[go: up one dir, main page]

CN111373296B - Optical aperture expansion arrangement for near-eye displays - Google Patents

Optical aperture expansion arrangement for near-eye displays Download PDF

Info

Publication number
CN111373296B
CN111373296B CN201880074821.6A CN201880074821A CN111373296B CN 111373296 B CN111373296 B CN 111373296B CN 201880074821 A CN201880074821 A CN 201880074821A CN 111373296 B CN111373296 B CN 111373296B
Authority
CN
China
Prior art keywords
wedge
optical waveguide
pair
shaped
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880074821.6A
Other languages
Chinese (zh)
Other versions
CN111373296A (en
Inventor
耶谢·丹齐格
乔纳森·基尔柏格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lumus Ltd
Original Assignee
Lumus Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumus Ltd filed Critical Lumus Ltd
Priority to CN202310313061.2A priority Critical patent/CN116520574A/en
Publication of CN111373296A publication Critical patent/CN111373296A/en
Application granted granted Critical
Publication of CN111373296B publication Critical patent/CN111373296B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Eye Examination Apparatus (AREA)
  • Prostheses (AREA)

Abstract

An optical aperture expansion arrangement particularly useful for near-eye displays employs a waveguide (30, 140, 145) having a wedge-like configuration (25, 26) to generate and couple out two modes of image illumination propagating along the waveguide. Various embodiments employ a rectangular waveguide in which image illumination propagates by quadruple internal reflection. In some cases, a wedge-like configuration is combined with an array of partially reflective interior surfaces (45, 150) to achieve two-dimensional aperture expansion.

Description

用于近眼显示器的光学孔径扩展布置Optical aperture expansion arrangement for near-eye displays

技术领域technical field

本发明涉及近眼显示器,并且特别地,本发明涉及用于近眼显示器的光学孔径扩展布置。The present invention relates to near-eye displays, and in particular, the present invention relates to optical aperture expansion arrangements for near-eye displays.

背景技术Background technique

某些近眼显示器是基于用来将小型投影仪的孔径扩展为较大孔径的波导来向观察者的眼睛进行显示。波导包括输出耦合机构以向眼睛传送来自波导的光。Some near-eye displays are based on waveguides used to expand the aperture of a small projector to a larger aperture to display to the viewer's eyes. The waveguide includes an outcoupling mechanism to deliver light from the waveguide to the eye.

孔径扩展通常被细分为两个阶段,沿两个维度依次扩展。向眼睛提供输出的第二维度可以基于可从Lumus Ltd.(鲁姆斯有限公司)(以色列)商购获得的包含内部刻面(facet)的波导,或者可以采用包含用于耦出图像的衍射光学元件的波导。Aperture expansion is usually subdivided into two stages, with sequential expansion along two dimensions. The second dimension providing the output to the eye can be based on a waveguide containing internal facets commercially available from Lumus Ltd. (Israel), or a diffractive waveguide containing a diffractive surface for outcoupling the image can be employed. Optical components for waveguides.

可以使用各种布置来提供第一维度的孔径扩展。在PCT专利公布WO 2017/141242(下文称为“’242公布”)中描述了一个示例,在该示例中,通过波导的端部处的楔状构造(其从侧面观察形成平行四边形结构)来实现耦入和耦出。Various arrangements can be used to provide aperture expansion in the first dimension. An example is described in PCT Patent Publication WO 2017/141242 (hereinafter "the '242 publication"), in which this is achieved by a wedge-like configuration at the end of the waveguide, which forms a parallelogram structure when viewed from the side. Coupling in and out.

发明内容Contents of the invention

本发明是一种光学装置,其提供了在近眼显示器中特别有用的孔径扩展。The present invention is an optical device that provides aperture expansion that is particularly useful in near-eye displays.

根据本发明的实施方式的教导,提供了一种光学装置,包括:具有伸长方向的第一光波导,该第一光波导具有第一对平行面和第二对平行面,该第一对平行面和第二对平行面平行于伸长方向、形成矩形截面、用于通过第一对平行面和第二对平行面处的四重内反射来引导光,经历内反射的每个光线由此限定一组四个共轭传播方向,第一光波导的至少一部分由第一楔状成形表面和第二楔状成形表面定界,第一楔状成形表面被构造成使得与在第一光波导内沿第一组共轭传播方向中的第一方向传播的注入图像的至少一部分对应的光线通过第一楔状成形表面处的反射被偏转成沿第二组共轭传播方向中的第二方向传播,与第一方向相比,第二方向与伸长方向所成的角较小,并且其中,第二楔状成形表面平行于第一楔状成形表面,以将沿第二组共轭方向中的至少一个方向传播的图像偏转成沿第一组共轭方向中的至少一个方向传播,并且将沿第一组共轭方向中的一个方向传播的图像耦出为从第一光波导离开。According to the teachings of the embodiments of the present invention, an optical device is provided, comprising: a first optical waveguide having an elongated direction, the first optical waveguide having a first pair of parallel faces and a second pair of parallel faces, the first pair of The parallel faces and the second pair of parallel faces are parallel to the direction of elongation, forming a rectangular cross-section, for guiding light by quadruple internal reflection at the first pair of parallel faces and the second pair of parallel faces, each ray undergoing internal reflection is given by This defines a set of four conjugate propagation directions, at least a portion of the first optical waveguide is delimited by a first wedge-shaped shaping surface and a second wedge-shaped shaping surface, the first wedge-shaped shaping surface is configured such that it is aligned with the Light rays corresponding to at least a portion of the injected image propagating in a first direction of the first set of conjugate propagation directions are deflected to propagate in a second direction of the second set of conjugate propagation directions by reflection at the first wedge-shaped shaping surface, and The second direction forms a smaller angle with the direction of elongation than the first direction, and wherein the second wedge-shaped forming surface is parallel to the first wedge-shaped forming surface so as to align the direction along at least one of the second set of conjugate directions. The propagated image is deflected to propagate in at least one of the first set of conjugate directions, and the image propagated in one of the first set of conjugate directions is coupled out of the first optical waveguide.

根据本发明的实施方式的另一特征,第一楔状成形表面是第一光波导的外表面。According to another feature of an embodiment of the invention, the first wedge-shaped shaping surface is an outer surface of the first optical waveguide.

根据本发明的实施方式的另一特征,第一楔状成形表面涂覆有反射涂层。According to another feature of an embodiment of the invention, the first wedge-shaped forming surface is coated with a reflective coating.

根据本发明的实施方式的另一特征,第一楔状成形表面涂覆有部分反射涂层。According to another feature of an embodiment of the invention, the first wedge-shaped forming surface is coated with a partially reflective coating.

根据本发明的实施方式的另一特征,第一楔状成形表面是透光的,并且其中,至少平行面中与第一楔状成形表面呈面对关系的部分涂覆有反射涂层。According to another feature of an embodiment of the invention, the first wedge-shaped forming surface is light transmissive, and wherein at least that part of the parallel faces in facing relationship with the first wedge-shaped forming surface is coated with a reflective coating.

根据本发明的实施方式的另一特征,被引入第一光波导的注入图像通过第一楔状成形表面的第一反射被从注入方向偏转至第一组共轭方向中的方向,并且在自平行面中的至少之一的附加反射之后,通过自第一楔状成形表面的第二反射被进一步从第一组共轭方向中的方向偏转至第二组共轭方向中的方向。According to another feature of an embodiment of the invention, the injected image introduced into the first optical waveguide is deflected from the injection direction to directions in the first set of conjugate directions by a first reflection of the first wedge-shaped shaping surface, and in the self-parallel The additional reflection from at least one of the faces is further deflected from directions in the first set of conjugate directions to directions in the second set of conjugate directions by a second reflection from the first wedge-shaped shaping surface.

根据本发明的实施方式的另一特征,还设置有与第一波导的耦入区域相邻或邻接的耦入棱镜,该耦入棱镜包括形成第一波导的对应表面的延伸的至少一个表面。According to another feature of an embodiment of the invention, there is also provided an incoupling prism adjacent or adjacent to the incoupling region of the first waveguide, the incoupling prism comprising at least one surface forming an extension of the corresponding surface of the first waveguide.

根据本发明的实施方式的另一特征,还设置有具有两个主要平行表面的光导,其中,第一波导被部署成使得从第一波导耦出的图像被耦入到该光导以在该光导内通过两个主要平行表面处的内反射来传播,该光导还包括耦出布置,该耦出布置用于将在光导内传播的图像耦出以将该图像引向用户的眼睛。According to another feature of an embodiment of the present invention, there is also provided a light guide having two principally parallel surfaces, wherein the first waveguide is arranged such that an image outcoupled from the first waveguide is coupled into the light guide to flow in the light guide Propagated by internal reflection at the two principally parallel surfaces, the light guide also includes an outcoupling arrangement for outcoupling the image propagating within the light guide to direct the image towards the user's eye.

根据本发明的实施方式的另一特征,还设置有第二光波导,该第二光波导具有第一对平行面和第二对平行面,该第一对平行面和第二对平行面平行于伸长方向、形成矩形截面、用于通过第一对平行面和第二对平行面处的四重内反射来引导光,第二光波导的至少一部分由第一楔状成形表面和第二楔状成形表面定界,第一光波导和第二光波导被部署为呈堆叠关系,并且被构造成使得具有第一孔径尺寸的投射图像被部分地耦入第一光波导和第二光波导中的每一个,并且使得第一光波导的第二楔状成形表面和第二光波导第二楔状成形表面各自用作耦出构造的一部分,耦出构造被部署成提供具有与第一孔径尺寸更大的尺寸的有效输出孔径。According to another feature of the embodiment of the present invention, a second optical waveguide is further provided, the second optical waveguide has a first pair of parallel surfaces and a second pair of parallel surfaces, and the first pair of parallel surfaces and the second pair of parallel surfaces are parallel to each other. In the direction of elongation, forming a rectangular cross-section, for guiding light by quadruple internal reflection at the first pair of parallel faces and the second pair of parallel faces, at least a part of the second optical waveguide is formed by the first wedge-shaped forming surface and the second wedge-shaped Delimited by a shaping surface, a first optical waveguide and a second optical waveguide are deployed in a stacked relationship and configured such that a projected image having a first aperture size is partially coupled into the first optical waveguide and the second optical waveguide each, and such that the second wedge-shaped shaping surface of the first optical waveguide and the second wedge-shaped shaping surface of the second optical waveguide are each used as part of an outcoupling configuration arranged to provide a The effective output aperture of the size.

根据本发明的实施方式的另一特征,对于第一光波导和第二光波导中的每一个,第一楔状成形表面和平行面之一的与第一楔状成形表面呈面对关系的部分形成耦入构造,光学装置还包括填充棱镜,该填充棱镜基本上填充耦入构造之间的楔形间隙。According to another feature of an embodiment of the present invention, for each of the first and second optical waveguides, the first wedge-shaped shaping surface and a portion of one of the parallel faces in facing relationship with the first wedge-shaped shaping surface form The in-coupling formations, the optical device further includes a filling prism that substantially fills the wedge-shaped gap between the in-coupling formations.

根据本发明的实施方式的另一特征,第二光波导的第一楔状成形表面被涂覆成部分反射,从而将投射图像的一部分耦入并且允许投射图像的一部分到达第一耦入构造。According to another feature of an embodiment of the invention, the first wedge-shaped shaped surface of the second optical waveguide is coated partially reflective, thereby incoupling a part of the projected image and allowing a part of the projected image to reach the first incoupling formation.

根据本发明的实施方式的另一特征,平行面之一的与第一光波导的第一楔状成形表面呈面对关系的部分被涂覆成部分反射,从而将投射图像的一部分耦入并且允许投射图像的一部分到达第二耦入构造。According to another feature of an embodiment of the invention, the portion of one of the parallel faces in facing relation to the first wedge-shaped shaping surface of the first optical waveguide is coated to be partially reflective, thereby coupling in a portion of the projected image and allowing A portion of the projected image reaches the second in-coupling configuration.

根据本发明的实施方式的另一特征,第一光波导和第二光波导是至少三个光波导的堆叠的一部分。According to another feature of embodiments of the invention, the first optical waveguide and the second optical waveguide are part of a stack of at least three optical waveguides.

根据本发明的实施方式的另一特征,从第二光波导耦出的图像传播穿过第一光波导。According to another feature of an embodiment of the invention, the image outcoupled from the second optical waveguide propagates through the first optical waveguide.

根据本发明的实施方式的另一特征,第一光波导的第一楔状成形表面和第二楔状成形表面以斜角相对于第一对平行面倾斜并且垂直于第二对平行面。According to another feature of an embodiment of the invention, the first wedge-shaped shaping surface and the second wedge-shaped shaping surface of the first optical waveguide are inclined at an oblique angle relative to the first pair of parallel faces and perpendicular to the second pair of parallel faces.

根据本发明的实施方式的另一特征,第一光波导的第一楔状成形表面和第二楔状成形表面以斜角相对于第一对平行面倾斜和第二对平行面二者。According to another feature of an embodiment of the invention, the first wedge-shaped shaping surface and the second wedge-shaped shaping surface of the first optical waveguide are inclined at an oblique angle relative to both the first pair of parallel faces and the second pair of parallel faces.

根据本发明的实施方式的教导,还提供了一种光学装置,包括:第一光波导部,其具有用于通过内反射来引导光的至少第一对平行面,第一光波导包括被定向成与成对的平行面不平行的多个相互平行的部分反射表面;楔状构造,其被形成在第一楔状成形表面与平行表面之一之间,该楔状构造被构造成使得与在第一光波导部内沿第一方向传播的注入图像的至少一部分对应的光线通过第一楔状成形表面处的反射被偏转成沿第二方向传播,与第一方向相比,第二方向与第一光波导部的伸长方向所成的角较小,第一方向上的光线和第二方向上的光线在部分反射表面处被分别偏转到第一偏转方向和第二偏转方向以从第一光波导部耦出;第二光波导部,其具有用于通过内反射来引导光的第二对平行面,第二光波导部被部署用于接收注入图像的沿第一偏转方向和第二偏转方向传播的部分,第二光波导部包括在第二楔状成形表面与第二对平行面之一之间形成的耦出楔状构造,该耦出楔状构造被部署用于至少将图像的通过自楔状成形表面的单次反射而沿第一偏转方向传播和通过从楔状成形表面被反射两次而沿第二偏转方向传播的部分耦出。According to the teachings of the embodiments of the present invention, there is also provided an optical device, comprising: a first optical waveguide portion having at least a first pair of parallel surfaces for guiding light by internal reflection, the first optical waveguide includes an oriented a plurality of mutually parallel partially reflective surfaces non-parallel to the paired parallel planes; a wedge-like formation formed between a first wedge-shaped shaping surface and one of the parallel surfaces, the wedge-like formation being configured such that it is identical to the first Light rays corresponding to at least a portion of the injected image propagating in a first direction within the optical waveguide portion are deflected by reflection at the first wedge-shaped shaping surface to propagate in a second direction that is more consistent with the first optical waveguide than the first direction. The angle formed by the elongated directions of the part is small, and the light rays in the first direction and the light rays in the second direction are respectively deflected to the first deflection direction and the second deflection direction at the partially reflective surface to transmit from the first optical waveguide part outcoupling; a second optical waveguide having a second pair of parallel faces for guiding light by internal reflection, the second optical waveguide being arranged to receive the injected image propagating along the first deflection direction and the second deflection direction part of the second optical waveguide comprising an outcoupling wedge formation formed between the second wedge shaping surface and one of the second pair of parallel faces, the outcoupling wedge formation being deployed to pass at least the image through the wedge shaping surface A single reflection of 2 propagates in the first deflection direction and a portion of it propagates in the second deflection direction by being reflected twice from the wedge shaped surface is outcoupled.

附图说明Description of drawings

在本文中,参照附图仅通过举例的方式描述了本发明,在附图中:The invention is herein described, by way of example only, with reference to the accompanying drawings, in which:

图1A是根据本发明的实施方式构造和操作的包括波导的光学装置的示意性前视图;Figure 1A is a schematic front view of an optical device including a waveguide constructed and operative in accordance with an embodiment of the present invention;

图1B是与图1A中的光学装置类似的、示出了用于耦入投射图像的替选构造的光学装置的示意性前视图;FIG. 1B is a schematic front view of an optical device similar to that in FIG. 1A showing an alternative configuration for coupling in a projected image;

图1C是通过图1A中的波导截取的示意性剖视图,其被示出两次以显示出图像传播的两种不同模式;Figure 1C is a schematic cross-sectional view taken through the waveguide in Figure 1A, shown twice to show two different modes of image propagation;

图2A是采用图1B中的波导以及第二波导的光学装置的前视图;2A is a front view of an optical device employing the waveguide in FIG. 1B and a second waveguide;

图2B是沿图2A中的线A截取的剖视图;Figure 2B is a cross-sectional view taken along line A in Figure 2A;

图3A是采用与图1A类似的波导的堆叠的光学装置的前视图;Figure 3A is a front view of a stacked optical device employing waveguides similar to those of Figure 1A;

图3B是沿图3A中的线A截取的剖视图;Figure 3B is a cross-sectional view taken along line A in Figure 3A;

图4是与图3A类似的示出了与图1B类似的替选耦入构造的前视图;Figure 4 is a front view similar to Figure 3A showing an alternative coupling configuration similar to Figure IB;

图5A和图5B是示出根据本发明的教导的具有耦入棱镜的波导的示意性等轴视图,其中波导采用了与波导的两组平行面和仅其中一组平行面分别以斜角倾斜的楔状成形表面;5A and 5B are schematic isometric views showing a waveguide with in-coupling prisms in accordance with the teachings of the present invention, wherein the waveguide employs oblique angles to both sets of parallel faces of the waveguide and only one set of parallel faces, respectively. The wedge-shaped forming surface;

图6A至图6C分别是根据本发明的另一方面的用于实现二维光学孔径扩展的装置的示意性顶视图、侧视图和前视图;6A to 6C are schematic top views, side views and front views, respectively, of an apparatus for realizing two-dimensional optical aperture expansion according to another aspect of the present invention;

图7A和图7B分别是图6A至图6C中的装置的采用了替选的耦入几何结构的修改后实现方式的示意性侧视图和前视图;以及7A and 7B are schematic side and front views, respectively, of a modified implementation of the device of FIGS. 6A-6C employing an alternative coupling geometry; and

图8A至图8C分别是与6A至图6C中的装置类似的使用两个板式波导实现的装置的示意性顶视图、侧视图和前视图。Figures 8A-8C are schematic top, side and front views, respectively, of a device similar to the device in Figures 6A-6C implemented using two slab waveguides.

具体实施方式Detailed ways

本发明是一种光学装置,其提供在近眼显示器中尤其有用的孔径扩展。The present invention is an optical device that provides aperture expansion that is particularly useful in near-eye displays.

参照附图和所附说明书可以更好地理解根据本发明的光学装置的原理和操作。The principles and operation of optical devices according to the present invention may be better understood with reference to the drawings and accompanying description.

现在参照附图,图1A至图5B示出了根据本发明的非限制性实施方式的第一子集构造和操作的提供在近眼显示器中尤其有用的孔径扩展的光学装置的各种实现方式。Referring now to the drawings, FIGS. 1A-5B illustrate various implementations of optics providing aperture expansion particularly useful in near-eye displays, constructed and operative in accordance with a first subset of non-limiting embodiments of the present invention.

总体来说,该光学装置包括具有伸长方向D的第一光波导30。光波导30具有平行于伸长方向D的第一对平行面12a、12b和第二对平行面14a、14b,这些平行面形成矩形截面,用于通过第一对平行面12a、12b和第二对平行面14a、14b处的四重内反射来引导光。该上下文中的“矩形”包括正方形截面的特殊情况。作为这种四重内反射的结果,经历内反射的每个光线因此限定了一组四个共轭传播方向,其例如在图1C中被示为光线a1、a2、a3和a4。In general, the optical device comprises a first optical waveguide 30 having a direction of elongation D. As shown in FIG. The optical waveguide 30 has a first pair of parallel faces 12a, 12b and a second pair of parallel faces 14a, 14b parallel to the direction of elongation D, these parallel faces form a rectangular section for passing through the first pair of parallel faces 12a, 12b and the second pair of parallel faces 14a, 14b. The light is guided by quadruple internal reflections at parallel faces 14a, 14b. "Rectangular" in this context includes the special case of square cross-sections. As a result of this quadruple internal reflection, each ray undergoing internal reflection thus defines a set of four conjugate directions of propagation, shown for example as rays a1 , a2 , a3 and a4 in FIG. 1C .

根据本发明的一个方面,光波导30的至少一部分由第一楔状成形表面21和第二楔状成形表面22定界限,该第一楔状成形表面和第二楔状成形表面与一个或更多个平行面的相邻区域一起分别形成对应的楔状构造25和26。According to one aspect of the present invention, at least a portion of the optical waveguide 30 is bounded by a first wedge-shaped forming surface 21 and a second wedge-shaped forming surface 22 that are aligned with one or more parallel planes. Adjacent regions together form corresponding wedge-shaped formations 25 and 26, respectively.

第一楔状成形表面21优选地被构造成使得与在第一光波导内沿着第一组共轭传播方向a1至a4中的第一方向a3或a4传播的注入图像的至少一部分对应的光线a3、a4通过第一楔状成形表面21处的反射被偏转成沿着第二组共轭传播方向c1至c4中的第二方向c1或c2传播,与第一方向相比,第二方向与伸长方向所成的角较小。换句话说,在已经按照第一组共轭方向a1至a4将图像耦入波导30之后,在楔状成形表面21的进一步反射使图像传播方向偏转成另一组共轭方向c1至c4,该另一组共轭方向c1至c4以较浅的入射角度撞击平行表面。沿第一组共轭方向a1至a4传播的图像本身可以通过自楔状成形表面21的第一反射被耦入,如图1A和图1B所示。因此,在图1的示例中,输入的投射图像的光线经由平行表面之一12a进入第一楔状构造25,并且然后从楔状成形表面21反射一次以生成对应于光线a1或a2的一次偏转光线(其通过侧面14a和14b处的反射而在彼此之间互换)。这些光线在面12a处反射以形成共轭光线a3和a4。对于孔径的用实线箭头表示的部分,光线a3和a4到达的下一边界是超出楔状成形表面的端部的面12b。因此,投射图像的该部分在其沿着波导部前进时通过四重内反射来传播,其中,四重内反射如图1C(左)所示通过光线a1至a4互换。对于该孔径的另外的部分,光线a3和a4再次落在楔状成形表面21上,从而引起进一步偏转以生成光线c1和/或c2,并且通过如图1C(右)所表示的共轭光线c1至c4的四重内反射来沿着波导传播。与光线a1至a4相比,光线c1至c4与波导的伸长方向D所成的角较小,但是该差别在图1C的轴向视图中不可见。The first wedge-shaped shaping surface 21 is preferably configured such that the ray a3 corresponding to at least a part of the injected image propagates within the first optical waveguide along the first direction a3 or a4 of the first set of conjugate propagation directions a1 to a4 , a4 are deflected by reflection at the first wedge-shaped shaping surface 21 to propagate along a second direction c1 or c2 of the second set of conjugate propagation directions c1 to c4, which is elongated compared to the first direction The directions make a smaller angle. In other words, after an image has been coupled into the waveguide 30 according to a first set of conjugate directions a1 to a4, further reflection at the wedge-shaped shaping surface 21 deflects the image propagation direction into another set of conjugate directions c1 to c4 which A set of conjugate directions c1 to c4 hit the parallel surface at a shallow angle of incidence. The image propagating along the first set of conjugate directions a1 to a4 may itself be coupled in by a first reflection from the wedge-shaped shaping surface 21, as shown in Figures 1A and 1B. Thus, in the example of FIG. 1, rays of the input projected image enter the first wedge-shaped formation 25 via one of the parallel surfaces 12a, and are then reflected once from the wedge-shaped shaping surface 21 to generate a primary deflected ray corresponding to the rays a1 or a2 ( They are interchanged between each other by reflection at sides 14a and 14b). These rays are reflected at face 12a to form conjugate rays a3 and a4. For the portion of the aperture indicated by the solid arrows, the next boundary reached by rays a3 and a4 is face 12b beyond the end of the wedge-shaped forming surface. This part of the projected image is thus propagated by quadruple internal reflections as it proceeds along the waveguide, where the quadruple internal reflections are interchanged by rays a1 to a4 as shown in FIG. 1C (left). For a further portion of the aperture, rays a3 and a4 again fall on the wedge-shaped shaping surface 21, causing further deflection to generate rays c1 and/or c2, and pass through conjugate rays c1 to The quadruple internal reflection of c4 comes to propagate along the waveguide. Rays c1 to c4 make a smaller angle with the elongation direction D of the waveguide than rays a1 to a4 , but this difference is not visible in the axial view of FIG. 1C .

顺便指出,无论在本文中是通过光束还是光线来表示图像,都应当注意,束是图像的样本束,图像通常由具有略微不同的角度的多个束形成,所述多个角度各自对应于图像的点或像素。除了被特别称为图像的末端(extremity)的情况之外,所示的束通常是图像的质心(centroid)。此外,针对每个像素的照明(illumination)不限于特定的光线位置,而是优选地是基本上“填充”波导的对应维度的宽的平行光线束。因此,本文中示出的样本光线通常是跨越图像投射装置的输出孔径的更宽的连续光线的一部分。Incidentally, whether images are represented herein by light beams or rays, it should be noted that a beam is a sample beam of an image, and that an image is usually formed by multiple beams having slightly different angles, each corresponding to the points or pixels. The bundle shown is typically the centroid of the image, except where it is specifically referred to as the extremity of the image. Furthermore, the illumination for each pixel is not limited to a specific ray position, but is preferably a broad bundle of parallel rays that substantially "fills" the corresponding dimension of the waveguide. Thus, the sample rays shown herein are generally part of a wider continuum of rays spanning the output aperture of the image projection device.

楔状成形表面21与面12a的倾斜角被优选地选择为满足多个几何要求。首先,对于图像的整个视场,在考虑到投射图像的预期注入方向的情况下,将楔角选择为使得一次反射光线a1、a2在波导的平行面处经历内反射。此外,将楔角选择为足够浅以使得用于生成光线c1、c2的自楔状成形表面的上述重复反射能够发生,同时确保一次偏转图像和两次偏转图像中的图像视场在角度空间中不交叠。在前述’242公布中呈现了在双重反射的情况下如何在数值上评估这些条件的示例,并且如对于本领域技术人员将清楚的那样,示例可以容易地适于本发明中的四重反射的情况。本发明不限于两种传播模式,并且特别地在仅需要相对小的角度视场的情况下也可以使用第三传播及其共轭,其中,第三传播及其共轭在光线c1至c4中的一个在楔状成形表面处被进一步反射之后实现。The angle of inclination of the wedge-shaped forming surface 21 to the face 12a is preferably chosen to satisfy a number of geometrical requirements. First, for the entire field of view of the image, the wedge angle is chosen such that the primary reflected rays a1, a2 undergo internal reflection at parallel faces of the waveguide, taking into account the intended injection direction of the projected image. Furthermore, the wedge angle is chosen to be shallow enough to enable the above-described repeated reflections from the wedge-shaped shaping surface used to generate rays c1, c2 to occur while ensuring that the image fields of view in the primary and double deflection images are not in angular space. overlap. Examples of how to evaluate these conditions numerically in the case of double reflections are presented in the aforementioned '242 publication, and as will be clear to those skilled in the art, the examples can be readily adapted to the quadruple reflections in the present invention. Condition. The invention is not limited to two modes of propagation, and in particular a third propagation and its conjugate can also be used where only a relatively small angular field of view is required, wherein the third propagation and its conjugate are in the rays c1 to c4 One of is achieved after being further reflected at the wedge shaped surface.

在这种情况下,第二楔状成形表面22平行于第一楔状成形表面21,从而形成第二楔状构造26,该构造以类似于上述耦入的方式将在波导部内传播的图像照明(imageillumination)耦出。具体地,第二楔状成形表面22使沿着第二组共轭方向c1至c4中的至少一个方向传播的图像偏转以使该图像沿着第一组共轭方向a1至a4中的至少一个方向传播,并且进一步将沿着第一组共轭方向a1至a4中的一个方向传播的图像耦出以使该图像离开光波导30。In this case, the second wedge-shaped shaping surface 22 is parallel to the first wedge-shaped shaping surface 21, thereby forming a second wedge-shaped configuration 26 which, in a manner similar to the coupling described above, illuminates an image propagating within the waveguide. coupled out. Specifically, the second wedge-shaped forming surface 22 deflects an image propagating along at least one of the second set of conjugate directions c1 to c4 such that the image is along at least one of the first set of conjugate directions a1 to a4 propagating, and further outcoupling the image propagating along one of the first set of conjugate directions a1 to a4 so that the image leaves the optical waveguide 30 .

图1A的构造在侧视图中看起来类似于前述’242公布中描述的构造。然而,’242公布涉及仅在一对平行表面处发生反射(即,双重反射)的波导,并且该波导的另一维度(如所示的在页面中)相对较大以避免光线与该波导的其他末端交叉。相比之下,本发明的某些优选实施方式采用矩形波导方法,从而通过四重内反射来提供对图像照明在两个维度的引导,并且由此允许使用比板式波导方法可以使用的光学元件紧凑得多的光学元件。The configuration of Figure 1A appears in side view to be similar to the configuration described in the aforementioned '242 publication. However, the '242 publication relates to waveguides that reflect only at a pair of parallel surfaces (i.e., double reflection), and the other dimension of the waveguide (as shown in the page) is relatively large to prevent light from interfering with the waveguide. The other ends are crossed. In contrast, certain preferred embodiments of the present invention employ a rectangular waveguide approach, thereby providing guidance of image illumination in two dimensions by quadruple internal reflection, and thereby permitting the use of optical elements than can be used with a slab waveguide approach Much more compact optics.

尽管楔状成形表面21和22在此被示为与一对平行面12a、12b成斜角并且垂直于另一对平行面14a、14b,但矩形波导方法也允许使用相对于两对平行面以斜角倾斜的楔状成形表面。下面将参照图5A示出一个这样的示例。总的来说,只要楔状几何结构对于第一楔状构造和第二楔状构造而言是相似的,则耦出几何结构仍然有效地“撤销”耦入几何结构的效果。Although wedge-shaped shaping surfaces 21 and 22 are shown here as being oblique to one pair of parallel faces 12a, 12b and perpendicular to the other pair of parallel faces 14a, 14b, the rectangular waveguide approach also allows the use of oblique angles relative to the two pairs of parallel faces. Angled wedge-shaped forming surface. One such example is shown below with reference to FIG. 5A. In general, as long as the wedge geometry is similar for the first and second wedge configurations, the outcoupling geometry still effectively "undoes" the effect of the incoupling geometry.

在图1A的构造中,根据投射图像的注入角度和楔体本身的角度,楔状成形表面21在某些情况下可以在不需要涂层的情况下实现足够的内反射。然而,在大多数情况下,优选的是为楔状成形表面21提供反射涂层,或者在下文进一步讨论的某些情况下提供部分反射涂层。第二楔状成形表面22优选地设置有反射涂层。该反射涂层(在此用加粗线表示)可以使用如本领域已知的金属涂层或介电涂层来实现。In the configuration of FIG. 1A , depending on the angle of injection of the projected image and the angle of the wedge itself, the wedge shaped surface 21 can in some cases achieve sufficient internal reflection without the need for a coating. In most cases, however, it is preferred to provide the wedge-shaped forming surface 21 with a reflective coating, or in some cases, as discussed further below, a partially reflective coating. The second wedge-shaped forming surface 22 is preferably provided with a reflective coating. The reflective coating (shown here in bold) can be achieved using metallic coatings or dielectric coatings as known in the art.

图1B示出了替选的耦入几何结构,其在某些实现方式中可能有利于实现更紧凑的整体产品形状因数。在这种情况下,第一楔状成形表面21是光波导30的透光外表面,并且是注入图像被引导穿过的表面。至少面12a中与第一楔状成形表面21呈面对关系的部分涂覆有(完全或部分)反射涂层27,从而将注入图像的全部或部分反射回楔状成形表面21,在楔状成形表面21处光线经历反射,该反射等效于图1的构造中的第一反射。其余的反射类似于以上结合图1A描述的反射。FIG. 1B illustrates an alternative coupling geometry, which in some implementations may be advantageous for a more compact overall product form factor. In this case, the first wedge-shaped shaping surface 21 is the light-transmitting outer surface of the optical waveguide 30 and is the surface through which the injected image is guided. At least that part of the face 12a in facing relationship with the first wedge-shaped forming surface 21 is coated with a (fully or partially) reflective coating 27 so as to reflect all or part of the injected image back to the wedge-shaped forming surface 21 where it The ray undergoes a reflection which is equivalent to the first reflection in the configuration of FIG. 1 . The rest of the reflections are similar to those described above in connection with Figure 1A.

图1B中的耦入构造,包括采用在另一维度上较大的波导以便在波导30中利用仅两重反射来容纳图像的整个视场的变型(即,其他方面类似于上述’242公布中描述的构造),被认为在广泛的应用中是有利的。The in-coupling configuration in FIG. 1B includes a variation that employs a larger waveguide in another dimension to accommodate the entire field of view of the image in waveguide 30 with only two reflections (i.e., otherwise similar to that in the '242 publication above). The configuration described), is considered to be advantageous in a wide range of applications.

图2示出了近眼显示器的实现方式,其中,使用波导30将图像传送至具有两个主要平行表面24a、24b的第二波导(或“光导”)20,(以光线b1和b2进行传播的)该图像从第二波导朝向观察者的眼睛47耦出。在此示出的特别优选但非限制性的示例中,第二波导采用多个相互平行的、以斜角倾斜的、内部的部分反射表面45以用于将图像朝向眼睛耦出。可以使用本领域公知的设计和制造技术容易地实现具有内部部分反射表面45的光导20,其中,类似元件可以从包括Lumus Ltd.(鲁姆斯有限公司)(耐斯兹敖那(Ness Ziona),以色列)在内的一系列来源商购获得。因此,这里将不再详细描述光导20本身的结构。Figure 2 shows an implementation of a near-eye display in which a waveguide 30 is used to convey an image to a second waveguide (or "lightguide") 20 having two principally parallel surfaces 24a, 24b, (propagated by light rays b1 and b2). ) The image is coupled out from the second waveguide towards the eye 47 of the observer. In the particularly preferred but non-limiting example shown here, the second waveguide employs a plurality of mutually parallel, inclined at an oblique angle, internal partially reflective surfaces 45 for outcoupling the image towards the eye. A light guide 20 having an interior partially reflective surface 45 can be readily realized using design and fabrication techniques known in the art, wherein similar elements can be obtained from companies including Lumus Ltd. (Ness Ziona) , Israel) are commercially available from a range of sources. Therefore, the structure of the light guide 20 itself will not be described in detail here.

在此处示出的装置设计中,波导30相对于波导20内的部分反射表面45的延伸方向翘起,以便在波导20内产生垂直传播。在某些情况下,可能希望在两个波导之间采用其他偏移角(例如围绕沿波导30的伸长方向的“滚动”轴的倾斜)以在两个波导之间提供改进的光耦合构造。在PCT专利申请公布第WO 2018/065975A1号(其在本申请的优先权日之后公布并且不构成本申请的现有技术)中,特别是在图19至图26中描述了此处也可以采用的各种变型耦合选项,为简洁起见此处将不予讨论。In the device design shown here, the waveguide 30 is tilted relative to the direction of extension of the partially reflective surface 45 in the waveguide 20 in order to produce vertical propagation in the waveguide 20 . In some cases, it may be desirable to employ other offset angles between the two waveguides (such as a tilt about a "roll" axis along the elongate direction of waveguide 30) to provide an improved optical coupling configuration between the two waveguides. . In PCT Patent Application Publication No. WO 2018/065975A1 (which was published after the priority date of the present application and does not constitute prior art to the present application), particularly in FIGS. The various variant coupling options for , will not be discussed here for the sake of brevity.

该示例采用以上参照图1B描述的耦入几何结构。添加有耦入棱镜11以最小化色差。在耦入棱镜11与楔状成形表面21之间设置有气隙或其他低指数耦合材料以在楔状成形表面21处保持全内反射特性。This example employs the coupling geometry described above with reference to Figure IB. An in-coupling prism 11 is added to minimize chromatic aberration. An air gap or other low-index coupling material is provided between the incoupling prism 11 and the wedge-shaping surface 21 to maintain total internal reflection properties at the wedge-shaping surface 21 .

现在转向图3A至图4,这些附图示出了可以如何使用堆叠的两个或更多个波导来实现更加扩大的孔径扩展。在这些图示中,布置了堆叠的三个波导30a、30b、30c(每个波导都类似于目前为止所描述的波导30)使得所投射的输入图像被部分地耦合到每个波导中。波导的长度不同,使得耦出楔状构造是错列的,最优选地具有如图所示的大致共面的楔状成形表面22,从而为光导20的整个“宽度”维度提供覆盖,光导本身提供第二维度的孔径扩展,如以上的图2A至图2B中所示。在波导30a、30b以及30c之间布置有气隙或其他内反射保持层或多层结构,以便保持这些波导的内反射特性。至少在耦出区域中,波导之间的边界必须对于低角度光线是透光的以允许耦出光线穿过界面。在其他区域中,可以在波导之间使用金属反射层或其他反射层。Turning now to FIGS. 3A-4 , these figures show how a stack of two or more waveguides can be used to achieve even greater aperture expansion. In these illustrations a stack of three waveguides 30a, 30b, 30c (each similar to waveguide 30 described so far) is arranged such that the projected input image is partially coupled into each waveguide. The lengths of the waveguides vary such that the outcoupling wedge formations are staggered, most preferably with generally coplanar wedge shaped surfaces 22 as shown, thereby providing coverage for the entire "width" dimension of the lightguide 20, which itself provides a second Aperture expansion in two dimensions, as shown in Figures 2A-2B above. Between the waveguides 30a, 30b and 30c are arranged air gaps or other internal reflection maintaining layers or multilayer structures in order to maintain the internal reflection properties of these waveguides. At least in the outcoupling region, the boundary between the waveguides must be transparent to light at low angles to allow outcoupling light to pass through the interface. In other areas, metallic reflective layers or other reflective layers may be used between the waveguides.

如图3B中可见,从上部波导30b和30c的楔状成形表面22进行的耦出引导耦出的图像照明(光线b1和/或b2)穿过下层波导,其中前面14a和后面14b用作光导20在前后方向上的延伸。在图3A的剖视图中,为了呈现清楚起见,已经略去了上波导中的光线b1至b2和c1至c4,但是这些光线仍存在于此。As can be seen in FIG. 3B , outcoupling from the wedge-shaped shaping surfaces 22 of the upper waveguides 30b and 30c guides the outcoupled image illumination (rays b1 and/or b2) through the underlying waveguides, where the front 14a and back 14b serve as light guides 20 Extension in the front-back direction. In the cross-sectional view of FIG. 3A , the rays b1 to b2 and c1 to c4 in the upper waveguide have been omitted for clarity of presentation, but these rays are still present.

图3B中的装置的耦入构造基于自楔状成形表面21的部分反射。具体地,将波导30c和30b的楔状成形表面21涂覆成部分反射,使得当如图所示输入投射图像时,该图像照明的一部分被偏转并被耦合到波导30c中,一部分被透射并被耦合到波导30b中,并且一部分被透射穿过波导30c和波导30b二者并被耦合到波导30a中。波导30a的楔状成形表面21可以是完全(即,接近100%)反射器。为了使图像照明的被透射部分的失真最小化,优选地部署填充棱镜31以使其基本上填充耦入构造之间的楔形间隙。可以将填充棱镜31集成为波导的延伸部分,并且可以通过所示的气隙将填充棱镜与下面的波导分开。在一些情况下,例如可以设置耦入棱镜32以有益于耦入几何结构和使色差最小化。The incoupling configuration of the device in FIG. 3B is based on partial reflection from the wedge shaped surface 21 . Specifically, the wedge-shaped shaped surfaces 21 of waveguides 30c and 30b are coated to be partially reflective such that when a projected image is input as shown, part of this image illumination is deflected and coupled into waveguide 30c and part is transmitted and received by is coupled into waveguide 30b, and a portion is transmitted through both waveguide 30c and waveguide 30b and coupled into waveguide 30a. The wedge shaped surface 21 of the waveguide 30a may be a perfect (ie, nearly 100%) reflector. In order to minimize distortion of the transmitted portion of the image illumination, the filling prism 31 is preferably deployed so that it substantially fills the wedge-shaped gap between the in-coupling formations. A filling prism 31 can be integrated as an extension of the waveguide and can be separated from the underlying waveguide by an air gap as shown. In some cases, for example, an incoupling prism 32 may be provided to benefit the incoupling geometry and minimize chromatic aberration.

图4示出了与图3B类似但是采用了基于图1B的原理的耦入布置的装置架构。在这种情况下,通过施加到面12a的一部分的部分反射涂层实现了到多个波导中的部分耦合,并且从楔状成形表面21一侧引入了图像。最上面的波导30c可以在面12a的相关部分上采用全反射涂层。再次设置填充楔子31,但是其在此被示为通过气隙与楔状成形表面21间隔开以保持表面21的TIR特性,从而在捕获反射线的同时提供了对注入图像照明的低损耗透射。设置了耦入棱镜11。Fig. 4 shows a device architecture similar to Fig. 3B but employing a coupling arrangement based on the principle of Fig. 1B. In this case, partial coupling into the plurality of waveguides is achieved by a partially reflective coating applied to a part of the face 12a, and the image is introduced from the side of the wedge shaped surface 21 . The uppermost waveguide 30c may employ a totally reflective coating on the relevant portion of the face 12a. Fill wedges 31 are again provided, but here shown spaced from wedge shaped surface 21 by an air gap to preserve the TIR properties of surface 21, providing low loss transmission of injected image illumination while capturing reflected lines. An incoupling prism 11 is provided.

虽然到目前为止示出的本发明的实现方式均采用自第一楔状成形表面21的第一反射来将图像照明耦入波导中(成为光线a1至a4模式),但这不是必要的特征,并且替选的耦入布置可能是优选的。作为示例,图5A和图5B示出了以下耦入布置:在该偶入布置中,耦入棱镜40与第一波导30的耦入区域相邻或邻接以便提供倾斜输入表面42,该倾斜输入表面被正确定向以允许沿着与光线a1至a4中之一对应的图像注入方向直接注入图像,其中,其余三个共轭光线通过自波导面的内反射来生成。这些共轭射线中之一从楔状成形表面21被反射以生成第二模式光线c1至c4中之一,其中,其他三个共轭光线通过波导内的内反射再次生成。While the implementations of the invention shown so far all use the first reflection from the first wedge-shaped shaping surface 21 to couple the image illumination into the waveguide (into the mode of rays a1 to a4), this is not a necessary feature, and Alternative coupling arrangements may be preferred. As an example, FIGS. 5A and 5B show an incoupling arrangement in which an incoupling prism 40 is adjacent or contiguous to the incoupling region of the first waveguide 30 so as to provide an inclined input surface 42 which The surfaces are correctly oriented to allow direct injection of an image along the image injection direction corresponding to one of the rays a1 to a4, wherein the remaining three conjugate rays are generated by internal reflection from the waveguide face. One of these conjugate rays is reflected from the wedge shaped surface 21 to generate one of the second mode rays c1 to c4, wherein the other three conjugate rays are regenerated by internal reflection within the waveguide.

耦入棱镜40优选地包括至少一个表面,以及优选地包括两个表面44和46,这两个表面是第一波导的对应表面(其可以是所示出的面12b和14b)的共面延伸,或者该耦入棱镜在一些情况下可以包括楔状成形表面21。这些延伸表面有助于用图像照明“填充”波导。在该实现方式中,对应于光线a1至a4的第一模式的传播是(通过注入这些图像中之一)而被直接注入波导中,而对应于光线c1至c4的第二模式是通过在楔状成形表面21对这些图像中之一进行反射并且然后通过内反射生成共轭图像而形成的。The incoupling prism 40 preferably includes at least one surface, and preferably two surfaces 44 and 46, which are coplanar extensions of corresponding surfaces of the first waveguide (which may be the illustrated faces 12b and 14b). , or the coupling prism may include a wedge-shaped shaped surface 21 in some cases. These extended surfaces help to "fill" the waveguide with image illumination. In this implementation, the propagation of the first mode corresponding to rays a1 to a4 is injected directly into the waveguide (by injecting one of these images), while the second mode corresponding to rays c1 to c4 is injected through the wedge-shaped The forming surface 21 is formed by reflecting one of these images and then generating a conjugate image by internal reflection.

图5A和图5B中的实现方式基本类似,除了图5A示出了楔状成形表面21和22以斜角相对于第一对平行面12a、12b和第二对平行面14a、14b二者倾斜的实现方式,而图5B示出了楔状成形表面21和22以斜角相对于第一对平行面12a、12b倾斜并且垂直于第二对平行面14a、14b的实现方式。The implementations in FIGS. 5A and 5B are substantially similar, except that FIG. 5A shows that the wedge-shaped forming surfaces 21 and 22 are inclined at an oblique angle relative to both the first pair of parallel faces 12a, 12b and the second pair of parallel faces 14a, 14b. 5B, while Fig. 5B shows an implementation in which the wedge-shaped forming surfaces 21 and 22 are inclined at an oblique angle relative to the first pair of parallel faces 12a, 12b and perpendicular to the second pair of parallel faces 14a, 14b.

现在转向图6A至图8C,这些附图示出了本发明的第二方面,根据该第二方面,第一楔状成形表面和第二楔状成形表面不是平行表面,这是因为图像照明是在第一楔状构造与第二楔状构造之间被偏转。在此处所示的情况下,偏转发生在第一波导部内的一系列部分反射倾斜内表面处,其中,该一系列部分反射倾斜内表面实现第一维度的孔径扩展并且将图像照明重定向为朝向第二波导部。Turning now to FIGS. 6A-8C , these figures illustrate a second aspect of the invention according to which the first and second wedge-shaped forming surfaces are not parallel surfaces because the image illumination is at A wedge formation is deflected between a second wedge formation. In the case shown here, the deflection occurs at a series of partially reflective sloped inner surfaces within the first waveguide, wherein the series of partially reflective sloped inner surfaces achieves aperture expansion in the first dimension and redirects image illumination into towards the second waveguide.

现在将描述这种实现方式的三个非限制性示例。在每种情况下,示出了包括第一光波导部140的光学装置,第一光波导部140具有用于通过内反射来引导光的至少一对平行面。光波导部140包括被定向为不平行于成对的平行面的一系列相互平行的部分反射表面150。光波导部140还包括形成在第一楔状成形表面125与平行表面中的一个平行表面之间的楔状构造。该楔状构造被构造成提供图像照明的耦入以生成两个不同的模式(或角度范围)以用于在波导内传播图像,如在之前的实施方式中关于楔状成形表面21所描述的那样。在这种情况下,并不直接传播至耦出楔体而是在部分反射表面150处将与图像的两种传播模式对应的光线偏转到对应的偏转方向以从第一光波导部耦出。Three non-limiting examples of such implementations will now be described. In each case, an optical device is shown comprising a first optical waveguide 140 having at least one pair of parallel faces for guiding light by internal reflection. The light guide portion 140 includes a series of mutually parallel partially reflective surfaces 150 oriented non-parallel to the pair of parallel planes. The optical waveguide portion 140 also includes a wedge-like formation formed between the first wedge-shaped shaping surface 125 and one of the parallel surfaces. The wedge configuration is configured to provide incoupling of image illumination to generate two distinct modes (or angular ranges) for propagating images within the waveguide, as described with respect to the wedge shaped surface 21 in the previous embodiments. In this case, the light rays corresponding to the two propagation modes of the image are not propagated directly to the outcoupling wedge but are deflected at the partially reflective surface 150 into corresponding deflection directions for outcoupling from the first optical waveguide.

第二光波导部145具有用于通过内反射来引导光的一对平行面,并且被部署成用于接收注入图像中的沿与从表面150偏转的两种模式的图像传播对应的方向传播的部分。第二光波导部145包括在第二楔状成形表面122与平行面中的一个平行面之间形成的耦出楔状构造。该耦出楔状构造以完全类似于上述楔状成形表面22的方式耦出两种模式的图像传播。在用作增强现实显示的一部分的情况下,优选地用部分反射涂层来实现楔状成形表面122,并且可以添加互补楔状棱镜(未示出)以经由楔状构造提供现实世界的非失真视图。The second optical waveguide portion 145 has a pair of parallel faces for guiding light by internal reflection, and is arranged to receive light propagating in directions corresponding to image propagation in the two modes deflected from the surface 150 in the injected image. part. The second optical waveguide portion 145 includes an outcoupling wedge-like configuration formed between the second wedge-shaped shaping surface 122 and one of the parallel faces. This outcoupling wedge configuration decouples both modes of image propagation in a manner completely analogous to the wedge shaped surface 22 described above. In the case of use as part of an augmented reality display, the wedge shaped surface 122 is preferably implemented with a partially reflective coating, and complementary wedge prisms (not shown) may be added to provide an undistorted view of the real world via the wedge configuration.

在图6A至6C和图7A至7C的情况下,第一光波导部140是矩形波导,在其中通过四重内反射来传播图像照明,如以上关于波导30所描述的那样。在图6A至图6C中,耦入楔状构造在图6A的顶视图中最佳地看到,而耦出楔状构造在图6B的侧视图中最佳地看到。也可以与上述的图1B类似使用经由楔状成形表面125的耦入的替选实现方式。这里,部分反射表面150的取向最优选地相对于波导140的顶表面和底表面倾斜并且垂直于前表面和后表面,如图8C所示。In the case of FIGS. 6A to 6C and FIGS. 7A to 7C , the first optical waveguide portion 140 is a rectangular waveguide in which image illumination is propagated by quadruple internal reflection, as described above with respect to waveguide 30 . In FIGS. 6A-6C , the in-coupling wedge formation is best seen in the top view of FIG. 6A , and the out-coupling wedge formation is best seen in the side view of FIG. 6B . An alternative realization of the coupling via the wedge-shaped shaped surface 125 can also be used analogously to FIG. 1B described above. Here, the orientation of the partially reflective surface 150 is most preferably inclined with respect to the top and bottom surfaces of the waveguide 140 and perpendicular to the front and rear surfaces, as shown in FIG. 8C .

图7A和图7B中的实施方式在结构和功能上类似于图6A至图6C的实施方式,但是采用了耦入楔体的不同取向,这可以在产品设计紧凑性和人体工程学方面提供额外的灵活性。考虑到在波导内传播图像期间发生四重反射,因此在一些情况下可以选择期望取向的共轭图像以耦出至眼睛。在耦出图像是反转图像的情况下,可以通过反转所生成的图像来对此电子地进行补偿,使得耦出图像被正确地定向。在一般情况下,部分反射表面150相对于波导的两对平行外面倾斜。The embodiment in Figures 7A and 7B is structurally and functionally similar to the embodiment in Figures 6A to 6C, but employs a different orientation of the coupling wedge, which may provide additional benefits in terms of product design compactness and ergonomics. flexibility. Taking into account the quadruple reflections that occur during propagation of the image within the waveguide, the desired orientation of the conjugate image may in some cases be selected for coupling out to the eye. In case the outcoupled image is an inverted image, this can be electronically compensated for by inverting the generated image so that the outcoupled image is correctly oriented. In general, the partially reflective surface 150 is inclined relative to the two pairs of parallel outer faces of the waveguide.

最后转向图8A至图8C,这些图示出了与图6A至图6C的实施方式类似的实施方式,但是在图8A至图8C中第一波导部140是板式波导,该板式波导在一对平行面之间仅在一个维度上引导图像照明。在另一维度(如图8B和图8C所示的上下维度)上,投射在波导部140内的图像根据其角视场展开并且不应到达波导部的末端。因此,波导部140通常需要在非引导维度上比先前的实现方式稍大。由于不需要(或期望)波导部140与波导部145之间的内反射,因此可以可选地将这些元件统一或光学结合成单个波导板,而无需插入任何气隙或其他光学元件。在所有其他方面,图8A至图8C的实施方式的结构和操作类似于上述图6A和图6C中的实施方式。Turning finally to FIGS. 8A-8C , these figures show an embodiment similar to that of FIGS. 6A-6C , but in FIGS. Image lighting is directed between parallel faces in only one dimension. In another dimension (the up-down dimension as shown in Figures 8B and 8C), the image projected within the waveguide 140 spreads out according to its angular field of view and should not reach the end of the waveguide. Therefore, the waveguide 140 typically needs to be slightly larger in the non-guiding dimension than previous implementations. Since internal reflection between waveguide 140 and waveguide 145 is not required (or desired), these elements can optionally be unified or optically combined into a single waveguide plate without intervening any air gaps or other optical elements. In all other respects, the embodiment of Figures 8A-8C is similar in structure and operation to the embodiment of Figures 6A-6C described above.

在所有上述实施方式中,所描述的装置与多个附加部件组合使用以形成完整的产品。因此,例如,在附图中,无论在何处示出与耦入图像照明有关的光线,这种光线通常都由微型图像投影仪或“POD”提供,其通常包括照明源、诸如LCoS芯片的空间光调制器以及准直光学器件,它们通常都被集成在分束器棱镜块结构的表面上。这种图像投影仪本身是公知的并且可商购获得,因此在此将不再详细描述。In all of the above embodiments, the described devices are used in combination with a number of additional components to form a complete product. Thus, for example, wherever light is shown in connection with coupling into image illumination in the figures, such light is typically provided by a pico image projector or "POD", which typically includes an illumination source, such as an LCoS chip Spatial light modulators and collimating optics, which are usually integrated on the surface of the beam splitter prism block structure. Such image projectors are known per se and are commercially available, so they will not be described in detail here.

类似地,在近眼显示器的情况下,通常将最终产品与支承结构集成,支承结构可以包括由佩戴者的耳和鼻支承的镜架型结构,或者可以包括诸如头带或头盔的头戴式结构。所有这些结构都是公知的,因此不需在本文中进行描述。Similarly, in the case of near-eye displays, the final product is often integrated with a support structure, which may include a frame-type structure supported by the wearer's ears and nose, or may include a head-mounted structure such as a headband or helmet . All of these structures are well known and therefore need not be described herein.

应当理解,以上描述仅旨在用作示例,并且在所附权利要求书限定的本发明的范围内可以存在许多其他实施方式。It should be understood that the above description is intended to be exemplary only and that many other embodiments are possible within the scope of the invention as defined by the appended claims.

Claims (15)

1.一种光学装置,包括:1. An optical device comprising: 具有伸长方向的第一光波导(30),所述第一光波导具有第一对平行面(12a,12b)和第二对平行面(14a,14b),所述第一对平行面和所述第二对平行面平行于所述伸长方向、形成矩形截面、用于通过所述第一对平行面和所述第二对平行面处的四重内反射来引导光,经历内反射的每个光线由此限定一组四个共轭传播方向,所述第一光波导的至少一部分由第一楔状成形表面(21)和第二楔状成形表面(22)定界,A first optical waveguide (30) having an elongated direction, said first optical waveguide having a first pair of parallel faces (12a, 12b) and a second pair of parallel faces (14a, 14b), said first pair of parallel faces and said second pair of parallel faces parallel to said elongation direction, forming a rectangular cross-section, for guiding light by quadruple internal reflection at said first pair of parallel faces and said second pair of parallel faces, undergoing internal reflection Each ray of light thus defines a set of four conjugate directions of propagation, at least a portion of said first optical waveguide being delimited by a first wedge-shaped shaping surface (21) and a second wedge-shaped shaping surface (22), 所述第一楔状成形表面被构造成使得与在所述第一光波导内沿第一组共轭传播方向中的第一方向传播的注入图像的至少一部分对应的光线通过所述第一楔状成形表面处的反射被偏转成沿第二组共轭传播方向中的第二方向传播,与所述第一方向相比,所述第二方向与所述伸长方向所成的角较小,The first wedge-shaping surface is configured such that light rays corresponding to at least a portion of an injected image propagating within the first optical waveguide along a first direction of a first set of conjugate propagation directions pass through the first wedge-shaping surface. reflections at the surface are deflected to propagate along a second direction of a second set of conjugate propagation directions, said second direction making a smaller angle with said elongated direction than said first direction, 并且其中,所述第二楔状成形表面平行于所述第一楔状成形表面,以将沿所述第二组共轭方向中的至少一个方向传播的图像偏转成沿所述第一组共轭方向中的至少一个方向传播,并将沿所述第一组共轭方向中的一个方向传播的图像耦出为从所述第一光波导离开,And wherein said second wedge-shaped forming surface is parallel to said first wedge-shaped forming surface to deflect an image propagating in at least one of said second set of conjugate directions to be along said first set of conjugate directions propagating in at least one direction of the first set of conjugate directions and outcoupling an image propagating in one direction of the first set of conjugate directions away from the first optical waveguide, 其特征在于,It is characterized in that, 所述光学装置还包括具有两个主要平行表面(24a,24b)的光导(20),其中,所述第一光波导被部署成使得由所述第二楔状成形表面从所述第一光波导耦出的图像被耦入到所述光导以在所述光导内通过所述两个主要平行表面处的内反射来传播,所述光导还包括耦出布置(45),所述耦出布置用于将在所述光导内传播的图像耦出以将所述图像引向用户的眼睛(47)。The optical device also includes a light guide (20) having two mainly parallel surfaces (24a, 24b), wherein the first light guide is arranged such that The outcoupled image is coupled into the light guide for propagation within the light guide by internal reflection at the two principally parallel surfaces, the light guide further comprising an outcoupling arrangement (45) for The image propagating within the light guide is coupled out to direct the image towards the user's eye (47). 2.根据权利要求1所述的光学装置,其中,所述第一楔状成形表面是所述第一光波导的外表面。2. The optical device of claim 1, wherein the first wedge-shaped shaping surface is an outer surface of the first optical waveguide. 3.根据权利要求1所述的光学装置,其中,所述第一楔状成形表面涂覆有反射涂层。3. The optical device of claim 1, wherein the first wedge-shaped forming surface is coated with a reflective coating. 4.根据权利要求1所述的光学装置,其中,所述第一楔状成形表面涂覆有部分反射涂层。4. The optical device of claim 1, wherein the first wedge-shaped forming surface is coated with a partially reflective coating. 5.根据权利要求1所述的光学装置,其中,所述第一楔状成形表面是透光的,并且其中,至少所述平行面中与所述第一楔状成形表面呈面对关系的部分涂覆有反射涂层。5. The optical device according to claim 1, wherein said first wedge-shaped forming surface is light transmissive, and wherein at least a portion of said parallel planes in facing relationship with said first wedge-shaped forming surface is coated with Covered with a reflective coating. 6.根据权利要求1所述的光学装置,其中,被引入所述第一光波导的注入图像通过所述第一楔状成形表面的第一反射被从注入方向偏转至所述第一组共轭方向中的方向,并且在自所述平行面中的至少之一的附加反射之后,通过自所述第一楔状成形表面的第二反射被进一步从所述第一组共轭方向中的方向偏转至所述第二组共轭方向中的方向。6. The optical device of claim 1, wherein an injected image introduced into the first optical waveguide is deflected from the injection direction to the first set of conjugates by a first reflection of the first wedge-shaped shaping surface. directions and are further deflected from directions in the first set of conjugate directions by a second reflection from the first wedge-shaped shaping surface after an additional reflection from at least one of the parallel faces to the directions in the second set of conjugate directions. 7.根据权利要求1所述的光学装置,还包括与所述第一光波导的耦入区域相邻或邻接的耦入棱镜,所述耦入棱镜包括形成所述第一光波导的对应表面的延伸的至少一个表面。7. The optical device of claim 1 , further comprising an incoupling prism adjacent or adjacent to an incoupling region of the first optical waveguide, the incoupling prism comprising a corresponding surface forming the first optical waveguide at least one surface of the extension. 8.根据权利要求1所述的光学装置,还包括第二光波导,所述第二光波导具有第一对平行面和第二对平行面,所述第二光波导的所述第一对平行面和所述第二对平行面平行于所述伸长方向、形成矩形截面、用于通过所述第一对平行面和所述第二对平行面处的四重内反射来引导光,所述第二光波导的至少一部分由第一楔状成形表面和第二楔状成形表面定界,8. The optical device of claim 1 , further comprising a second optical waveguide having a first pair of parallel faces and a second pair of parallel faces, the first pair of parallel faces of the second optical waveguide parallel faces and said second pair of parallel faces parallel to said elongation direction, forming a rectangular cross-section for guiding light by quadruple internal reflection at said first pair of parallel faces and said second pair of parallel faces, at least a portion of the second optical waveguide is bounded by a first wedge-shaped shaping surface and a second wedge-shaped shaping surface, 所述第一光波导和所述第二光波导被部署为呈堆叠关系,并且被构造成使得具有第一孔径尺寸的投射图像被部分地耦入到所述第一光波导和所述第二光波导中的每一个,并且使得所述第一光波导的所述第二楔状成形表面和所述第二光波导的所述第二楔状成形表面各自用作耦出构造的一部分,所述耦出构造被部署成提供具有比所述第一孔径尺寸更大的尺寸的有效输出孔径。The first optical waveguide and the second optical waveguide are arranged in a stacked relationship and are configured such that a projected image having a first aperture size is partially coupled into the first optical waveguide and the second optical waveguide. each of the optical waveguides, and such that the second wedge-shaped shaping surface of the first optical waveguide and the second wedge-shaped shaping surface of the second optical waveguide are each used as part of an outcoupling configuration, the coupling The output configuration is arranged to provide an effective output aperture having a size greater than the first aperture size. 9.根据权利要求8所述的光学装置,其中,对于所述第一光波导和所述第二光波导中的每一个,所述第一楔状成形表面和所述平行面之一的与所述第一楔状成形表面呈面对关系的部分形成耦入构造,所述光学装置还包括填充棱镜,所述填充棱镜基本上填充所述耦入构造之间的楔形间隙。9. The optical device according to claim 8 , wherein, for each of the first and second optical waveguides, one of the first wedge-shaped shaping surface and the parallel plane is Portions of the first wedge-shaped shaping surface in facing relationship form in-coupling formations, the optical device further comprising filling prisms substantially filling wedge-shaped gaps between the in-coupling formations. 10.根据权利要求9所述的光学装置,其中,所述第二光波导的所述第一楔状成形表面被涂覆成部分反射,从而将所述投射图像的一部分耦入并且允许所述投射图像的一部分到达第一耦入构造。10. The optical device of claim 9, wherein the first wedge-shaped shaping surface of the second optical waveguide is coated to be partially reflective, thereby coupling in a portion of the projected image and allowing the projected image to be partially reflective. A portion of the image reaches the first coupling-in configuration. 11.根据权利要求9所述的光学装置,其中,所述平行面之一的与所述第一光波导的所述第一楔状成形表面呈面对关系的所述部分被涂覆成部分反射,从而将所述投射图像的一部分耦入并且允许所述投射图像的一部分到达第二耦入构造。11. The optical device of claim 9, wherein the portion of one of the parallel faces in facing relationship with the first wedge-shaped shaping surface of the first optical waveguide is coated to be partially reflective , thereby incoupling and allowing a portion of the projected image to reach the second incoupling configuration. 12.根据权利要求8所述的光学装置,其中,所述第一光波导和所述第二光波导是至少三个光波导的堆叠的一部分。12. The optical device of claim 8, wherein the first optical waveguide and the second optical waveguide are part of a stack of at least three optical waveguides. 13.根据权利要求8所述的光学装置,其中,从所述第二光波导耦出的所述图像传播穿过所述第一光波导。13. The optical device of claim 8, wherein the image out-coupled from the second optical waveguide propagates through the first optical waveguide. 14.根据权利要求1所述的光学装置,其中,所述第一光波导的所述第一楔状成形表面和所述第二楔状成形表面以斜角相对于所述第一对平行面倾斜并且垂直于所述第二对平行面。14. The optical device of claim 1 , wherein the first and second wedge-shaped forming surfaces of the first optical waveguide are inclined relative to the first pair of parallel planes at an oblique angle and perpendicular to the second pair of parallel planes. 15.根据权利要求1所述的光学装置,其中,所述第一光波导的所述第一楔状成形表面和所述第二楔状成形表面以斜角相对于所述第一对平行面和所述第二对平行面二者倾斜。15. The optical device of claim 1 , wherein the first wedge-shaped shaping surface and the second wedge-shaped shaping surface of the first optical waveguide are at an oblique angle relative to the first pair of parallel planes and the first pair of parallel planes. Both of the second pair of parallel planes are inclined.
CN201880074821.6A 2017-11-21 2018-11-21 Optical aperture expansion arrangement for near-eye displays Active CN111373296B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310313061.2A CN116520574A (en) 2017-11-21 2018-11-21 Optical aperture expansion arrangement for near-eye displays

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762588946P 2017-11-21 2017-11-21
US62/588,946 2017-11-21
PCT/IB2018/059165 WO2019102366A1 (en) 2017-11-21 2018-11-21 Optical aperture expansion arrangement for near-eye displays

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310313061.2A Division CN116520574A (en) 2017-11-21 2018-11-21 Optical aperture expansion arrangement for near-eye displays

Publications (2)

Publication Number Publication Date
CN111373296A CN111373296A (en) 2020-07-03
CN111373296B true CN111373296B (en) 2023-02-28

Family

ID=66631411

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310313061.2A Pending CN116520574A (en) 2017-11-21 2018-11-21 Optical aperture expansion arrangement for near-eye displays
CN201880074821.6A Active CN111373296B (en) 2017-11-21 2018-11-21 Optical aperture expansion arrangement for near-eye displays

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310313061.2A Pending CN116520574A (en) 2017-11-21 2018-11-21 Optical aperture expansion arrangement for near-eye displays

Country Status (13)

Country Link
US (1) US11092810B2 (en)
EP (1) EP3692401B1 (en)
JP (1) JP7517690B2 (en)
KR (1) KR102570722B1 (en)
CN (2) CN116520574A (en)
AU (1) AU2018372665B2 (en)
BR (1) BR112020010057A2 (en)
CA (1) CA3082067C (en)
IL (1) IL274707B (en)
MX (1) MX2020005226A (en)
RU (1) RU2020116190A (en)
TW (1) TWI805648B (en)
WO (1) WO2019102366A1 (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-mounted display system
IL237337B (en) 2015-02-19 2020-03-31 Amitai Yaakov Compact head-mounted display system having uniform image
WO2018138714A1 (en) 2017-01-28 2018-08-02 Lumus Ltd. Augmented reality imaging system
US11243434B2 (en) 2017-07-19 2022-02-08 Lumus Ltd. LCOS illumination via LOE
JP7303557B2 (en) 2017-09-29 2023-07-05 ルムス エルティーディー. augmented reality display
KR102695589B1 (en) 2017-10-22 2024-08-14 루머스 리미티드 Head-mounted augmented reality device using an optical bench
JP7517690B2 (en) * 2017-11-21 2024-07-17 ルムス エルティーディー. Optical aperture expansion arrangement for near-eye displays.
WO2019106637A1 (en) 2017-12-03 2019-06-06 Lumus Ltd. Optical device alignment methods
CA3068659A1 (en) 2018-01-02 2019-07-11 Lumus Ltd. Augmented reality displays with active alignment and corresponding methods
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
IL277715B2 (en) 2018-04-08 2024-02-01 Lumus Ltd Characteristic of optical samples
WO2019220330A1 (en) 2018-05-14 2019-11-21 Lumus Ltd. Projector configuration with subdivided optical aperture for near-eye displays, and corresponding optical systems
EP3794397B1 (en) 2018-05-17 2025-01-01 Lumus Ltd. Near-eye display having overlapping projector assemblies
IL259518B2 (en) 2018-05-22 2023-04-01 Lumus Ltd Optical system and method for improvement of light field uniformity
US11526003B2 (en) 2018-05-23 2022-12-13 Lumus Ltd. Optical system including light-guide optical element with partially-reflective internal surfaces
CN119595595A (en) 2018-06-21 2025-03-11 鲁姆斯有限公司 Technique for measuring refractive index non-uniformity between plates of light-guiding optical element (LOE)
JP7411255B2 (en) 2018-07-16 2024-01-11 ルムス エルティーディー. Light-guiding optics employing polarized internal reflectors
BR112021003215A2 (en) 2018-08-26 2021-05-11 Lumus Ltd. viewfinder near the eye
IL309806B1 (en) 2018-09-09 2025-07-01 Lumus Ltd Optical systems including light-guide optical elements with two-dimensional expansion
TW202026685A (en) 2018-11-08 2020-07-16 以色列商魯姆斯有限公司 Light-guide display with reflector
WO2020095245A1 (en) 2018-11-08 2020-05-14 Lumus Ltd. Optical Devices and Systems with Dichroic Beamsplitter Color Combiner
JP3226277U (en) 2018-11-11 2020-05-14 ルムス エルティーディー. Near eye display with intermediate window
JP7209182B2 (en) 2018-12-27 2023-01-20 スミダコーポレーション株式会社 Excitation light irradiation device and excitation light irradiation method
CA3123518C (en) 2019-01-24 2023-07-04 Lumus Ltd. Optical systems including loe with three stage expansion
CN113474715A (en) 2019-02-28 2021-10-01 鲁姆斯有限公司 Compact collimated image projector
CN113557708B (en) 2019-03-12 2024-07-16 鲁姆斯有限公司 Image projector
JP7699376B2 (en) 2019-05-06 2025-06-27 ルーマス リミテッド Optical system and light guide optical element
KR20220024410A (en) 2019-06-27 2022-03-03 루머스 리미티드 Gaze tracking device and method based on eye imaging through a light guide optical element
JP7433674B2 (en) 2019-11-25 2024-02-20 ルムス エルティーディー. How to polish the surface of a waveguide
IL270991B (en) 2019-11-27 2020-07-30 Lumus Ltd Lightguide optical element for polarization scrambling
JP7396738B2 (en) 2019-12-05 2023-12-12 ルーマス リミテッド Light-guiding optics with complementary coating partial reflectors and light-guiding optics with reduced light scattering
WO2021117033A1 (en) 2019-12-08 2021-06-17 Lumus Ltd. Optical systems with compact image projector
JP7706772B2 (en) 2019-12-25 2025-07-14 ルムス エルティーディー. Optical system and method for eye tracking based on redirecting light from the eye using an optical arrangement associated with a light guide optic - Patent Application 20070123633
TW202125039A (en) * 2019-12-30 2021-07-01 宏碁股份有限公司 Wearable display device
US20220357431A1 (en) * 2019-12-30 2022-11-10 Lumus Ltd. Detection and ranging systems employing optical waveguides
US11885966B2 (en) * 2019-12-30 2024-01-30 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
CN111221128B (en) * 2020-02-28 2022-03-04 深圳珑璟光电科技有限公司 Near-to-eye waveguide display device capable of enlarging field angle
KR102691721B1 (en) 2020-04-20 2024-08-05 루머스 리미티드 Near-eye display with improved laser efficiency and eye safety
KR20230004553A (en) 2020-04-30 2023-01-06 루머스 리미티드 Optical sample characterization
WO2021229563A1 (en) 2020-05-12 2021-11-18 Lumus Ltd. Rotatable lightpipe
EP4062101B1 (en) 2020-05-24 2023-11-29 Lumus Ltd. Method of fabrication of compound light-guide optical elements
JP3242480U (en) * 2020-07-10 2023-06-21 ルーマス リミテッド FOV extension device for use with near-eye displays
US11604352B2 (en) * 2020-07-29 2023-03-14 Meta Platforms Technologies LLC Waveguide-based projector
IL276466B2 (en) * 2020-08-03 2024-06-01 Oorym Optics Ltd Compact head-mounted display system having small input aperture and large output aperture
JP2023538349A (en) 2020-08-23 2023-09-07 ルーマス リミテッド Optical system for two-dimensional magnification of images that reduces glint and ghosts from waveguides
WO2022044006A1 (en) 2020-08-26 2022-03-03 Lumus Ltd. Generation of color images using white light as source
DE202021104723U1 (en) 2020-09-11 2021-10-18 Lumus Ltd. Image projector coupled to an optical light guide element
US11448815B2 (en) * 2020-11-06 2022-09-20 Meta Platforms Technologies LLC Slab waveguide and projector with intermodal coupling
WO2022107141A1 (en) 2020-11-18 2022-05-27 Lumus Ltd. Optical-based validation of orientations of internal facets
US12224551B2 (en) 2020-12-10 2025-02-11 Osram Opto Semiconductors Gmbh Laser package and projector with the laser package
CN112764151B (en) * 2021-01-29 2023-01-17 马鞍山晶智科技有限公司 Surface light source device and liquid crystal display device
CA3194222A1 (en) * 2021-02-16 2022-08-25 Lumus Ltd. Optical systems including light-guide optical elements for two-dimensional expansion with retarder element
CA3205394C (en) 2021-02-25 2023-11-21 Lumus Ltd. Optical aperture multipliers having a rectangular waveguide
CN116724268B (en) * 2021-02-25 2024-10-25 鲁姆斯有限公司 Optical aperture multiplier with rectangular waveguide
CN116635773B (en) 2021-03-01 2025-06-13 鲁姆斯有限公司 Optical system with compact coupling from projector into waveguide
WO2023281499A1 (en) * 2021-07-04 2023-01-12 Lumus Ltd. Display with stacked light-guide elements providing different parts of field of view
JP2023040704A (en) 2021-09-10 2023-03-23 株式会社リコー Light guide member, optical unit, virtual image display device, and head-mounted display
CN114236682B (en) * 2022-01-20 2022-12-09 上海理湃光晶技术有限公司 An optical extension waveguide
CN119301423A (en) 2022-08-01 2025-01-10 鲁姆斯有限公司 New technology for inspection of light-guiding optics
CN115016126B (en) * 2022-08-04 2023-05-23 南京平行视界技术有限公司 Two-dimensional pupil-expanding holographic waveguide color display device
JP2025526202A (en) 2022-08-18 2025-08-12 ルムス エルティーディー. Image projector with polarized catadioptric collimator.
CN119895311A (en) * 2022-10-18 2025-04-25 鲁姆斯有限公司 Double helix on single Lightguide Optical Element (LOE)
KR20250111728A (en) * 2022-11-30 2025-07-22 루머스 리미티드 Light guide for display - Integrated image projector
WO2024218560A1 (en) * 2023-04-17 2024-10-24 Lumus Ltd. Waveguide with embedded leaky image pipe
TW202503319A (en) * 2023-07-02 2025-01-16 以色列商魯姆斯有限公司 Novel waveguide system for a near-eye display
CN116661050B (en) * 2023-07-24 2023-11-07 北京灵犀微光科技有限公司 Optical waveguide device and near-to-eye display equipment
CN118707728A (en) * 2024-07-12 2024-09-27 北京灵犀微光科技有限公司 A symmetrical pupil expansion device and near-eye display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867853A (en) * 2003-09-10 2006-11-22 鲁姆斯有限公司 Substrate-guided optical devices
GB2494115A (en) * 2011-08-26 2013-03-06 Bae Systems Plc Projection display with grating arranged to avoid double images
WO2017141242A2 (en) * 2016-02-18 2017-08-24 Beamus Ltd. Compact head-mounted display system

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1514977A (en) * 1975-12-02 1978-06-21 Standard Telephones Cables Ltd Detecting oil in water
JP3219943B2 (en) 1994-09-16 2001-10-15 株式会社東芝 Planar direct-view display device
NZ335235A (en) 1996-11-12 1999-10-28 Planop Planar Optics Ltd Optical system for alternative or simultaneous direction of light originating from two scenes to the eye of a viewer
GB2329901A (en) 1997-09-30 1999-04-07 Reckitt & Colman Inc Acidic hard surface cleaning and disinfecting compositions
ATE254291T1 (en) 1998-04-02 2003-11-15 Elop Electrooptics Ind Ltd OPTICAL HOLOGRAPHIC DEVICES
US20050024849A1 (en) 1999-02-23 2005-02-03 Parker Jeffery R. Methods of cutting or forming cavities in a substrate for use in making optical films, components or wave guides
JP2003520984A (en) 1999-10-14 2003-07-08 ストラトス プロダクト ディヴェロップメント エルエルシー Virtual imaging system
US6789910B2 (en) * 2000-04-12 2004-09-14 Semiconductor Energy Laboratory, Co., Ltd. Illumination apparatus
CZ302883B6 (en) 2000-06-05 2012-01-04 Lumus Ltd. Optical device containing light-transmitting substrate
IL148804A (en) 2002-03-21 2007-02-11 Yaacov Amitai Optical device
US7205960B2 (en) 2003-02-19 2007-04-17 Mirage Innovations Ltd. Chromatic planar optic display system
IL157838A (en) 2003-09-10 2013-05-30 Yaakov Amitai High brightness optical device
IL157836A (en) 2003-09-10 2009-08-03 Yaakov Amitai Optical devices particularly for remote viewing applications
US7418170B2 (en) 2004-03-29 2008-08-26 Sony Corporation Optical device and virtual image display device
IL162573A (en) 2004-06-17 2013-05-30 Lumus Ltd Substrate-guided optical device with very wide aperture
IL162572A (en) 2004-06-17 2013-02-28 Lumus Ltd High brightness optical device
IL163361A (en) 2004-08-05 2011-06-30 Lumus Ltd Optical device for light coupling into a guiding substrate
WO2006061927A1 (en) 2004-12-06 2006-06-15 Nikon Corporation Image display optical system, image display unit, lighting optical system, and liquid crystral display unit
EP1846796A1 (en) 2005-02-10 2007-10-24 Lumus Ltd Substrate-guided optical device particularly for vision enhanced optical systems
WO2006085309A1 (en) 2005-02-10 2006-08-17 Lumus Ltd. Substrate-guided optical device utilizing thin transparent layer
US10073264B2 (en) * 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Substrate-guided optical device utilizing beam splitters
WO2006087709A1 (en) 2005-02-17 2006-08-24 Lumus Ltd. Personal navigation system
US8187481B1 (en) 2005-05-05 2012-05-29 Coho Holdings, Llc Random texture anti-reflection optical surface treatment
JP2009511996A (en) * 2005-10-18 2009-03-19 オーエムエス ディスプレイズ リミテッド Apparatus and method for optical resizing and backlighting
US10261321B2 (en) 2005-11-08 2019-04-16 Lumus Ltd. Polarizing optical system
IL171820A (en) 2005-11-08 2014-04-30 Lumus Ltd Polarizing optical device for light coupling
IL173715A0 (en) 2006-02-14 2007-03-08 Lumus Ltd Substrate-guided imaging lens
IL174170A (en) 2006-03-08 2015-02-26 Abraham Aharoni Device and method for binocular alignment
IL177618A (en) 2006-08-22 2015-02-26 Lumus Ltd Substrate- guided optical device
US20080151375A1 (en) 2006-12-26 2008-06-26 Ching-Bin Lin Light guide means as dually effected by light concentrating and light diffusing
US8643948B2 (en) 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
IL183637A (en) 2007-06-04 2013-06-27 Zvi Lapidot Distributed head-mounted display
JP2009128565A (en) 2007-11-22 2009-06-11 Toshiba Corp Display device, display method, and head-up display
US8317352B2 (en) 2008-12-11 2012-11-27 Robert Saccomanno Non-invasive injection of light into a transparent substrate, such as a window pane through its face
US20100291489A1 (en) 2009-05-15 2010-11-18 Api Nanofabrication And Research Corp. Exposure methods for forming patterned layers and apparatus for performing the same
WO2011024291A1 (en) * 2009-08-28 2011-03-03 株式会社島津製作所 Display device
TW201115231A (en) 2009-10-28 2011-05-01 Coretronic Corp Backlight module
JP2011199672A (en) 2010-03-19 2011-10-06 Seiko Instruments Inc Glass substrate bonding method, glass assembly, package manufacturing method, package, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
JP5499854B2 (en) 2010-04-08 2014-05-21 ソニー株式会社 Optical position adjustment method for head mounted display
JP5742263B2 (en) 2011-02-04 2015-07-01 セイコーエプソン株式会社 Virtual image display device
JP6127359B2 (en) * 2011-09-15 2017-05-17 セイコーエプソン株式会社 Virtual image display device and method of manufacturing virtual image display device
US8903207B1 (en) 2011-09-30 2014-12-02 Rockwell Collins, Inc. System for and method of extending vertical field of view in head up display utilizing a waveguide combiner
JP5879973B2 (en) 2011-11-30 2016-03-08 ソニー株式会社 Light reflecting member, light beam extending device, image display device, and optical device
US10030846B2 (en) * 2012-02-14 2018-07-24 Svv Technology Innovations, Inc. Face-lit waveguide illumination systems
US8736963B2 (en) * 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
GB2501927B (en) 2012-05-11 2016-06-08 Cymtec Ltd Waveguide assembly
IL219907A (en) 2012-05-21 2017-08-31 Lumus Ltd Head-mounted display eyeball tracker integrated system
WO2013179102A1 (en) 2012-05-29 2013-12-05 NLT-Spine Ltd. Laterally deflectable implant
US9671566B2 (en) 2012-06-11 2017-06-06 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
CN115494654B (en) 2012-06-11 2025-08-01 奇跃公司 Multi-depth planar three-dimensional display using waveguide reflector array projector
JP6244631B2 (en) * 2013-02-19 2017-12-13 セイコーエプソン株式会社 Virtual image display device
US9104038B2 (en) 2013-04-25 2015-08-11 Microvision, Inc. Multiple laser drive method, apparatus and system
CN103293650B (en) 2013-05-24 2016-06-15 京东方科技集团股份有限公司 Light conversion equipment, backlight module and display unit
US8913865B1 (en) 2013-06-27 2014-12-16 Microsoft Corporation Waveguide including light turning gaps
CN105358906A (en) 2013-07-02 2016-02-24 3M创新有限公司 Flat light guide
CN105474397B (en) 2013-08-19 2019-06-18 出光兴产株式会社 Oxide semiconductor substrate and Schottky barrier diode
KR20160065095A (en) 2013-09-27 2016-06-08 트러스티스 오브 프린스턴 유니버시티 Anodically bonded cells with optical elements
US9474902B2 (en) 2013-12-31 2016-10-25 Nano Retina Ltd. Wearable apparatus for delivery of power to a retinal prosthesis
CN108572449B (en) 2014-03-31 2021-09-14 联想(北京)有限公司 Display device and electronic apparatus
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-mounted display system
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd Compact head-mounted display system protected by a hyperfine structure
IL236490B (en) 2014-12-25 2021-10-31 Lumus Ltd Optical component on a conductive substrate
IL236491B (en) 2014-12-25 2020-11-30 Lumus Ltd A method for fabricating substrate-guided optical device
CN104503087B (en) 2015-01-25 2019-07-30 上海理湃光晶技术有限公司 Polarize guide-lighting planar waveguide optical display device
IL237337B (en) 2015-02-19 2020-03-31 Amitai Yaakov Compact head-mounted display system having uniform image
IL244179B (en) * 2016-02-18 2020-05-31 Amitai Yaakov Compact beam expanding system
EP3420387A4 (en) 2016-02-24 2019-10-30 Magic Leap, Inc. POLARIZATION BEAM SEPARATOR WITH LIGHT LEAKAGE LEAKAGE
US9791703B1 (en) 2016-04-13 2017-10-17 Microsoft Technology Licensing, Llc Waveguides with extended field of view
AU2017301074B2 (en) 2016-10-09 2022-02-03 Lumus Ltd Aperture multiplier using a rectangular waveguide
KR102541662B1 (en) 2016-11-08 2023-06-13 루머스 리미티드 Light-guide device with optical cutoff edge and corresponding production methods
JP2020503535A (en) 2016-12-02 2020-01-30 ルムス エルティーディー. Optical system with compact collimating image projector
KR102296369B1 (en) 2016-12-31 2021-09-01 루머스 리미티드 Retinal Imaging-Based Eye Tracker with Light-Guiding Optics
WO2018127913A1 (en) 2017-01-04 2018-07-12 Lumus Ltd. Optical system for near-eye displays
CN108738358B (en) 2017-02-22 2021-03-26 鲁姆斯有限公司 Light guide optics
KR102319611B1 (en) 2017-03-22 2021-11-01 루머스 리미티드 nested facets
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Light-guide optical element and method of its manufacture
US11243434B2 (en) 2017-07-19 2022-02-08 Lumus Ltd. LCOS illumination via LOE
JP7303557B2 (en) 2017-09-29 2023-07-05 ルムス エルティーディー. augmented reality display
WO2019072145A1 (en) * 2017-10-11 2019-04-18 北京亮亮视野科技有限公司 Slab waveguide
KR102695589B1 (en) 2017-10-22 2024-08-14 루머스 리미티드 Head-mounted augmented reality device using an optical bench
JP7517690B2 (en) * 2017-11-21 2024-07-17 ルムス エルティーディー. Optical aperture expansion arrangement for near-eye displays.
US20190170327A1 (en) 2017-12-03 2019-06-06 Lumus Ltd. Optical illuminator device
WO2019106636A1 (en) 2017-12-03 2019-06-06 Lumus Ltd. Optical device testing method and apparatus
US10506220B2 (en) 2018-01-02 2019-12-10 Lumus Ltd. Augmented reality displays with active alignment and corresponding methods
JP2019120815A (en) * 2018-01-09 2019-07-22 セイコーエプソン株式会社 Display device
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
TWM587757U (en) 2018-05-27 2019-12-11 以色列商魯姆斯有限公司 Substrate-guide based optical systems with field curvature effect
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
IL309806B1 (en) 2018-09-09 2025-07-01 Lumus Ltd Optical systems including light-guide optical elements with two-dimensional expansion
JP3226277U (en) 2018-11-11 2020-05-14 ルムス エルティーディー. Near eye display with intermediate window

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1867853A (en) * 2003-09-10 2006-11-22 鲁姆斯有限公司 Substrate-guided optical devices
GB2494115A (en) * 2011-08-26 2013-03-06 Bae Systems Plc Projection display with grating arranged to avoid double images
WO2017141242A2 (en) * 2016-02-18 2017-08-24 Beamus Ltd. Compact head-mounted display system

Also Published As

Publication number Publication date
BR112020010057A2 (en) 2020-11-03
IL274707A (en) 2020-07-30
CA3082067C (en) 2023-08-01
RU2020116190A (en) 2021-12-22
CN116520574A (en) 2023-08-01
KR102570722B1 (en) 2023-08-24
US11092810B2 (en) 2021-08-17
EP3692401B1 (en) 2021-10-06
AU2018372665B2 (en) 2023-01-19
JP2021504733A (en) 2021-02-15
TW201925838A (en) 2019-07-01
IL274707B (en) 2022-03-01
AU2018372665A1 (en) 2020-05-28
EP3692401A4 (en) 2020-11-18
RU2020116190A3 (en) 2022-04-22
CA3082067A1 (en) 2019-05-31
CN111373296A (en) 2020-07-03
WO2019102366A1 (en) 2019-05-31
EP3692401A1 (en) 2020-08-12
TWI805648B (en) 2023-06-21
US20200292819A1 (en) 2020-09-17
KR20200089676A (en) 2020-07-27
MX2020005226A (en) 2020-08-24
JP7517690B2 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
CN111373296B (en) Optical aperture expansion arrangement for near-eye displays
JP7546988B2 (en) Optical system including a light directing optical element with two-dimensional magnification - Patents.com
CN114207354B (en) Image display system with beam multiplication
CN114730086B (en) Display employing astigmatic optics and aberration compensation
CN114846384A (en) Optical system comprising a light-guiding optical element with a two-dimensional extension
TWI839642B (en) Optical beam multiplier and optical system for directing an image towards a user for viewing
KR20240124932A (en) An optical system for orienting an image for viewing.
CN115176191A (en) Optical system comprising a light-guiding optical element with a two-dimensional extension
TWI868462B (en) Display with stacked light-guide elements providing different parts of field of view
CN113126292A (en) Near-to-eye display system
TW202346963A (en) Optical system for directing an image for viewing
TW202530589A (en) Image display system with beam multiplication
WO2025022385A1 (en) Optical system with dual reflector coupling-in to lightguide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant