CN111382295B - A method and device for sorting image search results - Google Patents
A method and device for sorting image search results Download PDFInfo
- Publication number
- CN111382295B CN111382295B CN201811612143.2A CN201811612143A CN111382295B CN 111382295 B CN111382295 B CN 111382295B CN 201811612143 A CN201811612143 A CN 201811612143A CN 111382295 B CN111382295 B CN 111382295B
- Authority
- CN
- China
- Prior art keywords
- image
- images
- aesthetic
- search results
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及图像搜索领域,特别是涉及一种图像搜索结果的排序方法和装置。The present application relates to the field of image search, and in particular to a method and device for sorting image search results.
背景技术Background technique
现有的图像搜索中,针对关键词对应的图像搜索结果,一般利用相关性评价方式对图像搜索结果中的图像进行排序。In existing image searches, for image search results corresponding to keywords, a relevance evaluation method is generally used to sort images in the image search results.
然而图像搜索不同于其他类型的搜索,与关键词相关性高的图像不一定就是满足用户需求的图像,故根据现有的相关性评价方式,得到的排序结果难以满足用户的图像搜索需求,用户搜索体验不高。However, image search is different from other types of search. Images with high relevance to keywords are not necessarily images that meet user needs. Therefore, according to the existing relevance evaluation method, the ranking results obtained are difficult to meet the user's image search needs, and the user search experience is not good.
故此,提高图像搜索结果的排序效果是目前亟需解决的问题。Therefore, improving the ranking effect of image search results is an urgent problem that needs to be solved.
发明内容Summary of the invention
为了解决上述技术问题,本申请提供了一种图像搜索结果的排序方法和装置,使得美学评分较高的图像可以优先展示给用户,提高用户的图像搜索体验。In order to solve the above technical problems, the present application provides a method and device for sorting image search results, so that images with higher aesthetic scores can be displayed to users first, thereby improving the user's image search experience.
本申请实施例公开了如下技术方案:The embodiments of the present application disclose the following technical solutions:
第一方面,本申请实施例提供了一种图像搜索结果的排序方法,所述方法包括:In a first aspect, an embodiment of the present application provides a method for sorting image search results, the method comprising:
获取关键词对应的图像搜索结果,所述图像搜索结果包括多张图像;Obtaining image search results corresponding to the keyword, wherein the image search results include multiple images;
根据图像分类模型从所述图像搜索结果中识别第一图像集合;所述第一图像集合中的图像属于第一图像类别;identifying a first image set from the image search results according to an image classification model; the images in the first image set belong to a first image category;
通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分;Determining an aesthetic score corresponding to each image in the first image set by using an aesthetic evaluation model corresponding to the first image category;
在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。When ranking the images in the picture search results, the ranking positions of the images in the first image set in the image search results are determined in combination with the aesthetic scores corresponding to the images in the first image set.
可选的,所述根据图像分类模型从所述图像搜索结果中识别第一图像集合,包括:Optionally, identifying a first image set from the image search results according to an image classification model includes:
根据所述图像分类模型从所述图像搜索结果中识别所述第一图像集合和第二图像集合;所述第二图像集合中的图像属于与所述第一图像类别不同的第二图像类别;identifying the first image set and the second image set from the image search results according to the image classification model; the images in the second image set belong to a second image category different from the first image category;
所述方法还包括:The method further comprises:
通过所述第二图像类别对应的美学评价模型确定所述第二图像集合中图像各自对应的美学评分;Determining an aesthetic score corresponding to each image in the second image set by using an aesthetic evaluation model corresponding to the second image category;
在对所述图片搜索结果中图像进行排序时,结合所述第二图像集合中图像各自对应的美学评分确定所述第二图像集合中图像在所述图像搜索结果中的排序位置。When ranking the images in the picture search results, the ranking positions of the images in the second image set in the image search results are determined in combination with the aesthetic scores corresponding to the images in the second image set.
可选的,所述第一图像类别与所述关键词所属的类型具有相关性。Optionally, the first image category is correlated with the type to which the keyword belongs.
可选的,若所述第一图像类别为人物类,所述方法还包括:Optionally, if the first image category is a person category, the method further includes:
根据人脸分析模型确定所述第一图像集合中图像各自对应的人脸分析评分;Determining a face analysis score corresponding to each image in the first image set according to a face analysis model;
根据所述第一图像集合中图像各自对应的人脸分析评分和所述第一图像集合中图像各自对应的美学评分,确定所述第一图像集合中图像各自对应的质量评分;determining, according to the face analysis scores corresponding to the images in the first image set and the aesthetic scores corresponding to the images in the first image set, the quality scores corresponding to the images in the first image set;
所述结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置,包括:The determining the ranking positions of the images in the first image set in the image search results by combining the aesthetic scores corresponding to the images in the first image set comprises:
结合所述第一图像集合中图像各自对应的质量评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。The ranking positions of the images in the first image set in the image search results are determined in combination with the quality scores corresponding to the images in the first image set.
可选的,所述图像搜索结果为根据所述关键词搜索得到的、且与所述关键词的相关性满足预设条件的多张图像。Optionally, the image search result is a plurality of images obtained by searching the keyword and whose relevance to the keyword meets a preset condition.
可选的,若所述关键词为目标用户输入的,所述方法还包括:Optionally, if the keyword is input by the target user, the method further includes:
根据所述目标用户的图像搜索行为确定所述目标用户的图像点击特征;Determining the image click feature of the target user according to the image search behavior of the target user;
在确定所述图像搜索结果中图像的排序结果后,根据所述图像点击特征调整所述排序结果,以将所述图像搜索结果中符合所述图像点击特征的图像的排序位置提前;After determining the ranking result of the images in the image search results, adjusting the ranking result according to the image click feature, so as to advance the ranking position of the images in the image search results that meet the image click feature;
根据调整后的排序结果展示所述图像搜索结果。The image search results are displayed according to the adjusted ranking results.
第二方面,本申请实施例提供了一种图像搜索结果的排序装置,所述装置包括获取单元、识别单元、确定单元和排序单元:In a second aspect, an embodiment of the present application provides a device for sorting image search results, the device comprising an acquisition unit, an identification unit, a determination unit, and a sorting unit:
所述获取单元,用于获取关键词对应的图像搜索结果,所述图像搜索结果包括多张图像;The acquisition unit is used to acquire image search results corresponding to the keyword, and the image search results include multiple images;
所述识别单元,用于根据图像分类模型从所述图像搜索结果中识别第一图像集合;所述第一图像集合中的图像属于第一图像类别;The recognition unit is used to identify a first image set from the image search results according to an image classification model; the images in the first image set belong to a first image category;
所述确定单元,用于通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分;The determining unit is configured to determine the aesthetic scores corresponding to the images in the first image set by using the aesthetic evaluation model corresponding to the first image category;
所述排序单元,用于在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。The sorting unit is used to determine the sorting positions of the images in the first image set in the image search results in combination with the aesthetic scores corresponding to the images in the first image set when sorting the images in the image search results.
可选的,所述识别单元还用于根据所述图像分类模型从所述图像搜索结果中识别所述第一图像集合和第二图像集合;所述第二图像集合中的图像属于与所述第一图像类别不同的第二图像类别;Optionally, the recognition unit is further used to identify the first image set and the second image set from the image search results according to the image classification model; the images in the second image set belong to a second image category different from the first image category;
所述确定单元还用于通过所述第二图像类别对应的美学评价模型确定所述第二图像集合中图像各自对应的美学评分;The determining unit is further configured to determine the aesthetic scores corresponding to the images in the second image set by using the aesthetic evaluation model corresponding to the second image category;
所述排序单元还用于在对所述图片搜索结果中图像进行排序时,结合所述第二图像集合中图像各自对应的美学评分确定所述第二图像集合中图像在所述图像搜索结果中的排序位置。The sorting unit is further configured to determine, when sorting the images in the picture search results, the sorting positions of the images in the second image set in the image search results in combination with the aesthetic scores corresponding to the images in the second image set.
可选的,所述第一图像类别与所述关键词所属的类型具有相关性。Optionally, the first image category is correlated with the type to which the keyword belongs.
可选的,若所述第一图像类别为人物类,所述装置还包括人脸分析评分确定单元和质量评分确定单元:Optionally, if the first image category is a person category, the device further includes a face analysis score determination unit and a quality score determination unit:
所述人脸分析评分确定单元,用于根据人脸分析模型确定所述第一图像集合中图像各自对应的人脸分析评分;The face analysis score determination unit is used to determine the face analysis score corresponding to each image in the first image set according to the face analysis model;
所述质量评分确定单元,用于根据所述第一图像集合中图像各自对应的人脸分析评分和所述第一图像集合中图像各自对应的美学评分,确定所述第一图像集合中图像各自对应的质量评分;The quality score determination unit is used to determine the quality score corresponding to each image in the first image set according to the face analysis score corresponding to each image in the first image set and the aesthetic score corresponding to each image in the first image set;
所述排序单元还用于结合所述第一图像集合中图像各自对应的质量评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。The ranking unit is further configured to determine the ranking positions of the images in the first image set in the image search results in combination with the quality scores corresponding to the images in the first image set.
可选的,所述图像搜索结果为根据所述关键词搜索得到的、且与所述关键词的相关性满足预设条件的多张图像。Optionally, the image search result is a plurality of images obtained by searching the keyword and whose relevance to the keyword meets a preset condition.
可选的,若所述关键词为目标用户输入的,所述装置还包括图像点击特征确定单元、调整单元和展示单元:Optionally, if the keyword is input by the target user, the device further includes an image click feature determination unit, an adjustment unit, and a display unit:
所述图像点击特征确定单元,用于根据所述目标用户的图像搜索行为确定所述目标用户的图像点击特征;The image click feature determination unit is used to determine the image click feature of the target user according to the image search behavior of the target user;
所述调整单元,用于在确定所述图像搜索结果中图像的排序结果后,根据所述图像点击特征调整所述排序结果,以将所述图像搜索结果中符合所述图像点击特征的图像的排序位置提前;The adjusting unit is used to adjust the ranking result according to the image click feature after determining the ranking result of the images in the image search result, so as to advance the ranking position of the images that meet the image click feature in the image search result;
所述展示单元,用于根据调整后的排序结果展示所述图像搜索结果。The display unit is used to display the image search results according to the adjusted ranking results.
第三方面,本申请实施例提供了一种图像搜索结果的排序设备,包括有存储器,以及一个或者一个以上的程序,其中一个或者一个以上程序存储于存储器中,且经配置以由一个或者一个以上处理器执行所述一个或者一个以上程序包含用于进行以下操作的指令:In a third aspect, an embodiment of the present application provides a device for ranking image search results, comprising a memory and one or more programs, wherein the one or more programs are stored in the memory and are configured to be executed by one or more processors, wherein the one or more programs include instructions for performing the following operations:
获取关键词对应的图像搜索结果,所述图像搜索结果包括多张图像;Obtaining image search results corresponding to the keyword, wherein the image search results include multiple images;
根据图像分类模型从所述图像搜索结果中识别第一图像集合;所述第一图像集合中的图像属于第一图像类别;identifying a first image set from the image search results according to an image classification model; the images in the first image set belong to a first image category;
通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分;Determining an aesthetic score corresponding to each image in the first image set by using an aesthetic evaluation model corresponding to the first image category;
在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。When ranking the images in the picture search results, the ranking positions of the images in the first image set in the image search results are determined in combination with the aesthetic scores corresponding to the images in the first image set.
第四方面,本申请实施例提供了一种机器可读介质,其上存储有指令,当由一个或多个处理器执行时,使得装置执行如第一方面中一个或多个所述的图像搜索结果的排序方法。In a fourth aspect, an embodiment of the present application provides a machine-readable medium having instructions stored thereon, which, when executed by one or more processors, enables the device to perform a method for sorting image search results as described in one or more of the first aspect.
由上述技术方案可以看出,获取关键词对应的、包括多张图像的图像搜索结果时,根据图像分类模型从所述图像搜索结果的图像中识别出均属于第一图像类别的第一图像集合,通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分。在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。对于属于一个图像类别的图像来说,这个类别的美学评分可以体现出该图像在这个类别下对用户带来的美学感受,而用户选择查看美学感受较好的图像的可能性相对较高,由此可以美学评分较高的图像的排序位置提前,美学评分较低的图像的排序位置推后,使得美学评分较高的图像可以优先展示给用户,这类图像满足用户的图像搜索需求可能性较大,从而提高用户的图像搜索体验。It can be seen from the above technical solution that when obtaining image search results corresponding to a keyword and including multiple images, a first image set that all belongs to a first image category is identified from the images in the image search results according to the image classification model, and the aesthetic scores corresponding to each image in the first image set are determined by the aesthetic evaluation model corresponding to the first image category. When sorting the images in the picture search results, the sorting positions of the images in the first image set in the image search results are determined in combination with the aesthetic scores corresponding to each image in the first image set. For images belonging to an image category, the aesthetic score of this category can reflect the aesthetic feeling that the image brings to the user under this category, and the possibility that the user chooses to view images with better aesthetic feeling is relatively high. Therefore, the sorting position of images with higher aesthetic scores can be advanced, and the sorting position of images with lower aesthetic scores can be postponed, so that images with higher aesthetic scores can be displayed to users first. Such images are more likely to meet the image search needs of users, thereby improving the image search experience of users.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative labor.
图1为本申请实施例提供的一种图像搜索结果的排序方法的方法流程图;FIG1 is a flow chart of a method for sorting image search results provided by an embodiment of the present application;
图2为本申请实施例提供的一种图像搜索结果的排序装置的装置结构图;FIG2 is a device structure diagram of a device for sorting image search results provided by an embodiment of the present application;
图3为本申请实施例提供的一种图像搜索结果的排序设备的结构图;FIG3 is a structural diagram of a device for sorting image search results provided in an embodiment of the present application;
图4为本申请实施例提供的一种服务器的结构图。FIG4 is a structural diagram of a server provided in an embodiment of the present application.
具体实施方式Detailed ways
下面结合附图,对本申请的实施例进行描述。The embodiments of the present application are described below in conjunction with the accompanying drawings.
现有的图像搜索中,针对关键词对应的图像搜索结果,一般利用相关性评价方式对图像搜索结果中的图像进行排序。与关键词相关性高的图像的排序位置较为靠前,优先展示给用户。In existing image searches, for image search results corresponding to keywords, images in the image search results are generally ranked using a relevance evaluation method. Images with high relevance to keywords are ranked higher and are displayed to users first.
然而,图像不同于文件、页面等搜索项目,图像的美学感受直接影响到用户是否愿意点击查看,例如图像搜索结果中的一张图像与关键词的相关性很高,但是美学感受不尽人意,用户点击查看这张图像的可能性就不大,可见,与关键词相关性高的图像不一定就是满足用户需求的图像,提高图像搜索结果的排序效果是目前亟需解决的问题。However, images are different from search items such as files and pages. The aesthetic perception of images directly affects whether users are willing to click to view them. For example, if an image in the image search results is highly correlated with keywords, but the aesthetic perception is not satisfactory, users are unlikely to click to view this image. It can be seen that images with high correlation with keywords are not necessarily images that meet user needs. Improving the ranking effect of image search results is an issue that needs to be urgently addressed.
为此,本申请实施例提供了一种图像搜索结果的排序方法,通过图像分类模型和美学评价模型确定图像搜索结果中某一图像类别的图像的美学评分,并结合美学评分调整这类图像在图像搜索结果中的排序位置。该排序方法可以应用于处理设备,该处理设备可以为终端、计算机、服务器等。其中,图像分类模型和美学评价模型可以配置在一个处理设备中,也可以分别配置在不同的处理设备中。To this end, an embodiment of the present application provides a method for sorting image search results, which determines the aesthetic score of an image of a certain image category in the image search results through an image classification model and an aesthetic evaluation model, and adjusts the sorting position of such images in the image search results in combination with the aesthetic score. The sorting method can be applied to a processing device, which can be a terminal, a computer, a server, etc. Among them, the image classification model and the aesthetic evaluation model can be configured in one processing device, or they can be configured in different processing devices respectively.
对于属于某一图像类别的图像来说,这个类别的美学评分可以体现出该图像在这个类别下对用户带来的美学感受,而用户选择查看美学感受较好的图像的可能性相对较高,由此可以美学评分较高的图像的排序位置提前,美学评分较低的图像的排序位置推后,使得美学评分较高的图像可以优先展示给用户,这类图像满足用户的图像搜索需求可能性较大,从而提高用户的图像搜索体验。For images belonging to a certain image category, the aesthetic score of this category can reflect the aesthetic feeling that the image brings to the user under this category, and the user is relatively more likely to choose to view images with better aesthetic feeling. Therefore, the sorting position of images with higher aesthetic scores can be advanced, and the sorting position of images with lower aesthetic scores can be pushed back, so that images with higher aesthetic scores can be displayed to users first. Such images are more likely to meet the user's image search needs, thereby improving the user's image search experience.
接下来结合图1说明本申请实施例提供的图像搜索结果的排序方法,所述方法包括:Next, a method for sorting image search results provided by an embodiment of the present application is described in conjunction with FIG. 1 . The method includes:
S101:获取关键词对应的图像搜索结果。S101: Obtain image search results corresponding to a keyword.
图像搜索结果为搜索引擎根据关键词搜索得到的、与该关键词相关的图像,该图像搜索结果中包括多张图像。The image search result is an image related to the keyword obtained by the search engine according to the keyword search, and the image search result includes multiple images.
本申请实施例可以通过图像分类模型和美学评价模型确定图像搜索结果中某一图像类别的图像的美学评分,并结合美学评分调整这类图像在图像搜索结果中的排序位置。为了提高结合美学评分调整排序位置的效率,可以有针对性的选择需要确定美学评分的图像。In the embodiment of the present application, the aesthetic score of an image of a certain image category in the image search results can be determined by the image classification model and the aesthetic evaluation model, and the ranking position of such images in the image search results can be adjusted in combination with the aesthetic score. In order to improve the efficiency of adjusting the ranking position in combination with the aesthetic score, the images for which the aesthetic score needs to be determined can be selected in a targeted manner.
在一种可能的实现方式中,所述图像搜索结果为根据所述关键词搜索得到的、且与所述关键词的相关性满足预设条件的多张图像。In a possible implementation manner, the image search result is a plurality of images obtained by searching the keyword and whose relevance to the keyword meets a preset condition.
也就是说,在这种可能的实现方式中,图像搜索结果可以是根据关键词搜索得到的全部图像中的一部分,例如相关性最高的前N张图像。That is, in this possible implementation, the image search result may be a portion of all images obtained by searching based on the keyword, such as the top N images with the highest relevance.
这部分图像与关键词的相关性相对较高,导致原本根据相关性得到的排序位置就比较靠前,通过确定这部分图像的美学评分,并结合美学评分调整后的排序位置靠前的可能性比较大,更容易优先展示给用户,进一步提高了用户点击查看这部分图像的可能性。The correlation between these images and the keywords is relatively high, which results in the ranking position originally obtained based on the correlation being relatively high. By determining the aesthetic score of these images and combining the adjusted ranking position with the aesthetic score, the possibility of a high ranking position is greater, making it easier to display them to users first, further increasing the possibility of users clicking to view these images.
S102:根据图像分类模型从所述图像搜索结果中识别第一图像集合。S102: Identify a first image set from the image search results according to an image classification model.
图像分类模型可以是预先训练得到的,至少能够实现从图像中识别出某一图像类别的图像的功能。The image classification model may be pre-trained and at least be able to realize the function of identifying images of a certain image category from images.
在本申请实施例中,根据图像分类模型从图像搜索结果中识别出属于第一图像类别的第一图像集合,第一图像集合中包括图像搜索结果中的至少一张图像。In an embodiment of the present application, a first image set belonging to a first image category is identified from image search results according to an image classification model, and the first image set includes at least one image in the image search results.
本申请实施例不限定图像类别的划分方式或者划分粒度,例如图像类别可以根据图像中展示对象的不同进行划分,如可以包括人物类、实物类、素材类、风景类等。第一图像类别可以为上述类别中的任意一种。也就是说,本申请实施例可以针对图像搜索结果中的任意一种图像类别进行识别,并通过对该类型图像确定的美学评分以调整排序位置。The embodiment of the present application does not limit the division method or division granularity of image categories. For example, image categories can be divided according to different objects displayed in the image, such as people, objects, materials, scenery, etc. The first image category can be any one of the above categories. In other words, the embodiment of the present application can identify any image category in the image search results, and adjust the sorting position by determining the aesthetic score of this type of image.
在一种可能的实现方式中,所述第一图像类别与所述关键词所属的类型具有相关性。也就是说,在对关键词对应的图像搜索结果进行图像识别时,可以针对性的通过图像分类模型从图像搜索结果中识别出图像类型与该关键词的类型有相关性的图像。In a possible implementation, the first image category is correlated with the type to which the keyword belongs. That is, when performing image recognition on the image search results corresponding to the keyword, the image classification model can be used to specifically identify images whose image types are correlated with the type of the keyword from the image search results.
这里所述的相关性可以理解为关键词所属的类型与图像类型间具有关联关系,例如相似或相同。例如,图像类型包括人物类、实物类、素材类、风景类四种,若关键词为“刘德华”,并确定该关键词所属的类型为人物,那么图像类型中的人物类与该关键词所属类型“人物”具有相关性,另外三个图像类型与该关键词所属类型“人物”不具有相关性。The relevance mentioned here can be understood as the relationship between the type to which the keyword belongs and the image type, such as similarity or sameness. For example, the image type includes four types: person type, object type, material type, and landscape type. If the keyword is "Andy Lau" and the type to which the keyword belongs is determined to be person, then the person type in the image type is relevant to the type "person" to which the keyword belongs, and the other three image types are not relevant to the type "person" to which the keyword belongs.
故在本实现方式中,所识别出的第一图像集合中包括的图像由于图像类型与关键词的类型具有相关性,使得第一图像集合中图像与用户通过关键词进行搜索的图像搜索需求的符合程度较好,故针对这类图像进行后续美学评分以及调整排序位置,更有可能满足用户的图像搜索需求。Therefore, in the present implementation, the images included in the identified first image set have a correlation between the image type and the keyword type, so that the images in the first image set are more consistent with the image search needs of users through keywords. Therefore, subsequent aesthetic scoring and adjustment of the sorting position of such images are more likely to meet the image search needs of users.
需要注意的是,由于本申请实施例中需要根据图像类别确定对应的美学评价模型进行美学方面的评分,故不同的图像类别应该具有不同的美学评价方式,这里的不同的美学评价方式可以指全部不同或者部分不同的美学评价方式。It should be noted that, since the embodiment of the present application needs to determine the corresponding aesthetic evaluation model according to the image category for aesthetic scoring, different image categories should have different aesthetic evaluation methods. The different aesthetic evaluation methods here may refer to completely different or partially different aesthetic evaluation methods.
例如人物类的图像中,具有较白、较立体的人物脸型结构、较好的身体比例等的图像可以得到较高的美学评分,而风景类的图像中,具有较高的色彩饱和度、较好构图比例的图像可以得到较高的美学评分。故在划分图像类别时,需要考虑到上述情况,确定划分得到的不同图像类别具有不同的美学评价方式。For example, in human images, images with whiter, more three-dimensional facial structures, better body proportions, etc. can get higher aesthetic scores, while in landscape images, images with higher color saturation and better composition ratios can get higher aesthetic scores. Therefore, when classifying images, it is necessary to take the above into account and determine that different image categories obtained by classification have different aesthetic evaluation methods.
S103:通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分。S103: Determine the aesthetic score corresponding to each image in the first image set by using the aesthetic evaluation model corresponding to the first image category.
本步骤中的美学评价模型专为第一图像类别的图像进行美学方向的评分。该美学评价模型可以是预先训练得到的,例如预先通过深度神经网络训练得到的。The aesthetic evaluation model in this step is specifically used to score the aesthetic direction of images of the first image category. The aesthetic evaluation model can be pre-trained, for example, pre-trained by a deep neural network.
该美学评价模型可以基于第一图像类别对应的美学特点,通过分析图像中与该美学特点相关的特征进行美学方向的评分。一张图像的美学评分越高,这张图像对用户带来的美学感受就越好。The aesthetic evaluation model can score the aesthetic direction based on the aesthetic characteristics corresponding to the first image category by analyzing features in the image related to the aesthetic characteristics. The higher the aesthetic score of an image, the better the aesthetic feeling brought by the image to the user.
通过第一图像类别对应的美学评价模型,可以为第一图像集合中的图像确定出对应的美学评分,其中,一张图像具有一个对应的美学评分。By using the aesthetic evaluation model corresponding to the first image category, corresponding aesthetic scores can be determined for the images in the first image set, wherein one image has one corresponding aesthetic score.
可选的,美学评分可以是一个0-1的分数。Optionally, the aesthetic score can be a score from 0-1.
S104:在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。S104: When sorting the images in the picture search results, determine the sorting positions of the images in the first image set in the image search results in combination with the aesthetic scores corresponding to the images in the first image set.
在本申请实施例中,针对第一图像集合中的图像,在所述图片搜索结果中图像的排序位置可以仅依据美学评分确定,也可以在依据图像搜索结果中图像与关键词的相关性高低确定出排序位置的基础上,根据美学评分,调整第一图像集合中图像原本的排序位置,例如将美学评分较高的图像的排序位置提前,将美学评分较低的图像的排序位置靠后。In an embodiment of the present application, for the images in the first image set, the sorting position of the images in the picture search results can be determined solely based on the aesthetic score, or the sorting position can be determined based on the correlation between the images and keywords in the image search results, and then the original sorting position of the images in the first image set can be adjusted according to the aesthetic score, for example, the sorting position of images with higher aesthetic scores can be advanced, and the sorting position of images with lower aesthetic scores can be moved back.
不论是通过上述哪种方式结合美学评分确定第一图像集合中图像在所述图像搜索结果中的排序位置,均可以使得至少部分美学评分较高的图像排序位置提前,靠前的展示位置使得用户能够更快的查看到这类图像。Regardless of which of the above methods is used in combination with the aesthetic score to determine the ranking position of the images in the first image set in the image search results, at least some images with higher aesthetic scores can be ranked earlier, and the forward display position allows users to view such images more quickly.
可见,获取关键词对应的、包括多张图像的图像搜索结果时,根据图像分类模型从所述图像搜索结果的图像中识别出均属于第一图像类别的第一图像集合,通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分。在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。对于属于一个图像类别的图像来说,这个类别的美学评分可以体现出该图像在这个类别下对用户带来的美学感受,而用户选择查看美学感受较好的图像的可能性相对较高,由此可以美学评分较高的图像的排序位置提前,美学评分较低的图像的排序位置推后,使得美学评分较高的图像可以优先展示给用户,这类图像满足用户的图像搜索需求可能性较大,从而提高用户的图像搜索体验。It can be seen that when obtaining image search results corresponding to keywords and including multiple images, a first image set that all belongs to the first image category is identified from the images in the image search results according to the image classification model, and the aesthetic scores corresponding to the images in the first image set are determined by the aesthetic evaluation model corresponding to the first image category. When sorting the images in the picture search results, the sorting positions of the images in the first image set in the image search results are determined in combination with the aesthetic scores corresponding to the images in the first image set. For images belonging to an image category, the aesthetic score of this category can reflect the aesthetic feeling that the image brings to the user under this category, and the possibility that the user chooses to view images with better aesthetic feeling is relatively high. Therefore, the sorting position of images with higher aesthetic scores can be advanced, and the sorting position of images with lower aesthetic scores can be postponed, so that images with higher aesthetic scores can be displayed to users first. Such images are more likely to meet the image search needs of users, thereby improving the image search experience of users.
在S102中,通过图像分类模型可以从图像搜索结果中识别出属于第一图像类别的图像,除此之外,图像分类模型还可以识别出其他图像类别的图像,例如与所述第一图像类别不同的第二图像类别。也就是说,通过图像分类模型可以从图像搜索结果中识别出多个图像类别的图像,并形成对应的图像集合。In S102, the image classification model can identify images belonging to the first image category from the image search results. In addition, the image classification model can also identify images of other image categories, such as a second image category different from the first image category. In other words, the image classification model can identify images of multiple image categories from the image search results and form a corresponding image set.
故在一种可能的实现方式中,S102可以为:Therefore, in a possible implementation, S102 may be:
根据所述图像分类模型从所述图像搜索结果中识别所述第一图像集合和第二图像集合。The first image set and the second image set are identified from the image search results according to the image classification model.
所述第二图像集合中的图像属于与所述第一图像类别不同的第二图像类别。例如第一图像类别为人物类,第二图像类别为风景类,那么第一图像集合中的图像均为人物类的图像,第二图像类别中的图像均为风景类的图像。The images in the second image set belong to a second image category different from the first image category. For example, if the first image category is people and the second image category is landscape, then all images in the first image set are people images and all images in the second image category are landscape images.
需要注意的是,有些图像可能具有多种图像类别,例如一张包括了某人在野外的图像a,其图像类别可以既是人物类,也是风景类,故在通过图像分类模型从图像搜索结果中识别出多个不同图像类别的图像集合例如第一图像集合和第二图像集合时,图像搜索结果中的某个或某些图像可以既在第一图像集合中,也在第二图像集合中。例如上例中的图像a,若第一图像类别为人物类,第二图像类别为风景类,图像a既可以在第一图像集合中,也可以在第二图像集合中,这种情况下,图像a可以具有对应人物类的美学评分和对应风景类的美学评分。在结合美学评分对图像a确定图像a在图像搜索结果中的排序位置时,可以同时考虑图像a对应人物类的美学评分和对应风景类的美学评分来确定图像a的排序位置,例如设置不同的权重综合多个美学评分得到总的美学评分,在通过总的美学评分来去顶图像a的排序位置;或者,也可以根据图像a对应人物类的美学评分和对应风景类的美学评分中评分较高的来确定图像a的排序位置;或者,若图像a的某一个图像类型例如人物类与关键词的类型具有相关性,可以采用人物类的美学评分来确定图像a的排序位置。It should be noted that some images may have multiple image categories. For example, an image a that includes a person in the wild may have an image category of both a person and a landscape. Therefore, when multiple image sets of different image categories, such as a first image set and a second image set, are identified from the image search results through an image classification model, one or some images in the image search results may be in both the first image set and the second image set. For example, for image a in the above example, if the first image category is a person and the second image category is a landscape, image a may be in both the first image set and the second image set. In this case, image a may have an aesthetic score corresponding to the person category and an aesthetic score corresponding to the landscape category. When determining the ranking position of image a in the image search results in combination with the aesthetic score, the aesthetic score of image a corresponding to the person category and the aesthetic score of image a corresponding to the landscape category can be considered simultaneously to determine the ranking position of image a. For example, different weights are set to integrate multiple aesthetic scores to obtain a total aesthetic score, and the ranking position of image a is removed by the total aesthetic score; or, the ranking position of image a can be determined based on the higher aesthetic score of image a corresponding to the person category and the aesthetic score of image a corresponding to the landscape category; or, if a certain image type of image a, such as the person category, is correlated with the type of the keyword, the aesthetic score of the person category can be used to determine the ranking position of image a.
在确定出第一图像集合和第二图像集合后,需要对第二图像集合中的图像进行美学方向的评分。在图1所对应实施例的基础上,所述方法还包括:After determining the first image set and the second image set, it is necessary to score the images in the second image set in terms of aesthetic direction. Based on the embodiment corresponding to FIG1 , the method further includes:
S201:通过所述第二图像类别对应的美学评价模型确定所述第二图像集合中图像各自对应的美学评分。S201: Determine an aesthetic score corresponding to each image in the second image set by using an aesthetic evaluation model corresponding to the second image category.
本步骤中的美学评价模型专为第二图像类别的图像进行美学方向的评分。该美学评价模型可以是预先训练得到的,例如预先通过深度神经网络训练得到的。The aesthetic evaluation model in this step is specifically used to score the aesthetic direction of the images of the second image category. The aesthetic evaluation model can be pre-trained, for example, pre-trained by a deep neural network.
该美学评价模型可以基于第二图像类别对应的美学特点,通过分析图像中与该美学特点相关的特征进行美学方向的评分。一张图像的美学评分越高,这张图像对用户带来的美学感受就越好。The aesthetic evaluation model can score the aesthetic direction based on the aesthetic characteristics corresponding to the second image category by analyzing features in the image related to the aesthetic characteristics. The higher the aesthetic score of an image, the better the aesthetic feeling brought by the image to the user.
通过第二图像类别对应的美学评价模型,可以为第二图像集合中的图像确定出对应的美学评分,其中,一张图像具有一个对应的美学评分。By using the aesthetic evaluation model corresponding to the second image category, corresponding aesthetic scores can be determined for the images in the second image set, wherein one image has one corresponding aesthetic score.
可选的,美学评分可以是一个0-1的分数。Optionally, the aesthetic score can be a score from 0-1.
S202:在对所述图片搜索结果中图像进行排序时,结合所述第二图像集合中图像各自对应的美学评分确定所述第二图像集合中图像在所述图像搜索结果中的排序位置。S202: When sorting the images in the picture search results, determine the sorting positions of the images in the second image set in the image search results in combination with the aesthetic scores corresponding to the images in the second image set.
在本申请实施例中,针对第二图像集合中的图像,在所述图片搜索结果中图像的排序位置可以仅依据美学评分确定,也可以在依据图像搜索结果中图像与关键词的相关性高低确定出排序位置的基础上,根据美学评分,调整第二图像集合中图像原本的排序位置,例如将美学评分较高的图像的排序位置提前,将美学评分较低的图像的排序位置靠后。In an embodiment of the present application, for the images in the second image set, the sorting position of the image in the picture search results can be determined solely based on the aesthetic score, or the sorting position can be determined based on the correlation between the image and the keyword in the image search results, and then the original sorting position of the image in the second image set can be adjusted according to the aesthetic score, for example, the sorting position of the image with a higher aesthetic score can be advanced, and the sorting position of the image with a lower aesthetic score can be moved back.
不论是通过上述哪种方式结合美学评分确定第二图像集合中图像在所述图像搜索结果中的排序位置,均可以使得至少部分美学评分较高的图像排序位置提前,靠前的展示位置使得用户能够更快的查看到这类图像。Regardless of which of the above methods is used in combination with the aesthetic score to determine the ranking position of the images in the second image set in the image search results, at least some images with higher aesthetic scores can be ranked earlier, and the forward display position allows users to view such images more quickly.
综上所述,由于不同图像类型的图像差异大,用户对不同图像类型的图像的美学感受或者说吸引力评价标准也不一致,比如对于素材类和人物类,无论从饱和度还是从图像构图的美学评价标准都有很大差别。故本申请实施例中,在对图像进行美学方向的评分时,针对不同图像类别的图像可以采用不同的美学评分模型进行评分,不同图像类别可以有不同的评分标准和方式,提高了美学评分所能体现美学感受的准确性,以此确定出的图像排序位置能够提高用户的图像搜索体验。In summary, due to the large differences between images of different image types, users have different aesthetic feelings or attractiveness evaluation standards for images of different image types. For example, for material and character types, there are great differences in aesthetic evaluation standards in terms of saturation and image composition. Therefore, in the embodiments of the present application, when scoring images in terms of aesthetic direction, different aesthetic scoring models can be used for scoring images of different image categories, and different image categories can have different scoring standards and methods, which improves the accuracy of aesthetic feelings that can be reflected by aesthetic scoring, and the image ranking position determined in this way can improve the user's image search experience.
针对图像类别为人物类的图像,本申请实施例还提供了一种进一步优化排序位置的方式、For images whose image category is people, the embodiment of the present application further provides a method for further optimizing the sorting position.
若所述第一图像类别为人物类,在一种可能的实现方式中,基于图1所对应实施例的基础上,所述方法还包括:If the first image category is a person category, in a possible implementation, based on the embodiment corresponding to FIG1 , the method further includes:
S301:根据人脸分析模型确定所述第一图像集合中图像各自对应的人脸分析评分。S301: Determine the face analysis score corresponding to each image in the first image set according to the face analysis model.
该人脸分析模型用于对图像中人脸进行分析,可以包括分析人脸的检测和识别,以及人脸数量等。通过上述人脸分析过程,可以基于分析结果为第一图像集合中图像进行人脸分析评分。其中,一个图像对应一个人脸分析评分。The face analysis model is used to analyze faces in images, which may include face detection and recognition, and the number of faces. Through the above face analysis process, face analysis scores can be performed for the images in the first image set based on the analysis results. One image corresponds to one face analysis score.
需要注意的是,人脸分析模型可以通过一个模型实现上述人脸分析功能,也可以通过多个模型实现上述人脸分析功能,例如人脸分析模型可以分为人脸检测模型和人脸识别模型,其中,人脸检测模型可以检测图像中人脸的位置和数量,人脸识别模型可以识别图像中人脸对应的人物等。It should be noted that the face analysis model can implement the above-mentioned face analysis function through one model or through multiple models. For example, the face analysis model can be divided into a face detection model and a face recognition model. Among them, the face detection model can detect the position and number of faces in the image, and the face recognition model can identify the person corresponding to the face in the image, etc.
例如关键词为“演员A”,通过人脸分析模型可以识别该关键词对应的图像搜索结果中各图像携带的人脸信息,例如图像中人物是否为演员A,有几个人物等。For example, if the keyword is "actor A", the face analysis model can identify the face information carried by each image in the image search results corresponding to the keyword, such as whether the person in the image is actor A, how many people there are, etc.
人脸分析评分可以体现图像中所识别、检测出的人脸与关键词对应的人物是否关联,例如上例中的“演员A”对应的图像中,若一张图像中仅包括一张人脸且为演员A的,人脸分析评分相对较高,若一张图像中包括了多张人脸,只有一张人脸为演员A的,人脸分析评分相对较低。The facial analysis score can reflect whether the face identified and detected in the image is related to the person corresponding to the keyword. For example, in the image corresponding to "Actor A" in the above example, if an image only includes one face and it is actor A, the facial analysis score is relatively high. If an image includes multiple faces and only one face is actor A, the facial analysis score is relatively low.
通过上一段对人脸分析评分的说明,可以明确人脸分析评分体现了人物类图像中所包含人脸与关键词所对应人物之间的关联程度,或者说图像是否更聚焦于展示关键词所对应人物。From the explanation of face analysis scoring in the previous paragraph, it can be made clear that the face analysis scoring reflects the degree of association between the face contained in the person image and the person corresponding to the keyword, or whether the image is more focused on displaying the person corresponding to the keyword.
一张图像中包含的人脸与关键词所对应任务之间的关联程度越高,例如仅包含关键词所对应人物的人脸,没有包含其他人物的人脸时,这张图像的人脸分析评分就越高。The higher the degree of correlation between the face contained in an image and the task corresponding to the keyword, for example, when it only contains the face of the person corresponding to the keyword and does not contain the faces of other people, the higher the face analysis score of this image will be.
由此可见,人脸分析评分的高低,也能影响用户是否选择点击选择的可能。关键词所对应人物能够体现出用户的搜索需求,故用户从图像搜索结果中点击选择与关键词所对应人物关联程度较高的图像的可比性较大,也就是说,一张图像的人脸分析评分越高,用户点击选择这张图像的可能性就越大。It can be seen that the face analysis score can also affect whether the user chooses to click on the image. The person corresponding to the keyword can reflect the user's search needs, so the user is more likely to click on the image with a higher degree of association with the person corresponding to the keyword from the image search results. In other words, the higher the face analysis score of an image, the more likely the user is to click on the image.
S302:根据所述第一图像集合中图像各自对应的人脸分析评分和所述第一图像集合中图像各自对应的美学评分,确定所述第一图像集合中图像各自对应的质量评分。S302: Determine a quality score corresponding to each image in the first image set according to the face analysis score corresponding to each image in the first image set and the aesthetic score corresponding to each image in the first image set.
由于第一图像集合中各个图像已经具有各自对应的美学评分以及人脸分析评分,美学评分可以体现出图像对用户带来的美学感受,人脸分析评分可以体现图像所包含人脸与关键词所对应人物的关联程度,这两个评分均可以用于调整图像的排序位置。为了便于计算,可以将这两种评分进行合并,综合得到图像对应的质量评分。第一图像集合中,一个图像具有一个对应的质量评分。Since each image in the first image set already has its own corresponding aesthetic score and face analysis score, the aesthetic score can reflect the aesthetic feeling brought by the image to the user, and the face analysis score can reflect the degree of association between the face contained in the image and the person corresponding to the keyword. Both scores can be used to adjust the sorting position of the image. For the convenience of calculation, these two scores can be combined to obtain the quality score corresponding to the image. In the first image set, one image has a corresponding quality score.
在综合美学评分和人脸分析评分计算质量评分时,美学评分和人脸分析评分可以具有不同或相同的权重系数,本申请实施例对具体如何设置权重系数并不限定,例如可以预先设置,也可以根据不同的应用场景进行对对应性的调整。When calculating the quality score by combining the aesthetic score and the facial analysis score, the aesthetic score and the facial analysis score may have different or the same weight coefficients. The embodiment of the present application does not limit how to set the weight coefficient. For example, the weight coefficient may be pre-set or adjusted according to different application scenarios.
在确定出质量评分后,在本实施例中,S104的一种可能的实现方式可以如S303所示:After the quality score is determined, in this embodiment, a possible implementation of S104 may be as shown in S303:
S303:结合所述第一图像集合中图像各自对应的质量评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。S303: Determine the ranking positions of the images in the first image set in the image search results in combination with the quality scores corresponding to the images in the first image set.
在本申请实施例中,针对第一图像集合中的图像,在所述图片搜索结果中图像的排序位置可以仅依据质量评分确定,也可以在依据图像搜索结果中图像与关键词的相关性高低确定出排序位置的基础上,根据质量评分,调整第一图像集合中图像原本的排序位置,例如将质量评分较高的图像的排序位置提前,将质量评分较低的图像的排序位置靠后。In an embodiment of the present application, for images in the first image set, the sorting position of the image in the picture search results can be determined only based on the quality score, or the sorting position can be determined based on the correlation between the image and the keyword in the image search results, and then the original sorting position of the image in the first image set can be adjusted according to the quality score, for example, the sorting position of images with higher quality scores can be advanced, and the sorting position of images with lower quality scores can be moved back.
不论是通过上述哪种方式结合质量评分确定第一图像集合中图像在所述图像搜索结果中的排序位置,均可以使得至少部分质量评分较高的图像排序位置提前,靠前的展示位置使得用户能够更快的查看到这类图像,从而提高图像搜索结果的展示效果。Regardless of which of the above methods is used in combination with the quality score to determine the ranking position of the images in the first image set in the image search results, at least some images with higher quality scores can be ranked earlier. The forward display position allows users to view such images more quickly, thereby improving the display effect of the image search results.
由于不同的用户的图像搜索行为会有区别,针对相同的关键词,不同用户点击选择的图像也会有所不同。针对这一现象,本申请实施例针对用户的图像搜索行为提供了个性化的排序方式,会通过分析用户的图像点击特征针对性的调整该用户对应的图像搜索结果。Since different users have different image search behaviors, for the same keyword, different users may click on different images. In response to this phenomenon, the embodiment of the present application provides a personalized sorting method based on the user's image search behavior, and adjusts the image search results corresponding to the user in a targeted manner by analyzing the user's image click characteristics.
在一种可能的实现方式中,基于上述任意一个实施例的基础上,若所述关键词为目标用户输入的,所述方法还包括:In a possible implementation, based on any one of the above embodiments, if the keyword is input by the target user, the method further includes:
S401:根据所述目标用户的图像搜索行为确定所述目标用户的图像点击特征。S401: Determine the image click feature of the target user according to the image search behavior of the target user.
目标用户的图像点击特征可以体现目标用户在进行图像搜索时的图像点击行为特点,例如体现出用户针对哪种类型的图像更感兴趣,更倾向于点击选择。The image click characteristics of the target user can reflect the characteristics of the target user's image click behavior when performing image search, for example, reflecting which type of image the user is more interested in and is more inclined to click to select.
可选的,可以通过深度学习方法对目标用户的图像搜索行为数据建模分析,主要学习目标用户图像点击的倾向性和内在规律。例如通过分析,发现目标用户对于图像的图像点击特征包括相关性和新鲜性,即目标用户更倾向于选择相关度高并且较为新鲜的图像。Optionally, the image search behavior data of the target user can be modeled and analyzed through deep learning methods, mainly to learn the tendency and internal rules of the target user's image clicks. For example, through analysis, it is found that the image click characteristics of the target user for images include relevance and freshness, that is, the target user is more inclined to choose images with high relevance and relatively freshness.
这里的类型和前述提到的图像类别可以是采用相同的方式划分的,也可以是采用不同的方式划分的,本申请不做限定。The types here and the aforementioned image categories may be divided in the same manner or in different manners, and this application does not limit this.
S402:在确定所述图像搜索结果中图像的排序结果后,根据所述图像点击特征调整所述排序结果,以将所述图像搜索结果中符合所述图像点击特征的图像的排序位置提前。S402: After determining the ranking results of the images in the image search results, adjusting the ranking results according to the image click feature, so as to advance the ranking positions of the images in the image search results that meet the image click feature.
S403:根据调整后的排序结果展示所述图像搜索结果。S403: Displaying the image search results according to the adjusted ranking results.
需要注意的是,S402提到的“确定所述图像搜索结果中图像的排序结果”是指结合美学评分确定了图像集合中图像的排序位置。It should be noted that the “determining the ranking result of the image in the image search result” mentioned in S402 refers to determining the ranking position of the image in the image collection in combination with the aesthetic score.
例如结合美学评分确定了第一图像集合中图像的排序位置;或者,For example, the ranking position of the image in the first image set is determined in combination with the aesthetic score; or,
例如结合美学评分确定了第一图像集合中图像的排序位置,以及结合美学评分确定了第二图像集合中图像的排序位置;或者,For example, the ranking position of the image in the first image set is determined in combination with the aesthetic score, and the ranking position of the image in the second image set is determined in combination with the aesthetic score; or,
例如结合所述第一图像集合中图像各自对应的质量评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。For example, the ranking positions of the images in the first image set in the image search results are determined in combination with the quality scores corresponding to the images in the first image set.
在确定所述图像搜索结果中图像的排序结果后,才使用确定出的图像点击特征对排序结果进行调整的原因在于,由于图像点击特征能够较为直接的体现出用户的图像搜索需求特点,如果过早的通过图像点击特征调整图像的排序位置,会导致展示给用户的多为符合用户图像搜索需求特点的图像,使得图像搜索结果中的图像过于单一,用户不容易接触到其他类型的图像,难以为用户提供多样性的搜索体验。The reason why the determined image click feature is used to adjust the sorting result after the sorting result of the image in the image search results is that the image click feature can more directly reflect the characteristics of the user's image search needs. If the image sorting position is adjusted by the image click feature too early, it will result in most images displayed to the user that meet the characteristics of the user's image search needs, making the images in the image search results too single, and it is not easy for users to access other types of images, making it difficult to provide users with a diverse search experience.
而在确定所述图像搜索结果中图像的排序结果后,使用确定出的图像点击特征对排序结果进行调整,可以使得满足多样性的图像搜索结果中符合用户的图像搜索需求特点的图像展示位置较为靠前,具有高美学评分或者质量评分的其他类型图像同样也会展示给用户,起到了保持图像搜索结果多样性的前提下优先展示符合用户图像搜索需求特点的图像,从而进一步提高用户的图像搜索体验。After determining the ranking results of the images in the image search results, the determined image click features are used to adjust the ranking results, so that images that meet the user's image search needs in the diverse image search results can be displayed at a higher position, and other types of images with high aesthetic scores or quality scores will also be displayed to the user. This plays a role in giving priority to displaying images that meet the user's image search needs while maintaining the diversity of image search results, thereby further improving the user's image search experience.
基于图1对应的实施例提供的图像搜索结果的排序方法,本申请实施例提供一种图像搜索结果的排序装置,参见图2,,所述装置包括获取单元201、识别单元202、确定单元203和排序单元204:Based on the method for sorting image search results provided in the embodiment corresponding to FIG. 1 , the present application embodiment provides a device for sorting image search results. Referring to FIG. 2 , the device includes an acquisition unit 201, an identification unit 202, a determination unit 203, and a sorting unit 204:
所述获取单元201,用于获取关键词对应的图像搜索结果,所述图像搜索结果包括多张图像;The acquisition unit 201 is used to acquire image search results corresponding to a keyword, where the image search results include multiple images;
所述识别单元202,用于根据图像分类模型从所述图像搜索结果中识别第一图像集合;所述第一图像集合中的图像属于第一图像类别;The identification unit 202 is used to identify a first image set from the image search results according to an image classification model; the images in the first image set belong to a first image category;
所述确定单元203,用于通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分;The determining unit 203 is configured to determine the aesthetic scores corresponding to the images in the first image set by using the aesthetic evaluation model corresponding to the first image category;
所述排序单元204,用于在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。The ranking unit 204 is configured to determine the ranking positions of the images in the first image set in the image search results in combination with the aesthetic scores corresponding to the images in the first image set when ranking the images in the image search results.
可选的,所述识别单元还用于根据所述图像分类模型从所述图像搜索结果中识别所述第一图像集合和第二图像集合;所述第二图像集合中的图像属于与所述第一图像类别不同的第二图像类别;Optionally, the recognition unit is further used to identify the first image set and the second image set from the image search results according to the image classification model; the images in the second image set belong to a second image category different from the first image category;
所述确定单元还用于通过所述第二图像类别对应的美学评价模型确定所述第二图像集合中图像各自对应的美学评分;The determining unit is further configured to determine the aesthetic scores corresponding to the images in the second image set by using the aesthetic evaluation model corresponding to the second image category;
所述排序单元还用于在对所述图片搜索结果中图像进行排序时,结合所述第二图像集合中图像各自对应的美学评分确定所述第二图像集合中图像在所述图像搜索结果中的排序位置。The sorting unit is further configured to determine, when sorting the images in the picture search results, the sorting positions of the images in the second image set in the image search results in combination with the aesthetic scores corresponding to the images in the second image set.
可选的,所述第一图像类别与所述关键词所属的类型具有相关性。Optionally, the first image category is correlated with the type to which the keyword belongs.
可选的,若所述第一图像类别为人物类,所述装置还包括人脸分析评分确定单元和质量评分确定单元:Optionally, if the first image category is a person category, the device further includes a face analysis score determination unit and a quality score determination unit:
所述人脸分析评分确定单元,用于根据人脸分析模型确定所述第一图像集合中图像各自对应的人脸分析评分;The face analysis score determination unit is used to determine the face analysis score corresponding to each image in the first image set according to the face analysis model;
所述质量评分确定单元,用于根据所述第一图像集合中图像各自对应的人脸分析评分和所述第一图像集合中图像各自对应的美学评分,确定所述第一图像集合中图像各自对应的质量评分;The quality score determination unit is used to determine the quality score corresponding to each image in the first image set according to the face analysis score corresponding to each image in the first image set and the aesthetic score corresponding to each image in the first image set;
所述排序单元还用于结合所述第一图像集合中图像各自对应的质量评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。The ranking unit is further configured to determine the ranking positions of the images in the first image set in the image search results in combination with the quality scores corresponding to the images in the first image set.
可选的,所述图像搜索结果为根据所述关键词搜索得到的、且与所述关键词的相关性满足预设条件的多张图像。Optionally, the image search result is a plurality of images obtained by searching the keyword and whose relevance to the keyword meets a preset condition.
可选的,若所述关键词为目标用户输入的,所述装置还包括图像点击特征确定单元、调整单元和展示单元:Optionally, if the keyword is input by the target user, the device further includes an image click feature determination unit, an adjustment unit, and a display unit:
所述图像点击特征确定单元,用于根据所述目标用户的图像搜索行为确定所述目标用户的图像点击特征;The image click feature determination unit is used to determine the image click feature of the target user according to the image search behavior of the target user;
所述调整单元,用于在确定所述图像搜索结果中图像的排序结果后,根据所述图像点击特征调整所述排序结果,以将所述图像搜索结果中符合所述图像点击特征的图像的排序位置提前;The adjusting unit is used to adjust the ranking result according to the image click feature after determining the ranking result of the images in the image search result, so as to advance the ranking position of the images that meet the image click feature in the image search result;
所述展示单元,用于根据调整后的排序结果展示所述图像搜索结果。The display unit is used to display the image search results according to the adjusted ranking results.
可见,获取关键词对应的、包括多张图像的图像搜索结果时,根据图像分类模型从所述图像搜索结果的图像中识别出均属于第一图像类别的第一图像集合,通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分。在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。对于属于一个图像类别的图像来说,这个类别的美学评分可以体现出该图像在这个类别下对用户带来的美学感受,而用户选择查看美学感受较好的图像的可能性相对较高,由此可以美学评分较高的图像的排序位置提前,美学评分较低的图像的排序位置推后,使得美学评分较高的图像可以优先展示给用户,这类图像满足用户的图像搜索需求可能性较大,从而提高用户的图像搜索体验。It can be seen that when obtaining image search results corresponding to keywords and including multiple images, a first image set that all belongs to the first image category is identified from the images in the image search results according to the image classification model, and the aesthetic scores corresponding to the images in the first image set are determined by the aesthetic evaluation model corresponding to the first image category. When sorting the images in the picture search results, the sorting positions of the images in the first image set in the image search results are determined in combination with the aesthetic scores corresponding to the images in the first image set. For images belonging to an image category, the aesthetic score of this category can reflect the aesthetic feeling that the image brings to the user under this category, and the possibility that the user chooses to view images with better aesthetic feeling is relatively high. Therefore, the sorting position of images with higher aesthetic scores can be advanced, and the sorting position of images with lower aesthetic scores can be postponed, so that images with higher aesthetic scores can be displayed to users first. Such images are more likely to meet the image search needs of users, thereby improving the image search experience of users.
基于前述提供的流量渠道的质量判断方法和装置,本实施例提供一种用于流量渠道的质量判断设备,用于流量渠道的质量判断设备可以是终端设备,图3是根据一示例性实施例示出的一种终端终端设备300的框图。例如,终端设备300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。Based on the aforementioned method and apparatus for judging the quality of a traffic channel, this embodiment provides a device for judging the quality of a traffic channel, which may be a terminal device, and FIG3 is a block diagram of a terminal device 300 according to an exemplary embodiment. For example, the terminal device 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
参照图3,终端设备300可以包括以下一个或多个组件:处理组件302,存储器304,电源组件306,多媒体组件308,音频组件310,输入/输出(I/ O)的接口312,传感器组件314,以及通信组件316。3 , the terminal device 300 may include one or more of the following components: a processing component 302 , a memory 304 , a power component 306 , a multimedia component 308 , an audio component 310 , an input/output (I/O) interface 312 , a sensor component 314 , and a communication component 316 .
处理组件302通常控制终端设备300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。The processing component 302 generally controls the overall operation of the terminal device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations. The processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above-mentioned method. In addition, the processing component 302 may include one or more modules to facilitate the interaction between the processing component 302 and other components. For example, the processing component 302 may include a multimedia module to facilitate the interaction between the multimedia component 308 and the processing component 302.
存储器304被配置为存储各种类型的数据以支持在终端设备300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。The memory 304 is configured to store various types of data to support operations on the terminal device 300. Examples of such data include instructions for any application or method operating on the device 300, contact data, phone book data, messages, pictures, videos, etc. The memory 304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
电源组件306为终端设备300的各种组件提供电力。电源组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。The power supply component 306 provides power to various components of the terminal device 300. The power supply component 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 300.
多媒体组件308包括在所述终端设备300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当终端设备300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。The multimedia component 308 includes a screen that provides an output interface between the terminal device 300 and the user. In some embodiments, the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user. The touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation. In some embodiments, the multimedia component 308 includes a front camera and/or a rear camera. When the terminal device 300 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。The audio component 310 is configured to output and/or input audio signals. For example, the audio component 310 includes a microphone (MIC), and when the device 300 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal. The received audio signal can be further stored in the memory 304 or sent via the communication component 316. In some embodiments, the audio component 310 also includes a speaker for outputting audio signals.
I/ O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。I/O interface 312 provides an interface between processing component 302 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
传感器组件314包括一个或多个传感器,用于为终端设备300提供各个方面的状态评估。例如,传感器组件314可以检测到终端设备300的打开/关闭状态,组件的相对定位,例如所述组件为终端设备300的显示器和小键盘,传感器组件314还可以检测终端设备300或终端设备300一个组件的位置改变,用户与终端设备300接触的存在或不存在,终端设备300方位或加速/减速和终端设备300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。The sensor assembly 314 includes one or more sensors for providing various aspects of status assessment for the terminal device 300. For example, the sensor assembly 314 can detect the open/closed state of the terminal device 300, the relative positioning of the components, such as the display and keypad of the terminal device 300, and the sensor assembly 314 can also detect the position change of the terminal device 300 or a component of the terminal device 300, the presence or absence of contact between the user and the terminal device 300, the orientation or acceleration/deceleration of the terminal device 300, and the temperature change of the terminal device 300. The sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact. The sensor assembly 314 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications. In some embodiments, the sensor assembly 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
通信组件316被配置为便于终端设备300和其他设备之间有线或无线方式的通信。终端设备300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。The communication component 316 is configured to facilitate wired or wireless communication between the terminal device 300 and other devices. The terminal device 300 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof. In an exemplary embodiment, the communication component 316 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel. In an exemplary embodiment, the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication. For example, the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
在示例性实施例中,终端设备300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。In an exemplary embodiment, the terminal device 300 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above method.
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由终端设备300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。In an exemplary embodiment, a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 304 including instructions, and the instructions can be executed by a processor 320 of a terminal device 300 to complete the above method. For example, the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
图4是本发明实施例中服务器的结构示意图。该服务器400可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)422(例如,一个或一个以上处理器)和存储器432,一个或一个以上存储应用程序442或数据444的存储介质430(例如一个或一个以上海量存储设备)。其中,存储器432和存储介质430可以是短暂存储或持久存储。存储在存储介质430的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器422可以设置为与存储介质430通信,在服务器400上执行存储介质430中的一系列指令操作。FIG4 is a schematic diagram of the structure of a server in an embodiment of the present invention. The server 400 may have relatively large differences due to different configurations or performances, and may include one or more central processing units (CPU) 422 (for example, one or more processors) and memory 432, and one or more storage media 430 (for example, one or more mass storage devices) storing application programs 442 or data 444. Among them, the memory 432 and the storage medium 430 may be temporary storage or permanent storage. The program stored in the storage medium 430 may include one or more modules (not shown in the figure), and each module may include a series of instruction operations in the server. Furthermore, the central processing unit 422 may be configured to communicate with the storage medium 430 to execute a series of instruction operations in the storage medium 430 on the server 400.
服务器400还可以包括一个或一个以上电源426,一个或一个以上有线或无线网络接口450,一个或一个以上输入输出接口458,一个或一个以上键盘456,和/或,一个或一个以上操作系统441,例如Windows ServerTM,Mac OS XTM,UnixTM, LinuxTM,FreeBSDTM等等。The server 400 may also include one or more power supplies 426, one or more wired or wireless network interfaces 450, one or more input and output interfaces 458, one or more keyboards 456, and/or, one or more operating systems 441, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, etc.
一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行一种流量渠道的质量判断方法,所述方法包括:A non-transitory computer-readable storage medium, when the instructions in the storage medium are executed by a processor of a mobile terminal, enables the mobile terminal to execute a method for determining the quality of a traffic channel, the method comprising:
获取关键词对应的图像搜索结果,所述图像搜索结果包括多张图像;Obtaining image search results corresponding to the keyword, wherein the image search results include multiple images;
根据图像分类模型从所述图像搜索结果中识别第一图像集合;所述第一图像集合中的图像属于第一图像类别;identifying a first image set from the image search results according to an image classification model; the images in the first image set belong to a first image category;
通过所述第一图像类别对应的美学评价模型确定所述第一图像集合中图像各自对应的美学评分;Determining an aesthetic score corresponding to each image in the first image set by using an aesthetic evaluation model corresponding to the first image category;
在对所述图片搜索结果中图像进行排序时,结合所述第一图像集合中图像各自对应的美学评分确定所述第一图像集合中图像在所述图像搜索结果中的排序位置。When ranking the images in the picture search results, the ranking positions of the images in the first image set in the image search results are determined in combination with the aesthetic scores corresponding to the images in the first image set.
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质可以是下述介质中的至少一种:只读存储器(英文:read-only memory,缩写:ROM)、RAM、磁碟或者光盘等各种可以存储程序代码的介质。A person skilled in the art can understand that all or part of the steps of implementing the above method embodiment can be completed by hardware related to program instructions, and the above program can be stored in a computer-readable storage medium. When the program is executed, it executes the steps of the above method embodiment; and the above storage medium can be at least one of the following media: read-only memory (ROM), RAM, magnetic disk or optical disk, etc., which can store program codes.
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备及系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的设备及系统实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。It should be noted that each embodiment in this specification is described in a progressive manner, and the same and similar parts between the embodiments can be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, for the device and system embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and the relevant parts can be referred to the partial description of the method embodiments. The device and system embodiments described above are merely schematic, in which the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the scheme of this embodiment. Ordinary technicians in this field can understand and implement it without paying creative work.
以上所述,仅为本申请的一种具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。The above is only a specific implementation of the present application, but the protection scope of the present application is not limited thereto. Any changes or substitutions that can be easily thought of by a person skilled in the art within the technical scope disclosed in the present application should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811612143.2A CN111382295B (en) | 2018-12-27 | 2018-12-27 | A method and device for sorting image search results |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201811612143.2A CN111382295B (en) | 2018-12-27 | 2018-12-27 | A method and device for sorting image search results |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111382295A CN111382295A (en) | 2020-07-07 |
| CN111382295B true CN111382295B (en) | 2024-04-30 |
Family
ID=71219559
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811612143.2A Active CN111382295B (en) | 2018-12-27 | 2018-12-27 | A method and device for sorting image search results |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111382295B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114328359A (en) * | 2020-09-27 | 2022-04-12 | 广州市久邦数码科技有限公司 | Playing method and system of audio electronic book |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102332034A (en) * | 2011-10-21 | 2012-01-25 | 中国科学院计算技术研究所 | A portrait image retrieval method and device |
| CN102799635A (en) * | 2012-06-27 | 2012-11-28 | 天津大学 | Image set ordering method driven by user |
| CN103699612A (en) * | 2013-12-13 | 2014-04-02 | 中国科学院深圳先进技术研究院 | Image retrieval ranking method and device |
| CN103988202A (en) * | 2011-11-25 | 2014-08-13 | 微软公司 | Image appeal based on indexing and search |
| CN107153838A (en) * | 2017-04-19 | 2017-09-12 | 中国电子科技集团公司电子科学研究院 | A kind of photo automatic grading method and device |
| CN107729384A (en) * | 2017-09-18 | 2018-02-23 | 维沃移动通信有限公司 | Image ranking method and mobile terminal |
| EP3321855A1 (en) * | 2016-11-15 | 2018-05-16 | Houzz, Inc. | Aesthetic search engine |
| CN108288027A (en) * | 2017-12-28 | 2018-07-17 | 新智数字科技有限公司 | A kind of detection method of picture quality, device and equipment |
| WO2018192245A1 (en) * | 2017-04-19 | 2018-10-25 | 中国电子科技集团公司电子科学研究院 | Automatic scoring method for photo based on aesthetic assessment |
| CN108897685A (en) * | 2018-06-28 | 2018-11-27 | 百度在线网络技术(北京)有限公司 | Method for evaluating quality, device, server and the medium of search result |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9286325B2 (en) * | 2013-05-21 | 2016-03-15 | Xerox Corporation | Methods and systems for ranking images using semantic and aesthetic models |
| US9659384B2 (en) * | 2014-10-03 | 2017-05-23 | EyeEm Mobile GmbH. | Systems, methods, and computer program products for searching and sorting images by aesthetic quality |
-
2018
- 2018-12-27 CN CN201811612143.2A patent/CN111382295B/en active Active
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102332034A (en) * | 2011-10-21 | 2012-01-25 | 中国科学院计算技术研究所 | A portrait image retrieval method and device |
| CN103988202A (en) * | 2011-11-25 | 2014-08-13 | 微软公司 | Image appeal based on indexing and search |
| CN102799635A (en) * | 2012-06-27 | 2012-11-28 | 天津大学 | Image set ordering method driven by user |
| CN103699612A (en) * | 2013-12-13 | 2014-04-02 | 中国科学院深圳先进技术研究院 | Image retrieval ranking method and device |
| EP3321855A1 (en) * | 2016-11-15 | 2018-05-16 | Houzz, Inc. | Aesthetic search engine |
| CN107153838A (en) * | 2017-04-19 | 2017-09-12 | 中国电子科技集团公司电子科学研究院 | A kind of photo automatic grading method and device |
| WO2018192245A1 (en) * | 2017-04-19 | 2018-10-25 | 中国电子科技集团公司电子科学研究院 | Automatic scoring method for photo based on aesthetic assessment |
| CN107729384A (en) * | 2017-09-18 | 2018-02-23 | 维沃移动通信有限公司 | Image ranking method and mobile terminal |
| CN108288027A (en) * | 2017-12-28 | 2018-07-17 | 新智数字科技有限公司 | A kind of detection method of picture quality, device and equipment |
| CN108897685A (en) * | 2018-06-28 | 2018-11-27 | 百度在线网络技术(北京)有限公司 | Method for evaluating quality, device, server and the medium of search result |
Non-Patent Citations (5)
| Title |
|---|
| Chaoran Cui ; Huidi Fang ; Xiang Deng ; Xiushan Nie ; Hongshuai Dai ; Yilong Yin.Distribution-oriented Aesthetics Assessment for Image Search.SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL.2017,第[1013-1016]页. * |
| Mithun Biswas ; Rafiqul Islam ; Gautam Kumar Shom ; Nabeel Mohammed ; Sifat Momen ; Nafees Mansoor ; Anowarul Abedin.Application of image retrieval for aesthetic evaluation and improvement suggestion of isolated Bangla handwritten characters.2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA).2017,第[149-154]页. * |
| 可计算图像美学研究进展;王伟凝;蚁静缄;贺前华;中国图象图形学报;20120816;第17卷(第08期);第[893-901]页 * |
| 图像重排序技术的研究进展;赵小艳;刘宏哲;袁家政;杨少鹏;;计算机科学;20180515(第05期);第[15-23]页 * |
| 基于语义感知的图像美学质量评估方法;杨文雅;宋广乐;崔超然;尹义龙;;计算机应用;第38卷(第11期);第[3216-3220]页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111382295A (en) | 2020-07-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11520824B2 (en) | Method for displaying information, electronic device and system | |
| JP6415554B2 (en) | Nuisance telephone number determination method, apparatus and system | |
| CN105426152B (en) | The display methods and device of barrage | |
| CN111859020B (en) | Recommendation method, recommendation device, electronic equipment and computer readable storage medium | |
| CN111984749B (en) | Interest point ordering method and device | |
| CN109783656B (en) | Recommendation method and system of audio and video data, server and storage medium | |
| CN108227950A (en) | A kind of input method and device | |
| CN111046210B (en) | Information recommendation method, device and electronic equipment | |
| CN107491453B (en) | Method and device for identifying cheating web pages | |
| CN111556352A (en) | Multimedia resource sharing method and device, electronic equipment and storage medium | |
| US20220312077A1 (en) | Video recommendation method and apparatus | |
| CN105893493A (en) | Searching method and device | |
| WO2020019683A1 (en) | Input method and apparatus, and electronic device | |
| CN107315487A (en) | A kind of input processing method, device and electronic equipment | |
| CN112307281B (en) | Entity recommendation method and device | |
| CN106815291B (en) | Search result item display method and device and search result item display device | |
| CN113239183B (en) | Training method and device for ranking model, electronic equipment and storage medium | |
| WO2022252610A1 (en) | Bullet screen comment issuing method and bullet screen comment receiving method | |
| CN114676308A (en) | Method, device, electronic device, storage medium and product for search term recommendation | |
| CN113965792A (en) | Video display method and device, electronic equipment and readable storage medium | |
| CN114422854B (en) | Data processing method, device, electronic device and storage medium | |
| CN107256242A (en) | Search result display methods and device, terminal, server and storage medium | |
| CN111382295B (en) | A method and device for sorting image search results | |
| CN110046308B (en) | Sequencing strategy determination method and device and electronic equipment | |
| CN111382367B (en) | Search result sorting method and device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TG01 | Patent term adjustment | ||
| TG01 | Patent term adjustment |