所述第一设备天线的配置数据和所述第一测量报告数据集进行模型训练,获得天线工参预测模型;将所述天线工参预测模型输入至所述用于基于天线工参预测模型预测工参的计算设备;The computing device for training an antenna engineering parameter prediction model is specifically used to obtain a first engineering parameter set, a first configuration data set in a first geographical area, and a terminal to a plurality of devices in the first geographical area. The first measurement report data set uploaded by the first device antenna in the antenna; perform model training according to the engineering parameters of the first device antenna, the configuration data of the first device antenna, and the first measurement report data set, and obtain an antenna working parameter prediction model; inputting the antenna working parameter prediction model to the computing device for predicting the working parameter based on the antenna working parameter prediction model;

所述用于基于天线工参预测模型预测工参的计算设备具体用于,获取第二地理区域内的第二配置数据集、终端向所述第二地理区域内的第二设备天线上传的第二测量报告数据集;将所述第二配置数据集和所述第二测量报告数据集输入至天线工参预测模型,获得所述第二设备天线的工程参数的预测结果。The computing device for predicting the working parameters based on the antenna working parameter prediction model is specifically used to obtain the second configuration data set in the second geographical area, the first configuration data set uploaded by the terminal to the antenna of the second device in the second geographical area. Two measurement report data sets; inputting the second configuration data set and the second measurement report data set into an antenna engineering parameter prediction model to obtain a prediction result of engineering parameters of the second device antenna.

第八方面,本发明实施例提供了一种非易失性计算机可读存储介质;所述计算机可读存储介质用于存储第一方面(或第二方面)所述方法的实现代码。所述程序代码被计算设备执行时,所述计算设备用于第一方面(或第二方面)的任一种可能的设计提供的方法。In an eighth aspect, an embodiment of the present invention provides a non-volatile computer-readable storage medium; the computer-readable storage medium is used to store an implementation code of the method of the first aspect (or the second aspect). When the program code is executed by a computing device, the computing device is used for the method provided by any possible design of the first aspect (or the second aspect).

第九方面,本发明实施例提供了一种计算机程序产品。该计算机程序产品包括程序指令,当该计算机程序产品被计算设备执行时,该计算设备执行前述第一方面(或第二方面)的任一种可能的设计提供的方法。该计算机程序产品可以为一个软件安装包,在需要使用前述第一方面(或第二方面)的任一种可能的设计提供的方法的情况下,可以下载该计算机程序产品并在该计算设备的处理器上执行该计算机程序产品,以实现第一方面(或第二方面)所述方法。In a ninth aspect, an embodiment of the present invention provides a computer program product. The computer program product includes program instructions which, when executed by a computing device, perform the method provided by any possible design of the aforementioned first aspect (or second aspect). The computer program product can be a software installation package, which can be downloaded and stored in the computing device under the condition that the method provided by any of the possible designs of the first aspect (or the second aspect) needs to be used. The computer program product is executed on a processor to implement the method of the first aspect (or the second aspect).

可以看到,本发明实施例能够训练出用于工参预测的模型,通过训练好的用于工参预测的模型(如本实施例中的工参预测模型),基于现成的样本数据(例如MR数据、配置数据等)输入至该模型,即可实现生成、纠正设备天线的工参,从而获得可信度较高的预测工参。所以,实施本发明实施例的技术方案能够克服现有技术的缺陷,有效降低设备天线工参的获取成本,提升工参的准确度。It can be seen that the embodiment of the present invention can train a model for predicting industrial parameters, through the trained model for predicting industrial parameters (such as the predicting model for industrial parameters in this embodiment), based on ready-made sample data (such as MR data, configuration data, etc.) are input into the model to generate and correct the working parameters of the equipment antenna, so as to obtain the predicted working parameters with high reliability. Therefore, implementing the technical solutions of the embodiments of the present invention can overcome the defects of the prior art, effectively reduce the acquisition cost of the equipment antenna engineering parameters, and improve the accuracy of the engineering parameters.

附图说明Description of drawings

为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。In order to more clearly describe the technical solutions in the embodiments of the present invention or the background technology, the accompanying drawings required in the embodiments or the background technology of the present invention will be described below.

图1是本发明实施例提供的一种系统架构示意图;1 is a schematic diagram of a system architecture provided by an embodiment of the present invention;

图2是本发明实施例提供的一种计算设备的结构示意图;2 is a schematic structural diagram of a computing device provided by an embodiment of the present invention;

图3是本发明实施例提供的一种工参确定系统的结构示意图;3 is a schematic structural diagram of a system for determining an operating parameter provided by an embodiment of the present invention;

图4是本发明实施例提供的一种模型训练过程的示意图;4 is a schematic diagram of a model training process provided by an embodiment of the present invention;

图5是本发明实施例提供的一种基于模型的工参预测过程的示意图;5 is a schematic diagram of a model-based work parameter prediction process provided by an embodiment of the present invention;

图6是本发明实施例提供的又一种工参确定系统的结构示意图;6 is a schematic structural diagram of another work parameter determination system provided by an embodiment of the present invention;

图7是本发明实施例提供的又一种模型训练过程的示意图;7 is a schematic diagram of another model training process provided by an embodiment of the present invention;

图8是本发明实施例提供的又一种基于模型的工参预测过程的示意图;8 is a schematic diagram of another model-based work parameter prediction process provided by an embodiment of the present invention;

图9是本发明实施例提供的又一种工参确定系统的结构示意图;FIG. 9 is a schematic structural diagram of another system for determining working parameters provided by an embodiment of the present invention;

图10是本发明实施例提供的又一种模型训练过程的示意图;10 is a schematic diagram of another model training process provided by an embodiment of the present invention;

图11是本发明实施例提供的又一种基于模型的工参预测过程的示意图;11 is a schematic diagram of another model-based work parameter prediction process provided by an embodiment of the present invention;

图12是本发明实施例提供的一种模型训练方法的流程示意图;12 is a schematic flowchart of a model training method provided by an embodiment of the present invention;

图13是本发明实施例提供的一种基于模型的工参预测方法的流程示意图;FIG. 13 is a schematic flowchart of a model-based method for predicting working parameters according to an embodiment of the present invention;

图14是本发明实施例提供的一种工参预测模型的训练方法的流程示意图;14 is a schematic flowchart of a training method for an engineering parameter prediction model provided by an embodiment of the present invention;

图15是本发明实施例提供的一些MR数据的示意图;15 is a schematic diagram of some MR data provided by an embodiment of the present invention;

图16是本发明实施例提供的一些基站天线的共天线小区的MR数据的示意图;16 is a schematic diagram of MR data of common antenna cells of some base station antennas according to an embodiment of the present invention;

图17是本发明实施例提供的一种低维度的MR数据的维度选择示意图;17 is a schematic diagram of dimension selection of low-dimensional MR data provided by an embodiment of the present invention;

图18是本发明实施例提供的一种获取第一样本特征数据的场景示意图;18 is a schematic diagram of a scenario for acquiring first sample feature data provided by an embodiment of the present invention;

图19是本发明实施例提供的一种基于工参预测模型的工参预测方法的流程示意图;19 is a schematic flowchart of an engineering parameter prediction method based on an engineering parameter prediction model provided by an embodiment of the present invention;

图20是本发明实施例提供的又一种基于工参预测模型的工参预测方法的流程示意图;20 is a schematic flowchart of another method for predicting an engineering parameter based on an engineering parameter prediction model provided by an embodiment of the present invention;

图21是本发明实施例提供的又一种计算设备的结构示意图;21 is a schematic structural diagram of another computing device provided by an embodiment of the present invention;

图22是本发明实施例提供的又一种计算设备的结构示意图。FIG. 22 is a schematic structural diagram of another computing device provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面结合本发明实施例中的附图对本发明实施例进行描述。本发明的实施方式部分使用的术语仅用于对本发明的具体实施例进行解释,而非旨在限定本发明。本发明中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。The embodiments of the present invention will be described below with reference to the accompanying drawings in the embodiments of the present invention. The terms used in the embodiments of the present invention are only used to explain specific embodiments of the present invention, and are not intended to limit the present invention. In the present invention, "at least one" means one or more, and "plurality" means two or more. "And/or", which describes the relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, it can indicate that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural. The character "/" generally indicates that the associated objects are an "or" relationship. "At least one item(s) below" or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s). For example, at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .

参见图1,图1是本发明一种实施例的系统架构的示例性示意图。图1示出了本发明实施例所涉及的终端、网元设备和计算设备,其中,其中终端和网元设备可通过某种空口技术的通信网络相互通信。所述某种空口技术的通信网络例如可包括:现有的2G(2ndGeneration,如全球移动通信系统(Global System for Mobile Communications,GSM))网络、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信网络、3G(3rdGeneration,如UMTS)网络、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)网络、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)网络、4G(4th Generation,如FDD LTE、TDD LTE)网络以及新的无线接入技术(New Radio Access Technology,New RAT)网络,例如未来的4.5G(如LTE Advanced Pro)网络、5G(5thgeneration)网络等等中的一种或多种。Referring to FIG. 1, FIG. 1 is an exemplary schematic diagram of a system architecture of an embodiment of the present invention. FIG. 1 shows a terminal, a network element device, and a computing device involved in an embodiment of the present invention, wherein the terminal and the network element device can communicate with each other through a communication network of a certain air interface technology. The communication network of a certain air interface technology may include, for example: an existing 2G (2nd Generation, such as Global System for Mobile Communications, GSM) network, Worldwide Interoperability for Microwave Access (Worldwide Interoperability for Microwave Access, WiMAX) ) communication network, 3G (3rdGeneration, such as UMTS) network, Wideband Code Division Multiple Access (WCDMA) network, Time Division-Synchronous Code Division Multiple Access (TD-SCDMA) network, 4G (4th Generation, such as FDD LTE, TDD LTE) network and new radio access technology (New Radio Access Technology, New RAT) network, such as future 4.5G (such as LTE Advanced Pro) network, 5G (5th generation) network, etc. one or more of etc.

其中,网元(Network Element,NE)设备为用于与一个或多个终端(如图示中的终端1、终端2、终端3)进行通信的设备,具体的,网元设备可包括射频天线,用于通过隶属于所述射频天线的小区与终端进行通信交互,本文中网元设备的射频天线可简称为设备天线,需要说明的是,在不同的应用场景中,设备天线还可能被称为基站天线、小区天线、RRU天线。网元设备可以是GSM或CDMA(Code Division Multiple Access)中的BTS(BaseTransceiver Station),也可以是WCDMA中的NB(NodeB),还可以是LTE中的演进型基站(evolved Node B,eNB),或者中继站,或者车载设备,或者未来5G网络中的接入网设备(gNodeB),或者未来演进的公共陆地移动网(Public Land Mobile Network,PLMN)网络中的接入网设备等。本文中,为了便于描述,在具体实施例中将以网元设备为基站设备为例进行本发明技术方案的描述。Wherein, a network element (Network Element, NE) device is a device used to communicate with one or more terminals (such as terminal 1, terminal 2, and terminal 3 in the figure). Specifically, the network element device may include a radio frequency antenna , which is used to communicate and interact with the terminal through the cell belonging to the radio frequency antenna. In this paper, the radio frequency antenna of the network element equipment may be referred to as the device antenna for short. It should be noted that in different application scenarios, the device antenna may also be called the device antenna. For the base station antenna, cell antenna, RRU antenna. The network element equipment can be a BTS (BaseTransceiver Station) in GSM or CDMA (Code Division Multiple Access), an NB (NodeB) in WCDMA, or an evolved NodeB (evolved Node B, eNB) in LTE, Or a relay station, or a vehicle-mounted device, or an access network device (gNodeB) in a future 5G network, or an access network device in a future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc. Herein, for the convenience of description, the technical solution of the present invention will be described by taking the network element device as the base station device as an example in the specific embodiments.

终端可以包括中继(Relay),和网元设备可以进行数据通信的都可以看为终端,本发明中将以一般意义上的终端来介绍。终端也可以称为移动台、接入终端、用户设备、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置等。终端可以是手机、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、平板电脑、掌上电脑(PersonalDigital Assistant,PDA)、具有无线通信功能的手持设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的移动台或者未来演进的PLMN网络中的终端等等设备。终端可检测环境中的一个或多个网元设备的信号(如小区信号),并通过服务小区与目标网元设备的设备天线(可简称为目标设备天线)进行通信交互。本文中,为了便于描述,将以终端为用户设备(User Equipment,UE)为例进行本发明技术方案的描述。A terminal may include a relay (Relay), and a network element device that can perform data communication can be regarded as a terminal, which will be introduced in the present invention as a terminal in a general sense. A terminal may also be referred to as a mobile station, access terminal, user equipment, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent, or user equipment, or the like. The terminal can be a mobile phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a tablet computer, a PDA (Personal Digital Assistant, PDA), a wireless communication function Handheld devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and mobile stations in future 5G networks or terminals in future evolved PLMN networks, etc. The terminal can detect signals (such as cell signals) of one or more network element devices in the environment, and communicate and interact with the device antenna (may be referred to as the target device antenna) of the target network element device through the serving cell. Herein, for the convenience of description, the technical solution of the present invention will be described by taking the terminal as a user equipment (User Equipment, UE) as an example.

以下各实施例中提到的小区(cell)可为基站设备对应的小区(如服务小区,邻小区),小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。The cell mentioned in the following embodiments may be a cell corresponding to a base station device (such as a serving cell, a neighboring cell), and a cell may belong to a macro base station or a base station corresponding to a small cell (Small cell). Cells may include: Metro cells, Micro cells, Pico cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for Provide high-speed data transmission services.

计算设备用于执行本发明各个实施例所描述的模型训练方法,和/或,基于模型的工程参数预测方法(简称工参预测方法)。计算设备可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群(如云计算服务中心)。计算设备还可以以处理芯片或控制器的形式部署于基站设备处,或者部署于网络管理系统(Network Management System,NMS)或网元管理系统(Element Management System,EMS)。计算设备执行模型训练方法和/或基于模型的预测方法的输入数据可包括由终端、基站设备提供的数据,这些数据可以是终端向基站设备上传的数据,和/或,配置于所述终端的数据,和/或,对基站设备进行测量得到的数据,等等。举例来说,所述数据例如包括用于模型训练的样本数据(训练集中的数据,例如配置数据、测量报告数据、话统数据、工程参数等),例如包括用于模型预测的输入数据(预测集中的数据,例如配置数据、测量报告数据、话统数据、工程参数等)等等。The computing device is used to execute the model training method described in the various embodiments of the present invention, and/or the model-based engineering parameter prediction method (referred to as the engineering parameter prediction method). The computing device may be an independent physical server, or a server cluster (such as a cloud computing service center) composed of multiple physical servers. The computing device may also be deployed at the base station device in the form of a processing chip or a controller, or deployed in a network management system (Network Management System, NMS) or a network element management system (Element Management System, EMS). The input data for the computing device to perform the model training method and/or the model-based prediction method may include data provided by the terminal and the base station device, and these data may be the data uploaded by the terminal to the base station device, and/or, the data configured in the terminal. data, and/or data obtained by measuring the base station equipment, and the like. For example, the data includes, for example, sample data for model training (data in a training set, such as configuration data, measurement report data, traffic statistics, engineering parameters, etc.), such as input data for model prediction (prediction Centralized data, such as configuration data, measurement report data, traffic statistics data, engineering parameters, etc.) and so on.

参见图2,图2为本发明实施例提供的一种计算设备102的结构示意图,如图2所示,计算设备102可包括通信接口1023、存储器1022和与存储器1022耦合的处理器1021。处理器1021、存储器1022和通信接口1023可通过总线或者其它方式连接(图2中以通过总线连接为例)。其中:Referring to FIG. 2 , FIG. 2 is a schematic structural diagram of a computing device 102 according to an embodiment of the present invention. As shown in FIG. The processor 1021, the memory 1022 and the communication interface 1023 may be connected by a bus or in other ways (in FIG. 2, the connection by a bus is taken as an example). in:

通信接口1023可用来获取用于模型训练的数据,和/或,用于模型预测的数据。一具体实施例中,通信接口1023可用于接收终端,和/或,基站设备发送的数据。在又一实施例中,通信接口1023可用于接收通过有线网络或无线网络传输的数据。在又一实施例中,通信接口1023可用于获取非易失性存储器(如硬盘、U盘、磁盘、闪存等等)中的数据。Communication interface 1023 may be used to obtain data for model training, and/or data for model prediction. In a specific embodiment, the communication interface 1023 may be used to receive data sent by the terminal and/or the base station device. In yet another embodiment, the communication interface 1023 may be used to receive data transmitted over a wired or wireless network. In yet another embodiment, the communication interface 1023 may be used to obtain data in a non-volatile memory (eg, hard disk, USB flash drive, magnetic disk, flash memory, etc.).

处理器1021可以是一个或多个中央处理器(Central Processing Unit,CPU),图2中以一个处理器为例,在处理器1021是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。处理器具有计算功能和控制计算设备102工作的功能,该处理器可被配置以下的一种或多种功能:执行本发明实施例所描述的模型训练方法;执行本发明实施例所描述的基于模型的预测方法;运行本发明实施例所描述的工程参数确定系统(本文中可简称为工参确定系统,或称天线工参确定系统);运行本发明实施例所描述的训练模块,例如,工程参数生成模型训练模块(本文中可简称为工参生成模型训练模块)、工程参数纠正模型训练模块(本文中可简称为工参纠正模型训练模块)、工程参数预测模型训练模块(本文中可简称为工参预测模型训练模块),等等,以实现本发明实施例所描述的模型训练方法;运行本发明实施例所描述的预测模块,例如,工程参数生成模块预测模块(本文中可简称为工参生成模块预测模块)、工程参数纠正模型预测模块(本文中可简称为工参纠正模型预测模块)、工程参数预测模型预测模块(本文中可简称为工参预测模型预测模块),等等,以实现本发明实施例所描述的基于模型的工参预测方法。The processor 1021 may be one or more central processing units (Central Processing Units, CPUs). FIG. 2 takes one processor as an example. In the case where the processor 1021 is a CPU, the CPU may be a single-core CPU, or Can be a multi-core CPU. The processor has a computing function and a function of controlling the operation of the computing device 102, and the processor can be configured with one or more of the following functions: executing the model training method described in the embodiments of the present invention; Model prediction method; run the engineering parameter determination system described in the embodiment of the present invention (this may be referred to as the engineering parameter determination system, or the antenna engineering parameter determination system); run the training module described in the embodiment of the present invention, for example, Engineering parameter generation model training module (herein may be referred to as the engineering parameter generation model training module), engineering parameter correction model training module (herein may be referred to as the engineering parameter correction model training module), engineering parameter prediction model training module (this article may referred to as the engineering parameter prediction model training module), etc., to implement the model training method described in the embodiment of the present invention; run the prediction module described in the embodiment of the present invention, for example, the engineering parameter generation module prediction module (this may be referred to as the For the engineering parameter generation module prediction module), the engineering parameter correction model prediction module (this article may be referred to as the engineering parameter correction model prediction module), the engineering parameter prediction model prediction module (this article may be referred to as the engineering parameter prediction model prediction module), etc. etc., to implement the model-based work parameter prediction method described in the embodiments of the present invention.

存储器1022包括但不限于是随机存储记忆体(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦除可编程只读存储器(Erasable ProgrammableRead Only Memory,EPROM)、或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM),存储器1022用于存储相关程序代码及数据,该程序代码例如为实现本发明实施例涉及的模型训练方法和/或基于模型的预测工参的方法的代码指令,该数据例如包括训练集的数据,和/或,预测集的样本数据;还用于存储工参确定系统,该工参确定系统可用于执行通过机器学习来学习特征组合,训练相关模型(如工参生成模型,工参纠正模型,工参预测模型等等),基于相关模型来进行工参的生成或纠正,等等。The memory 1022 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or portable Read-only memory (Compact Disc Read-Only Memory, CD-ROM), the memory 1022 is used to store relevant program codes and data, and the program codes are, for example, for implementing the model training method and/or the model-based prediction process involved in the embodiment of the present invention. The code instructions of the method of the parameter, the data for example includes the data of the training set, and/or the sample data of the prediction set; also used to store the work parameter determination system, the work parameter determination system can be used to perform the learning of feature combinations through machine learning. , train related models (such as a work parameter generation model, a work parameter correction model, a work parameter prediction model, etc.), and generate or correct the work parameters based on the related models, and so on.

需要说明的,图2仅仅是本发明实施例的一种具体实现方式,实际应用中,计算设备102还可以包括更多或更少的部件,这里不作限制。It should be noted that FIG. 2 is only a specific implementation manner of the embodiment of the present invention. In practical applications, the computing device 102 may further include more or less components, which is not limited here.

下面进一步描述本发明实施例涉及的各种工程参数确定系统(可简称工参确定系统,或称为天线工参确定系统)。Various engineering parameter determination systems (may be referred to as an engineering parameter determination system for short, or an antenna engineering parameter determination system) involved in the embodiments of the present invention are further described below.

参见图3,图3示出了本发明实施例的一种工参确定系统201,所述工参确定系统201可包括工参生成模型训练模块2011和工参生成模型预测模块2012中的至少一个。其中,工参生成模型训练模块2011用于基于训练集的样本数据对工程参数生成模型(本文中可简称为工参生成模型,或称为天线工参生成模型)进行训练,以得到经训练后的工参生成模型。在可能的实施例中,还可以对训练后的工参生成模型进行测试,以验证该工参生成模型是否达到训练指标。工参生成模型训练模块2011可将训练后的工参生成模型输入工参生成模型预测模块2012,工参生成模型训练模块2011还可将样本特征组合的相关信息发给工参生成模型预测模块2012。工参生成模型预测模块2012用于基于预测集的样本数据、样本特征组合的相关信息、以及训练后的工参生成模型等等进行工参的预测,生成目标设备天线的工参。Referring to FIG. 3 , FIG. 3 shows a system 201 for determining an operating parameter according to an embodiment of the present invention. The system 201 for determining an operating parameter may include at least one of an operating parameter generation model training module 2011 and an operating parameter generation model prediction module 2012 . Among them, the engineering parameter generation model training module 2011 is used to train the engineering parameter generation model (herein may be referred to as the engineering parameter generation model, or as the antenna engineering parameter generation model) based on the sample data of the training set, so as to obtain after training The working parameter generation model. In a possible embodiment, the trained work parameter generation model may also be tested to verify whether the work parameter generation model meets the training target. The work parameter generation model training module 2011 can input the trained work parameter generation model into the work parameter generation model prediction module 2012, and the work parameter generation model training module 2011 can also send the relevant information of the sample feature combination to the work parameter generation model prediction module 2012 . The working parameter generation model prediction module 2012 is used to predict the working parameters based on the sample data of the prediction set, the relevant information of the sample feature combination, and the trained working parameter generation model, etc., to generate the working parameters of the target device antenna.

