CN111476685B - Behavior analysis method, device and equipment - Google Patents
Behavior analysis method, device and equipment Download PDFInfo
- Publication number
- CN111476685B CN111476685B CN202010224671.1A CN202010224671A CN111476685B CN 111476685 B CN111476685 B CN 111476685B CN 202010224671 A CN202010224671 A CN 202010224671A CN 111476685 B CN111476685 B CN 111476685B
- Authority
- CN
- China
- Prior art keywords
- stranger
- vertex
- face data
- behavior
- strangers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/16—Real estate
- G06Q50/163—Real estate management
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/172—Classification, e.g. identification
- G06V40/173—Classification, e.g. identification face re-identification, e.g. recognising unknown faces across different face tracks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Human Computer Interaction (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
本发明实施例提供一种行为分析方法、装置及设备。该方法包括:对至少一个图像采集设备采集的预设时间段内的人脸数据进行陌生人人脸图像识别,所述人脸数据包括人脸图像、采集时间信息和采集位置信息;对识别出的陌生人的人脸图像进行聚类,获取属于同一个陌生人的人脸数据;根据各陌生人的人脸数据构建图数据库;根据所述图数据库识别陌生人的异常行为。本发明实施例的方法,实现了基于采集到的人脸数据对陌生人的行为进行分析,以及时发现陌生人的异常行为,进而可以提高社区的安全性。
Embodiments of the present invention provide a behavior analysis method, device and equipment. The method includes: performing stranger face image recognition on face data collected by at least one image acquisition device within a preset time period, the face data including face images, collection time information and collection location information; The face images of strangers are clustered to obtain face data belonging to the same stranger; a graph database is constructed according to the face data of each stranger; and abnormal behaviors of strangers are identified according to the graph database. The method of the embodiment of the present invention realizes the analysis of the stranger's behavior based on the collected face data, and discovers the abnormal behavior of the stranger in time, thereby improving the security of the community.
Description
技术领域technical field
本发明涉及社区安防技术领域,具体涉及一种行为分析方法、装置及设备。The invention relates to the technical field of community security, in particular to a behavior analysis method, device and equipment.
背景技术Background technique
城市是人类文明发展的产物,社区是其最基本的组成部分,社区作为城市居民生存和发展的载体,其安全指数是居民关注的核心。然而随着社会发展水平的不断提高,诸如快递、外卖等第三方服务产业的兴起,导致原本相对封闭的社区每天都会涌入大量的陌生人员。不法分子可能混入其中,对社区居民的人身安全和财产安全产生一定的威胁。The city is the product of the development of human civilization, and the community is its most basic component. As the carrier of the survival and development of urban residents, the safety index of the community is the core of residents' attention. However, with the continuous improvement of the level of social development, the rise of third-party service industries such as express delivery and food delivery has led to the influx of a large number of strangers into the originally relatively closed community every day. Lawbreakers may mix in, posing a certain threat to the personal safety and property safety of community residents.
智慧社区作为社区管理的一种新理念,有效提高了社区的安全指数。通过安装人脸抓拍摄像机、人脸门禁等各种感知设备,采集人脸数据,并结合人工智能算法,实现了常驻人口和陌生人口的有效甄别,但是目前对于甄别出的陌生人的行为分析尚无有效的解决方案。如何基于采集到的人脸数据对陌生人的行为进行分析,及时发现异常行为,是亟需解决的问题。As a new concept of community management, smart community has effectively improved the safety index of the community. By installing various sensing devices such as face capture cameras and face access control, collecting face data, combined with artificial intelligence algorithms, the effective screening of resident populations and stranger populations has been realized. However, at present, the behavior analysis of the identified strangers There is no working solution yet. How to analyze the behavior of strangers based on the collected face data and discover abnormal behaviors in time is a problem that needs to be solved urgently.
发明内容Contents of the invention
本发明实施例提供一种行为分析方法、装置及设备,实现了基于采集到的人脸数据对陌生人的行为进行分析,以及时发现陌生人的异常行为。Embodiments of the present invention provide a behavior analysis method, device, and equipment, which can analyze the behavior of strangers based on collected face data, and discover abnormal behaviors of strangers in time.
第一方面,本发明实施例提供一种行为分析方法,包括:In a first aspect, an embodiment of the present invention provides a behavior analysis method, including:
对至少一个图像采集设备采集的预设时间段内的人脸数据进行陌生人人脸图像识别,所述人脸数据包括人脸图像、采集时间信息和采集位置信息;Perform face image recognition of strangers on the face data collected by at least one image acquisition device within a preset time period, the face data including face images, collection time information and collection location information;
对识别出的陌生人的人脸图像进行聚类,获取属于同一个陌生人的人脸数据;Clustering the face images of the recognized strangers to obtain face data belonging to the same stranger;
根据各陌生人的人脸数据构建图数据库;Construct a graph database based on the face data of each stranger;
根据所述图数据库识别陌生人的异常行为。Abnormal behavior of strangers is identified based on the graph database.
一种实施例中,对至少一个图像采集设备采集的预设时间段内的人脸数据进行陌生人人脸图像识别,包括:In one embodiment, the face image recognition of strangers is performed on the face data collected by at least one image acquisition device within a preset time period, including:
将采集的人脸数据与常驻人脸数据库进行匹配;Match the collected face data with the resident face database;
若匹配失败,则该人脸数据为陌生人的人脸数据。If the matching fails, the face data is that of a stranger.
一种实施例中,根据各陌生人的人脸数据构建图数据库,包括:In one embodiment, the graph database is constructed according to the face data of each stranger, including:
将各陌生人标识为第一顶点,所述第一顶点包括身份信息;将位于各个采集位置处的采集设备标识为第二顶点,所述第二顶点包括采集位置信息,所述采集位置至少包括区域的入口和区域的出口;所述第一顶点与所述第二顶点之间的一条边对应一个人脸数据,所述边包括采集时间信息。Each stranger is identified as a first vertex, the first vertex includes identity information; the collection device located at each collection location is identified as a second vertex, the second vertex includes collection location information, and the collection location includes at least The entrance of the area and the exit of the area; an edge between the first vertex and the second vertex corresponds to a piece of face data, and the edge includes collection time information.
一种实施例中,根据图数据库识别陌生人的异常行为,包括:In one embodiment, identifying the abnormal behavior of strangers according to the graph database includes:
若图数据库中某陌生人顶点与区域入口处采集设备顶点之间边的数量大于预设频次阈值,则将该陌生人的行为识别为第一类异常行为,第一类异常行为用于指示陌生人频繁进入该区域。If the number of edges between a vertex of a stranger in the graph database and the vertex of the collection device at the entrance of the area is greater than the preset frequency threshold, the behavior of the stranger is identified as the first type of abnormal behavior, and the first type of abnormal behavior is used to indicate that the stranger People frequently enter the area.
一种实施例中,根据图数据库识别陌生人的异常行为,包括:In one embodiment, identifying the abnormal behavior of strangers according to the graph database includes:
若β2-β1>α,其中,β1为图数据库中某陌生人顶点与区域入口处采集设备顶点之间边所表示的采集时间,β2为图数据库中该陌生人顶点与区域出口处采集设备顶点之间边所表示的采集时间,α为预设滞留时间阈值,则将该陌生人的行为识别为第二类异常行为,第二类异常行为用于指示陌生人在该区域中长时间滞留。If β2-β1>α, where β1 is the collection time represented by the edge between a stranger vertex in the graph database and the collection device vertex at the area entrance, β2 is the stranger vertex in the graph database and the collection device vertex at the area exit The acquisition time represented by the side between, α is the preset residence time threshold, the behavior of the stranger is identified as the second type of abnormal behavior, and the second type of abnormal behavior is used to indicate that the stranger stays in the area for a long time.
一种实施例中,根据图数据库识别陌生人的异常行为,包括:In one embodiment, identifying the abnormal behavior of strangers according to the graph database includes:
若在预设异常时间段内,图数据库中某陌生人顶点与第二顶点之间存在边,则将该陌生人的行为识别为第三类异常行为,第三类异常行为用于指示陌生人在异常时间段出入相应的区域。If there is an edge between a stranger vertex and the second vertex in the graph database within the preset abnormal time period, the behavior of the stranger is identified as the third type of abnormal behavior, and the third type of abnormal behavior is used to instruct the stranger Enter and exit the corresponding area during the abnormal time period.
一种实施例中,所述方法还包括:In one embodiment, the method also includes:
若识别出异常行为,则将异常信息发送至相关工作者,异常信息包括陌生人的图片信息、异常行为发生时间信息和异常行为原因。If the abnormal behavior is identified, the abnormal information will be sent to the relevant workers. The abnormal information includes the picture information of the stranger, the time information of the abnormal behavior and the reason for the abnormal behavior.
第二方面,本发明实施例提供一种行为分析装置,包括:In a second aspect, an embodiment of the present invention provides a behavior analysis device, including:
识别模块,用于对至少一个图像采集设备采集的预设时间段内的人脸数据进行陌生人人脸图像识别,所述人脸数据包括人脸图像、采集时间信息和采集位置信息;A recognition module, configured to perform stranger face image recognition on face data collected by at least one image capture device within a preset time period, the face data including face images, collection time information and collection location information;
聚类模块,用于对识别出的陌生人的人脸图像进行聚类,获取属于同一个陌生人的人脸数据;The clustering module is used to cluster the face images of the identified strangers to obtain face data belonging to the same stranger;
构建模块,用于根据各陌生人的人脸数据构建图数据库;A building block for constructing a graph database based on face data of each stranger;
分析模块,用于根据图数据库识别陌生人的异常行为。An analysis module for identifying abnormal behaviors of strangers based on graph databases.
第三方面,本发明实施例提供一种行为分析设备,包括:In a third aspect, an embodiment of the present invention provides a behavior analysis device, including:
至少一个处理器和存储器;at least one processor and memory;
存储器存储计算机执行指令;the memory stores computer-executable instructions;
至少一个处理器执行存储器存储的计算机执行指令,使得至少一个处理器执行如第一方面任一项所述的行为分析方法。At least one processor executes the computer-implemented instructions stored in the memory, so that the at least one processor executes the behavior analysis method according to any one of the first aspect.
第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,计算机执行指令被处理器执行时用于实现如第一方面任一项所述的行为分析方法。In a fourth aspect, an embodiment of the present invention provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, they are used to implement any one of the first aspect. The behavioral analysis method described above.
本发明实施例提供的行为分析方法、装置及设备,通过首先从采集的人脸数据中识别出陌生人的人脸数据,不仅可以大幅度地降低数据处理量,提高数据处理效率,而且使得行为分析更有针对性;然后对识别出的陌生人的人脸数据进行聚类,获取属于同一个陌生人的人脸数据,并根据各陌生人的人脸数据构建图数据库,利用图数据库顶点和边的关系形象地反映了陌生人在不同时刻与不同采集设备之间的关联关系;最后根据图数据库识别陌生人的异常行为,基于图数据库可以快速有效地对陌生人的行为进行分析,实现了基于采集到的人脸数据对陌生人的行为进行分析,以及时发现陌生人的异常行为,进而可以提高社区的安全性。。The behavior analysis method, device and equipment provided by the embodiments of the present invention can not only greatly reduce the amount of data processing and improve the efficiency of data processing, but also make the behavior The analysis is more targeted; then cluster the face data of the identified strangers, obtain the face data belonging to the same stranger, and build a graph database based on the face data of each stranger, using the graph database vertices and The edge relationship vividly reflects the relationship between strangers and different acquisition devices at different times; finally, the abnormal behavior of strangers is identified according to the graph database, and the behavior of strangers can be quickly and effectively analyzed based on the graph database, realizing Based on the collected face data, the behavior of strangers is analyzed to detect abnormal behaviors of strangers in time, which can improve the security of the community. .
附图说明Description of drawings
图1为本发明一实施例提供的行为分析方法的流程图;Fig. 1 is a flowchart of a behavior analysis method provided by an embodiment of the present invention;
图2为本发明一实施例提供的识别陌生人的人脸数据的方法流程图;2 is a flowchart of a method for identifying face data of strangers provided by an embodiment of the present invention;
图3为本发明一实施例提供的图数据库的局部示意图;FIG. 3 is a partial schematic diagram of a graph database provided by an embodiment of the present invention;
图4为本发明一实施例提供的行为分析装置的结构示意图;Fig. 4 is a schematic structural diagram of a behavior analysis device provided by an embodiment of the present invention;
图5为本发明一实施例提供的行为分析设备的结构示意图。Fig. 5 is a schematic structural diagram of a behavior analysis device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。The present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings. Wherein, similar elements in different implementations adopt associated similar element numbers. In the following implementation manners, many details are described for better understanding of the present application. However, those skilled in the art can readily recognize that some of the features can be omitted in different situations, or can be replaced by other elements, materials, and methods. In some cases, some operations related to the application are not shown or described in the description, this is to avoid the core part of the application being overwhelmed by too many descriptions, and for those skilled in the art, it is necessary to describe these operations in detail Relevant operations are not necessary, and they can fully understand the relevant operations according to the description in the specification and general technical knowledge in the field.
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。In addition, the characteristics, operations or characteristics described in the specification can be combined in any appropriate manner to form various embodiments. At the same time, the steps or actions in the method description can also be exchanged or adjusted in a manner obvious to those skilled in the art. Therefore, the various sequences in the specification and drawings are only for clearly describing a certain embodiment, and do not mean a necessary sequence, unless otherwise stated that a certain sequence must be followed.
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。The serial numbers assigned to components in this document, such as "first", "second", etc., are only used to distinguish the described objects, and do not have any sequence or technical meaning. The "connection" and "connection" mentioned in this application all include direct and indirect connection (connection) unless otherwise specified.
本发明实施例提供的行为分析方法不仅可以用于智慧社区,还可以用于智慧园区、智慧厂区、智慧校园等安装有人脸数据采集设备的场景中。在这些场景中,均可以通过采集设备采集人脸数据,下面将通过具体的实施例来说明如何基于采集到的人脸数据识别出陌生人的异常行为,进行及时告警,以提高安全性。The behavior analysis method provided by the embodiments of the present invention can be used not only in smart communities, but also in smart parks, smart factories, smart campuses and other scenarios where facial data collection devices are installed. In these scenarios, the face data can be collected by the collection device. The following will illustrate how to identify the abnormal behavior of strangers based on the collected face data and issue a timely alarm to improve security through specific embodiments.
图1为本发明一实施例提供的行为分析方法的流程图。如图1所示,本实施例提供的行为分析方法可以包括:FIG. 1 is a flowchart of a behavior analysis method provided by an embodiment of the present invention. As shown in Figure 1, the behavior analysis method provided in this embodiment may include:
S101、对至少一个图像采集设备采集的预设时间段内的人脸数据进行陌生人人脸图像识别,所述人脸数据包括人脸图像、采集时间信息和采集位置信息。S101. Perform face image recognition of strangers on face data collected by at least one image collection device within a preset time period, where the face data includes face images, collection time information, and collection location information.
本实施例中采集的人脸数据可能来自不同的采集设备,以智慧社区为例,通常会在多个位置安装多个摄像头用于采集不同位置处的人脸数据,本实施例中采集的人脸数据可以包括所有采集设备所采集的人脸数据。人脸数据可以包括人脸图像信息、采集时间信息和采集位置信息。其中,人脸图像信息可以是彩色图片或者灰度图片,还可以是视频信息,本实施例对此不作限制;采集时间信息用于记录人脸图像信息的采集时刻;采集位置信息用于标识人脸图像信息的采集位置,例如可以用采集设备的编号来表示。The face data collected in this embodiment may come from different collection devices. Taking a smart community as an example, multiple cameras are usually installed in multiple locations to collect face data at different locations. The face data collected in this embodiment Face data may include face data collected by all collection devices. Face data may include face image information, collection time information, and collection location information. Wherein, the face image information can be a color picture or a grayscale picture, and can also be video information, which is not limited in this embodiment; the collection time information is used to record the collection time of the face image information; the collection location information is used to identify the person The collection position of the face image information can be represented by, for example, the serial number of the collection device.
为了能够进行及时预警,本实施例中可以对人脸数据进行实时识别。所谓陌生人是相对于常驻人口来说的。对于智慧社区来说,社区中的居民为常驻人口;对于智慧校园来说,校园中的学生和老师为常驻人口;对于智慧厂区来说,厂区中的工人为常驻人口。对于采集的人脸数据,可以采用人脸识别的方法,识别出其中的陌生人脸数据。In order to be able to perform early warning, in this embodiment, face data can be recognized in real time. The so-called strangers are relative to the resident population. For a smart community, the residents in the community are the resident population; for a smart campus, the students and teachers in the campus are the resident population; for a smart factory, the workers in the factory are the resident population. For the collected face data, a face recognition method can be used to identify the stranger face data therein.
请参考图2所示,在一种可选的实施方式中,从采集的人脸数据中识别出陌生人脸数据,可以包括:Please refer to Fig. 2, in an optional implementation manner, identifying stranger face data from collected face data may include:
S1011、判断采集的人脸数据与常驻人脸数据库是否匹配。若匹配失败,则执行S1012;反之,则执行S1013。S1011. Determine whether the collected face data matches the resident face database. If the matching fails, execute S1012; otherwise, execute S1013.
本实施例中需要预先创建常驻人脸数据库,常驻人脸数据库包括常驻人口的人脸图像。常驻人脸数据库可以根据具体的应用场景进行创建,对于智慧社区来说,采集社区中居民的人脸图像创建常驻人脸数据库;对于智慧校园来说,采集校园中的学生和老师的人脸图像创建常驻人脸数据库;对于智慧厂区来说,采集厂区中工人的人脸图像创建常驻人脸数据库。并且常驻人脸数据库需要根据常驻人口的变动进行及时更新,以免将常驻人口识别为陌生人。本实施例中例如可以采用模板匹配、机器学习等方法将采集的人脸数据与常驻人脸数据库中的人脸数据进行匹配。In this embodiment, a resident face database needs to be created in advance, and the resident face database includes face images of the resident population. The resident face database can be created according to specific application scenarios. For a smart community, the face images of residents in the community are collected to create a resident face database; for a smart campus, the face images of students and teachers in the campus are collected. Face images are used to create a resident face database; for smart factories, face images of workers in the factory are collected to create a resident face database. And the resident face database needs to be updated in time according to the changes of the resident population, so as not to identify the resident population as strangers. In this embodiment, methods such as template matching and machine learning may be used to match the collected face data with the face data in the resident face database.
S1012、确定该人脸数据为陌生人的人脸数据。S1012. Determine that the face data is face data of a stranger.
S1013、确定该人脸数据为常驻人口的人脸数据。S1013. Determine that the face data is the face data of the resident population.
可以理解的是,采集的人脸数据中常驻人脸数据远远多于陌生人脸数据,通过对采集的人脸数据进行识别,将数据分为常驻人脸数据和陌生人脸数据,后续仅对于陌生人脸数据进行进一步的行为分析,以识别出陌生人的异常行为,不仅可以大幅度的降低数据处理量,提高数据处理效率,而且使得行为分析更有针对性。It is understandable that there are far more resident face data in the collected face data than stranger face data. By identifying the collected face data, the data is divided into resident face data and stranger face data. Follow-up only conducts further behavioral analysis on the face data of strangers to identify abnormal behaviors of strangers, which can not only greatly reduce the amount of data processing, improve data processing efficiency, but also make behavioral analysis more targeted.
S102、对识别出的陌生人的人脸数据进行聚类,获取属于同一个陌生人的人脸数据。S102. Clustering the recognized face data of strangers to obtain face data belonging to the same stranger.
从采集的人脸数据中识别出的陌生人脸数据可能来自不同的陌生人,直接对其分析毫无意义,因此,从采集的人脸数据中识别出陌生人脸数据之后,则对识别出的陌生人脸数据进行聚类,获取属于同一个陌生人的人脸数据。可以采用现有聚类方法对陌生人脸数据进行聚类,本实施例对此不作限制。The stranger face data identified from the collected face data may come from different strangers, and it is meaningless to analyze it directly. The face data of strangers are clustered to obtain the face data belonging to the same stranger. An existing clustering method may be used to cluster stranger face data, which is not limited in this embodiment.
对识别出的陌生人脸数据进行聚类,可以得到多个聚类簇,例如可以确定属于一个聚类簇的人脸数据属于同一个陌生人。为了进一步提高准确性,可以滤除远离簇中心的人脸数据。属于同一个陌生人的来自不同采集设备在不同时刻采集的人脸数据,反映了该陌生人的行动轨迹。可选的,对于同一个陌生人的多个人脸数据可以采用唯一的虚拟身份ID标识身份信息。By clustering the recognized face data of strangers, multiple clusters can be obtained, for example, it can be determined that the face data belonging to one cluster belong to the same stranger. To further improve the accuracy, face data far away from the cluster center can be filtered out. The face data collected by different collection devices at different times belonging to the same stranger reflects the stranger's trajectory. Optionally, for multiple face data of the same stranger, a unique virtual ID can be used to identify the identity information.
S103、根据各陌生人的人脸数据构建图数据库。S103. Construct a graph database according to the face data of each stranger.
在一种可选的实施方式中,根据各陌生人的人脸数据构建图数据库,可以包括:In an optional implementation manner, constructing a graph database according to face data of each stranger may include:
将各陌生人标识为第一顶点,所述第一顶点包括身份信息;将位于各个采集位置处的采集设备标识为第二顶点,所述第二顶点包括采集位置信息,所述采集位置至少包括区域的入口和区域的出口;所述第一顶点与所述第二顶点之间的一条边对应一个人脸数据,所述边包括采集时间信息。在实际应用中,采集位置例如可以包括社区入口、社区出口、楼栋单元门入口、楼栋单元门出口和关键道路口等。Each stranger is identified as a first vertex, the first vertex includes identity information; the collection device located at each collection location is identified as a second vertex, the second vertex includes collection location information, and the collection location includes at least The entrance of the area and the exit of the area; an edge between the first vertex and the second vertex corresponds to a piece of face data, and the edge includes collection time information. In practical applications, the collection locations may include, for example, community entrances, community exits, building unit door entrances, building unit door exits, key road intersections, and the like.
请参考图3,其示出了根据ID为320321的陌生人的人脸数据,构建的图数据库。如图3所示,中心的粗实线圆圈表示ID为320321的陌生人对应的第一顶点;外围标号为0-4的细实线圆圈分别表示社区入口处的采集设备(标号为0)、社区出口处的采集设备(标号为1)、楼栋单元门入口处的采集设备(标号为2)、楼栋单元门出口处的采集设备(标号为3)和关键道路口处的采集设备(标号为4)对应的第二顶点,第一顶点与第二顶点之间的每条边对应ID为320321的陌生人的一个人脸数据,并记录了采集人脸数据的时刻。以图数据库neo4j为例,如下存储语句:Please refer to FIG. 3 , which shows a graph database constructed based on face data of a stranger whose ID is 320321. As shown in Figure 3, the thick solid line circle in the center represents the first vertex corresponding to the stranger whose ID is 320321; the thin solid line circles marked 0-4 on the periphery respectively represent the collection equipment (labeled 0) at the entrance of the community, The collection equipment at the exit of the community (labeled 1), the collection equipment at the entrance of the building unit door (labeled 2), the collection equipment at the exit of the building unit door (labeled 3) and the collection equipment at the key road intersection ( Labeled 4) corresponds to the second vertex, each edge between the first vertex and the second vertex corresponds to a face data of a stranger whose ID is 320321, and records the time when the face data is collected. Taking the graph database neo4j as an example, the storage statement is as follows:
Match(p:Persion{id:320321}),(c:Camera{type:0})Match(p:Persion{id:320321}),(c:Camera{type:0})
Create(p)-[r:Cross{time:20191217080059}]->(c)return p,bCreate(p)-[r:Cross{time:20191217080059}]->(c)return p,b
将会在图3中生成虚线所示的边,用于表示ID为320321的陌生人在2019年12月17日08时00分59秒行经社区入口。The edge shown by the dotted line will be generated in Figure 3, which is used to indicate that the stranger with
通过图数据库顶点和边的关系可以形象地记录陌生人在不同时刻与不同采集设备产生的关联关系。Through the relationship between the vertices and edges of the graph database, the relationship between strangers and different collection devices at different times can be recorded vividly.
S104、根据图数据库识别陌生人的异常行为。S104. Identify the abnormal behavior of the stranger according to the graph database.
由于图数据库顶点和边的关系记录了陌生人在不同时间与不同采集设备产生的关联关系,因此通过对图数据库顶点和边关系进行检索,可以识别出陌生人的异常行为。Since the relationship between the vertices and edges of the graph database records the associations between strangers and different collection devices at different times, the abnormal behavior of strangers can be identified by retrieving the relationship between the vertices and edges of the graph database.
具体的,若图数据库中某陌生人顶点与区域入口处采集设备顶点之间边的数量大于预设频次阈值,则将该陌生人的行为识别为第一类异常行为,第一类异常行为用于指示陌生人频繁进入该区域。例如,可以设置预设频次阈值为N,N为正整数,N的具体取值可以根据统计学确定,N越大代表进入频次越高。可以对图数据库进行批量检索,获取图数据库中预设时间段内陌生人顶点与社区入口处采集设备顶点之间边的数量n,其表示在预设时间段内陌生人进入社区的次数;若n>N,则表示该陌生人频繁进入社区,超过数值越高可疑行为指数越高。Specifically, if the number of edges between a vertex of a stranger in the graph database and the vertex of the collection device at the entrance of the area is greater than the preset frequency threshold, the behavior of the stranger is identified as the first type of abnormal behavior, and the first type of abnormal behavior is used to instruct strangers to frequently enter the area. For example, the preset frequency threshold can be set to N, where N is a positive integer, and the specific value of N can be determined according to statistics, and a larger N means a higher entry frequency. The graph database can be retrieved in batches to obtain the number n of edges between the stranger vertex and the collection device vertex at the community entrance within the preset time period in the graph database, which represents the number of times strangers enter the community within the preset time period; if n>N, it means that the stranger frequently enters the community, and the higher the value, the higher the suspicious behavior index.
若β2-β1>α,其中,β1为图数据库中某陌生人顶点与区域入口处采集设备顶点之间边所表示的采集时间,β2为图数据库中该陌生人顶点与区域出口处采集设备顶点之间边所表示的采集时间,α为预设滞留时间阈值,则将该陌生人的行为识别为第二类异常行为,第二类异常行为用于指示陌生人在该区域中长时间滞留。其中,设置的预设滞留时间阈值α的单位可以为秒。例如检索指定时间内陌生人顶点与社区入口处采集设备顶点之间的边,其指示了该陌生人进入社区的时间β1;检索指定时间内陌生人顶点与社区出口处采集设备顶点之间的边,其指示了该陌生人离开社区的时间β2;若β2-β1>α,其中,β2-β1表示陌生人在社区中滞留的时间,则确定该陌生人久进不出,且滞留时间越久可疑度指数越高。If β2-β1>α, where β1 is the collection time represented by the edge between a stranger vertex in the graph database and the collection device vertex at the area entrance, β2 is the stranger vertex in the graph database and the collection device vertex at the area exit The acquisition time represented by the side between, α is the preset residence time threshold, the behavior of the stranger is identified as the second type of abnormal behavior, and the second type of abnormal behavior is used to indicate that the stranger stays in the area for a long time. Wherein, the unit of the set preset residence time threshold α may be seconds. For example, retrieve the edge between the stranger vertex and the collection device vertex at the community entrance within the specified time, which indicates the time β1 when the stranger entered the community; retrieve the edge between the stranger vertex and the collection device vertex at the community exit within the specified time , which indicates the time β2 when the stranger left the community; if β2-β1>α, where β2-β1 represents the time the stranger stays in the community, it is determined that the stranger has been in and out for a long time, and the longer the stay time is suspicious The higher the degree index.
若在预设异常时间段内,图数据库中某陌生人顶点与第二顶点之间存在边,则将该陌生人的行为识别为第三类异常行为,第三类异常行为用于指示陌生人在异常时间段出入相应的区域。例如可以设置预设异常时间段为23:00-5:00,在该时间段内,批量检索图数据库中每一个陌生人顶点与所有采集设备顶点之间边的个数S,若S>0,则表示该陌生人在异常时间段内在社区中活动,且S值越大,可疑指数越高。If there is an edge between a stranger vertex and the second vertex in the graph database within the preset abnormal time period, the behavior of the stranger is identified as the third type of abnormal behavior, and the third type of abnormal behavior is used to instruct the stranger Enter and exit the corresponding area during the abnormal time period. For example, the preset abnormal time period can be set to 23:00-5:00. During this time period, the number S of edges between each stranger vertex in the graph database and all collection device vertices can be batch retrieved. If S>0 , it means that the stranger is active in the community during the abnormal time period, and the larger the S value, the higher the suspicious index.
本实施例提供的行为分析方法,首先从采集的人脸数据中识别出陌生人的人脸数据,不仅可以大幅度地降低数据处理量,提高数据处理效率,而且使得行为分析更有针对性;然后对识别出的陌生人的人脸数据进行聚类,获取属于同一个陌生人的人脸数据,并根据各陌生人的人脸数据构建图数据库,利用图数据库顶点和边的关系形象地反映了陌生人在不同时刻与不同采集设备之间的关联关系;最后根据图数据库识别陌生人的异常行为,基于图数据库可以快速有效地对陌生人的行为进行分析,实现了基于采集到的人脸数据对陌生人的行为进行分析,以及时发现陌生人的异常行为,进而可以提高社区的安全性。The behavior analysis method provided in this embodiment first identifies the face data of strangers from the collected face data, which can not only greatly reduce the amount of data processing, improve the efficiency of data processing, but also make the behavior analysis more targeted; Then cluster the face data of the identified strangers to obtain the face data belonging to the same stranger, and construct a graph database based on the face data of each stranger, and use the relationship between the vertices and edges of the graph database to vividly reflect The relationship between strangers and different collection devices at different times; Finally, the abnormal behavior of strangers is identified according to the graph database. The data analyzes the behavior of strangers to detect abnormal behaviors of strangers in time, which can improve the safety of the community.
在上一实施例的基础上,为了使异常情况得到及时的处理,若识别出异常行为,则将异常信息发送至相关工作者,进行预警。例如可以通过短消息、微信或者平台消息等将异常信息发送至社区治安管理人员。异常信息可以包括陌生人的图片信息、异常行为发生时间信息和异常行为原因。On the basis of the previous embodiment, in order to deal with the abnormal situation in time, if the abnormal behavior is identified, the abnormal information will be sent to relevant workers for early warning. For example, abnormal information can be sent to community security managers through short messages, WeChat, or platform messages. The abnormal information may include the picture information of the stranger, the time information of the abnormal behavior, and the reason for the abnormal behavior.
图4为本发明一实施例提供的行为分析装置的结构示意图。如图4所示,本实施例提供的行为分析装置40可以包括:识别模块401、聚类模块402、构建模块403和分析模块404。Fig. 4 is a schematic structural diagram of a behavior analysis device provided by an embodiment of the present invention. As shown in FIG. 4 , the
识别模块401,用于对至少一个图像采集设备采集的预设时间段内的人脸数据进行陌生人人脸图像识别,所述人脸数据包括人脸图像、采集时间信息和采集位置信息;The
聚类模块402,用于对识别出的陌生人的人脸图像进行聚类,获取属于同一个陌生人的人脸数据;A
构建模块403,用于根据各陌生人的人脸数据构建图数据库;
分析模块404,用于根据图数据库识别陌生人的异常行为。The
本实施例提供的行为分析装置可用于执行图1对应的方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。The behavior analysis device provided in this embodiment can be used to implement the technical solution of the method embodiment corresponding to FIG. 1 , and its implementation principle and technical effect are similar, and will not be repeated here.
一种实施例中,识别模块401用于对至少一个图像采集设备采集的预设时间段内的人脸数据进行陌生人人脸图像识别,具体可以包括:In one embodiment, the
将采集的人脸数据与常驻人脸数据库进行匹配;Match the collected face data with the resident face database;
若匹配失败,则该人脸数据为陌生人的人脸数据。If the matching fails, the face data is that of a stranger.
一种实施例中,构建模块403用于根据各陌生人的人脸数据构建图数据库,具体可以包括:In one embodiment, the
将各陌生人标识为第一顶点,所述第一顶点包括身份信息;将位于各个采集位置处的采集设备标识为第二顶点,所述第二顶点包括采集位置信息,所述采集位置至少包括区域的入口和区域的出口;所述第一顶点与所述第二顶点之间的一条边对应一个人脸数据,所述边包括采集时间信息。Each stranger is identified as a first vertex, the first vertex includes identity information; the collection device located at each collection location is identified as a second vertex, the second vertex includes collection location information, and the collection location includes at least The entrance of the area and the exit of the area; an edge between the first vertex and the second vertex corresponds to a piece of face data, and the edge includes collection time information.
一种实施例中,分析模块404用于根据图数据库识别陌生人的异常行为,具体可以包括:In one embodiment, the
若图数据库中某陌生人顶点与区域入口处采集设备顶点之间边的数量大于预设频次阈值,则将该陌生人的行为识别为第一类异常行为,第一类异常行为用于指示陌生人频繁进入该区域。If the number of edges between a vertex of a stranger in the graph database and the vertex of the collection device at the entrance of the area is greater than the preset frequency threshold, the behavior of the stranger is identified as the first type of abnormal behavior, and the first type of abnormal behavior is used to indicate that the stranger People frequently enter the area.
一种实施例中,分析模块404用于根据图数据库识别陌生人的异常行为,具体可以包括:In one embodiment, the
若β2-β1>α,其中,β1为图数据库中某陌生人顶点与区域入口处采集设备顶点之间边所表示的采集时间,β2为图数据库中该陌生人顶点与区域出口处采集设备顶点之间边所表示的采集时间,α为预设滞留时间阈值,则将该陌生人的行为识别为第二类异常行为,第二类异常行为用于指示陌生人在该区域中长时间滞留。If β2-β1>α, where β1 is the collection time represented by the edge between a stranger vertex in the graph database and the collection device vertex at the area entrance, β2 is the stranger vertex in the graph database and the collection device vertex at the area exit The acquisition time represented by the side between, α is the preset residence time threshold, the behavior of the stranger is identified as the second type of abnormal behavior, and the second type of abnormal behavior is used to indicate that the stranger stays in the area for a long time.
一种实施例中,分析模块404用于根据图数据库识别陌生人的异常行为,具体可以包括:In one embodiment, the
若在预设异常时间段内,图数据库中某陌生人顶点与第二顶点之间存在边,则将该陌生人的行为识别为第三类异常行为,第三类异常行为用于指示陌生人在异常时间段出入相应的区域。If there is an edge between a stranger vertex and the second vertex in the graph database within the preset abnormal time period, the behavior of the stranger is identified as the third type of abnormal behavior, and the third type of abnormal behavior is used to instruct the stranger Enter and exit the corresponding area during the abnormal time period.
一种实施例中,行为分析装置40还可以包括预警模块(图中未示出),用于若识别出异常行为,则将异常信息发送至相关工作者,异常信息包括陌生人的图片信息、异常行为发生时间信息和异常行为原因。In one embodiment, the
本发明实施例还提供一种行为分析设备,请参见图5所示,本发明实施例仅以图5为例进行说明,并不表示本发明仅限于此。图5为本发明一实施例提供的行为分析设备的结构示意图。如图5所示,本实施例提供的行为分析设备50可以包括:存储器501、处理器502和总线503。其中,总线503用于实现各元件之间的连接。The embodiment of the present invention also provides a behavior analysis device, as shown in FIG. 5 . The embodiment of the present invention is only described by taking FIG. 5 as an example, which does not mean that the present invention is limited thereto. Fig. 5 is a schematic structural diagram of a behavior analysis device provided by an embodiment of the present invention. As shown in FIG. 5 , the
存储器501中存储有计算机程序,计算机程序被处理器502执行时可以实现上述任一方法实施例提供的行为分析方法的技术方案。A computer program is stored in the
其中,存储器501和处理器502之间直接或间接地电性连接,以实现数据的传输或交互。例如,这些元件相互之间可以通过一条或者多条通信总线或信号线实现电性连接,如可以通过总线503连接。存储器501中存储有实现行为分析方法的计算机程序,包括至少一个可以软件或固件的形式存储于存储器501中的软件功能模块,处理器502通过运行存储在存储器501内的软件程序以及模块,从而执行各种功能应用以及数据处理。Wherein, the
存储器501可以是,但不限于,随机存取存储器(Random Access Memory,简称:RAM),只读存储器(Read Only Memory,简称:ROM),可编程只读存储器(ProgrammableRead-Only Memory,简称:PROM),可擦除只读存储器(Erasable Programmable Read-OnlyMemory,简称:EPROM),电可擦除只读存储器(Electric Erasable Programmable Read-Only Memory,简称:EEPROM)等。其中,存储器501用于存储程序,处理器502在接收到执行指令后,执行程序。进一步地,上述存储器501内的软件程序以及模块还可包括操作系统,其可包括各种用于管理系统任务(例如内存管理、存储设备控制、电源管理等)的软件组件和/或驱动,并可与各种硬件或软件组件相互通信,从而提供其他软件组件的运行环境。The
处理器502可以是一种集成电路芯片,具有信号的处理能力。上述的处理器502可以是通用处理器,包括中央处理器(Central Processing Unit,简称:CPU)、网络处理器(Network Processor,简称:NP)等。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。可以理解,图5的结构仅为示意,还可以包括比图5中所示更多或者更少的组件,或者具有与图5所示不同的配置。图5中所示的各组件可以采用硬件和/或软件实现。The
需要说明的是,本实施例提供的行为分析设备包括但不限于以下中的至少一个:用户侧设备、网络侧设备。用户侧设备包括但不限于计算机、智能手机、平板电脑、数字广播终端、消息收发设备、游戏控制台、个人数字助理等。网络侧设备包括但不限于单个网络服务器、多个网络服务器组成的服务器组或基于云计算的由大量计算机或网络服务器构成的云,其中,云计算是分布式计算的一种,由一群松散耦合的计算机组成的一个超级虚拟计算机。It should be noted that the behavior analysis device provided in this embodiment includes but is not limited to at least one of the following: a user side device and a network side device. User-side devices include but are not limited to computers, smart phones, tablet computers, digital broadcast terminals, messaging devices, game consoles, personal digital assistants, etc. Network-side devices include but are not limited to a single network server, a server group composed of multiple network servers, or a cloud composed of a large number of computers or network servers based on cloud computing. Cloud computing is a type of distributed computing, consisting of a group of loosely coupled A super virtual computer composed of computers.
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。This document is described with reference to various exemplary embodiments. However, those skilled in the art will recognize that changes and modifications can be made to the exemplary embodiments without departing from the scope herein. For example, the various operational steps, as well as the components used to perform the operational steps, may be implemented in different ways depending on the particular application or considering any number of cost functions associated with the operation of the system (e.g., one or more steps may be deleted, modified or incorporated into other steps).
另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD-ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。In addition, the principles herein may be embodied in a computer program product on a computer-readable storage medium having computer-readable program code preloaded thereon, as understood by those skilled in the art. Any tangible, non-transitory computer-readable storage medium may be used, including magnetic storage devices (hard disks, floppy disks, etc.), optical storage devices (CD-ROMs, DVDs, Blu Ray discs, etc.), flash memory and/or the like . These computer program instructions can be loaded into a general purpose computer, special purpose computer or other programmable data processing apparatus to form a machine, so that these instructions executed on the computer or other programmable data processing apparatus can generate an apparatus for realizing specified functions. These computer program instructions may also be stored in a computer-readable memory which can instruct a computer or other programmable data processing device to operate in a particular manner such that the instructions stored in the computer-readable memory form a Manufactures, including implementing devices for implementing specified functions. Computer program instructions can also be loaded on a computer or other programmable data processing device, thereby performing a series of operational steps on the computer or other programmable device to produce a computer-implemented process, so that the computer or other programmable device Instructions may provide steps for performing specified functions.
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。While the principles herein have been shown in various embodiments, many modifications in structure, arrangement, proportions, elements, materials and components, particularly suited to particular circumstances and operational requirements may be made without departing from the principles and scope of this disclosure use. The above modifications and other changes or amendments are intended to be included within the scope of this document.
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。The foregoing detailed description has been described with reference to various embodiments. However, those skilled in the art will recognize that various modifications and changes can be made without departing from the scope of the present disclosure. Accordingly, the disclosure is to be considered in an illustrative rather than a restrictive sense, and all such modifications are intended to be embraced within its scope. Also, advantages, other advantages and solutions to problems have been described above with respect to various embodiments. However, neither benefits, advantages, solutions to problems, nor any elements that lead to these, or make the solutions more definite, should be construed as critical, required, or necessary. As used herein, the term "comprises" and any other variants thereof are non-exclusive, such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also elements not expressly listed or not part of the process. , method, system, article or other element of a device. Additionally, the term "coupled" and any other variations thereof, as used herein, refers to a physical connection, an electrical connection, a magnetic connection, an optical connection, a communicative connection, a functional connection, and/or any other connection.
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。The above uses specific examples to illustrate the present invention, which is only used to help understand the present invention, and is not intended to limit the present invention. For those skilled in the technical field to which the present invention belongs, some simple deduction, deformation or replacement can also be made according to the idea of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010224671.1A CN111476685B (en) | 2020-03-26 | 2020-03-26 | Behavior analysis method, device and equipment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010224671.1A CN111476685B (en) | 2020-03-26 | 2020-03-26 | Behavior analysis method, device and equipment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111476685A CN111476685A (en) | 2020-07-31 |
| CN111476685B true CN111476685B (en) | 2023-06-20 |
Family
ID=71748452
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010224671.1A Active CN111476685B (en) | 2020-03-26 | 2020-03-26 | Behavior analysis method, device and equipment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111476685B (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113066182A (en) * | 2021-04-16 | 2021-07-02 | 上海安畅网络科技股份有限公司 | Information display method and device, electronic equipment and storage medium |
| CN113284274A (en) * | 2021-05-12 | 2021-08-20 | 亚萨合莱(广州)智能科技有限公司 | Trailing identification method and computer readable storage medium |
| CN113538827A (en) * | 2021-07-12 | 2021-10-22 | 陕西科技大学 | An intelligent home monitoring system and method |
| CN114092718A (en) * | 2021-11-30 | 2022-02-25 | 云知声智能科技股份有限公司 | Community monitoring method and device, electronic equipment and storage medium |
| CN116206368A (en) * | 2023-03-08 | 2023-06-02 | 成都市迈德物联网技术有限公司 | A security management method and system based on artificial intelligence |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8438175B2 (en) * | 2010-03-17 | 2013-05-07 | Lighthaus Logic Inc. | Systems, methods and articles for video analysis reporting |
| JP2015090579A (en) * | 2013-11-06 | 2015-05-11 | 株式会社日立ソリューションズ | Behavior analysis system |
| CN109767527A (en) * | 2018-12-20 | 2019-05-17 | 深圳云天励飞技术有限公司 | Personnel identification method and related products |
| CN110213723A (en) * | 2019-05-16 | 2019-09-06 | 武汉数矿科技股份有限公司 | A kind of method and apparatus quickly determining suspect according to track |
| CN110298254A (en) * | 2019-05-30 | 2019-10-01 | 罗普特科技集团股份有限公司 | A kind of analysis method and system for personnel's abnormal behaviour |
| CN110516586B (en) * | 2019-08-23 | 2023-07-28 | 深圳力维智联技术有限公司 | A face image clustering method, system, product and medium |
| CN110580470A (en) * | 2019-09-12 | 2019-12-17 | 深圳壹账通智能科技有限公司 | Monitoring method, device, storage medium and computer equipment based on face recognition |
-
2020
- 2020-03-26 CN CN202010224671.1A patent/CN111476685B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN111476685A (en) | 2020-07-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111476685B (en) | Behavior analysis method, device and equipment | |
| CN112200081B (en) | Abnormal behavior identification method, device, electronic device and storage medium | |
| CN112861975B (en) | Classification model generation method, classification device, electronic equipment and medium | |
| US20220092881A1 (en) | Method and apparatus for behavior analysis, electronic apparatus, storage medium, and computer program | |
| CN111770317B (en) | Video monitoring method, device, equipment and medium for intelligent community | |
| CN111221991B (en) | Method and device for determining personnel identity attribute and electronic equipment | |
| CN111401161A (en) | Intelligent building management and control system for realizing behavior recognition based on intelligent video analysis algorithm | |
| CN108446681B (en) | Pedestrian analysis method, device, terminal and storage medium | |
| CN110390226B (en) | Crowd event identification method and device, electronic equipment and system | |
| CN112364176A (en) | Method, equipment and system for constructing personnel action track | |
| US20210319226A1 (en) | Face clustering in video streams | |
| US12100214B2 (en) | Video-based public safety incident prediction system and method therefor | |
| CN113486799A (en) | Device linkage method, device, storage medium and program product | |
| CN110807050B (en) | Performance analysis method, device, computer equipment and storage medium | |
| CN111814646A (en) | Monitoring method, device, equipment and medium based on AI vision | |
| CN115223076A (en) | Behavioral alarm method, device, device and storage medium | |
| CN115037790A (en) | Abnormal registration identification method, device, equipment and storage medium | |
| CN112132218B (en) | Image processing method, device, electronic equipment and storage medium | |
| CN118839348A (en) | Data center security configuration method and equipment | |
| JP2019053608A (en) | Feature behavior detection device | |
| CN114863400B (en) | Method and device for determining vehicle track, electronic equipment and storage medium | |
| US11714532B2 (en) | Generating presentation information associated with one or more objects depicted in image data for display via a graphical user interface | |
| CN113807445B (en) | File rechecking method and device, electronic device and readable storage medium | |
| CN112270257B (en) | A method and device for determining motion trajectory and a computer-readable storage medium | |
| CN111860661B (en) | Data analysis method and device based on user behaviors, electronic equipment and medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address |
Address after: 518057 the six level of energy storage building 3099, Keyuan South Road, Nanshan District, Shenzhen, Guangdong. Patentee after: SHENZHEN ZNV TECHNOLOGY Co.,Ltd. Country or region after: China Patentee after: Nanjing Liwei Zhilian Technology Co.,Ltd. Address before: 518057 the six level of energy storage building 3099, Keyuan South Road, Nanshan District, Shenzhen, Guangdong. Patentee before: SHENZHEN ZNV TECHNOLOGY Co.,Ltd. Country or region before: China Patentee before: NANJING ZNV SOFTWARE Co.,Ltd. |
|
| CP03 | Change of name, title or address |