参见图4,对于工参生成模型训练模块2011,在一些实施例中,训练集的样本数据包括第一地理区域的特征数据X和标签数据Y,X例如包括测量报告数据集和配置数据集,其中,所述测量报告数据集包括多个测量报告(Measurement Report,MR)数据。本文中,样本数据中的MR数据可以为UE向基站设备上报的MR数据,MR数据由周期或特定事件触发测量,以某项测量内容(如同频测量/异频测量/异系统测量/业务量测量/质量测量/UE内部测量/UE位置测量/AOA测量,等等)为单位,记录呼叫过程中的某时间某点处的网络环境特征。例如每个MR数据可包括UE的位置信息(如UE的经纬度信息、海拔高度信息等地理信息)、UE所检测到的服务小区的信号接收功率(Reference Signal Received Power,RSRP)数据、邻小区的RSRP数据、服务小区时间提前量、UE发射功率余量、天线到达角度(Angle of arrival,AOA)等等中的一个或多个;所述配置数据集包括至少一个配置数据,本文中,所述配置数据可包括基站设备的网络参数的配置信息,例如设备天线的天线类型、小区列表、物理小区标识(Physical Cell Identifier,PCI),物理随机接入信道(Physical Random AccessChannel,PRACH)等等。Y包括至少一个基站设备的射频天线的工程参数集,所述工程参数集包括至少一个工程参数(可简称为工参),本文中,每一个工参例如包括天线的经纬度、方位角、下倾角等等中的至少一个。Referring to FIG. 4, for the training module 2011 of the work parameter generation model, in some embodiments, the sample data of the training set includes feature data X and label data Y of the first geographical area, X includes, for example, a measurement report data set and a configuration data set, Wherein, the measurement report data set includes multiple measurement report (Measurement Report, MR) data. In this paper, the MR data in the sample data can be the MR data reported by the UE to the base station equipment. The MR data is measured by a period or a specific event. measurement/quality measurement/UE internal measurement/UE location measurement/AOA measurement, etc.) as a unit, record the network environment characteristics at a certain time and a certain point in the call process. For example, each MR data may include the location information of the UE (such as geographic information such as the longitude and latitude information of the UE, altitude information, etc.), the signal received power (Reference Signal Received Power, RSRP) data of the serving cell detected by the UE, and the data of the neighboring cells. One or more of RSRP data, serving cell timing advance, UE transmit power headroom, angle of arrival (Angle of arrival, AOA), etc.; the configuration data set includes at least one configuration data. The configuration data may include configuration information of network parameters of the base station device, such as the antenna type of the device antenna, cell list, Physical Cell Identifier (PCI), Physical Random Access Channel (PRACH), and so on. Y includes an engineering parameter set of the radio frequency antenna of at least one base station device, and the engineering parameter set includes at least one engineering parameter (may be referred to as an engineering parameter for short). Here, each engineering parameter includes, for example, the longitude, latitude, azimuth, and downtilt angle of the antenna. at least one of etc.

如图4所示,工参生成模型训练模块2011可预先构建一个工参生成模型的基本模型(存在未知的模型参数W1),工参生成模型可用Y=Model(X,W1)表征,其中Model表示模型函数,W1表示模型参数。然后,工参生成模型训练模块2011可利用样本数据(MR数据、配置数据、工参)对该工参生成模型进行模型训练,计算出模型参数W1,从而获得训练后的工参生成模型。As shown in FIG. 4 , the training module 2011 of the engineering parameter generation model can pre-build a basic model of the engineering parameter generation model (there is an unknown model parameter W1), and the engineering parameter generation model can be represented by Y=Model(X, W1), where Model represents the model function, and W1 represents the model parameters. Then, the work parameter generation model training module 2011 can use the sample data (MR data, configuration data, work parameters) to perform model training on the work parameter generation model, and calculate the model parameter W1, thereby obtaining the trained work parameter generation model.

参见图5,对于工参生成模型预测模块2012,在一些实施例中,预测集的样本数据包括第二地理区域(第二地理区域可不同于上述第一地理区域)的MR数据(包括UE的定位信息)和配置数据。工参生成模型预测模块2012包括经由工参生成模型训练模块2011训练好的工参生成模型。如图5所示,工参生成模型预测模块2012可提取预测集中的数据,输入至所述训练好的工参生成模型,从而输第二地理区域的目标设备天线的工参的预测结果。Referring to FIG. 5, for the engineering parameter generation model prediction module 2012, in some embodiments, the sample data of the prediction set includes MR data (including UE's positioning information) and configuration data. The work parameter generation model prediction module 2012 includes the work parameter generation model trained by the work parameter generation model training module 2011 . As shown in FIG. 5 , the working parameter generation model prediction module 2012 can extract the data in the prediction set and input it into the trained working parameter generation model, thereby inputting the predicted results of the working parameters of the target device antenna in the second geographical area.

参见图6,图6示出了本发明实施例的又一种工参确定系统202,所述工参确定系统202可包括工参纠正模型训练模块2021和工参纠正模型预测模块2022中的至少一个。其中,工参纠正模型训练模块2021用于基于训练集的样本数据对工程参数纠正模型(可简称为工参纠正模型,或称为天线工参纠正模型)进行训练,以得到经训练后的工参纠正模型。在可能的实施例中,还可以对训练后的工参纠正模型进行测试,以验证该工参生成模型是否达到训练指标。工参纠正模型训练模块2021可将训练后的工参纠正模型输入工参纠正模型预测模块2022,工参纠正模型训练模块2021还可将样本特征组合的相关信息发给工参纠正模型预测模块2022。工参纠正模型预测模块2022用于基于预测集的样本数据、样本特征组合的相关信息、以及训练后的工参纠正模型等等进行工参的预测,以实现对目标设备天线的工参的纠正。Referring to FIG. 6 , FIG. 6 shows another working parameter determination system 202 according to an embodiment of the present invention. The working parameter determination system 202 may include at least one of the working parameter correction model training module 2021 and the working parameter correction model prediction module 2022 One. Among them, the engineering parameter correction model training module 2021 is used to train the engineering parameter correction model (which may be referred to as the engineering parameter correction model, or the antenna engineering parameter correction model) based on the sample data of the training set, so as to obtain the trained engineering parameter correction model. See Correction Model. In a possible embodiment, a test can also be performed on the trained model for correcting the parameters of the workers to verify whether the model for generating the workers' parameters reaches the training target. The work parameter correction model training module 2021 can input the trained work parameter correction model into the work parameter correction model prediction module 2022, and the work parameter correction model training module 2021 can also send the relevant information of the sample feature combination to the work parameter correction model prediction module 2022 . The working parameter correction model prediction module 2022 is used to predict the working parameters based on the sample data of the prediction set, the relevant information of the sample feature combination, and the trained working parameter correction model, etc., so as to realize the correction of the working parameters of the target device antenna. .

参见图7,对于工参纠正模型训练模块2021,在一些实施例中,训练集的样本数据包括第一地理区域的特征数据X和标签数据Y,X例如包括测量报告数据集、配置数据集和低可信度的工程参数集,Y包括至少一个设备天线的高可信度的工程参数集。其中,所述低可信度的工程参数集中的工参例如为通过较粗糙方式获取到的工参(例如通过一次人工测量获得的工参),所述高可信度的工程参数集中的工参例如为通过较为精确的方式获取到的工参(例如使用多次GPS测量和多次人工测量得到的工参)。Referring to FIG. 7 , for the training module 2021 of the engineering parameter correction model, in some embodiments, the sample data of the training set includes feature data X and label data Y of the first geographical area, X includes, for example, a measurement report data set, a configuration data set and A low-confidence engineering parameter set, Y includes a high-confidence engineering parameter set of at least one device antenna. Wherein, the engineering parameters in the low-credibility engineering parameter set are, for example, the engineering parameters obtained in a relatively rough manner (eg, the engineering parameters obtained through a manual measurement), and the engineering parameters in the high-confidence engineering parameter set are The parameters are, for example, work parameters obtained in a relatively accurate manner (eg, work parameters obtained by using multiple GPS measurements and multiple manual measurements).

如图7所示,工参纠正模型训练模块2021可预先构建一个工参纠正模型的基本模型(存在未知的模型参数W2),工参纠正模型可用Y=Model(X,W2)表征,其中Model表示模型函数,W1表示模型参数。然后,工参纠正模型训练模块2021可利用样本数据(MR数据、配置数据、低可信度的工参和高可信度的工参)对该工参纠正模型进行模型训练,计算出模型参数W2,从而获得训练后的工参纠正模型。As shown in FIG. 7, the engineering parameter correction model training module 2021 can pre-build a basic model of the engineering parameter correction model (there is an unknown model parameter W2), and the engineering parameter correction model can be represented by Y=Model(X, W2), where Model represents the model function, and W1 represents the model parameters. Then, the engineering parameter correction model training module 2021 can use the sample data (MR data, configuration data, low-credibility engineering parameters and high-confidence engineering parameters) to perform model training on the engineering parameter correction model, and calculate the model parameters. W2, so as to obtain the trained work parameter correction model.

参见图8,对于工参纠正模型预测模块2022,在一些实施例中,预测集的样本数据包括第二地理区域(第二地理区域可不同于上述第一地理区域)的MR数据(包括UE的定位信息)、配置数据和工程参数。工参纠正模型预测模块2022包括经由工参纠正模型训练模块2021训练好的工参纠正模型。如图8所示,工参纠正模型预测模块2022可提取预测集中的数据,输入至所述训练好的工参纠正模型,从而输第二地理区域的目标设备天线的工参的预测结果,从而可利用该预测结果与预测集中的工参进行对比,以实现对预测集中的工参的纠正。Referring to FIG. 8, for the engineering parameter correction model prediction module 2022, in some embodiments, the sample data of the prediction set includes MR data (including UE's positioning information), configuration data and engineering parameters. The work parameter correction model prediction module 2022 includes the work parameter correction model trained by the work parameter correction model training module 2021 . As shown in FIG. 8 , the engineering parameter correction model prediction module 2022 can extract the data in the prediction set and input it into the trained engineering parameter correction model, thereby inputting the prediction result of the engineering parameters of the target device antenna in the second geographical area, thereby The prediction result can be used to compare with the engineering parameters in the prediction set, so as to realize the correction of the engineering parameters in the prediction set.

在本发明又一些实施例中,也可以将上述两种模型训练、模型预测过程进行综合。例如,可将上述工参生成模型训练模块2011和上述工参纠正模型训练模块2012综合实施,将上述工参生成模型预测模块2012和上述工参纠正模型预测模块2022综合实施。In still other embodiments of the present invention, the above two model training and model prediction processes may also be integrated. For example, the above-mentioned work parameter generation model training module 2011 and the above-mentioned work parameter correction model training module 2012 can be implemented comprehensively, and the above-mentioned work parameter generation model prediction module 2012 and the above-mentioned work parameter correction model prediction module 2022 can be comprehensively implemented.

参见图9,图9示出了本发明实施例的又一种工参确定系统203,所述工参确定系统203可包括工参预测模型训练模块2031和工参预测模型预测模块2032中的至少一个。工参预测模型训练模块2031用于基于训练集的样本数据对工程参数预测模型(本文中可简称为工参预测模型,或称为天线工参预测模型)进行训练,以得到经训练后的工参预测模型。其中,工参预测模型训练模块2031可包括工参生成模型训练模块和工参纠正模型训练模块,工参预测模型预测模块2032可包括工参生成模型预测模块和工参纠正模型预测模块,也就是说,所述工参预测模型可视为工参生成模型与工参纠正模型的综合。所以,工参预测模型训练模块2031可将训练后的工参预测模型输入工参预测模型预测模块2032,工参预测模型训练模块2031还可将样本特征组合的相关信息发给工参预测模型预测模块2032。工参预测模型预测模块2032用于基于预测集的样本数据、样本特征组合的相关信息、以及训练后的工参预测模型等等进行工参的预测,获得目标设备天线的工参的预测结果。Referring to FIG. 9 , FIG. 9 shows another working parameter determination system 203 according to an embodiment of the present invention. The working parameter determination system 203 may include at least one of the working parameter prediction model training module 2031 and the working parameter prediction model prediction module 2032 One. The engineering parameter prediction model training module 2031 is used to train the engineering parameter prediction model (herein may be referred to as the engineering parameter prediction model, or as the antenna engineering parameter prediction model) based on the sample data of the training set, so as to obtain the trained engineering parameter prediction model. Refer to the prediction model. Wherein, the work parameter prediction model training module 2031 may include a work parameter generation model training module and a work parameter correction model training module, and the work parameter prediction model prediction module 2032 may include a work parameter generation model prediction module and a work parameter correction model prediction module, that is, Said, the engineering parameter prediction model can be regarded as the synthesis of the engineering parameter generation model and the engineering parameter correction model. Therefore, the work parameter prediction model training module 2031 can input the trained work parameter prediction model into the work parameter prediction model prediction module 2032, and the work parameter prediction model training module 2031 can also send the relevant information of the sample feature combination to the work parameter prediction model for prediction Module 2032. The working parameter prediction model prediction module 2032 is used to predict the working parameters based on the sample data of the prediction set, the relevant information of the sample feature combination, and the trained working parameter prediction model, etc., to obtain the predicted results of the working parameters of the target device antenna.

其中,在可能的实现中,所述工参纠正模型训练模块在进行自身模型(工参纠正模型)训练过程中,还可利用工参生成模型训练模块所训练出的模型(工参生成模型)的输出数据实现自身模型进行训练。Wherein, in a possible implementation, in the process of training its own model (engineering parameter correction model), the engineering parameter correction model training module can also use the model trained by the engineering parameter generation model training module (engineering parameter generation model) The output data implements its own model for training.

同样,在工参预测的过程中,工参生成模型预测模块可生成工参数据,并将所生成的工参数据进一步输入至工参纠正模型预测模块,继而通过工参纠正模型预测模块输出目标设备天线的工参的预测结果。从而,基于图9实施例有利于获得高可信度的工参预测结果。Similarly, in the process of engineering parameter prediction, the engineering parameter generation model prediction module can generate the engineering parameter data, and further input the generated engineering parameter data to the engineering parameter correction model prediction module, and then output the target through the engineering parameter correction model prediction module. The predicted results of the industrial parameters of the device antenna. Therefore, based on the embodiment of FIG. 9 , it is beneficial to obtain a highly reliable work parameter prediction result.

参见图10,对于工参预测模型训练模块2031,在一些实施例中,训练集的样本数据包括第一地理区域的特征数据X和标签数据Y,X例如包括测量报告数据集和配置数据集,Y包括至少一个设备天线的工程参数集。Referring to FIG. 10 , for the training module 2031 of the engineering parameter prediction model, in some embodiments, the sample data of the training set includes feature data X and label data Y of the first geographical area, X includes, for example, a measurement report data set and a configuration data set, Y includes a set of engineering parameters for at least one device antenna.

如图10所示,工参预测模型训练模块2031可预先构建一个工参预测模型的基本模型(存在未知的模型参数W3),工参预测模型可用Y=Model(X,W3)表征,其中Model表示模型函数,W3表示工参预测模型的模型参数,W3可由工参生成模型的模型参数W1和工参纠正模型的模型参数W2决定。也即是说,在一些实施例中,工参预测模型Y=Model(X,W3)可视为工参生成模型Y=Model(X,W1)和工参纠正模型Y=Model(X,W2)的综合。然后,工参预测模型训练模块2031可利用样本数据(MR数据、配置数据、工参)对该工参预测模型进行模型训练,计算出模型参数W3。在一些实施例中,可先将样本数据输入工参预测模型训练模块2031的工参生成模型训练模块,对工参生成模型进行训练,从而确定工参生成模型的模型参数W1,依据该W1即获得了经训练后工参生成模型。从而,可根据该训练后工参生成模型输出工程参数的预测结果至工参预测模型训练模块2031的工参纠正模型训练模块。该工参纠正模型训练模块基于样本数据和工程参数的预测结果,对工参纠正模型进行训练,获得从而确定工参纠正模型的模型参数W2。从而,通过上述过程实现了对工参预测模型的训练,获得训练后的工参预测模型。As shown in FIG. 10 , the engineering parameter prediction model training module 2031 can pre-build a basic model of the engineering parameter prediction model (there is an unknown model parameter W3), and the engineering parameter prediction model can be represented by Y=Model(X, W3), where Model represents the model function, W3 represents the model parameters of the engineering parameter prediction model, and W3 can be determined by the model parameter W1 of the engineering parameter generation model and the model parameter W2 of the engineering parameter correction model. That is to say, in some embodiments, the work parameter prediction model Y=Model(X, W3) can be regarded as the work parameter generation model Y=Model(X, W1) and the work parameter correction model Y=Model(X, W2 ) synthesis. Then, the working parameter prediction model training module 2031 can use the sample data (MR data, configuration data, and working parameters) to perform model training on the working parameter prediction model, and calculate the model parameter W3. In some embodiments, the sample data can be first input into the work parameter generation model training module of the work parameter prediction model training module 2031 to train the work parameter generation model, thereby determining the model parameter W1 of the work parameter generation model. The trained model for generating parameters is obtained. Therefore, the prediction result of the engineering parameters can be outputted to the engineering parameter correction model training module of the engineering parameter prediction model training module 2031 according to the trained engineering parameter generation model. The engineering parameter correction model training module trains the engineering parameter correction model based on the sample data and the prediction results of the engineering parameters to obtain and determine the model parameter W2 of the engineering parameter correction model. Therefore, through the above process, the training of the working parameter prediction model is realized, and the trained working parameter prediction model is obtained.

参见图11,对于工参预测模型预测模块2032,在一些实施例中,预测集的样本数据包括第二地理区域(第二地理区域可不同于上述第一地理区域)的MR数据(包括UE的定位信息)和配置数据。工参预测模型预测模块2032包括经由工参预测模型训练模块2031训练好的工参预测模型(即可视为包括训练好的工参生成模型和训练好的工参纠正模型)。如图11所示,工参预测模型预测模块2012可提取预测集中的数据,输入至工参预测模型预测模块2032的工参生成模型预测模块,利用所述训练好的工参生成模型,输出工参的预测结果至工参预测模型训练模块2031的工参纠正模型预测模块,利用所述训练好的工参纠正模型,输出第二地理区域的目标设备天线的高可信度的工参预测结果。Referring to FIG. 11 , for the engineering parameter prediction model prediction module 2032, in some embodiments, the sample data of the prediction set includes MR data (including UE's positioning information) and configuration data. The work parameter prediction model prediction module 2032 includes the work parameter prediction model trained by the work parameter prediction model training module 2031 (that is, it can be regarded as including the trained work parameter generation model and the trained work parameter correction model). As shown in FIG. 11 , the engineering parameter prediction model prediction module 2012 can extract the data in the prediction set, input it to the engineering parameter generation model prediction module of the engineering parameter prediction model prediction module 2032, and use the trained engineering parameter generation model to output the engineering parameter generation model. The predicted results of the parameters are sent to the engineering parameter correction model prediction module of the engineering parameter prediction model training module 2031, and the trained engineering parameter correction model is utilized to output the highly reliable engineering parameter prediction results of the target device antenna in the second geographical area. .

可以理解的,在上文描述的一些模型训练和模型预测过程中,工参可包括设备天线的位置数据和姿态数据中的至少一个,设备天线的位置数据例如设备天线的经度和/或纬度,设备天线的姿态数据例如设备天线的方位角和/或下倾角等等,所以,在实际应用中,可根据需要,基于不同的工参内容(例如根据天线的经纬度,或根据天线的经纬度和方位角,或根据天线的经纬度、方位角和下倾角,等等),训练出不同的模型。It can be understood that in some of the model training and model prediction processes described above, the work parameters may include at least one of the position data and attitude data of the device antenna, the position data of the device antenna such as the longitude and/or latitude of the device antenna, The attitude data of the device antenna, such as the azimuth angle and/or downtilt angle of the device antenna, etc., so, in practical applications, it can be based on different industrial parameter content (for example, according to the longitude and latitude of the antenna, or according to the longitude and latitude and azimuth of the antenna. angle, or based on the latitude and longitude of the antenna, azimuth and downtilt, etc.), and train different models.

基于上文描述的工参确定系统,下面描述本发明实施例提供的一种模型训练方法。请参见图12,图12是本发明实施例提供的一种模型训练方法的流程示意图,该方法可包括但不限于以下步骤:Based on the work parameter determination system described above, a model training method provided by an embodiment of the present invention is described below. Please refer to FIG. 12. FIG. 12 is a schematic flowchart of a model training method provided by an embodiment of the present invention. The method may include but is not limited to the following steps:

步骤301、获取第一地理区域内至少一个设备天线的工程参数集、配置数据集、以及第一地理区域内终端向至少一个设备天线中的目标设备天线上传的测量报告数据集。Step 301: Acquire an engineering parameter set, a configuration data set of at least one device antenna in a first geographical area, and a measurement report data set uploaded by a terminal to a target device antenna in the at least one device antenna in the first geographical area.

本发明实施例中,第一地理区域表示用于模型训练的样本数据所对应的一个或多个设备天线所在地理位置范围。若用于模型训练的样本数据对应的多个设备天线,那么可以称所述多个设备天线为第一地理区域内的多个设备天线,以此类推,可以称本实施例中的目标设备天线为第一地理区域内的目标设备天线,多个设备天线中除目标设备天线外的其他设备天线可以称为第一地理区域内的其他设备天线。In this embodiment of the present invention, the first geographic area represents a geographic location range where one or more device antennas corresponding to the sample data used for model training are located. If there are multiple device antennas corresponding to the sample data used for model training, the multiple device antennas may be referred to as multiple device antennas in the first geographical area, and by analogy, the target device antennas in this embodiment may be referred to as is the target device antenna in the first geographical area, and other device antennas in the plurality of device antennas except the target device antenna may be referred to as other device antennas in the first geographical area.

在一些实施例中,本方法实施例所需要训练的模型包括工参生成模型,所述模型例如可视为前述图4实施例所描述的工参生成模型,这种情况下:In some embodiments, the model that needs to be trained in this embodiment of the method includes an engineering parameter generation model. For example, the model can be regarded as the engineering parameter generation model described in the foregoing embodiment of FIG. 4 . In this case:

所述工程参数集包括第一地理区域内目标设备天线(第一地理区域内的目标设备天线还可称为第一设备天线)的工参。所述配置数据集可包括目标设备天线的配置数据,所述配置数据的具体内容包括目标设备天线的网络参数的配置信息,例如目标设备天线的天线类型、小区列表等等信息。The engineering parameter set includes the engineering parameters of the target device antenna in the first geographical area (the target device antenna in the first geographical area may also be referred to as the first device antenna). The configuration data set may include configuration data of the target device antenna, and the specific content of the configuration data includes configuration information of network parameters of the target device antenna, such as the antenna type of the target device antenna, cell list and other information.

所述测量报告数据集包括第一地理区域内终端向目标设备天线上传的多个测量报告数据(即MR数据),所述MR数据的具体内容可包括UE的位置信息(如UE的经纬度信息、海拔高度信息等地理信息)、UE所检测到的服务小区的RSRP数据、UE所检测到的邻小区的RSRP数据。可选的,还可包括服务小区的AOA、邻小区的AOA、服务小区时间提前量、UE发射功率余量等等中的至少一个。The measurement report data set includes multiple measurement report data (that is, MR data) uploaded by the terminal to the target device antenna in the first geographical area, and the specific content of the MR data may include the location information of the UE (such as the longitude and latitude information of the UE, Geographic information such as altitude information), the RSRP data of the serving cell detected by the UE, and the RSRP data of the neighboring cell detected by the UE. Optionally, it may further include at least one of the AOA of the serving cell, the AOA of the neighboring cell, the timing advance of the serving cell, the UE transmit power headroom, and the like.

在又一些实施例中,本方法实施例所需要训练的模型包括工参生成模型和工参纠正模型时,所述模型例如可视为前述图10实施例所描述的工参预测模型,这种情况下:In still other embodiments, when the models to be trained in this embodiment of the method include an engineering parameter generation model and an engineering parameter correction model, the models can be regarded as the engineering parameter prediction model described in the foregoing embodiment of FIG. 10, for example. In case:

所述工程参数集包括第一地理区域的多个基站设备的设备天线的工参,所述多个基站设备的设备天线的工参包括目标设备天线的工参和至少一个其他设备天线的工参,这里所说的目标设备天线可以理解为所述多个基站设备中的任一设备天线。The engineering parameter set includes the working parameters of the device antennas of multiple base station devices in the first geographic area, and the working parameters of the device antennas of the multiple base station devices include the working parameters of the target device antenna and the working parameters of at least one other device antenna. , the target device antenna mentioned here can be understood as any device antenna in the multiple base station devices.

所述配置数据集可包括一个或多个基站设备的配置数据(即包括了目标设备天线的配置数据),所述配置数据的具体内容包括基站设备的网络参数的配置信息,例如设备天线的天线类型、小区列表等等信息。The configuration data set may include configuration data of one or more base station devices (that is, including configuration data of the antenna of the target device), and the specific content of the configuration data includes configuration information of network parameters of the base station device, such as the antenna of the device antenna. Type, cell list, etc.

所述测量报告数据集包括第一地理区域内终端向目标设备天线上传的多个MR数据,此外可选的,还可以包括其他终端向所述至少一个其他设备天线上传的MR数据。The measurement report data set includes multiple MR data uploaded by the terminal to the antenna of the target device in the first geographical area, and optionally, may also include MR data uploaded by other terminals to the antenna of the at least one other device.

同样,MR数据的具体内容可包括UE的位置信息(如UE的经纬度信息、海拔高度信息等地理信息)、UE所检测到的服务小区的RSRP数据、UE所检测到的邻小区的RSRP数据。可选的,还可包括服务小区的AOA、邻小区的AOA、服务小区时间提前量、UE发射功率余量等等中的至少一个。Likewise, the specific content of the MR data may include location information of the UE (such as geographic information such as longitude and latitude information of the UE, altitude information, etc.), RSRP data of the serving cell detected by the UE, and RSRP data of neighboring cells detected by the UE. Optionally, it may further include at least one of the AOA of the serving cell, the AOA of the neighboring cell, the timing advance of the serving cell, the UE transmit power headroom, and the like.

步骤302、根据目标设备天线的工程参数、配置数据和测量报告数据集进行模型训练,获得工参预测模型。Step 302: Perform model training according to the engineering parameters, configuration data and measurement report data set of the antenna of the target device to obtain an engineering parameter prediction model.

在一些实施例中,本方法实施例所需要训练的模型包括工参生成模型的情况下,对该模型的训练过程可包括如下:根据所述配置数据和所述测量报告数据集,获得第一样本特征数据(例如可为图14实施例所描述的Feature1056),其中,所述第一样本特征数据包括隶属所述目标设备天线的小区的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据;根据所述配置数据,获得所述目标设备天线的天线类型;根据所述目标设备天线的工程参数和第一特征集合进行模型训练,获得所述工参生成模型;其中,所述第一特征集合包括所述第一样本特征数据和所述目标设备天线的天线类型,所述工参生成模型用于根据输入的第一特征集合输出工程参数。In some embodiments, when the model to be trained in this embodiment of the method includes an engineering parameter generation model, the training process of the model may include the following: obtaining a first Sample feature data (for example, Feature 1056 described in the embodiment of FIG. 14 ), wherein the first sample feature data includes multiple signal received power data of cells belonging to the antenna of the target device, and the multiple The position data of the terminal corresponding to each signal received power data in the signal received power data; the antenna type of the target device antenna is obtained according to the configuration data; the model is carried out according to the engineering parameters of the target device antenna and the first feature set training to obtain the work parameter generation model; wherein, the first feature set includes the first sample feature data and the antenna type of the antenna of the target device, and the work parameter generation model is used according to the input first The feature set outputs engineering parameters.

关于工参生成模型的具体训练过程还可参考前文图4实施例以及后文图14实施例步骤501-步骤507的详细描述,为了说明书的简洁,这里不再赘述。For the specific training process of the working parameter generation model, reference may also be made to the foregoing embodiment in FIG. 4 and the detailed description of steps 501 to 507 in the following embodiment of FIG. 14 , which are not repeated here for the sake of brevity of the description.

在一些实施例中,本方法实施例所需要训练的模型包括工参生成模型和工参纠正模型的情况下,对该模型的训练过程可包括对工参生成模型的训练和对工参纠正模型的训练。In some embodiments, when the model to be trained in this embodiment of the method includes a work parameter generation model and a work parameter correction model, the training process of the model may include training on the work parameter generation model and on the work parameter correction model. training.

其中,对工参生成模型的训练过程可包括:根据所述配置数据和所述测量报告数据集,获得第一样本特征数据(例如可为图14实施例所描述的Feature1056),其中,所述第一样本特征数据包括隶属所述目标设备天线的小区的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据;根据所述配置数据,获得所述目标设备天线的天线类型;根据所述目标设备天线的工程参数和第一特征集合进行模型训练,获得所述工参生成模型;其中,所述第一特征集合包括所述第一样本特征数据和所述目标设备天线的天线类型,所述工参生成模型用于根据输入的第一特征集合输出工程参数。Wherein, the training process of the work parameter generation model may include: obtaining first sample feature data (for example, Feature 1056 described in the embodiment of FIG. 14 ) according to the configuration data and the measurement report data set, wherein, The first sample characteristic data includes a plurality of received signal power data of a cell belonging to the antenna of the target device, and position data of a terminal corresponding to each signal received power data in the plurality of received signal power data; according to the configure data to obtain the antenna type of the target device antenna; perform model training according to the engineering parameters of the target device antenna and a first feature set to obtain the engineering parameter generation model; wherein the first feature set includes the The first sample feature data and the antenna type of the target device antenna, and the engineering parameter generation model is used to output engineering parameters according to the input first feature set.

同理,关于工参生成模型的具体训练过程还可参考前文图4实施例以及后文图14实施例步骤501-步骤507的详细描述。Similarly, for the specific training process of the work parameter generation model, reference may also be made to the foregoing embodiment in FIG. 4 and the detailed description of steps 501 to 507 in the following embodiment of FIG. 14 .

对工参纠正模型的训练过程可包括:根据所述配置数据集和所述测量报告数据集,获得第二样本特征数据(例如可为图14实施例所描述的Featurejoin_i),所述第二样本特征数据包括所述至少一个其他设备天线的小区的多个信号接收功率数据、以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据和所述目标设备天线的小区的信号接收功率数据;根据所述工参生成模型,获得所述目标设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果;根据所述工程参数集和第二特征集合进行模型训练,获得所述工参纠正模型;所述第二特征集合包括所述第二样本特征数据、所述目标设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果,所述工参纠正模型用于根据输入的第二特征集合输出工程参数。The training process of the engineering parameter correction model may include: obtaining second sample feature data (for example, Feature join_i described in the embodiment of FIG. 14 ) according to the configuration data set and the measurement report data set, the second sample feature data The sample feature data includes multiple signal received power data of the cell of the at least one other device antenna, and location data of the terminal corresponding to each signal received power data in the multiple signal received power data and the cell of the target device antenna The received signal power data; according to the engineering parameter generation model, the prediction result of the engineering parameter of the target device antenna and the prediction result of the engineering parameter of the at least one other device antenna are obtained; according to the engineering parameter set and the second Model training is performed on the feature set to obtain the engineering parameter correction model; the second feature set includes the second sample feature data, the prediction result of the engineering parameters of the target device antenna, and the engineering parameters of the at least one other device antenna. The parameter prediction result, the engineering parameter correction model is used to output engineering parameters according to the input second feature set.

关于工参纠正模型的具体训练过程还可参考前文图7实施例以及后文图14实施例步骤508-步骤512的详细描述,为了说明书的简洁,这里不再赘述。For the specific training process of the work parameter correction model, reference may also be made to the foregoing embodiment in FIG. 7 and the detailed description of steps 508 to 512 in the following embodiment of FIG. 14 , which are not repeated here for the sake of brevity of the description.

可以看到,本发明实施例能够通过模型训练的方式基于现成的样本数据(例如MR数据、配置数据、工参数据等)构建用于预测设备天线的工参的模型,而应用该模型将可实现生成、纠正设备天线的工参,从而获得可信度较高的预测工参。所以,实施本发明实施例的技术方案能够克服现有技术的缺陷,有效降低设备天线工参的获取成本,提升工参的准确度。It can be seen that the embodiment of the present invention can build a model for predicting the working parameters of the equipment antenna based on the ready-made sample data (such as MR data, configuration data, working parameter data, etc.) Realize the generation and correction of the working parameters of the equipment antenna, so as to obtain the predicted working parameters with high reliability. Therefore, implementing the technical solutions of the embodiments of the present invention can overcome the defects of the prior art, effectively reduce the acquisition cost of the equipment antenna engineering parameters, and improve the accuracy of the engineering parameters.

基于上文描述的工参确定系统,下面描述本发明实施例提供的一种基于模型的工参预测方法。请参见图13,图13是本发明实施例提供的一种基于模型的工参预测方法的流程示意图,该方法可包括但不限于以下步骤:Based on the working parameter determination system described above, a model-based working parameter prediction method provided by an embodiment of the present invention is described below. Please refer to FIG. 13. FIG. 13 is a schematic flowchart of a model-based work parameter prediction method provided by an embodiment of the present invention. The method may include but is not limited to the following steps:

步骤401、获取第二地理区域内终端向目标设备天线上传的测量报告数据集、以及配置数据集。Step 401: Acquire the measurement report data set and the configuration data set uploaded by the terminal to the antenna of the target device in the second geographical area.

本发明实施例中,第二地理区域表示在实际应用中,需要预测工参的一个或多个设备天线所在地理位置范围。若用于工参预测的样本数据对应的多个设备天线,那么可以称所述多个设备天线为第二地理区域内的多个设备天线,以此类推,可以称本实施例中的目标设备天线为第二地理区域内的目标设备天线,多个设备天线中除目标设备天线外的其他设备天线可以称为第二地理区域内的其他设备天线。其中,第二地理区域所表示的地理位置范围可以不同于第一地理区域所表示的地理位置范围,也就是说,所述第二地理区域的目标设备天线可以不同于第一地理区域的目标设备天线,所述第二地理区域的多个设备天线可以不同于第一地理区域的多个设备天线。In the embodiment of the present invention, the second geographic area represents the geographic location range where one or more device antennas that need to predict the industrial parameters are located in practical applications. If there are multiple device antennas corresponding to the sample data used for the prediction of industrial parameters, the multiple device antennas may be referred to as multiple device antennas in the second geographic area, and so on, the target device in this embodiment may be referred to as The antenna is the target device antenna in the second geographical area, and other device antennas in the multiple device antennas except the target device antenna may be referred to as other device antennas in the second geographical area. The geographic location range represented by the second geographic area may be different from the geographic location range represented by the first geographic area, that is, the target device antenna of the second geographic area may be different from the target device antenna of the first geographic area Antennas, the plurality of device antennas of the second geographic area may be different from the plurality of device antennas of the first geographic area.

在一些实施例中,本方法实施例所需要用于工参预测的模型包括已预先训练好的工参生成模型,所述模型例如可视为前述图5实施例所描述的工参生成模型,这种情况下:In some embodiments, the model used for predicting the working parameters required by this method embodiment includes a pre-trained working parameter generation model, for example, the model can be regarded as the working parameter generation model described in the foregoing embodiment of FIG. 5 , In this situation:

所述配置数据集可包括目标设备天线的配置数据,所述配置数据的具体内容包括目标设备天线(第二地理区域内的目标设备天线还可称为第二设备天线)的网络参数的配置信息,例如目标设备天线的天线类型、小区列表等等信息。The configuration data set may include configuration data of the target device antenna, and the specific content of the configuration data includes configuration information of network parameters of the target device antenna (the target device antenna in the second geographical area may also be referred to as the second device antenna). , such as the antenna type of the target device antenna, the cell list, and so on.

所述测量报告数据集包括第二地理区域内终端向目标设备天线上传的多个MR数据,所述MR数据的具体内容可包括UE的位置信息(如UE的经纬度信息、海拔高度信息等地理信息)、UE所检测到的服务小区的RSRP数据、UE所检测到的邻小区的RSRP数据。可选的,还可包括服务小区的AOA、邻小区的AOA、服务小区时间提前量、UE发射功率余量等等中的至少一个。The measurement report data set includes a plurality of MR data uploaded by the terminal to the target device antenna in the second geographical area, and the specific content of the MR data may include the location information of the UE (such as geographic information such as the latitude and longitude information of the UE, altitude information, etc.). ), the RSRP data of the serving cell detected by the UE, and the RSRP data of the neighboring cell detected by the UE. Optionally, it may further include at least one of the AOA of the serving cell, the AOA of the neighboring cell, the timing advance of the serving cell, the UE transmit power headroom, and the like.

在又一些实施例中,本方法实施例所需要用于工参预测的模型包括已预先训练好的工参生成模型和工参纠正模型时,所述模型例如可视为前述图11实施例所描述的工参预测模型,这种情况下:In still other embodiments, when the models used for predicting the working parameters required by this embodiment of the method include a pre-trained model for generating the working parameters and a model for correcting the working parameters, the models may be, for example, the model shown in the foregoing embodiment in FIG. 11 . Describes the engineering parameter prediction model, in this case:

所述配置数据集可包括一个或多个基站设备的配置数据(即包括了目标设备天线的配置数据),所述配置数据的具体内容包括基站设备的网络参数的配置信息,例如设备天线的天线类型、小区列表等等信息。The configuration data set may include configuration data of one or more base station devices (that is, including configuration data of the antenna of the target device), and the specific content of the configuration data includes configuration information of network parameters of the base station device, such as the antenna of the device antenna. Type, cell list, etc.

所述测量报告数据集包括第二地理区域内终端向目标设备天线上传的多个MR数据,此外可选的,还可以包括其他终端向所述至少一个其他设备天线上传的MR数据。The measurement report data set includes multiple MR data uploaded by the terminal in the second geographic area to the antenna of the target device, and optionally, may also include MR data uploaded by other terminals to the antenna of the at least one other device.

同样,MR数据的具体内容可包括UE的位置信息(如UE的经纬度信息、海拔高度信息等地理信息)、UE所检测到的服务小区的RSRP数据、UE所检测到的邻小区的RSRP数据。可选的,还可包括服务小区的AOA、邻小区的AOA、服务小区时间提前量、UE发射功率余量等等中的至少一个。Likewise, the specific content of the MR data may include location information of the UE (such as geographic information such as longitude and latitude information of the UE, altitude information, etc.), RSRP data of the serving cell detected by the UE, and RSRP data of neighboring cells detected by the UE. Optionally, it may further include at least one of the AOA of the serving cell, the AOA of the neighboring cell, the timing advance of the serving cell, the UE transmit power headroom, and the like.

步骤402、将测量报告数据集和配置数据集输入至经训练的工参预测模型,获得目标设备天线的工程参数的预测结果。Step 402: Input the measurement report data set and the configuration data set into the trained engineering parameter prediction model, and obtain the prediction result of the engineering parameters of the target device antenna.

在一些实施例中,本方法实施例所需要用于工参预测的模型包括已预先训练好的工参生成模型的情况下,对基于该模型进行工参预测过程可包括如下:根据所述测量报告数据集和所述目标设备天线的配置数据,获得第一样本特征数据;所述第一样本特征数据包括隶属所述目标设备天线的小区的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据;根据所述配置数据,获得所述目标设备天线的天线类型;将所述第一样本特征数据和所述目标设备天线的天线类型输入至所述经过训练的工参生成模型,获得所述目标设备天线的工程参数的第一预测结果。In some embodiments, in the case where the model required for predicting the working parameter in the embodiment of the method includes a pre-trained working parameter generating model, the process of predicting the working parameter based on the model may include the following: according to the measurement reporting the data set and the configuration data of the antenna of the target device to obtain first sample feature data; the first sample feature data includes multiple signal received power data of cells belonging to the antenna of the target device, and the multiple The position data of the terminal corresponding to each signal received power data in the signal received power data; the antenna type of the target device antenna is obtained according to the configuration data; the first sample feature data and the target device antenna's antenna type are obtained; The antenna type is input to the trained engineering parameter generation model to obtain a first prediction result of engineering parameters of the target device antenna.

关于基于工参生成模型进行工参预测的具体过程还可参考前文图5实施例以及后文图19实施例步骤601-步骤607的详细描述,为了说明书的简洁,这里不再赘述。For the specific process of predicting the working parameters based on the working parameter generation model, reference may also be made to the foregoing embodiment in FIG. 5 and the detailed description of steps 601 to 607 in the following embodiment of FIG. 19 .

在一些实施例中,本方法实施例所需要用于工参预测的模型包括已预先训练好的工参生成模型和工参纠正模型的情况下,对基于该模型进行工参预测过程可包括基于工参生成模型生成工参以及基于工参纠正模型对所生成的工参进行进一步纠正,获得最终的工参预测结果。In some embodiments, in the case that the model required for predicting the working parameter in the embodiment of the method includes a pre-trained model for generating the working parameter and a model for correcting the working parameter, the process of predicting the working parameter based on the model may include: The working parameter generation model generates working parameters and further corrects the generated working parameters based on the working parameter correction model to obtain a final working parameter prediction result.

其中,基于工参生成模型生成工参的过程可包括:根据所述测量报告数据集和所述目标设备天线的配置数据,获得第一样本特征数据;所述第一样本特征数据包括隶属所述目标设备天线的小区的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据;根据所述配置数据,获得所述目标设备天线的天线类型;将所述第一样本特征数据和所述目标设备天线的天线类型输入至所述经过训练的工参生成模型,获得所述目标设备天线的工程参数的第一预测结果。Wherein, the process of generating the working parameters based on the working parameter generation model may include: obtaining first sample feature data according to the measurement report data set and the configuration data of the antenna of the target device; the first sample feature data includes affiliation Multiple signal received power data of the cell of the target device antenna, and location data of the terminal corresponding to each signal received power data in the multiple signal received power data; according to the configuration data, obtain the target device antenna Antenna type; input the first sample feature data and the antenna type of the target device antenna into the trained engineering parameter generation model to obtain a first prediction result of the engineering parameters of the target device antenna.

同理,关于基于工参生成模型进行工参预测的具体过程还可参考前文图5实施例以及后文图19实施例步骤601-步骤607的详细描述,为了说明书的简洁,这里不再赘述。Similarly, for the specific process of predicting engineering parameters based on the engineering parameter generation model, reference may also be made to the foregoing embodiment in FIG. 5 and the detailed description of steps 601 to 607 in the following embodiment of FIG. 19 .

其中,基于工参纠正模型对所生成的工参进行进一步纠正以获得最终的工参预测结果的具体过程可包括:根据所述配置数据集和所述测量报告数据集,获得第二样本特征数据,所述第二样本特征数据包括所述至少一个其他设备天线的小区的多个信号接收功率数据、以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据和所述目标设备天线的小区的信号接收功率数据;根据所述工参生成模型,获得所述第二地理区域内至少一个其他设备天线的工程参数的预测结果;将所述第二样本特征数据、所述目标设备天线的工程参数的第一预测结果和所述第二地理区域内至少一个其他设备天线的工程参数的预测结果输入至所述经过训练的工参纠正模型,获得所述目标设备天线的工程参数的第二预测结果。Wherein, the specific process of further correcting the generated working parameters based on the working parameter correction model to obtain the final working parameter prediction result may include: obtaining second sample feature data according to the configuration data set and the measurement report data set , the second sample feature data includes multiple signal received power data of the cell of the at least one other device antenna, and the location data of the terminal corresponding to each signal received power data in the multiple signal received power data and the Signal received power data of the cell of the target device antenna; according to the engineering parameter generation model, obtain the prediction result of the engineering parameter of at least one other device antenna in the second geographical area; The first prediction result of the engineering parameter of the target device antenna and the prediction result of the engineering parameter of at least one other device antenna in the second geographical area are input into the trained engineering parameter correction model, and the engineering parameter of the target device antenna is obtained. The second prediction result for the parameter.

关于基于工参纠正模型进行工参预测的具体过程还可参考前文图8实施例以及后文图19实施例步骤608-步骤611的详细描述,为了说明书的简洁,这里不再赘述。For the specific process of working parameter prediction based on the working parameter correction model, reference may also be made to the foregoing embodiment of FIG. 8 and the detailed description of steps 608 to 611 of the following embodiment of FIG. 19 , which are not repeated here for brevity of the description.

可以看到,本发明实施例能够通过预先训练好的用于工参预测的模型,基于现成的样本数据(例如MR数据、配置数据等)输入至该模型,即可实现生成、纠正设备天线的工参,从而获得可信度较高的预测工参。所以,实施本发明实施例的技术方案能够克服现有技术的缺陷,有效降低设备天线工参的获取成本,提升工参的准确度。It can be seen that in this embodiment of the present invention, a pre-trained model for predicting industrial parameters can be input into the model based on ready-made sample data (such as MR data, configuration data, etc.), so as to realize the generation and correction of the device antenna. engineering parameters, so as to obtain the predicted engineering parameters with high reliability. Therefore, implementing the technical solutions of the embodiments of the present invention can overcome the defects of the prior art, effectively reduce the acquisition cost of the equipment antenna engineering parameters, and improve the accuracy of the engineering parameters.

基于上述工参确定系统203,下面描述本发明实施例提供的一种工参预测模型的训练方法,工参包括天线的经纬度为例进行描述。请参见图14,图14是本发明实施例提供的一种工参预测模型的训练方法的流程示意图,该方法可包括但不限于以下步骤:Based on the above-mentioned working parameter determination system 203 , the following describes a training method of a working parameter prediction model provided by an embodiment of the present invention. The working parameter includes the longitude and latitude of the antenna as an example for description. Please refer to FIG. 14. FIG. 14 is a schematic flowchart of a training method for an engineering parameter prediction model provided by an embodiment of the present invention. The method may include but not limited to the following steps:

步骤501、获取第一地理区域的工程参数集、配置数据集和MR数据集。Step 501: Acquire an engineering parameter set, a configuration data set, and an MR data set of a first geographic area.

具体的,模型训练模块(例如工参预测模型训练模块中的工参生成模型训练模块,或单独的工参生成模型训练模块)可从训练集的样本数据中获取第一地理区域的工程参数集、配置数据集和MR数据集。Specifically, the model training module (for example, the engineering parameter generation model training module in the engineering parameter prediction model training module, or a separate engineering parameter generation model training module) can obtain the engineering parameter set of the first geographical area from the sample data of the training set , configuration dataset and MR dataset.

其中,所述工程参数集可包括第一地理区域的一个或多个基站设备的设备天线的工参,本文中,每一个工参例如包括天线的经纬度。所述配置数据集包括一个或多个基站设备的配置数据,所述配置数据可包括基站设备的网络参数的配置信息,例如设备天线的天线类型、小区列表等等。所述MR数据集包括多个MR数据。所述多个MR数据可以是一个或多个UE向所述一个或多个基站设备上报的,每个MR数据例如可包括UE的位置信息(如UE的经纬度信息、海拔高度信息等地理信息)、UE所检测到的服务小区的RSRP数据、UE所检测到的邻小区的RSRP数据、服务小区的AOA、邻小区的AOA、服务小区时间提前量、UE发射功率余量等等中的至少两个或多个。举例来说,某个UE可周期性(例如,每隔10秒)地向第一地理区域中的目标设备天线上传MR数据,那么,可从目标设备天线采集预设时间段内的多个MR数据输入至训练集。Wherein, the engineering parameter set may include the engineering parameters of the device antennas of one or more base station devices in the first geographical area, and here, each engineering parameter includes, for example, the longitude and latitude of the antenna. The configuration data set includes configuration data of one or more base station devices, and the configuration data may include configuration information of network parameters of the base station devices, such as antenna types of device antennas, cell lists, and the like. The MR dataset includes a plurality of MR data. The multiple MR data may be reported by one or more UEs to the one or more base station devices, and each MR data may include, for example, location information of the UE (such as geographic information such as latitude and longitude information of the UE, altitude information, etc.) , at least two of the RSRP data of the serving cell detected by the UE, the RSRP data of the neighboring cell detected by the UE, the AOA of the serving cell, the AOA of the neighboring cell, the timing advance of the serving cell, the UE transmit power headroom, etc. one or more. For example, a certain UE may periodically (eg, every 10 seconds) upload MR data to the target device antenna in the first geographic area, then a plurality of MRs within a preset time period may be collected from the target device antenna Data is input to the training set.

步骤502、根据配置数据获得共天线的小区列表。Step 502: Obtain a list of cells with a common antenna according to the configuration data.

在具体实施例中,MR数据集中的多个MR数据可能包含与不同的基站设备的射频天线相关的MR数据,为了从这些MR数据中提取出分别与各个基站设备相关联的MR数据,可将所述多个MR数据进行数据提取和数据分类。In a specific embodiment, multiple MR data in the MR data set may include MR data related to radio frequency antennas of different base station equipment. In order to extract the MR data respectively associated with each base station equipment from these MR data, the The plurality of MR data are subjected to data extraction and data classification.

在一些实施例中,根据设备天线的天线类型、站点情况的不同,不同的设备天线拥有的小区个数也各有差异。那么模型训练模块可从预测集中获取配置数据,根据设备天线对多个小区进行分类,从而获得隶属于同一个设备天线的小区列表,该共天线的小区列表可包含一个或多个小区的ID。举例来说,基站设备1的射频天线(简称为设备天线1)的共天线的小区列表可包括Cell-1、Cell-2,等等。基站设备2的射频天线(简称为设备天线2)的共天线的小区列表可包括Cell-3、Cell-4、Cell-5,等等。In some embodiments, the number of cells owned by different device antennas is also different according to different antenna types and site conditions of the device antennas. Then the model training module can obtain configuration data from the prediction set, classify multiple cells according to the device antenna, and obtain a list of cells belonging to the same device antenna. For example, the cell list of the common antenna of the radio frequency antenna of the base station device 1 (referred to as device antenna 1 for short) may include Cell-1, Cell-2, and so on. The cell list of the common antenna of the radio frequency antenna of the base station device 2 (referred to as device antenna 2 for short) may include Cell-3, Cell-4, Cell-5, and so on.

需要说明的是,在本发明的其他可能实施例中,还可以通过其他方式对所述多个MR数据进行数据提取和数据分类。例如,不同的设备天线拥有的远端射频单元(RemoteRadio Unit,RRU)个数也各有差异。一个小区可对应多个RRU,那么模型训练模块可从预测集中获取配置数据,根据设备天线对多个RRU进行分类,从而获得隶属于同一个设备天线的RRU列表,该共天线的RRU列表可包含一个或多个RRU的ID。举例来说,基站设备A的设备天线的共天线的小区列表可包括RRU-1、RRU-2、RRU-3,RRU-4,等等,在这些实施例中,后续步骤将可采用RRU对应的MR报告代替小区对应的MR数据,进行模型训练的具体实施过程可类似地参考小区的实施过程,后文将不再详述。It should be noted that, in other possible embodiments of the present invention, data extraction and data classification may also be performed on the multiple MR data in other manners. For example, the number of remote radio units (Remote Radio Unit, RRU) owned by different device antennas is also different. A cell can correspond to multiple RRUs, then the model training module can obtain configuration data from the prediction set, classify multiple RRUs according to the device antenna, and obtain a list of RRUs belonging to the same device antenna. The RRU list for the same antenna can contain ID of one or more RRUs. For example, the cell list of the common antennas of the device antennas of the base station device A may include RRU-1, RRU-2, RRU-3, RRU-4, etc. In these embodiments, the subsequent steps may use RRU correspondence The MR report corresponding to the cell replaces the MR data corresponding to the cell, and the specific implementation process of the model training can be similar to the implementation process of the cell, which will not be described in detail later.

步骤503、根据MR数据集和共天线的小区列表,获得共天线的小区对应的MR数据。Step 503: Obtain MR data corresponding to the cells with the same antenna according to the MR data set and the list of cells with the same antenna.

具体的,模型训练模块可对MR数据集中的多个MR数据进行数据分类,通过MR数据的服务小区ID与共天线的小区ID做关联,得到共天线(即天线相同)的各小区对应的MR数据(简称小区MR数据)。Specifically, the model training module can classify multiple MR data in the MR data set, and obtain the MR data corresponding to each cell with the same antenna (that is, the same antenna) by correlating the serving cell ID of the MR data with the cell ID of the common antenna (referred to as cell MR data).

举例来说,在一些实施例中,MR数据集包括如图15所示的MR数据1、MR数据2、MR数据3和MR数据4,其中MR数据1相关的服务小区为小区1,MR数据2相关的服务小区为小区2,MR数据3相关的服务小区为小区3,MR数据4相关的服务小区为小区4。假如基站设备1的射频天线(即设备天线1)的共天线小区列表包括小区1和小区2,基站设备2的射频天线(即设备天线2)的共天线小区列表包括小区3和小区4,那么可以将这些MR数据通过MR数据的服务小区ID关联共天线小区列表中的小区ID,以得到共天线小区对应的MR数据。如图16所示,MR数据1可关联到设备天线1的小区1,MR数据2可关联到设备天线1的小区2,所以设备天线1的共天线小区的MR数据可包括MR数据1和MR数据2。MR数据3可关联到设备天线2的小区3,MR数据4可关联到设备天线2的小区4,所以设备天线2的共天线小区的MR数据可包括MR数据3和MR数据4。For example, in some embodiments, the MR data set includes MR data 1, MR data 2, MR data 3, and MR data 4 as shown in FIG. 15, wherein the serving cell related to MR data 1 is cell 1, and the MR data The serving cell related to 2 is cell 2, the serving cell related to MR data 3 is cell 3, and the serving cell related to MR data 4 is cell 4. If the common antenna cell list of the radio frequency antenna of base station device 1 (ie device antenna 1) includes cell 1 and cell 2, and the common antenna cell list of the radio frequency antenna of base station device 2 (ie device antenna 2) includes cell 3 and cell 4, then These MR data may be associated with the cell IDs in the common-antenna cell list through the serving cell ID of the MR data, so as to obtain MR data corresponding to the common-antenna cells. As shown in FIG. 16 , MR data 1 can be associated with cell 1 of device antenna 1, and MR data 2 can be associated with cell 2 of device antenna 1, so the MR data of the common antenna cell of device antenna 1 can include MR data 1 and MR data 2. MR data 3 may be associated with cell 3 of device antenna 2 , and MR data 4 may be associated with cell 4 of device antenna 2 , so the MR data of the common antenna cell of device antenna 2 may include MR data 3 and MR data 4 .

特别地,在可能的实施例中,如果某天线的共天线小区的MR数据的条数低于一定值,那么可以丢弃这个天线的MR数据,以避免影响训练出的模型的准确性,避免影响预测的工参精度。In particular, in a possible embodiment, if the number of MR data of a common antenna cell of a certain antenna is lower than a certain value, then the MR data of this antenna can be discarded to avoid affecting the accuracy of the trained model and avoiding affecting the Accuracy of predicted parameters.

步骤504、对共天线小区对应的MR数据进行特征信息选取,获得共天线小区的低维度的MR数据。Step 504: Select feature information for the MR data corresponding to the common-antenna cell to obtain low-dimensional MR data of the common-antenna cell.

在可选的实施例,为了减低计算复杂度,提高模型训练和预测效率,对共天线的各小区对应的MR数据进行K个维度的特征信息选取,获得低维度的MR数据,K为大于等于2的整数。In an optional embodiment, in order to reduce computational complexity and improve model training and prediction efficiency, K-dimensional feature information selection is performed on the MR data corresponding to each cell with a common antenna to obtain low-dimensional MR data, where K is greater than or equal to An integer of 2.

举例来说,在一些实施例中,需要选取的K个维度的特征信息包括以下的两种或两种以上:For example, in some embodiments, the feature information of the K dimensions to be selected includes two or more of the following:

UE所在的位置信息,例如包括UE所在的经度、UE所在的纬度,可选的还包括UE所在的高度等等;The location information where the UE is located, such as the longitude where the UE is located, the latitude where the UE is located, and optionally the altitude where the UE is located, etc.;

共天线的小区各自的ID,例如小区1(例如小区1为服务小区)的ID、小区2的ID...小区J的ID等等,J为大于等于1的整数。The respective IDs of cells with a common antenna, such as the ID of cell 1 (eg, cell 1 is a serving cell), the ID of cell 2... the ID of cell J, etc., J is an integer greater than or equal to 1.

共天线的小区各自的RSRP,例如小区1的RSRP、小区2的RSRP...小区N的RSRP等等。The respective RSRPs of cells with a common antenna, for example, the RSRP of cell 1, the RSRP of cell 2, the RSRP of cell N, and so on.

共天线的小区各自的AOA,例如小区1的AOA、小区2的AOA...小区N的AOA等等。The respective AOAs of cells with a common antenna, such as the AOA of cell 1, the AOA of cell 2, the AOA of cell N, and so on.

例如,如图17所示,图17示例性示出了对图15所描述的MR数据1进行特征信息选取后,获得的低维度的MR数据1,可以看到图17所示的低维度的MR数据1相比图15所描述的MR数据1,减少了UE发射功率余量、服务小区时间提前量等等维度的特征信息,所以图17所示的低维度的MR数据1相比图15所描述的MR数据1具有更少的数据维度.可以理解的,相应的,图15所描述的MR数据2、MR数据3和MR数据4也可通过类似MR数据1的方式获得低维度的MR数据。所以,实施本实施例有利于降低存储数据量,提高后续模型训练和模型预测的计算复杂度,提升计算效率。For example, as shown in FIG. 17 , FIG. 17 exemplarily shows the low-dimensional MR data 1 obtained after the feature information selection is performed on the MR data 1 described in FIG. 15 . Compared with MR data 1 described in FIG. 15 , MR data 1 reduces the feature information of UE transmit power headroom, serving cell timing advance, etc., so the low-dimensional MR data 1 shown in FIG. 17 is compared with FIG. 15 . The described MR data 1 has fewer data dimensions. It can be understood that, correspondingly, the MR data 2, MR data 3 and MR data 4 described in FIG. 15 can also obtain low-dimensional MR in a similar way to the MR data 1 data. Therefore, implementing this embodiment is conducive to reducing the amount of stored data, improving the computational complexity of subsequent model training and model prediction, and improving computational efficiency.

需要说明的是,上述图17所示的例子仅用于解释本发明的技术方案而非限制。在实际应用中,可根据需要选取更低维度的MR数据,比如,可选实施例中,还可设计低维度的MR数据不包括UE所在的海拔高度和小区的AOA中的至少一个,等等。It should be noted that the above example shown in FIG. 17 is only used to explain the technical solution of the present invention and is not a limitation. In practical applications, lower-dimensional MR data can be selected as required. For example, in an optional embodiment, the low-dimensional MR data can also be designed not to include at least one of the altitude where the UE is located and the AOA of the cell, etc. .

步骤505、根据共天线小区的低维度的MR数据,计算共天线小区的第一样本特征数据。Step 505: Calculate the first sample characteristic data of the common-antenna cell according to the low-dimensional MR data of the common-antenna cell.

在具体实施例中,训练集中的MR数据数量较大时,占据内存较大,会导致共天线小区的MR数据很多。而不同的设备天线对应的共天线的小区列表也有差异,小区数目不固定。为了更好地进行模型的训练(如避免过拟合、提高运算速度和效率),本发明实施例可为不同的设备天线的共天线小区对应的MR数据设计统一的训练数据模板,这样,就可将各个设备天线的共天线小区对应的MR数据基于所述训练数据模板进行筛选和归并,获得各个设备天线的共天线小区的样本特征数据(这里可称为第一样本特征数据)。In a specific embodiment, when the amount of MR data in the training set is large, it occupies a large amount of memory, which will result in a large amount of MR data in cells with a common antenna. However, the cell lists of common antennas corresponding to different device antennas are also different, and the number of cells is not fixed. In order to better perform model training (eg, avoid overfitting, improve computing speed and efficiency), the embodiment of the present invention may design a unified training data template for the MR data corresponding to the common antenna cells of different equipment antennas. The MR data corresponding to the common antenna cells of each device antenna may be screened and merged based on the training data template to obtain sample feature data of the common antenna cells of each device antenna (herein may be referred to as first sample feature data).

举例来说,下面介绍一种数据筛选归并的方法,使得每根天线得到同样维度的样本特征数据。For example, a method of data filtering and merging is introduced below, so that each antenna obtains sample feature data of the same dimension.

参见图18,在一种具体实现中,各小区的RSRP值的取值范围例如为{1,4,7,…,97},对于单个设备天线,例如设备天线1,可将设备天线1的共天线小区的MR数据(可选的,如低维度的MR数据)中,服务小区(例如为小区1)的RSRP取值为某个预定值(例如预定值为7,当然也可以选择其他任意值)的所有MR数据的UE的经纬度加起来求均值,得到中心点,那么该中心点可近似视为基站设备可能的经纬度位置。然后,从中心点出发均匀地向多个方向(例如图示中为东、西、南、北、东南、东北、西南、西北8个方向,当然,还可以是其他个数的方向)延伸出射线,每个方向的射线示例性地标注1,4,7,…,97取值(当然还可以是其他的取值,这里不限定)的RSRP对应的位置点。然后,将设备天线1的共天线小区的MR数据(可选的,如低维度的MR数据)中,服务小区(设备天线1的服务小区例如包括小区1)的RSRP值为1,4,7,…,97对应的UE经纬度映射到图18所示的区域中,图示中的每个圆圈代表某种取值的RSRP的小区对应的UE经纬度。Referring to FIG. 18, in a specific implementation, the value range of the RSRP value of each cell is, for example, {1, 4, 7, ..., 97}. For a single device antenna, such as device antenna 1, the value of device antenna 1 In the MR data of the common antenna cell (optional, such as low-dimensional MR data), the RSRP value of the serving cell (for example, cell 1) is a predetermined value (for example, the predetermined value is 7, of course, any other value can be selected. The longitude and latitude of all the MR data of the UE are averaged to obtain the center point, then the center point can be approximately regarded as the possible longitude and latitude position of the base station equipment. Then, starting from the center point, it extends evenly in multiple directions (for example, in the illustration, there are eight directions of east, west, south, north, southeast, northeast, southwest, and northwest, of course, it can also be in other directions) Rays in each direction are exemplarily marked with position points corresponding to RSRPs with values of 1, 4, 7, . Then, in the MR data (optional, such as low-dimensional MR data) of the common antenna cell of the device antenna 1, the RSRP values of the serving cell (the serving cell of the device antenna 1 include, for example, cell 1) are 1, 4, and 7. The latitude and longitude of the UE corresponding to ,...,97 are mapped to the area shown in FIG. 18 , and each circle in the illustration represents the latitude and longitude of the UE corresponding to the cell of a certain value of RSRP.

然后,在一种示例中,可从设备天线1的共天线小区中各个小区的低维度的MR数据中,查找服务小区的RSRP值分别为1,4,7,…,97(共33个)时,分别离各个方向射线的取值相同的位置点距离最近的MR数据(如果不存在这样的MR数据,可以用全0来构造一个MR数据来代替)。也就是说,对于RSRP取值为1的小区,分别对应于8个方向查找出8个最合适的MR数据;对于RSRP取值为4的小区,也分别对应于8个方向查找出8个最合适的MR数据;对于RSRP取值为7的小区,也分别对应于8个方向查找出8个最合适的MR数据...对于RSRP取值为97的小区,页分别对应于8个方向查找出8个最合适的MR数据,以此类推。这样,总共找出8×33=264组低维度的MR数据。Then, in an example, from the low-dimensional MR data of each cell in the common-antenna cell of the device antenna 1, it is possible to find that the RSRP values of the serving cells are 1, 4, 7, . . . , 97 (33 in total) When , the MR data closest to the position points with the same value of rays in each direction are respectively (if there is no such MR data, all 0s can be used to construct an MR data instead). That is to say, for a cell with an RSRP value of 1, 8 most suitable MR data are found corresponding to 8 directions respectively; for a cell with an RSRP value of 4, 8 most suitable MR data corresponding to 8 directions are also found. Appropriate MR data; for a cell with an RSRP value of 7, the 8 most suitable MR data are also found corresponding to 8 directions... For a cell with an RSRP value of 97, the pages correspond to 8 directions to search The 8 most suitable MR data are obtained, and so on. In this way, a total of 8×33=264 sets of low-dimensional MR data are found.

然后,对于264组低维度的MR数据中的每一组,选择抽取UE所在的经度、UE所在的纬度、UE所在的高度、小区1的AOA等特征中的两个或多个组成共天线小区的第一样本特征数据。例如,同时抽取UE所在的经度、UE所在的纬度、UE所在的高度、小区1的AOA这4个特征时,就生成了4×264=1056个子特征(为了描述方便,由这样的1056个子特征构成的第一样本特征数据可记作“Feature1056”);又例如,仅抽取UE所在的经度、UE所在的纬度这2个特征时,就生成了2×264=528个子特征。Then, for each of the 264 sets of low-dimensional MR data, two or more of the features such as the longitude where the UE is located, the latitude where the UE is located, the height where the UE is located, and the AOA of cell 1 are selected to form a common antenna cell. The first sample feature data of . For example, when the four features of the longitude where the UE is located, the latitude where the UE is located, the altitude where the UE is located, and the AOA of cell 1 are simultaneously extracted, 4×264=1056 sub-features are generated (for the convenience of description, such 1056 sub-features are The constituted first sample feature data may be recorded as "Feature 1056 "); for another example, when only two features of the longitude where the UE is located and the latitude where the UE is located are extracted, 2×264=528 sub-features are generated.

举例来说,根据上述方式生成的设备天线1的共天线小区的第一样本特征数据表如表1所示:For example, the first sample characteristic data table of the common antenna cell of the device antenna 1 generated according to the above method is shown in Table 1:

表1Table 1

Figure BDA0001897193090000231
Figure BDA0001897193090000231

Figure BDA0001897193090000241
Figure BDA0001897193090000241

需要说明的是,上述示例仅用于解释本发明技术方案而非限制。It should be noted that the above examples are only used to explain the technical solutions of the present invention and are not intended to limit them.

步骤506、根据配置数据获得设备天线的天线类型。Step 506: Obtain the antenna type of the device antenna according to the configuration data.

具体的,模型训练模块可根据配置数据集中的配置数据,获得共天线小区所隶属的设备天线的类型(AntennaType),例如根据设备天线1的配置数据获得设备天线1的天线类型,根据设备天线2的配置数据获得设备天线2的天线类型,等等。Specifically, the model training module can obtain the type (AntennaType) of the device antenna to which the common antenna cell belongs according to the configuration data in the configuration data set. For example, the antenna type of the device antenna 1 can be obtained according to the configuration data of the device antenna 1. The configuration data of the device obtains the antenna type of Antenna 2, and so on.

步骤507、根据工程参数集、第一样本特征数据和天线类型,训练工参生成模型。Step 507: Train an engineering parameter generation model according to the engineering parameter set, the first sample feature data and the antenna type.

在一具体实施例中,模型训练模块可利用机器学习算法构建一个工参生成模型(例如神经网络算法模型),根据训练集中的设备天线的工参、通过步骤505所获得的第一样本特征数据以及通过步骤506获得的设备天线的类型,对所述工参生成模型进行模型训练。In a specific embodiment, the model training module can use a machine learning algorithm to build an engineering parameter generation model (for example, a neural network algorithm model), according to the working parameters of the equipment antenna in the training set, the first sample feature obtained by step 505. The data and the type of device antenna obtained through step 506 are used to perform model training on the work parameter generation model.

该工参生成模型的训练过程例如可通过下式表示:For example, the training process of the work parameter generation model can be expressed by the following formula:

(Latitude,Longtitude)=NN(Feature1056,AntennaType,Wnn1)(Latitude, Longtitude)=NN(Feature 1056 , AntennaType, W nn1 )

其中,Latitude表示设备天线的工参中的纬度值,Longtitude表示设备天线的工参中的经度值,NN表示神经网络算法,Feature1056表示通过如上述表1方式获得的第一样本特征数据,AntennaType表示设备天线的类型,Wnn1表示工参生成模型中的模型参数。Among them, Latitude represents the latitude value in the industrial parameter of the device antenna, Longtitude represents the longitude value in the industrial parameter of the device antenna, NN represents the neural network algorithm, Feature 1056 represents the first sample feature data obtained by the above-mentioned Table 1, AntennaType represents the type of device antenna, and W nn1 represents the model parameters in the work parameter generation model.

所以,模型训练模块基于训练集的大量样本数据进行模型训练,对于不同的设备天线,其对应的Latitude、Longtitude、Feature1056、AntennaType数据也各有差异,根据这些数据作为工参生成模型的输入数据,即可对模型进行训练计算出Wnn1(例如本样例中可以利用梯度下降法计算出Wnn1),从而获得经过训练的工参生成模型。Therefore, the model training module conducts model training based on a large number of sample data in the training set. For different device antennas, the corresponding Latitude, Longtitude, Feature 1056 , and AntennaType data are also different. According to these data, the input data of the model is generated as working parameters. , the model can be trained to calculate W nn1 (for example, in this example, the gradient descent method can be used to calculate W nn1 ), so as to obtain the trained model for generating parameters.

可以看到,通过上述步骤501-步骤507,工参预测模型训练模块中的工参生成模型训练模块可实现根据样本数据对工参生成模型进行训练。后续,工参预测模型训练模块中的工参纠正模型训练模块将通过下述步骤508-步骤512,对工参纠正模型进行相关模型训练。It can be seen that, through the above steps 501 to 507, the training module for the generation model of the parameter in the training module for the prediction model of the parameter can realize the training of the generation model of the parameter according to the sample data. Subsequently, the work parameter correction model training module in the work parameter prediction model training module will perform related model training on the work parameter correction model through the following steps 508 to 512 .

步骤508、获得多个设备天线的预测工参。Step 508: Obtain predicted operating parameters of multiple device antennas.

在一些具体实施例中,在通过步骤507获得经过训练的工参生成模型后,那么就可以根据样本数据和所述经过训练的工参生成模型,获得设备天线的预测工参,例如以经纬度预测为例,可以获得设备天线的经纬度(Latitude,Longtitude)的预测结果。In some specific embodiments, after the trained working parameter generation model is obtained through step 507, the predicted working parameters of the device antenna can be obtained according to the sample data and the trained working parameter generation model, for example, by latitude and longitude prediction For example, the prediction result of the latitude and longitude (Latitude, Longtitude) of the device antenna can be obtained.

可以理解的,当训练集的样本数据中包括多个设备天线的样本数据,如包括设备天线1的样本数据(具体包括设备天线1的配置数据、设备天线1的工参、终端向设备天线1上报的MR数据)、设备天线2的样本数据(具体包括设备天线2的配置数据、设备天线2的工参、终端向设备天线2上报的MR数据)等等,那么根据各个设备天线的样本数据和所述经过训练的工参生成模型,即可获得各个设备天线的经纬度的预测结果。It can be understood that when the sample data of the training set includes the sample data of multiple device antennas, such as the sample data including the device antenna 1 (specifically including the configuration data of the device antenna 1, the working parameters of the device antenna 1, the terminal to the device antenna 1 MR data reported), the sample data of the device antenna 2 (specifically including the configuration data of the device antenna 2, the working parameters of the device antenna 2, the MR data reported by the terminal to the device antenna 2), etc., then according to the sample data of each device antenna and the trained work parameter generation model, the prediction results of the longitude and latitude of each device antenna can be obtained.

举例来说,通过所述经过训练的工参生成模型获得的各个设备天线的经纬度的预测结果如表2所示:For example, the prediction results of the longitude and latitude of each device antenna obtained by the trained work parameter generation model are shown in Table 2:

表2Table 2

Figure BDA0001897193090000242
Figure BDA0001897193090000242

Figure BDA0001897193090000251
Figure BDA0001897193090000251

需要说明的是,上述示例仅用于解释本发明的实施例而非限制。It should be noted that the above examples are only used to explain the embodiments of the present invention and not limit them.

步骤509、根据设备天线的共天线小区列表和设备天线的低维度的MR数据,计算设备天线的top N天线。Step 509: Calculate the top N antennas of the device antennas according to the list of common antenna cells of the device antennas and the low-dimensional MR data of the device antennas.

其中,对于目标设备天线,top N天线表示目标设备天线的周边设备天线中,基于预设规则同目标设备天线最相关的N个设备天线,N为大于等于1的整数。例如,在一些实施例中,top N天线为目标设备天线周边多个设备天线中,与目标设备天线的空间距离最周边的N个设备天线;在又一些实施例中,top N天线为目标设备天线的周边多个设备天线中,与目标设备天线的信号重叠程度最大的N个设备天线;在又一些实施例中,top N天线为目标设备天线的周边多个设备天线中,终端切换次数最多的N个设备天线,等等。Among them, for the target device antenna, top N antennas represent the N device antennas most related to the target device antenna based on the preset rule among the surrounding device antennas of the target device antenna, and N is an integer greater than or equal to 1. For example, in some embodiments, the top N antennas are the N device antennas with the closest spatial distance from the target device antenna among the multiple device antennas around the target device antenna; in still other embodiments, the top N antennas are the target device antennas Among the multiple device antennas around the antenna, the N device antennas with the greatest degree of signal overlap with the target device antenna; in some other embodiments, the top N antennas are among the multiple device antennas around the target device antenna, and the number of times the terminal switches the most of N device antennas, and so on.

下面给出一种确定各个设备天线的top N天线的方法。A method for determining the top N antennas of each device antenna is given below.

通过上述步骤502,可获得多个设备天线中的任意设备天线的共天线小区列表。通过上述步骤504,可获得多个设备天线中的任意设备天线的共天线小区的低维度的MR数据。那么,可根据所述多个设备天线中的任意设备天线的共天线小区列表,确定目标设备天线的低维度的MR数据中除服务小区外的其他小区对应的设备天线的ID。举例来说,对于上述图17实施例所示的设备天线1的低维度的MR数据1,可根据多个设备天线中的任意设备天线的共天线小区列表,确定小区2率属于设备天线1,小区3率属于设备天线2,小区4率属于设备天线2,以此类推。若低维度的MR数据1中率属于设备天线2的小区只有两个(如小区3和小区4),则称设备天线2在设备天线1的低维度的MR数据1中出现2次,其他设备天线(如设备天线3,等等)的情况同样以此类推。同理,对于设备天线1的其他低维度的MR数据(例如低维度的MR数据2,等等),同样可以找出除服务小区外的其他小区对应的设备天线的ID,进而统计出其他各个设备天线(如设备天线2、设备天线3,等等,也可以称这些设备天线为设备天线1的邻天线)在设备天线1的其他低维度的MR数据中出现的次数。这样,就可以统计设备天线1的所有低维度的MR数据中,各个邻天线出现的次数。Through the above step 502, a list of common antenna cells of any device antenna among the multiple device antennas can be obtained. Through the above step 504, low-dimensional MR data of a common antenna cell of any device antenna among the multiple device antennas can be obtained. Then, the ID of the device antenna corresponding to other cells except the serving cell in the low-dimensional MR data of the target device antenna can be determined according to the common antenna cell list of any device antenna among the multiple device antennas. For example, for the low-dimensional MR data 1 of the device antenna 1 shown in the above-mentioned embodiment of FIG. 17 , it can be determined that the rate of cell 2 belongs to the device antenna 1 according to the common antenna cell list of any device antenna among the multiple device antennas, The cell 3 rate belongs to device antenna 2, the cell 4 rate belongs to device antenna 2, and so on. If there are only two cells in the low-dimensional MR data 1 that belong to the device antenna 2 (such as cell 3 and cell 4), then the device antenna 2 is said to appear twice in the low-dimensional MR data 1 of the device antenna 1, and other devices The same goes for the case of antennas (such as device antenna 3, etc.). Similarly, for other low-dimensional MR data of device antenna 1 (such as low-dimensional MR data 2, etc.), it is also possible to find out the IDs of device antennas corresponding to other cells except the serving cell, and then count the other The number of times the device antennas (such as device antenna 2, device antenna 3, etc., which can also be called adjacent antennas of device antenna 1) appear in other low-dimensional MR data of device antenna 1. In this way, the number of occurrences of each adjacent antenna in all low-dimensional MR data of the device antenna 1 can be counted.

可以理解的,基于上述描述,可以进一步统计出所述多个基站设备的任意设备天线的所有低维度的MR数据中,该设备天线的各个邻天线出现的次数。It can be understood that, based on the above description, in all low-dimensional MR data of any device antenna of the multiple base station devices, the number of occurrences of each adjacent antenna of the device antenna can be further counted.

举例来说,所述多个设备天线的任意设备天线的各个邻天线在该基站的所有低维度的MR数据中出现的次数可如表3所示:For example, the number of occurrences of each adjacent antenna of any device antenna of the plurality of device antennas in all low-dimensional MR data of the base station may be as shown in Table 3:

表3table 3

Figure BDA0001897193090000252
Figure BDA0001897193090000252

那么,选择每个设备天线的出现次数最多的N个邻天线作为该设备天线的Top N天线。Then, the N adjacent antennas with the most occurrences of each device antenna are selected as the Top N antennas of the device antenna.

例如,上述表3中,已将设备天线的各个邻天线基于出现次数的高低进行先后排序,可以看到,对于设备天线1,根据出现次数的高低排序的邻天线的ID依次为Antenna-2、Antenna-13...Antenna-16。对于设备天线2,根据出现次数的高低排序的邻天线的ID依次为Antenna-5、Antenna-1...Antenna-25,以此类推。For example, in Table 3 above, the adjacent antennas of the device antenna have been sorted based on the number of occurrences. It can be seen that for the device antenna 1, the IDs of the adjacent antennas sorted according to the number of occurrences are Antenna-2, Antenna-13...Antenna-16. For device antenna 2, the IDs of adjacent antennas sorted according to the number of occurrences are Antenna-5, Antenna-1...Antenna-25, and so on.

那么,在一种可能的实施例中,各个设备天线的邻天线可如下表4所示:Then, in a possible embodiment, the adjacent antennas of each device antenna may be as shown in Table 4 below:

表4Table 4

Figure BDA0001897193090000261
Figure BDA0001897193090000261

需要说明的是,上述示例仅用于解释本发明实施例的技术方案而非限制。It should be noted that the above examples are only used to explain the technical solutions of the embodiments of the present invention, but are not limitations.

步骤510、根据多个设备天线的预测工参和各个设备天线的top N天线,获得top N天线中的各个邻天线的预测工参。Step 510: Obtain the predicted operating parameters of each adjacent antenna in the top N antennas according to the predicted operating parameters of the multiple device antennas and the top N antennas of each device antenna.

可以理解的,通过上述步骤508,已经获得各个设备天线的预测工参(例如表2),所以,基于任意设备天线的ID,即可获得任意设备天线的预测工参;基于任意设备天线的topN天线中的各个邻天线的ID,即可获得任意设备天线的top N天线中的各个邻天线的预测工参。如下表5所示:It can be understood that through the above step 508, the predicted operating parameters of each device antenna (for example, Table 2) have been obtained. Therefore, based on the ID of any device antenna, the predicted operating parameters of any device antenna can be obtained; based on the topN of any device antenna The ID of each adjacent antenna in the antenna can obtain the predicted operating parameters of each adjacent antenna in the top N antennas of any device antenna. As shown in Table 5 below:

表5table 5

Figure BDA0001897193090000262
Figure BDA0001897193090000262

上述表5示出了任意设备天线(或称目标设备天线)及其对应的Top N天线的预测工参,那么可将任意设备天线其对应的Top N天线统称为(1+top N)天线组。故通过本步骤510,即可得到任意设备天线的(1+top N)天线组的预测工参。为了方便描述,本发明实施例可记设备天线i的(1+Top N)天线组的预测工参为“Featurebasic_i”,设备天线i为所述多个设备天线中的任意设备天线。The above Table 5 shows the predicted parameters of any device antenna (or target device antenna) and its corresponding Top N antenna, then the corresponding Top N antenna of any device antenna can be collectively referred to as (1+top N) antenna group . Therefore, through this step 510, the predicted operating parameters of the (1+top N) antenna group of any device antenna can be obtained. For convenience of description, in this embodiment of the present invention, the predicted operating parameter of the (1+Top N) antenna group of the device antenna i may be recorded as "Feature basic_i ", and the device antenna i is any device antenna among the plurality of device antennas.

步骤511、根据基站设备的低维度的MR数据和该基站设备的top N天线中的各个邻天线的预测工参,获得top N天线的第二样本特征数据。Step 511: Obtain second sample feature data of the top N antennas according to the low-dimensional MR data of the base station equipment and the predicted operating parameters of each adjacent antenna in the top N antennas of the base station equipment.

第二样本特征数据表征了不同的设备天线在UE的同一次测量中(即在同一UE地理位置)各自呈现的测量特征(或称天线联合测量特征)。The second sample feature data represents the measurement features (or joint antenna measurement features) presented by different device antennas in the same measurement of the UE (that is, in the same UE geographic location).

下面描述一种获得top N天线的第二样本特征数据的方法。A method for obtaining the second sample characteristic data of the top N antennas is described below.

首先,对于任意设备天线的top N天线,例如设备天线A的top N天线,分别根据该设备天线A的各个邻天线的共天线小区列表确定出一个小区,称该小区为设备天线A的一个邻小区,那么,N个邻天线将分别对应确定出N个邻小区,这样的N个邻小区可称为设备天线A的top N邻小区。比如,对于设备天线A的top N天线中的第一邻天线,如果该第一邻天线的共天线小区中的小区有多个,则可示例性地选取在该第一邻天线的低纬度的MR数据中,出现次数最多的小区作为该第一邻天线对应的邻小区。以此类推,可分别确定出top N天线中的各个邻天线对应的邻小区,即设备天线A的top N邻小区。也就是说,基于上面描述,可以确定出任意设备天线的top N邻小区。First, for the top N antennas of any device antenna, such as the top N antennas of device antenna A, a cell is determined according to the list of common antenna cells of each adjacent antenna of the device antenna A, and the cell is called a neighbor of device antenna A. cell, then the N adjacent antennas will respectively determine N adjacent cells, such N adjacent cells may be referred to as the top N adjacent cells of the device antenna A. For example, for the first adjacent antenna in the top N antennas of the device antenna A, if there are multiple cells in the common antenna cell of the first adjacent antenna, the first adjacent antenna at the low latitude of the first adjacent antenna may be selected exemplarily. In the MR data, the cell with the largest number of occurrences is used as the adjacent cell corresponding to the first adjacent antenna. By analogy, the neighboring cells corresponding to each neighboring antenna in the top N antennas, that is, the top N neighboring cells of the device antenna A can be determined respectively. That is to say, based on the above description, the top N neighboring cells of any device antenna can be determined.

那么,针对任意设备天线的top N邻小区中的任一邻小区,例如设备天线A的top N邻小区中的任一邻小区,可以从设备天线A的多个低维度的MR数据中选取M个低维度的MR数据,将所述M个低维度的MR数据与该邻小区关联。其中,所述M个低维度的MR数据中的任一个均包含该邻小区的测量特征信息(例如该邻小区的RSRP、该邻小区的AOA,等等),示例性的,M个低维度的MR数据中邻小区的RSRP值可以各有差异,所述M为大于等于1的整数。这样,可以分别从所述M个低维度的MR数据中各个低维度的MR数据中提取设备天线A的第二样本特征数据,每个样本特征数据可包括UE的定位信息(如UE所在的经度、UE所在的纬度、UE所在的海拔高度等等)、服务小区的RSRP、服务小区的AOA、邻小区的RSRP、邻小区的AOA等等中的两个或两个以上。也就是说,基于上面描述,可以确定出top N邻小区中的任一邻小区关联的M个低维度的MR数据,以及基于M个低维度的MR数据确定M个第二样本特征数据。为了描述方便,可记设备天线i的top N邻小区的M个第二样本特征数据为“Featurejoin_i”,设备天线i是所述多个设备天线中的任意设备天线。Then, for any neighboring cell in the top N neighboring cells of any device antenna, for example, any neighboring cell in the top N neighboring cells of device antenna A, M can be selected from multiple low-dimensional MR data of device antenna A and associate the M low-dimensional MR data with the neighboring cell. Wherein, any one of the M low-dimensional MR data includes the measurement feature information of the neighboring cell (for example, the RSRP of the neighboring cell, the AOA of the neighboring cell, etc.), exemplarily, the M low-dimensional MR data The RSRP values of neighboring cells in the MR data of M may be different, and M is an integer greater than or equal to 1. In this way, the second sample feature data of the device antenna A can be extracted from the respective low-dimensional MR data of the M low-dimensional MR data, and each sample feature data can include the positioning information of the UE (such as the longitude where the UE is located). , the latitude where the UE is located, the altitude where the UE is located, etc.), two or more of the RSRP of the serving cell, the AOA of the serving cell, the RSRP of the neighboring cell, the AOA of the neighboring cell, and so on. That is, based on the above description, M low-dimensional MR data associated with any one of the top N neighboring cells can be determined, and M second sample feature data can be determined based on the M low-dimensional MR data. For the convenience of description, the M second sample feature data of the top N neighboring cells of the device antenna i may be recorded as "Feature join_i ", and the device antenna i is any device antenna among the plurality of device antennas.

例如,设备天线i的top N天线的第二样本特征数据如下表6所示:For example, the second sample characteristic data of the top N antenna of the device antenna i is shown in Table 6 below:

表6Table 6

Figure BDA0001897193090000271
Figure BDA0001897193090000271

Figure BDA0001897193090000281
Figure BDA0001897193090000281

需要说明的是,上述示例仅用于解释本发明实施例的技术方案而非限定。It should be noted that the above examples are only used to explain the technical solutions of the embodiments of the present invention, but are not limited.

步骤512、根据工程参数集、(1+top N)天线组的预测工参、top N天线的第二样本特征数据,训练工参纠正模型。Step 512 , train an operating parameter correction model according to the engineering parameter set, the predicted operating parameters of the (1+top N) antenna group, and the second sample feature data of the top N antennas.

在一具体实施例中,模型训练模块(工参预测模型训练模块中的工参纠正模型训练模块)可利用机器学习算法构建一个工参纠正模型(例如神经网络算法模型),根据训练集中的设备天线的工参、通过步骤510所获得的(1+top N)天线组的预测工参以及通过步骤511获得的top N天线的第二样本特征数据,对所述工参纠正模型进行模型训练。In a specific embodiment, the model training module (the work parameter correction model training module in the work parameter prediction model training module) can use a machine learning algorithm to construct a work parameter correction model (for example, a neural network algorithm model), according to the equipment in the training set. The working parameters of the antenna, the predicted working parameters of the (1+top N) antenna group obtained in step 510, and the second sample feature data of the top N antennas obtained in step 511 are used to perform model training on the working parameter correction model.

该工参纠正模型的训练过程例如可通过下式表示:For example, the training process of the work parameter correction model can be expressed by the following formula:

(Latitude,Longtitude)=NN((Featurejoin_i,Featurebasic_i),Wnn2)(Latitude, Longtitude)=NN((Feature join_i ,Feature basic_i ),W nn2 )

其中,Latitude表示设备天线i的工参中的纬度值,Longtitude表示设备天线i的工参中的经度值,NN表示神经网络算法,Featurejoin_i表示设备天线的top N天线的第二样本特征数据,Featurebasic_i表示设备天线i的(1+Top N)天线组的预测工参,Wnn2表示工参纠正模型中的模型参数。Among them, Latitude represents the latitude value in the industrial parameter of the device antenna i, Longtitude represents the longitude value in the industrial parameter of the device antenna i, NN represents the neural network algorithm, Feature join_i represents the second sample feature data of the top N antenna of the device antenna, Feature basic_i represents the predicted operating parameters of the (1+Top N) antenna group of the device antenna i, and W nn2 represents the model parameters in the operating parameter correction model.

所以,模型训练模块基于训练集的大量样本数据进行模型训练,对于不同的设备天线,其对应的Latitude、Longtitude、Featurejoin_i、Featurebasic_i数据也各有差异,根据这些数据作为工参纠正模型的输入数据,即可对模型进行训练计算出Wnn2(例如本样例中可以利用梯度下降法计算出Wnn2),从而获得经过训练的工参纠正模型。Therefore, the model training module performs model training based on a large number of sample data in the training set. For different device antennas, the corresponding data of Latitude, Longtitude, Feature join_i and Feature basic_i are also different. These data are used as the input of the model to correct the working parameters. Data, the model can be trained to calculate W nn2 (for example, the gradient descent method can be used to calculate W nn2 in this example), so as to obtain a trained model for correcting the working parameters.

可以看到,本实施例通过步骤501-步骤507,可实现根据样本数据对工参生成模型进行训练,计算出工参生成模型的模型参数Wnn1,通过步骤508-步骤512,可实现对工参纠正模型进行训练,计算出工参纠正模型的模型参数Wnn2。可以理解的,本发明实施例所描述的工参预测模型可视为包括工参生成模型和工参纠正模型,工参预测模型的模型参数可视为包括工参生成模型的模型参数Wnn1和工参纠正模型的模型参数Wnn2,所以基于上述步骤501-步骤512,完成了对工参预测模型的训练。It can be seen that in this embodiment, through steps 501 to 507, it is possible to train the engineering parameter generation model according to the sample data, and to calculate the model parameter W nn1 of the engineering parameter generation model, and through steps 508 to 512, it can realize The parameter correction model is trained, and the model parameter W nn2 of the work parameter correction model is calculated. It can be understood that the engineering parameter prediction model described in the embodiment of the present invention can be regarded as including an engineering parameter generation model and an engineering parameter correction model, and the model parameters of the engineering parameter prediction model can be regarded as including the model parameters of the engineering parameter generation model W nn1 and The model parameter W nn2 of the engineering parameter correction model, so based on the above steps 501 to 512, the training of the engineering parameter prediction model is completed.

还需要说明的是,在一些可能的实施例中,如果仅使用如图4所示的工参生成模型训练模块对工参生成模型进行训练(这种情况也可视为工参预测模型训练模块只包括工参生成模型训练模块),那么该模型训练的实施过程也可类似参考上述步骤501-步骤507的描述,为了说明书的简洁,本文将不再详述。It should also be noted that, in some possible embodiments, if only the work parameter generation model training module as shown in FIG. 4 is used to train the work parameter generation model (this situation can also be regarded as the work parameter prediction model training module) Including only the model training module for generating the working parameters), then the implementation process of the model training can also be referred to the description of the above steps 501-507. For the sake of brevity of the description, this article will not describe it in detail.

还需要说明的是,在一些可能的实施例中,如果仅使用如图7所示的工参纠正模型训练模块对工参纠正模型进行训练(这种情况也可视为工参预测模型训练模块只包括工参纠正模型训练模块),那么该模型训练的实施过程也可类似参考上述步骤508-步骤512的描述,所不同的是(如与上述步骤508有差异),该训练过程中的Featurebasic_i来自于训练集的样本数据(X)中的低可信度的工程参数集,即Featurebasic_i表示低可信度的工程参数集中设备天线i的(1+Top N)天线组的工参;(Latitude,Longtitude)来自于训练集的样本数据(Y)中的高可信度的工程参数集,即Latitude表示高可信度的工程参数集中设备天线i的工参中的纬度值,Longtitude表示高可信度的工程参数集中设备天线i的工参中的经度值。所述低可信度的工程参数集中的工参例如为通过较粗糙方式获取到的工参(例如通过一次人工测量获得的工参),所述高可信度的工程参数集中的工参例如为通过较为精确的方式获取到的工参(例如使用多次GPS测量和多次人工测量得到的工参)。那么,基于上述步骤508-步骤512的描述,本领域技术人员将可类似地理解如图7所示的工参纠正模型训练模块对工参纠正模型进行训练的方法,为了说明书的简洁,本文将不再详述。It should also be noted that, in some possible embodiments, if only the work parameter correction model training module as shown in FIG. 7 is used to train the work parameter correction model (this situation can also be regarded as the work parameter prediction model training module) only includes the model training module for working parameter correction), then the implementation process of the model training can also refer to the description of the above steps 508 to 512, the difference is (if there is a difference from the above step 508), the Feature in the training process basic_i comes from the low-confidence engineering parameter set in the sample data (X) of the training set, that is, Feature basic_i represents the engineering parameters of the (1+Top N) antenna group of the device antenna i in the low-confidence engineering parameter set; (Latitude, Longtitude) The high-confidence engineering parameter set in the sample data (Y) from the training set, that is, Latitude represents the latitude value in the engineering parameter of the device antenna i in the high-confidence engineering parameter set, and Longtitude represents The high-confidence engineering parameter set is the longitude value in the engineering parameter of the device antenna i. The engineering parameters in the low-credibility engineering parameter set are, for example, the engineering parameters obtained in a rougher manner (for example, the engineering parameters obtained through a manual measurement), and the engineering parameters in the high-confidence engineering parameter set are, for example. It is an industrial parameter obtained by a relatively accurate method (for example, an industrial parameter obtained by using multiple GPS measurements and multiple manual measurements). Then, based on the descriptions of the above steps 508 to 512, those skilled in the art will similarly understand the method for training the work parameter correction model by the work parameter correction model training module as shown in FIG. No further details.

可以看到,本发明实施例能够通过模型训练的方式基于现成的样本数据(例如MR数据、配置数据、工参数据等)构建用于预测设备天线的工参的模型(如本实施例中的工参预测模型),而应用该模型将可实现生成和纠正设备天线的工参,从而获得可信度较高的预测工参。所以,实施本发明实施例的技术方案能够克服现有技术的缺陷,有效降低设备天线工参的获取成本,提升工参的准确度。It can be seen that in this embodiment of the present invention, a model for predicting the operating parameters of the device antenna can be constructed based on ready-made sample data (such as MR data, configuration data, and operating parameter data, etc.) by means of model training (such as in this embodiment). The engineering parameter prediction model), and the application of this model will realize the generation and correction of the engineering parameters of the equipment antenna, so as to obtain the predicted engineering parameters with high reliability. Therefore, implementing the technical solutions of the embodiments of the present invention can overcome the defects of the prior art, effectively reduce the acquisition cost of the equipment antenna engineering parameters, and improve the accuracy of the engineering parameters.

基于上述工参确定系统203,下面描述本发明实施例提供的一种基于工参预测模型预测工参的方法,工参包括天线的经纬度为例进行描述。请参见图19,图19是本发明实施例提供的一种基于工参预测模型预测工参的方法的流程示意图,该方法可包括但不限于以下步骤:Based on the above-mentioned working parameter determination system 203, a method for predicting working parameters based on a working parameter prediction model provided by an embodiment of the present invention is described below. The working parameters include the longitude and latitude of the antenna as an example for description. Please refer to FIG. 19 . FIG. 19 is a schematic flowchart of a method for predicting an engineering parameter based on an engineering parameter prediction model provided by an embodiment of the present invention. The method may include but is not limited to the following steps:

步骤601、获取第二地理区域的MR数据集和配置数据集。Step 601: Acquire an MR dataset and a configuration dataset of a second geographic area.

具体的,模型预测模块(例如工参预测模型预测模块中的工参生成模型训练模块,或单独的工参生成模型预测模块)可从预测练集的数据中获取第二地理区域中MR数据集以及基站设备的配置数据集。Specifically, the model prediction module (for example, the engineering parameter generation model training module in the engineering parameter prediction model prediction module, or a separate engineering parameter generation model prediction module) can obtain the MR data set in the second geographical area from the data in the prediction training set And the configuration data set of the base station device.

其中,所述第二地理区域可与前述步骤501所述的第一地理区域不同。也就是说,位于第二地理区域中的基站设备和位于第一地理区域中的基站设备并非同一基站设备。Wherein, the second geographic area may be different from the first geographic area described in the foregoing step 501 . That is, the base station device located in the second geographic area and the base station device located in the first geographic area are not the same base station device.

其中,所述配置数据集包括一个或多个基站设备的配置数据,所述配置数据可包括基站设备的网络参数的配置信息,例如设备天线的天线类型、小区列表等等。所述MR数据集包括多个MR数据。所述多个MR数据可以是一个或多个UE向所述一个或多个基站设备上报的,每个MR数据例如可包括UE的位置信息(如UE的经纬度信息、海拔高度信息等地理信息)、UE所检测到的服务小区的RSRP数据、UE所检测到的邻小区的RSRP数据、服务小区的AOA、邻小区的AOA、服务小区时间提前量、UE发射功率余量等等中的至少两个或多个。举例来说,某个UE可周期性(例如,每隔10秒)地向第二地理区域中的目标设备天线上传MR数据,那么,可从目标设备天线采集预设时间段内的多个MR数据输入至该预测集。The configuration data set includes configuration data of one or more base station devices, and the configuration data may include configuration information of network parameters of the base station devices, such as antenna types of device antennas, cell lists, and the like. The MR dataset includes a plurality of MR data. The multiple MR data may be reported by one or more UEs to the one or more base station devices, and each MR data may include, for example, location information of the UE (such as geographic information such as latitude and longitude information of the UE, altitude information, etc.) , at least two of the RSRP data of the serving cell detected by the UE, the RSRP data of the neighboring cell detected by the UE, the AOA of the serving cell, the AOA of the neighboring cell, the timing advance of the serving cell, the UE transmit power headroom, etc. one or more. For example, a certain UE may periodically (eg, every 10 seconds) upload MR data to the target device antenna in the second geographic area, then a plurality of MRs within a preset time period may be collected from the target device antenna Data is entered into this forecast set.

步骤602、根据配置数据获得共天线的小区列表。具体实施过程可类似参考图14实施例步骤502的描述,为了说明书的简洁,这里不再赘述。Step 602: Obtain a list of cells with a common antenna according to the configuration data. The specific implementation process can be similar to the description with reference to step 502 in the embodiment of FIG. 14 , and for the sake of brevity of the description, details are not repeated here.

步骤603、根据MR数据集和共天线的小区列表,获得共天线的小区对应的MR数据。具体实施过程可类似参考图14实施例步骤503的描述,为了说明书的简洁,这里不再赘述。Step 603: Obtain MR data corresponding to the cells with the same antenna according to the MR data set and the list of cells with the same antenna. The specific implementation process may be similar to the description with reference to step 503 in the embodiment of FIG. 14 , and for the sake of brevity of the description, details are not repeated here.

步骤604、对共天线小区对应的MR数据进行特征信息选取,获得共天线小区的低维度的MR数据。具体实施过程可类似参考图14实施例步骤504的描述,为了说明书的简洁,这里不再赘述。Step 604: Select feature information for the MR data corresponding to the common-antenna cell to obtain low-dimensional MR data of the common-antenna cell. The specific implementation process may be similar to the description with reference to step 504 in the embodiment of FIG. 14 , and for the sake of brevity of the description, details are not repeated here.

步骤605、根据共天线小区的低维度的MR数据,计算共天线小区的第一样本特征数据。具体实施过程可类似参考图14实施例步骤505的描述,为了说明书的简洁,这里不再赘述。Step 605: Calculate the first sample feature data of the common-antenna cell according to the low-dimensional MR data of the common-antenna cell. The specific implementation process may be similar to the description with reference to step 505 in the embodiment of FIG. 14 , and for the sake of brevity of the description, details are not repeated here.

步骤606、根据配置数据获得设备天线的天线类型。具体实施过程可类似参考图14实施例步骤506的描述,为了说明书的简洁,这里不再赘述。Step 606: Obtain the antenna type of the device antenna according to the configuration data. The specific implementation process may be similar to the description with reference to step 506 in the embodiment of FIG. 14 , and for the sake of brevity of the description, details are not repeated here.

步骤607、将所述第一样本特征数据和天线类型输入至训练好的工参生成模型,从而获得设备天线的预测工参。Step 607: Input the first sample feature data and the antenna type into the trained working parameter generation model, thereby obtaining the predicted working parameters of the device antenna.

其中,所述训练好的工参生成模型例如为通过前述图14实施例501-步骤507训练而得到的工参生成模型(例如神经网络算法模型),模型预测模块将设备天线对应的第一样本特征数据(Feature1056)和天线类型(AntennaType)输入至所述训练好的工参生成模型,就可以获得设备天线的预测工参。例如以经纬度预测为例,可以获得设备天线的经纬度(Latitude,Longtitude)的预测结果。Wherein, the trained working parameter generation model is, for example, the working parameter generation model (eg, a neural network algorithm model) obtained through the training in the above-mentioned embodiment 501-step 507 of FIG. The feature data (Feature 1056 ) and the antenna type (AntennaType) are input into the trained working parameter generation model, and the predicted working parameters of the device antenna can be obtained. For example, taking the latitude and longitude prediction as an example, the prediction result of the latitude and longitude (Latitude, Longtitude) of the device antenna can be obtained.

可以理解的,当训练集的输入数据中包括多个设备天线的样本数据,如包括设备天线1的样本数据(具体包括设备天线1的配置数据、终端向设备天线1上报的MR数据)、设备天线2的样本数据(具体包括设备天线2的配置数据、终端向设备天线2上报的MR数据)等等,那么,对于不同的设备天线,其对应的Feature1056、AntennaType数据也各有差异,将各个设备天线对应的Feature1056、AntennaType数据作为该工参生成模型的输入数据,就可以获得各个设备天线的预测工参。It can be understood that when the input data of the training set includes sample data of multiple device antennas, such as sample data including device antenna 1 (specifically including configuration data of device antenna 1, MR data reported by the terminal to device antenna 1), device antenna 1 The sample data of the antenna 2 (specifically including the configuration data of the device antenna 2, the MR data reported by the terminal to the device antenna 2), etc., then, for different device antennas, the corresponding Feature 1056 and AntennaType data are also different. The Feature 1056 and AntennaType data corresponding to each device antenna are used as the input data of the work parameter generation model, and the predicted work parameters of each device antenna can be obtained.

可以看到,通过上述步骤601-步骤607,工参预测模型预测模块中的工参生成模型预测模块可实现根据预测集的样本数据,利用工参生成模型获得设备天线的预测工参。后续,工参预测模型预测模块中的工参纠正模型预测模块将通过下述步骤608-步骤611,实现利用工参纠正模型对设备天线的预测工参进行进一步处理,以获得可信度(准确性)更高的预测工参。It can be seen that through the above steps 601 to 607, the engineering parameter generation model prediction module in the engineering parameter prediction model prediction module can realize the predicted engineering parameters of the equipment antenna by using the engineering parameter generation model according to the sample data of the prediction set. Subsequently, the engineering parameter correction model prediction module in the engineering parameter prediction model prediction module will use the engineering parameter correction model to further process the predicted engineering parameters of the equipment antenna through the following steps 608 to 611, so as to obtain the reliability (accuracy). sex) higher predictive parameters.

步骤608、根据设备天线的共天线小区列表和设备天线的低维度的MR数据,计算设备天线的top N天线。具体实施过程可类似参考图14实施例步骤509的描述,为了说明书的简洁,这里不再赘述。Step 608: Calculate the top N antennas of the device antennas according to the list of common antenna cells of the device antennas and the low-dimensional MR data of the device antennas. The specific implementation process may be similar to the description with reference to step 509 in the embodiment of FIG. 14 , and for the sake of brevity of the description, details are not repeated here.

步骤609、根据多个设备天线的预测工参和各个设备天线的top N天线,获得top N天线中的各个邻天线的预测工参。具体实施过程可类似参考图14实施例步骤510的描述,为了说明书的简洁,这里不再赘述。Step 609: Obtain the predicted operating parameters of each adjacent antenna in the top N antennas according to the predicted operating parameters of the multiple device antennas and the top N antennas of each device antenna. The specific implementation process may be similar to the description with reference to step 510 in the embodiment of FIG. 14 , and for the sake of brevity of the description, details are not repeated here.

步骤610、根据基站设备的低维度的MR数据和该基站设备的top N天线中的各个邻天线的预测工参,获得top N天线的第二样本特征数据。具体实施过程可类似参考图14实施例步骤511的描述,为了说明书的简洁,这里不再赘述。Step 610: Obtain second sample feature data of the top N antennas according to the low-dimensional MR data of the base station equipment and the predicted operating parameters of each adjacent antenna in the top N antennas of the base station equipment. The specific implementation process may be similar to the description with reference to step 511 in the embodiment of FIG. 14 , and for the sake of brevity of the description, details are not repeated here.

步骤611、将(1+top N)天线组的预测工参、top N天线的第二样本特征数据输入至训练好的工参纠正模型,从而得到设备天线的高可信度的预测工参。Step 611: Input the predicted working parameters of the (1+top N) antenna group and the second sample feature data of the top N antennas into the trained working parameter correction model, thereby obtaining highly reliable predicted working parameters of the device antenna.

其中,所述训练好的工参纠正模型例如为通过前述图14实施例步骤508-步骤512训练而得到的工参纠正模型(例如神经网络算法模型),模型预测模块(工参预测模型预测模块中的工参纠正模型预测模块)将设备天线i对应的第二样本特征数据(Featurejoin_i)和设备天线i的(1+Top N)天线组的预测工参(Featurebasic_i)输入至所述训练好的工参纠正模型,就可以获得设备天线i的高可信度的预测工参。例如以经纬度预测为例,可以获得设备天线i的经纬度(Latitude,Longtitude)的高可信度的预测结果。Wherein, the trained work parameter correction model is, for example, the work parameter correction model (such as a neural network algorithm model) obtained by training from steps 508 to 512 in the embodiment of FIG. 14 , a model prediction module (an work parameter prediction model prediction module The engineering parameter correction model prediction module in ) inputs the second sample feature data (Feature join_i ) corresponding to the device antenna i and the predicted engineering parameters (Feature basic_i ) of the (1+Top N) antenna group of the device antenna i into the training With a good working parameter correction model, a high-confidence predicted working parameter of the device antenna i can be obtained. For example, taking the latitude and longitude prediction as an example, a prediction result with high reliability of the latitude and longitude (Latitude, Longtitude) of the device antenna i can be obtained.

可以理解的,当训练集的输入数据中包括多个设备天线的样本数据,如包括设备天线1的样本数据(具体包括设备天线1的配置数据、终端向设备天线1上报的MR数据)、设备天线2的样本数据(具体包括设备天线2的配置数据、终端向设备天线2上报的MR数据)等等,那么,对于不同的设备天线,其对应的第二样本特征数据、(1+Top N)天线组的预测工参也各有差异,将各个设备天线对应的第二样本特征数据、(1+Top N)天线组作为该工参纠正模型的输入数据,就可以获得各个设备天线的高可信度的预测工参。It can be understood that when the input data of the training set includes sample data of multiple device antennas, such as sample data including device antenna 1 (specifically including configuration data of device antenna 1, MR data reported by the terminal to device antenna 1), device antenna 1 The sample data of the antenna 2 (specifically including the configuration data of the device antenna 2, the MR data reported by the terminal to the device antenna 2), etc., then, for different device antennas, the corresponding second sample feature data, (1+Top N ) The predicted operating parameters of the antenna group are also different. Taking the second sample characteristic data corresponding to each device antenna and the (1+Top N) antenna group as the input data of the correction model for the operating parameters, the height of each device antenna can be obtained. Predictive parameters of reliability.

可以看到,本实施例通过步骤601-步骤607,可实现根据预测集的样本数据,利用工参生成模型获得设备天线的预测工参,通过步骤608-步骤611,可实现利用工参纠正模型对设备天线的预测工参进行进一步的纠正,从而获得高可信度的预测工参。可以理解的,本发明实施例所描述的工参预测模型可视为包括工参生成模型和工参纠正模型,所以基于上述步骤601-步骤611,完成了基于工参预测模型对设备天线工参的预测。It can be seen that in this embodiment, through steps 601 to 607, the predicted operating parameters of the equipment antenna can be obtained by using the engineering parameter generation model according to the sample data of the prediction set, and through steps 608 to 611, the model can be corrected by using the engineering parameters. Further corrections are made to the predicted operating parameters of the equipment antenna to obtain high-confidence predicted operating parameters. It can be understood that the engineering parameter prediction model described in the embodiment of the present invention can be regarded as including an engineering parameter generation model and an engineering parameter correction model. Therefore, based on the above steps 601 to 611, the equipment antenna engineering parameters based on the engineering parameter prediction model are completed. Prediction.

还需要说明的是,在一些可能的实施例中,如果仅使用如图5所示的工参生成模型预测模块基于工参生成模型对设备天线的工参进行预测(这种情况也可视为工参预测模型预测模块只包括工参生成模型预测模块),那么该模型训练的实施过程也可类似参考上述步骤601-步骤607的描述,为了说明书的简洁,本文将不再详述。It should also be noted that, in some possible embodiments, if only the working parameter generation model prediction module as shown in The engineering parameter prediction model prediction module only includes the engineering parameter generation model prediction module), then the implementation process of the model training can also refer to the description of the above steps 601-607. For the brevity of the description, this article will not describe it in detail.

还需要说明的是,在一些可能的实施例中,如果仅使用如图8所示的工参纠正模型预测模块基于工参纠正模型对设备天线的工参进行预测(这种情况也可视为工参预测模型预测模块只包括工参纠正模型预测模块),那么该模型训练的实施过程也可类似参考上述步骤608-步骤611的描述,所不同的是,该预测过程中的(1+Top N)天线组的预测工参并不是通过工参生成模型得到的,而是来自于预测集的样本数据中的工程参数集,该工程参数集中的工参可视为低可信度的工参,例如为通过较粗糙方式获取到的工参。基于上述步骤608-步骤611,本领域技术人员将可类似地理解如图8所示的工参纠正模型预测模块基于工参纠正模型进行工参预测以得到设备天线的高可信度的工参的方法,为了说明书的简洁,本文将不再详述。It should also be noted that, in some possible embodiments, if only the working parameter correction model prediction module as shown in The engineering parameter prediction model prediction module only includes the engineering parameter correction model prediction module), then the implementation process of the model training can also refer to the description of the above steps 608-611, the difference is that in the prediction process (1+Top N) The predicted engineering parameters of the antenna group are not obtained through the engineering parameter generation model, but from the engineering parameter set in the sample data of the prediction set. The engineering parameters in the engineering parameter set can be regarded as the engineering parameters with low reliability. , for example, the ginseng obtained through rougher methods. Based on the above steps 608 to 611, those skilled in the art will similarly understand that the engineering parameter correction model prediction module as shown in FIG. The method, for the brevity of the description, will not be described in detail in this article.

可以看到,本发明实施例能够通过预先训练好的用于工参预测的模型(如本实施例中的工参预测模型),基于现成的样本数据(例如MR数据、配置数据等)输入至该模型,即可实现生成和纠正设备天线的工参,从而获得可信度较高的预测工参。所以,实施本发明实施例的技术方案能够克服现有技术的缺陷,有效降低设备天线工参的获取成本,提升工参的准确度。It can be seen that in this embodiment of the present invention, a pre-trained model for predicting working parameters (such as the predicting model for working parameters in this embodiment) can be input based on ready-made sample data (such as MR data, configuration data, etc.) With this model, the working parameters of the equipment antenna can be generated and corrected, so as to obtain the predicted working parameters with high reliability. Therefore, implementing the technical solutions of the embodiments of the present invention can overcome the defects of the prior art, effectively reduce the acquisition cost of the equipment antenna engineering parameters, and improve the accuracy of the engineering parameters.

为了更好理解本发明实施例的技术方案,下面描述在一些应用场景中对设备天线的原始工参进行纠正的方法。参见图20,该方法包括但不限于以下步骤:In order to better understand the technical solutions of the embodiments of the present invention, a method for correcting the original working parameters of the device antenna in some application scenarios is described below. Referring to Figure 20, the method includes but is not limited to the following steps:

步骤701、方法开始,将变量i设置为0。Step 701, the method starts, and the variable i is set to 0.

步骤702、如果i等于0,则方法跳转到执行步骤70 3,否则,i不等于0,则跳转至执行步骤708。Step 702: If i is equal to 0, the method jumps to step 703; otherwise, if i is not equal to 0, jumps to step 708.

步骤703、方法执行选取样本数据。Step 703, the method executes to select sample data.

在一些实施例中,如果本方法实施例中的模型预测模块为工参生成模型预测模块,那么样本数据包括基站设备的MR数据(包括UE的定位信息)和配置数据。该样本数据与原始工参列表中该设备天线的原始工参具有对应的关系。In some embodiments, if the model prediction module in this method embodiment is an engineering parameter generation model prediction module, the sample data includes MR data (including UE positioning information) and configuration data of the base station device. The sample data has a corresponding relationship with the original working parameters of the device antenna in the original working parameter list.

在一些实施例中,如果本方法实施例中的模型预测模块为工参纠正模型,那么样本数据包括基站设备的MR数据(包括UE的定位信息)、配置数据和原始工程参数列表(本文中可简称为原始工参列表)中该设备天线的原始工参(即该设备天线的待纠正工参)。In some embodiments, if the model prediction module in this embodiment of the method is an engineering parameter correction model, the sample data includes MR data of the base station equipment (including the positioning information of the UE), configuration data, and a list of original engineering parameters (which may be used herein). The original working parameters of the device antenna (that is, the to-be-corrected working parameters of the device antenna) in the original engineering parameter list for short.

在一些实施例中,如果本方法实施例中的模型预测模块为工参预测模型,那么样本数据包括基站设备的MR数据(包括UE的定位信息)和配置数据。该样本数据与原始工参列表中该设备天线的原始工参具有对应的关系。In some embodiments, if the model prediction module in this method embodiment is an engineering parameter prediction model, the sample data includes MR data (including UE positioning information) and configuration data of the base station equipment. The sample data has a corresponding relationship with the original working parameters of the device antenna in the original working parameter list.

其中,原始工参列表包括一个或多个设备天线的原始工参。Wherein, the original working parameter table includes the original working parameters of one or more device antennas.

步骤704、将样本数据输入模型预测模块进行工参预测。Step 704 , input the sample data into the model prediction module to perform engineering parameter prediction.

可以理解的,当如果本方法实施例中的模型预测模块为工参生成模型预测模块,那么工参生成模型预测模块可根据样本数据,利用工参生成模型实现生成设备天线的预测工参。具体实施过程可参考前文图5实施例以及图19实施例步骤601-步骤607的相关描述,为了说明书的简洁,这里不再赘述。It can be understood that if the model prediction module in the method embodiment is an engineering parameter generation model prediction module, the engineering parameter generation model prediction module can use the engineering parameter generation model to realize the predicted engineering parameters of the equipment antenna according to the sample data. For the specific implementation process, reference may be made to the foregoing embodiment in FIG. 5 and the related descriptions of steps 601 to 607 in the embodiment of FIG. 19 , which are not repeated here for the sake of brevity of the description.

可以理解的,当如果本方法实施例中的模型预测模块为工参纠正模型预测模块,那么工参纠正模型预测模块可根据样本数据,利用工参纠正模型获得设备天线的预测工参。具体实施过程可参考前文图8实施例以及图19实施例步骤608-步骤611的相关描述,为了说明书的简洁,这里不再赘述。It can be understood that, if the model prediction module in this embodiment of the method is an engineering parameter correction model prediction module, the engineering parameter correction model prediction module can use the engineering parameter correction model to obtain the predicted engineering parameters of the equipment antenna according to the sample data. For the specific implementation process, reference may be made to the foregoing embodiment in FIG. 8 and the related descriptions of steps 608 to 611 in the embodiment of FIG. 19 , which are not repeated here for brevity of the description.

可以理解的,当如果本方法实施例中的模型预测模块为工参预测模型预测模块,那么工参预测模型预测模块可根据样本数据,利用工参预测模型获得设备天线的预测工参。具体实施过程可参考前文图11实施例以及图19实施例步骤601-步骤611的相关描述,为了说明书的简洁,这里不再赘述。It can be understood that if the model prediction module in this method embodiment is an engineering parameter prediction model prediction module, then the engineering parameter prediction model prediction module can obtain the predicted engineering parameters of the equipment antenna by using the engineering parameter prediction model according to the sample data. For the specific implementation process, reference may be made to the foregoing embodiment in FIG. 11 and the related descriptions of steps 601 to 611 in the embodiment of FIG. 19 , which are not repeated here for brevity of the description.

步骤705、将变量i设置为i+=1。Step 705: Set the variable i to i+=1.

步骤706、方法执行判断设备天线的预测工参与设备天线的原始工参之间的平均差异是否满足预设条件,若不满足预设条件,则方法继续执行步骤707;若不满足预设条件,则跳转到执行步骤709.Step 706, the method is executed to determine whether the average difference between the predicted working parameters of the equipment antenna and the original working parameters of the equipment antenna satisfies the preset condition, if the preset condition is not met, the method continues to step 707; if the preset condition is not met, Then jump to execution step 709.

举例来说,在一些实施例中,设备天线的数量有多个,各个设备天线的预测工参分别记为(Px1,Py1),(Px2,Py2),…,(Pxn,Pyn),其中,任意的预测工参(Pxi,Pyi)代表第i个设备天线(或称天馈)的预测工参。For example, in some embodiments, there are multiple device antennas, and the predicted operating parameters of each device antenna are respectively denoted as (Px1, Py1), (Px2, Py2), . . . , (Pxn, Pyn), where, Arbitrary predicted operating parameters (Pxi, Pyi) represent the predicted operating parameters of the i-th device antenna (or antenna feeder).

各个设备天线的原始工参分别记为(Rx1,Ry1),(Rx2,Ry2),…,(Rxn,Ryn),其中,任意的原始工参(Rxi,Ryi)代表第i个设备天线的原始工参。The original working parameters of each device antenna are recorded as (Rx1, Ry1), (Rx2, Ry2), ..., (Rxn, Ryn), where any original working parameters (Rxi, Ryi) represent the original working parameters of the i-th device antenna. Ginseng.

将上述各个设备天线的预测工参和原始工参输入如下公式:Input the predicted operating parameters and original operating parameters of the above-mentioned equipment antennas into the following formulas:

Figure BDA0001897193090000321
Figure BDA0001897193090000321

如果diff<预设值(例如,0.0002,本发明对预设值不作限定),则认为工参精度满足要求。也就是说,如果diff<预设值,则称设备天线的预测工参与设备天线的原始工参之间的平均差异满足预设条件。如果diff≥预设值,则称设备天线的预测工参与设备天线的原始工参之间的平均差异不满足预设条件。If diff<preset value (for example, 0.0002, the present invention does not limit the preset value), it is considered that the accuracy of the working parameter meets the requirements. That is to say, if diff<preset value, it is said that the average difference between the predicted parameters of the device antenna and the original parameters of the device antenna satisfies the preset condition. If the difference is greater than or equal to the preset value, it is said that the average difference between the predicted parameters of the device antenna and the original parameters of the device antenna does not meet the preset conditions.

需要说明的是,本方法在实际应用中,还可以设置更多的预设条件,例如可判断i与最大迭代次数(maxIterTimes)之间的关系,例如最大迭代次数设置为5(仅为示例,本发明对此不做限定)。如果i大于最大迭代次数,则方法跳转到执行步骤708;如果i小于等于最大迭代次数,则方法继续执行步骤707。It should be noted that, in practical applications of this method, more preset conditions can be set, for example, the relationship between i and the maximum number of iterations (maxIterTimes) can be determined, for example, the maximum number of iterations is set to 5 (only an example, The present invention does not limit this). If i is greater than the maximum number of iterations, the method jumps to step 708 ; if i is less than or equal to the maximum number of iterations, the method continues to perform step 707 .

步骤707、方法执行更新原始工参列表中的工参,将差异度较大的原始工参放入异常工参列表。然后跳转执行步骤702。Step 707: The method executes updating the working parameters in the original working parameter list, and placing the original working parameters with a larger degree of difference into the abnormal working parameter list. Then jump to step 702.

具体的,在一些实施方式中,设置一个异常工参列表,用于放置工参预测值与原始工参差异值较大的原始工参(例如大于等于步骤706中描述的预设值)。那么,通过步骤706,如果有一些设备天线的工参预测值与原始工参差异值较大(例如大于等于步骤706中描述的预设值),则将这样的设备天线的原始工参放入异常工参列表。如果有一些设备天线的工参预测值与原始工参差异值较小(例如小于步骤706中描述的预设值),则在原始工参列表中,将这样的设备天线的预测工参替换掉该设备天线的原始工参,从而实现对原始工参列表的更新。Specifically, in some embodiments, an abnormal working parameter list is set for placing the original working parameter with a large difference between the predicted value of the working parameter and the original working parameter (eg, greater than or equal to the preset value described in step 706 ). Then, through step 706, if there are some equipment antennas with a large difference between the predicted operating parameters and the original operating parameters (for example, greater than or equal to the preset value described in step 706), the original operating parameters of such equipment antennas are put into List of exception parameters. If there are some equipment antennas whose predicted operating parameters differ from the original operating parameters (for example, smaller than the preset value described in step 706 ), the predicted operating parameters of such equipment antennas are replaced in the original operating parameter list. The original working parameters of the device antenna, so as to realize the update of the original working parameter list.

需要说明的是,在可能的实现中,异常工参列表中也可只保存异常工参对应的设备天线的ID。It should be noted that, in a possible implementation, only the ID of the device antenna corresponding to the abnormal operating parameter may be stored in the abnormal operating parameter list.

步骤708、判断异常工参列表是否为空。如果异常工参列表为空,则方法继续执行步骤709;如果异常工参列表不为空,则方法跳转执行步骤703。Step 708: Determine whether the abnormal work parameter list is empty. If the abnormal parameter list is empty, the method proceeds to step 709 ; if the abnormal parameter list is not empty, the method jumps to step 703 .

步骤709、使用经由步骤704完成预测的且满足步骤706的预设条件的预设工参作为最终的纠正后的工参并输出。也就是说,通过执行上述步骤701-步骤709,可实现对各个设备天线的原始工参进行纠正,获得各个设备天线的较准确的预测工参。Step 709 , using the preset working parameters predicted through step 704 and satisfying the preset conditions in step 706 as the final corrected working parameters and outputting them. That is to say, by performing the above steps 701 to 709, the original operating parameters of each device antenna can be corrected, and more accurate predicted operating parameters of each device antenna can be obtained.

可以看到,本发明实施例能够通过预先训练好的用于工参预测的模型(如本实施例中的工参预测模型),基于现成的样本数据(例如MR数据、配置数据等)输入至该模型,即可实现生成和纠正设备天线的工参得到工参预测结果,基于该工参预测结果与基站设备的原始工参进行比较,即可实现更新基站设备的原始工参,从而获得基站设备可信度较高的工参值。所以,实施本发明实施例的技术方案能够克服现有技术的缺陷,有效降低设备天线工参的获取成本,提升工参的准确度。It can be seen that in this embodiment of the present invention, a pre-trained model for predicting working parameters (such as the predicting model for working parameters in this embodiment) can be input based on ready-made sample data (such as MR data, configuration data, etc.) This model can realize the generation and correction of the engineering parameters of the equipment antenna to obtain the predicted results of the engineering parameters. Based on the comparison of the predicted results of the engineering parameters with the original engineering parameters of the base station equipment, the original engineering parameters of the base station equipment can be updated to obtain the base station equipment. The working parameter value with high reliability of the device. Therefore, implementing the technical solutions of the embodiments of the present invention can overcome the defects of the prior art, effectively reduce the acquisition cost of the equipment antenna engineering parameters, and improve the accuracy of the engineering parameters.

上文详细阐述了本发明实施例系统架构及方法,下面基于相同的发明构思,继续提供了本发明实施例的相关设备。The system architecture and method of the embodiments of the present invention are described in detail above. Based on the same inventive concept, the following continues to provide related devices of the embodiments of the present invention.

参见图21,图21是本发明实施例提供的一种计算设备80的结构示意图,计算设备80包括:数据获取模块801和模型训练模块802,其中:Referring to FIG. 21, FIG. 21 is a schematic structural diagram of a computing device 80 provided by an embodiment of the present invention. The computing device 80 includes: a data acquisition module 801 and a model training module 802, wherein:

数据获取模块801,用于获取第一地理区域内的第一工程参数集、第一配置数据集、以及终端向所述第一地理区域内的多个设备天线中的第一设备天线上传的第一测量报告数据集;其中,所述第一工程参数集包括所述第一设备天线的工程参数,所述第一设备天线的工程参数包括所述第一设备天线的位置数据和姿态数据中的至少一个;所述第一配置数据集包括所述第一设备天线的配置数据,所述第一设备天线的配置数据表示所述第一设备天线的网络参数的配置信息;所述第一测量报告数据集中的测量报告数据包括所述终端的位置数据和信号接收功率数据;所述第一设备天线为所述多个设备天线中的任意设备天线;A data acquisition module 801 is configured to acquire a first engineering parameter set, a first configuration data set in a first geographical area, and a first data set uploaded by a terminal to a first device antenna among a plurality of device antennas in the first geographical area. A measurement report data set; wherein the first engineering parameter set includes engineering parameters of the first device antenna, and the engineering parameters of the first device antenna include position data and attitude data of the first device antenna. at least one; the first configuration data set includes configuration data of the first device antenna, the configuration data of the first device antenna represents configuration information of network parameters of the first device antenna; the first measurement report The measurement report data in the data set includes the position data and signal received power data of the terminal; the first device antenna is any device antenna among the plurality of device antennas;

模型训练模块802,用于根据所述第一设备天线的工程参数、所述第一设备天线的配置数据和所述测量报告数据集进行模型训练,获得天线工参预测模型;所述天线工参预测模型用于,根据终端向第二地理区域内的第二配置数据集、终端向所述第二地理区域内的第二设备天线上传的第二测量报告数据集,输出所述第二设备天线的工程参数。A model training module 802, configured to perform model training according to the engineering parameters of the first device antenna, the configuration data of the first device antenna, and the measurement report data set to obtain an antenna working parameter prediction model; the antenna working parameter The prediction model is used to output the second device antenna according to the second configuration data set in the second geographical area by the terminal and the second measurement report data set uploaded by the terminal to the second device antenna in the second geographical area engineering parameters.

在一些的实施例中,所述天线工参预测模型包括天线工参生成模型;所述模型训练模块802具体用于:根据所述第一设备天线的配置数据和所述测量报告数据集,获得第一样本特征数据;所述第一样本特征数据包括隶属所述第一设备天线的小区或远端射频单元RRU的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据;根据所述第一设备天线的配置数据,获得所述第一设备天线的天线类型;根据所述第一设备天线的工程参数和第一特征集合进行模型训练,获得所述天线工参生成模型;所述第一特征集合包括所述第一样本特征数据和所述第一设备天线的天线类型,所述天线工参生成模型用于根据输入的第一特征集合输出工程参数。In some embodiments, the antenna working parameter prediction model includes an antenna working parameter generation model; the model training module 802 is specifically configured to: obtain, according to the configuration data of the first device antenna and the measurement report data set, first sample feature data; the first sample feature data includes a plurality of received signal power data of a cell or a remote radio unit RRU belonging to the antenna of the first device, and each of the plurality of received signal power data. The position data of the terminal corresponding to the signal receiving power data; the antenna type of the first device antenna is obtained according to the configuration data of the first device antenna; the model is carried out according to the engineering parameters of the first device antenna and the first feature set training to obtain the antenna working parameter generation model; the first feature set includes the first sample feature data and the antenna type of the first device antenna, and the antenna working parameter generation model is used according to the input A feature set outputs engineering parameters.

在可能的实施例中,所述模型训练模块802具体用于:根据所述第一设备天线的配置数据,确定隶属所述第一设备天线的小区或RRU;从所述测量报告数据集中,确定所述小区或RRU对应的测量报告数据;根据所述小区或RRU对应的测量报告数据进行特征提取,获得所述第一样本特征数据。In a possible embodiment, the model training module 802 is specifically configured to: determine, according to the configuration data of the first device antenna, the cell or RRU that belongs to the first device antenna; from the measurement report data set, determine Measurement report data corresponding to the cell or RRU; and feature extraction is performed according to the measurement report data corresponding to the cell or RRU to obtain the first sample feature data.

在一些实施例中,所述天线工参预测模型既包括天线工参生成模型,还包括天线工参纠正模型;所述工程参数集还包括至少一个其他设备天线的工程参数;所述配置数据集还包括所述至少一个其他设备天线的配置数据;所述至少一个其他设备天线表示所述多个设备天线中除所述第一设备天线外的设备天线;所述模型训练模块802进一步用于:根据所述配置数据集和所述测量报告数据集,获得第二样本特征数据,所述第二样本特征数据包括所述至少一个其他设备天线的小区或RRU的多个信号接收功率数据、以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据和所述第一设备天线的小区或RRU的信号接收功率数据;根据所述天线工参生成模型,获得所述第一设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果;根据所述工程参数集和第二特征集合进行模型训练,获得所述天线工参纠正模型;所述第二特征集合包括所述第二样本特征数据、所述第一设备天线的工程参数的预测结果和所述至少一个其他设备天线的工程参数的预测结果,所述天线工参纠正模型用于根据输入的第二特征集合输出工程参数。In some embodiments, the antenna working parameter prediction model includes both an antenna working parameter generation model and an antenna working parameter correction model; the engineering parameter set further includes engineering parameters of at least one other device antenna; the configuration data set It also includes configuration data of the at least one other device antenna; the at least one other device antenna represents a device antenna other than the first device antenna among the multiple device antennas; the model training module 802 is further configured to: Obtain second sample characteristic data according to the configuration data set and the measurement report data set, where the second sample characteristic data includes a plurality of received signal power data of a cell or an RRU of the antenna of the at least one other device, and all The position data of the terminal corresponding to each signal received power data in the plurality of signal received power data and the signal received power data of the cell or RRU of the antenna of the first device; according to the antenna working parameter generation model, the first device is obtained. The prediction result of the engineering parameters of the device antenna and the prediction result of the engineering parameters of the at least one other device antenna; model training is performed according to the engineering parameter set and the second feature set, and the antenna engineering parameter correction model is obtained; The second feature set includes the second sample feature data, the prediction result of the engineering parameter of the first device antenna, and the prediction result of the engineering parameter of the at least one other device antenna, and the antenna engineering parameter correction model is used for inputting The second feature set of output engineering parameters.

在可能的实施例中,所述至少一个其他设备天线为与所述第一设备天线周边的top N个设备天线,所述top N个设备天线表示所述多个设备天线中与所述第一设备天线最相关的N个的设备天线,N为大于等于1的整数。In a possible embodiment, the at least one other device antenna is top N device antennas surrounding the first device antenna, and the top N device antennas indicate that the first device antennas are the same as the first device antenna. The device antennas of the N most relevant device antennas, where N is an integer greater than or equal to 1.

在可能的实施例中,所述模型训练模块802具体用于:根据所述配置数据集,确定隶属所述第一设备天线的小区或RRU,和隶属于所述top N个设备天线的小区或RRU;根据所述第一测量报告数据集,设置所述top N个设备天线的小区或RRU中任一设备天线的小区或RRU分别对应至少一个测量报告数据,所述至少一个测量报告数据中每个测量报告数据包括所述任一设备天线的小区或RRU的信号接收功率数据、所述第一设备天线的小区或RRU的信号接收功率数据以及所述终端的位置数据;根据所述top N个设备天线的小区或RRU中各个设备天线的小区或RRU对应的测量报告数据进行特征提取,获得所述第二样本特征数据。In a possible embodiment, the model training module 802 is specifically configured to: determine, according to the configuration data set, a cell or RRU belonging to the first device antenna, and a cell or RRU belonging to the top N device antennas RRU; according to the first measurement report data set, set the cell of the top N device antennas or the cell of any device antenna in the RRU or the RRU to correspond to at least one measurement report data, and each of the at least one measurement report data The pieces of measurement report data include the received signal power data of the cell or RRU of any device antenna, the received signal power data of the cell or RRU of the first device antenna, and the location data of the terminal; according to the top N Feature extraction is performed on the cell of the device antenna or the measurement report data corresponding to the cell of each device antenna or the RRU in the RRU to obtain the second sample feature data.

其中,所述计算设备80具体可用于实现本发明各个实施例描述的模型训练过程。The computing device 80 may be specifically used to implement the model training process described in the various embodiments of the present invention.

具体实施中,所述数据获取模块801和所述模型训练模块802的程序代码可存储于上述图2实施例所描述的存储器1022,并可被处理器1021调用,以执行本发明实施例所描述的模型训练方法。In a specific implementation, the program codes of the data acquisition module 801 and the model training module 802 may be stored in the memory 1022 described in the embodiment of FIG. 2 above, and may be called by the processor 1021 to execute the description in the embodiment of the present invention model training method.

具体实施中,所述数据获取模块801和所述模型训练模块802可共同用于实现上述图4实施例所描述的工参生成模型训练模块的功能,或共同用于实现上述图7实施例所描述的工参纠正模型训练模块的功能,或共同用于实现上述图10实施例所描述的工参预测模型训练模块的功能。具体实现过程可参考上述图12实施例或图14实施例的相关描述,为了说明书的简洁,这里不再赘述。In a specific implementation, the data acquisition module 801 and the model training module 802 can be jointly used to implement the function of the model training module for generating the work parameters described in the embodiment of FIG. The described function of the training module for the correction model of the engineering parameter may be jointly used to realize the function of the training module for the training module of the engineering parameter prediction model described in the above embodiment of FIG. 10 . For the specific implementation process, reference may be made to the relevant description of the embodiment in FIG. 12 or the embodiment in FIG. 14 , which is not repeated here for the sake of brevity of the description.

参见图22,图22是本发明实施例提供的一种计算设备90的结构示意图,计算设备90包括:数据获取模块901和工参预测模块902,其中:Referring to FIG. 22, FIG. 22 is a schematic structural diagram of a computing device 90 provided by an embodiment of the present invention. The computing device 90 includes: a data acquisition module 901 and an industrial parameter prediction module 902, wherein:

数据获取模块901,用于获取第二地理区域内的第二配置数据集、终端向所述第二地理区域内的第二设备天线上传的第二测量报告数据集;其中,所述第二配置数据集包括所述第二设备天线的配置数据,所述第二设备天线的配置数据表示所述第二设备天线的网络参数的配置信息;所述第二测量报告数据集中的测量报告数据包括所述终端的位置数据和信号接收功率数据;所述第二设备天线为所述第二地理区域内的多个设备天线中的任意设备天线;A data acquisition module 901, configured to acquire a second configuration data set in a second geographical area and a second measurement report data set uploaded by a terminal to a second device antenna in the second geographical area; wherein the second configuration The data set includes configuration data of the second device antenna, where the configuration data of the second device antenna represents configuration information of network parameters of the second device antenna; the measurement report data in the second measurement report data set includes all the location data and signal reception power data of the terminal; the second device antenna is any device antenna among multiple device antennas in the second geographic area;

工参预测模块902,用于将所述第二配置数据集和所述第二测量报告数据集输入至天线工参预测模型,获得所述第二设备天线的工程参数的预测结果;其中,所述天线工参预测模型是根据第一地理区域内的第一工程参数集、第一配置数据集、以及终端向所述第一地理区域内的多个设备天线中的第一设备天线上传的第一测量报告数据集进行训练而得到的;所述第二设备天线的工程参数包括所述第一设备天线的位置数据和姿态数据中的至少一个。An engineering parameter prediction module 902, configured to input the second configuration data set and the second measurement report data set into an antenna engineering parameter prediction model to obtain a prediction result of engineering parameters of the second device antenna; The antenna engineering parameter prediction model is based on the first engineering parameter set in the first geographical area, the first configuration data set, and the first device antenna uploaded by the terminal to the first device antenna among the plurality of device antennas in the first geographical area. A measurement report data set is obtained by training; the engineering parameters of the second device antenna include at least one of position data and attitude data of the first device antenna.

在一些实施例中,所述天线工参预测模型包括天线工参生成模型;所述工参预测模块902具体用于:根据所述第二测量报告数据集和所述第二设备天线的配置数据,获得第一样本特征数据;所述第一样本特征数据包括隶属所述第二设备天线的小区或远端射频单元RRU的多个信号接收功率数据,以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据;根据所述第二设备天线的配置数据,获得所述第二设备天线的天线类型;将所述第一样本特征数据和所述第二设备天线的天线类型输入至所述天线工参生成模型,获得所述第二设备天线的工程参数的第一预测结果。In some embodiments, the antenna working parameter prediction model includes an antenna working parameter generation model; the working parameter prediction module 902 is specifically configured to: according to the second measurement report data set and the configuration data of the second device antenna , obtain first sample feature data; the first sample feature data includes multiple signal received power data of the cell or remote radio unit RRU belonging to the second device antenna, and the multiple signal received power data The position data of the terminal corresponding to the received power data of each signal in the data; according to the configuration data of the second device antenna, the antenna type of the second device antenna is obtained; the first sample feature data and the second device The antenna type of the antenna is input into the antenna engineering parameter generation model, and a first prediction result of the engineering parameter of the second device antenna is obtained.

在可能实施例中,所述工参预测模块902具体用于:根据所述第二设备天线的配置数据,确定隶属所述第二设备天线的小区或RRU;从所述第二测量报告数据集中,确定所述小区或RRU对应的测量报告数据;根据所述小区或RRU对应的测量报告数据进行特征提取,获得所述第一样本特征数据。In a possible embodiment, the working parameter prediction module 902 is specifically configured to: determine a cell or RRU belonging to the second device antenna according to the configuration data of the second device antenna; from the second measurement report data set , determine the measurement report data corresponding to the cell or the RRU; perform feature extraction according to the measurement report data corresponding to the cell or the RRU to obtain the first sample feature data.

在一些实施例中,所述天线工参预测模型既包括天线工参生成模型,还包括天线工参纠正模型;所述第二配置数据集还包括至少一个其他设备天线的配置数据;所述至少一个其他设备天线表示所述多个设备天线中除所述第二设备天线外的设备天线;所述工参预测模块902进一步用于:根据所述第二配置数据集和所述第二测量报告数据集,获得第二样本特征数据,所述第二样本特征数据包括所述至少一个其他设备天线的小区或RRU的多个信号接收功率数据、以及所述多个信号接收功率数据中各个信号接收功率数据对应的终端的位置数据和所述第二设备天线的小区或RRU的信号接收功率数据;根据所述天线工参生成模型,获得所述至少一个其他设备天线的工程参数的预测结果;将所述第二样本特征数据、所述第二设备天线的工程参数的第一预测结果和所述至少一个其他设备天线的工程参数的预测结果输入至所述天线工参纠正模型,获得所述第二设备天线的工程参数的第二预测结果。In some embodiments, the antenna working parameter prediction model includes both an antenna working parameter generation model and an antenna working parameter correction model; the second configuration data set further includes configuration data of at least one other device antenna; the at least one One other device antenna represents a device antenna other than the second device antenna among the plurality of device antennas; the operating parameter prediction module 902 is further configured to: according to the second configuration data set and the second measurement report A data set to obtain second sample feature data, where the second sample feature data includes multiple signal received power data of the cell or RRU of the at least one other device antenna, and each signal received in the multiple signal received power data The position data of the terminal corresponding to the power data and the signal received power data of the cell or RRU of the antenna of the second device; obtain the prediction result of the engineering parameters of the antenna of the at least one other device according to the generation model of the antenna engineering parameters; The second sample feature data, the first prediction result of the engineering parameter of the second device antenna, and the prediction result of the engineering parameter of the at least one other device antenna are input into the antenna engineering parameter correction model, and the first prediction result is obtained. Second prediction results of engineering parameters of two device antennas.

在可能实施例中,所述至少一个其他设备天线为与所述第二设备天线周边的topN个设备天线,所述top N个设备天线表示所述多个设备天线中与所述第二设备天线最相关的N个的设备天线,N为大于等于1的整数。In a possible embodiment, the at least one other device antenna is topN device antennas surrounding the second device antenna, and the top N device antennas represent the second device antenna among the plurality of device antennas. The most relevant N device antennas, where N is an integer greater than or equal to 1.

在可能实施例中,所述工参预测模块902具体用于:根据所述第二配置数据集,确定隶属所述第二设备天线的小区或RRU,和隶属于所述top N个设备天线的小区或RRU;根据所述第二测量报告数据集,设置所述top N个设备天线的小区或RRU中任一设备天线的小区或RRU分别对应至少一个测量报告数据,所述至少一个测量报告数据中每个测量报告数据包括所述任一设备天线的小区的信号接收功率数据、所述第二设备天线的小区的信号接收功率数据以及所述终端的位置数据;根据所述top N个设备天线的小区或RRU中各个设备天线的小区或RRU对应的测量报告数据进行特征提取,获得所述第二样本特征数据。In a possible embodiment, the working parameter prediction module 902 is specifically configured to: determine, according to the second configuration data set, the cells or RRUs that belong to the second device antenna, and the cells or RRUs that belong to the top N device antennas. cell or RRU; according to the second measurement report data set, the cell of the top N device antennas or the cell or RRU of any device antenna in the RRU is set to correspond to at least one measurement report data, and the at least one measurement report data Each measurement report data includes signal received power data of the cell of any device antenna, signal received power data of the cell of the second device antenna, and position data of the terminal; according to the top N device antennas Feature extraction is performed on the measurement report data corresponding to the cell or the RRU of each device antenna in the cell or the RRU to obtain the second sample feature data.

其中,所述计算设备90具体可用于实现本发明各个实施例描述的基于模型进行工参预测过程。Wherein, the computing device 90 may be specifically used to implement the model-based prediction process of the operating parameters described in the various embodiments of the present invention.

具体实施中,所述数据获取模块901和所述工参预测模块902的程序代码可存储于上述图2实施例所描述的存储器1022,并可被处理器1021调用,以执行本发明实施例所描述的基于模型的工参预测方法。In a specific implementation, the program codes of the data acquisition module 901 and the work parameter prediction module 902 may be stored in the memory 1022 described in the above-mentioned embodiment of FIG. A model-based approach to predicting engineering parameters is described.

具体实施中,所述数据获取模块901和所述工参预测模块902可共同用于实现上述图5实施例所描述的工参生成模型预测模块的功能,或共同用于实现上述图8实施例所描述的工参纠正模型预测模块的功能,或共同用于实现上述图11实施例所描述的工参预测模型预测模块的功能。具体实现过程可参考上述图13实施例或图19实施例或图20实施例的相关描述,为了说明书的简洁,这里不再赘述。In a specific implementation, the data acquisition module 901 and the work parameter prediction module 902 may be jointly used to implement the function of the work parameter generation model prediction module described in the above embodiment in FIG. 5 , or used together to implement the above embodiment in FIG. 8 The described functions of the engineering parameter correction model prediction module may be jointly used to implement the functions of the engineering parameter prediction model prediction module described in the embodiment of FIG. 11 . For the specific implementation process, reference may be made to the relevant description of the above-mentioned embodiment in FIG. 13 , the embodiment in FIG. 19 , or the embodiment in FIG. 20 , which is not repeated here for the sake of brevity of the description.

基于相同的发明构思,本发明实施例提供了工参确定系统,所述工参确定系统可包括如图21所描述的计算设备80和如图22所描述的计算设备90。具体实现中,所述工参确定系统例如为上文图3实施例所描述的工参确定系统201、或图6实施例所描述的工参确定系统202、或图9实施例所描述的工参确定系统203。Based on the same inventive concept, an embodiment of the present invention provides an industrial parameter determination system, and the industrial parameter determination system may include the computing device 80 described in FIG. 21 and the computing device 90 described in FIG. 22 . In a specific implementation, the working parameter determination system is, for example, the working parameter determination system 201 described in the embodiment of FIG. 3 above, or the working parameter determination system 202 described in the embodiment of FIG. 6 , or the working parameter determination system described in the embodiment of FIG. 9 Refer to the determination system 203 .

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者任意组合来实现。当使用软件实现时,可以全部或者部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或其他可编程装置。所述计算机指令可存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网络站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、微波等)方式向另一个网络站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质,也可以是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带等)、光介质(例如数字视频光盘(Digital Video Disc,DVD)等)、或者半导体介质(例如固态硬盘)等等。In the above embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination. When implemented in software, it can be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions, and when the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present invention are generated. The computer may be a general purpose computer, special purpose computer, computer network, or other programmable device. The computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a network site, computer, server, or data center Transmission to another network site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, microwave, etc.). The computer-readable storage medium may be any available medium that can be accessed by a computer, or may be a data storage device such as a server, a data center, or the like that includes one or more available media integrated. The usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes, etc.), optical media (eg, Digital Video Disc (DVD), etc.), or semiconductor media (eg, solid-state drives), and the like.

在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above-mentioned embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.

Claims (18)

1. A method of predicting antenna engineering parameters, comprising:
acquiring a first engineering parameter set, a first configuration data set and a first measurement report data set uploaded to a first equipment antenna by a terminal; wherein the first set of engineering parameters comprises engineering parameters of the first device antenna including at least one of position data and attitude data of the first device antenna; the first set of configuration data comprises configuration data of the first device antenna, the configuration data of the first device antenna representing configuration information of network parameters of the first device antenna; measurement report data in the first measurement report data set comprises position data and signal received power data of the terminal;
performing model training according to the engineering parameters of the first equipment antenna, the configuration data of the first equipment antenna and the first measurement report data set to obtain an antenna engineering parameter prediction model; the antenna working parameter prediction model is used for outputting the engineering parameters of a second equipment antenna according to a second configuration data set and a second measurement report data set uploaded to the second equipment antenna by a terminal, wherein the second configuration data set comprises the configuration data of the second equipment antenna;
The antenna working parameter prediction model comprises an antenna working parameter generation model and an antenna working parameter correction model;
the performing model training according to the engineering parameters of the first device antenna, the configuration data of the first device antenna, and the first measurement report data set to obtain an antenna engineering parameter prediction model specifically includes:
performing model training according to the engineering parameters of the first equipment antenna, the configuration data of the first equipment antenna and the first measurement report data set to obtain an antenna working parameter generation model;
obtaining a prediction result of the engineering parameters of the first equipment antenna and a prediction result of the engineering parameters of the at least one other equipment antenna according to the antenna engineering parameter generation model;
performing model training according to the first engineering parameter set and the second characteristic set to obtain the antenna engineering parameter correction model; the second feature set comprises second sample feature data, a prediction result of the engineering parameters of the first device antenna and a prediction result of the engineering parameters of the at least one other device antenna, the antenna engineering parameter correction model is used for outputting the engineering parameters according to the input second feature set, and the first engineering parameter set further comprises the engineering parameters of the at least one other device antenna around the first device antenna; the second sample characteristic data includes multiple pieces of signal reception power data of the cell or the RRU of the at least one other device antenna, and position data of the terminal corresponding to each piece of signal reception power data in the multiple pieces of signal reception power data and signal reception power data of the cell or the RRU of the first device antenna.
2. The method of claim 1,
the performing model training according to the engineering parameters of the first device antenna, the configuration data of the first device antenna, and the first measurement report data set to obtain the antenna working parameter generation model includes:
obtaining first sample characteristic data of the first device antenna from the configuration data of the first device antenna and the first measurement report data set; the first sample characteristic data comprises a plurality of signal receiving power data of a cell or a remote radio unit RRU belonging to the first equipment antenna and position data of a terminal corresponding to each signal receiving power data in the plurality of signal receiving power data;
obtaining the antenna type of the first equipment antenna according to the configuration data of the first equipment antenna;
performing model training according to the engineering parameters and the first characteristic set of the first equipment antenna to obtain an antenna engineering parameter generation model; the first feature set comprises the first sample feature data and an antenna type of the first device antenna, and the antenna parameter generation model is used for outputting engineering parameters according to the input first feature set.
3. The method of claim 2, wherein obtaining first sample characterization data for the first device antenna based on the configuration data for the first device antenna and the first measurement report data set comprises:
determining a cell or RRU (radio remote unit) belonging to the first equipment antenna according to the configuration data of the first equipment antenna;
determining measurement report data corresponding to the cell or the RRU from the first measurement report data set;
and performing feature extraction according to the measurement report data corresponding to the cell or the RRU to obtain first sample feature data of the first equipment antenna.
4. A method according to claim 2 or 3, wherein the first set of engineering parameters further comprises engineering parameters of at least one other device antenna peripheral to the first device antenna; the first set of configuration data further comprises configuration data of the at least one other device antenna;
after the model training is performed according to the engineering parameters and the first feature set of the first device antenna to obtain the antenna engineering parameter generation model, the method further includes:
obtaining second sample characteristic data of the first device antenna from the first configuration data set and the first measurement report data set.
5. The method according to claim 4, wherein the at least one other device antenna is top N device antennas around the first device antenna, the top N device antennas representing N device antennas most correlated to the first device antenna among the plurality of device antennas, and N being an integer equal to or greater than 1.
6. The method of claim 5, wherein obtaining second sample characterization data for the first device antenna based on the first configuration data set and the first measurement report data set comprises:
determining a cell or RRU (radio remote unit) belonging to the first equipment antenna and a cell or RRU belonging to the top N equipment antennas according to the first configuration data set;
setting at least one measurement report data corresponding to a cell of the top N device antennas or a cell of any one of RRUs according to the first measurement report data set, wherein each measurement report data in the at least one measurement report data comprises signal receiving power data of the cell of any one of the device antennas or the RRUs, signal receiving power data of the cell of the first device antenna or the RRU and position data of the terminal;
And performing feature extraction according to the cell of the top N device antennas or the cell of each device antenna in the RRUs or the measurement report data corresponding to the RRU, and obtaining second sample feature data of the first device antenna.
7. A method of predicting antenna engineering parameters, comprising:
acquiring a second configuration data set and a second measurement report data set uploaded to a second equipment antenna by the terminal; wherein the second configuration data set comprises configuration data of the second device antenna, the configuration data of the second device antenna representing configuration information of network parameters of the second device antenna; measurement report data in the second measurement report data set comprises position data and signal received power data of the terminal;
inputting the second configuration data set and the second measurement report data set into an antenna engineering parameter prediction model to obtain a prediction result of the engineering parameters of the second equipment antenna; the antenna engineering parameter prediction model is obtained by training according to a first engineering parameter set, a first configuration data set and a first measurement report data set uploaded to a first equipment antenna in a first antenna set by a terminal; the engineering parameters of the second device antenna comprise at least one of position data and attitude data of the first device antenna;
The antenna working parameter prediction model comprises an antenna working parameter generation model and an antenna working parameter correction model;
inputting the second configuration data set and the second measurement report data set into an antenna engineering parameter prediction model to obtain a prediction result of the engineering parameters of the second equipment antenna, including:
obtaining a first prediction result of the engineering parameters of the first equipment antenna according to the antenna engineering parameter generation model;
obtaining a prediction result of the engineering parameters of at least one other equipment antenna according to the antenna engineering parameter generation model;
inputting second sample characteristic data of the second equipment antenna, a first prediction result of the engineering parameters of the second equipment antenna and a prediction result of the engineering parameters of the at least one other equipment antenna into the antenna engineering parameter correction model to obtain a second prediction result of the engineering parameters of the second equipment antenna; the second sample characteristic data of the second device antenna includes multiple pieces of signal reception power data of the cell or the RRU of the at least one other device antenna, and location data of a terminal corresponding to each piece of signal reception power data in the multiple pieces of signal reception power data and the signal reception power data of the cell or the RRU of the second device antenna.
8. The method of claim 7, wherein the first set of engineering parameters comprises engineering parameters of the first device antenna including at least one of position data and attitude data of the first device antenna; the first set of configuration data comprises configuration data of the first device antenna, the configuration data of the first device antenna representing configuration information of network parameters of the first device antenna; the measurement report data in the first measurement report data set comprises position data and signal received power data of the terminal.
9. The method according to claim 7 or 8, wherein obtaining a first prediction of the engineering parameters of the first device antenna from the antenna engineering parameter generation model comprises:
obtaining first sample characteristic data of the second device antenna according to the second measurement report data set and the configuration data of the second device antenna; the first sample characteristic data of the second device antenna comprises a plurality of signal receiving power data of a cell or a Remote Radio Unit (RRU) which is subordinate to the second device antenna and position data of a terminal corresponding to each signal receiving power data in the plurality of signal receiving power data;
Obtaining the antenna type of the second equipment antenna according to the configuration data of the second equipment antenna;
and inputting the first sample characteristic data of the second equipment antenna and the antenna type of the second equipment antenna into the antenna engineering parameter generation model to obtain a first prediction result of the engineering parameters of the second equipment antenna.
10. The method of claim 9, wherein the antenna parameter generation model is obtained by model training according to engineering parameters and a first feature set of the first device antenna; the first feature set includes first sample feature data of the first device antenna and an antenna type of the first device antenna, where the first sample feature data of the first device antenna includes multiple signal reception power data of a cell or an RRU that belongs to the first device antenna, and location data of a terminal corresponding to each signal reception power data in the multiple signal reception power data.
11. The method of claim 9, wherein obtaining the first sample characteristic data of the second device antenna according to the second measurement report data set and the configuration data of the second device antenna comprises:
Determining a cell or RRU (radio remote unit) belonging to the second equipment antenna according to the configuration data of the second equipment antenna;
determining measurement report data corresponding to the cell or the RRU from the second measurement report data set;
and performing feature extraction according to the measurement report data corresponding to the cell or the RRU to obtain first sample feature data of the second equipment antenna.
12. The method according to any one of claims 8, 10 and 11, wherein the second configuration data set further comprises configuration data of at least one other device antenna peripheral to the second device antenna;
after obtaining the first prediction result of the engineering parameter of the second device antenna, the method further includes:
obtaining second sample characteristic data of the second device antenna from the second configuration data set and the second measurement report data set.
13. The method of claim 12, wherein the antenna engineering parameter correction model is obtained by model training according to the first engineering parameter set and the second feature set; wherein the first engineering parameter set comprises engineering parameters of the first equipment antenna and engineering parameters of at least one other equipment antenna around the first equipment antenna; the second feature set comprises second sample feature data of the first device antenna, a prediction result of the engineering parameter of the first device antenna, and a prediction result of the engineering parameter of at least one other device antenna around the first device antenna; the second sample characteristic data includes multiple pieces of signal reception power data of a cell of at least one other device antenna or an RRU around the first device antenna, and position data of a terminal corresponding to each piece of signal reception power data in the multiple pieces of signal reception power data and signal reception power data of the cell or the RRU of the first device antenna; the prediction result of the engineering parameter of the first equipment antenna and the prediction result of the engineering parameter of at least one other equipment antenna around the first equipment antenna are obtained according to the antenna engineering parameter generation model.
14. The method according to claim 12, wherein the at least one other device antenna around the second device antenna is top N device antennas around the second device antenna, the top N device antennas representing N device antennas most correlated to the second device antenna among the plurality of device antennas, where N is an integer greater than or equal to 1.
15. The method of claim 14, wherein obtaining second sample characterization data for the second device antenna based on the second configuration data set and the second measurement report data set comprises:
determining a cell or RRU (radio remote unit) belonging to the second equipment antenna and a cell or RRU belonging to the top N equipment antennas according to the second configuration data set;
setting at least one measurement report data corresponding to the cell of the top N device antennas or the cell of any one of the RRUs according to the second measurement report data set, wherein each measurement report data in the at least one measurement report data comprises signal receiving power data of the cell of any one device antenna, signal receiving power data of the cell of the second device antenna and position data of the terminal;
And performing feature extraction according to the cell of the top N device antennas or the cell of each device antenna in the RRUs or the measurement report data corresponding to the RRU, and obtaining second sample feature data of the second device antenna.
16. A computing device that predicts antenna engineering parameters, the computing device comprising a processor and a memory, wherein:
the memory is used for storing a program code, a first engineering parameter set, a first configuration data set and a first measurement report data set uploaded to a first equipment antenna by a terminal; wherein the first set of engineering parameters comprises engineering parameters of the first device antenna including at least one of position data and attitude data of the first device antenna; the first set of configuration data comprises configuration data of the first device antenna, the configuration data of the first device antenna representing configuration information of network parameters of the first device antenna; measurement report data in the first measurement report data set comprises position data and signal received power data of the terminal;
the processor is configured to execute the program code in the memory to implement the method of any of claims 1-6.
17. A computing device that predicts antenna engineering parameters, the computing device comprising a processor and a memory, wherein:
the memory is used for storing a program code, a second configuration data set and a second measurement report data set uploaded to a second equipment antenna by the terminal; wherein the second configuration data set comprises configuration data of the second device antenna, the configuration data of the second device antenna representing configuration information of network parameters of the second device antenna; measurement report data in the second measurement report data set comprises position data and signal received power data of the terminal;
the processor is configured to execute the program code in the memory to implement the method of any of claims 7-15.
18. A system for predicting antenna engineering parameters, the system comprising the computing device for training an antenna parameters prediction model of claim 16 and the computing device for predicting parameters based on the antenna parameters prediction model of claim 17, wherein:
the computing device for training the antenna engineering parameter prediction model is specifically configured to obtain a first engineering parameter set, a first configuration data set, and a first measurement report data set uploaded to the first device antenna by a terminal; performing model training according to the engineering parameters of the first equipment antenna, the configuration data of the first equipment antenna and the first measurement report data set to obtain an antenna engineering parameter prediction model; inputting the antenna parameters prediction model to the computing device for predicting the parameters based on the antenna parameters prediction model;
The computing device for predicting the power parameters based on the antenna power parameter prediction model is specifically configured to obtain a second configuration data set and a second measurement report data set uploaded to a second device antenna by the terminal; inputting the second configuration data set and the second measurement report data set into an antenna engineering parameter prediction model to obtain a prediction result of the engineering parameters of the second equipment antenna; the second set of configuration data includes configuration data for the second device antenna.
CN201811502499.0A 2018-12-07 2018-12-07 Method and device for predicting antenna engineering parameters Active CN111368384B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811502499.0A CN111368384B (en) 2018-12-07 2018-12-07 Method and device for predicting antenna engineering parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811502499.0A CN111368384B (en) 2018-12-07 2018-12-07 Method and device for predicting antenna engineering parameters

Publications (2)

Publication Number Publication Date
CN111368384A CN111368384A (en) 2020-07-03
CN111368384B true CN111368384B (en) 2022-06-10

Family

ID=71209727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811502499.0A Active CN111368384B (en) 2018-12-07 2018-12-07 Method and device for predicting antenna engineering parameters

Country Status (1)

Country Link
CN (1) CN111368384B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826988B (en) * 2021-01-29 2024-12-03 中国电信股份有限公司 Method and device for abnormality detection and parameter filling of time series data
CN113642168B (en) * 2021-08-09 2024-07-05 佛山科学技术学院 Antenna design method based on structural parameter prediction and crowd optimization
CN115915231A (en) * 2021-08-12 2023-04-04 中国移动通信集团设计院有限公司 Cell azimuth prediction model training method, device, equipment and storage medium
CN113746572B (en) * 2021-08-31 2023-12-05 深圳市华信天线技术有限公司 Method for detecting GNSS signal receiving performance of base station antenna industrial parameter equipment
CN116249134A (en) * 2021-12-08 2023-06-09 中国电信股份有限公司 Base station azimuth correction method, device and system and storage medium
CN116405958B (en) * 2023-03-24 2025-09-02 杭州东方通信软件技术有限公司 LTE base station antenna angle optimization method and device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778409A (en) * 2009-12-23 2010-07-14 华为技术有限公司 Method, device and system for obtaining adjacent area antenna configuration parameters
EP2413520A1 (en) * 2010-07-26 2012-02-01 Alcatel Lucent A method for transmission and amplification of signals, a transmitting device and a receiving device therefor
CN102065445A (en) * 2010-11-30 2011-05-18 广州天越电子科技有限公司 Simulation system and method for realizing wireless network communication rate coverage
CN103983235B (en) * 2014-05-30 2016-05-18 西安融思电子信息技术有限公司 Antenna for base station engineering parameter measuring method
US9866993B2 (en) * 2015-02-27 2018-01-09 Qualcomm Incorporated Distribution and utilization of antenna information for location determination operations
CN105509704B (en) * 2016-01-04 2018-05-22 深圳市顶一精密五金有限公司 The longitude and latitude localization method of outdoor short-wave antenna
CN107830846B (en) * 2017-09-30 2020-04-10 杭州艾航科技有限公司 Method for measuring angle of communication tower antenna by using unmanned aerial vehicle and convolutional neural network
CN108375363B (en) * 2017-12-05 2021-06-04 中国移动通信集团福建有限公司 Antenna azimuth deflection verification method, device, equipment and medium
CN108920841B (en) * 2018-07-05 2023-02-14 中南大学 Antenna design method
CN111628833B (en) * 2020-06-10 2022-02-08 桂林电子科技大学 MIMO antenna number estimation method based on convolutional neural network

Also Published As

Publication number Publication date
CN111368384A (en) 2020-07-03

Similar Documents

Publication Publication Date Title
CN111368384B (en) Method and device for predicting antenna engineering parameters
US20200178085A1 (en) Measurement-based wireless communications network design
CN104853379A (en) Wireless network quality assessment method and device
CN111818634A (en) A positioning method, positioning platform and user terminal in a 5G scenario
US20190200318A1 (en) Supporting an update of stored information
CN112867147B (en) Positioning method and positioning device
US12342189B2 (en) Cellular network indoor traffic auto-detection
US12279178B2 (en) Automated cell azimuth estimation and validation
CN109428657B (en) A positioning method and device
CN106934514A (en) The generation method and device of a kind of regression model
CN104303070A (en) Support data storage
CN112135291A (en) State detection method and device
CN113905324B (en) NSA mode-based anchor point station determining method, device, equipment and readable medium
WO2016086643A1 (en) Coverage distance acquiring method and apparatus
CN113453334B (en) Positioning method and positioning device
WO2017020273A1 (en) Method and device for positioning and method of generating a positioning database in multicarrier network
CN114487995B (en) Method for determining azimuth angle of cell antenna, related device and equipment
CN111405464B (en) Base station location detection method and device
EP4181590A1 (en) Antenna positioning method for first base station, and communication apparatus
US20150350943A1 (en) Obtaining Information for Radio Channel Modeling
CN111093207A (en) Signal coverage quality evaluation method and device of mobile communication network
CN114980194B (en) Interference detection method, device and storage medium
US11297594B2 (en) Automated cell location estimation and validation
CN114584918A (en) Indoor positioning method, related equipment and computer readable storage medium
US11991065B2 (en) Method and system to identify network nodes/cells with performance seasonality based on time series of performance data and external reference data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant