[go: up one dir, main page]

CN111483750A - Robot system control method and control device - Google Patents

Robot system control method and control device Download PDF

Info

Publication number
CN111483750A
CN111483750A CN202010066275.0A CN202010066275A CN111483750A CN 111483750 A CN111483750 A CN 111483750A CN 202010066275 A CN202010066275 A CN 202010066275A CN 111483750 A CN111483750 A CN 111483750A
Authority
CN
China
Prior art keywords
operation object
robot system
end effector
control sequence
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010066275.0A
Other languages
Chinese (zh)
Inventor
鲁仙·出杏光
良树·金本
德尼斯·卡努尼考夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mu Jinkeji
Original Assignee
Mu Jinkeji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/258,120 external-priority patent/US10456915B1/en
Application filed by Mu Jinkeji filed Critical Mu Jinkeji
Priority to CN202010277929.4A priority Critical patent/CN111470244B/en
Publication of CN111483750A publication Critical patent/CN111483750A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1612Programme controls characterised by the hand, wrist, grip control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • B65G1/1378Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses the orders being assembled on fixed commissioning areas remote from the storage areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39543Recognize object and plan hand shapes in grasping movements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40053Pick 3-D object from pile of objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Manipulator (AREA)
  • De-Stacking Of Articles (AREA)
  • Specific Conveyance Elements (AREA)

Abstract

本公开的课题在于实现包含机器人的单元之间的高度协作,充分提高操作对象的收纳效率。本公开的控制方法包含:获取末端执行器把持操作对象的接近位置;获取对操作对象的标识进行扫描的扫描位置;以及基于接近位置和扫描位置,创建或者获取控制序列,指令机器人执行该控制序列。控制序列包含:(1)从开始位置把持操作对象;(2)利用位于开始位置与作业位置之间的扫描仪来扫描操作对象的标识;(3)在满足规定条件时,将操作对象在把持变换位置从末端执行器暂时释放,并且以把持变换的方式用末端执行器再次把持;以及(4)将操作对象移动至作业位置。

Figure 202010066275

The subject of the present disclosure is to achieve a high degree of collaboration between units including robots and to fully improve the storage efficiency of the operation objects. The control method of the present disclosure includes: obtaining the approach position of the end effector to hold the operation object; obtaining the scanning position for scanning the identification of the operation object; and creating or obtaining a control sequence based on the approach position and the scanning position, and instructing the robot to execute the control sequence. The control sequence includes: (1) holding the operation object from the starting position; (2) scanning the identification of the operation object using a scanner located between the starting position and the working position; (3) when the specified conditions are met, temporarily releasing the operation object from the end effector at the holding change position, and holding it again with the end effector in the holding change manner; and (4) moving the operation object to the working position.

Figure 202010066275

Description

机器人系统的控制方法以及控制装置Robot system control method and control device

技术领域technical field

本公开总体涉及机器人系统,特别是涉及对物品等操作对象进行操作的机器人系统的控制装置、控制方法、物流系统、程序以及存储介质。The present disclosure generally relates to a robot system, and more particularly, to a control device, a control method, a logistics system, a program, and a storage medium of a robot system that operates an operation object such as an item.

背景技术Background technique

当前,大多机器人(例如,构成为自动/独立执行物理动作的机器)由于不断提升的性能以及降低的成本而被广泛应用于很多领域。例如,机器人在制造、组装、捆包、移送、输送等中能够用于执行操纵、移动操作对象等各种作业、工作(任务)。在执行作业中,机器人能够重复进行人类的动作,由此,能够代替或者减少人类进行的危险或者重复的作业。Currently, most robots (eg, machines configured to perform physical actions autonomously/independently) are widely used in many fields due to ever-increasing performance and reduced cost. For example, a robot can be used to perform various operations and tasks (tasks), such as manipulation and moving an operation object, in manufacturing, assembly, packing, transfer, and transportation. During the execution of the work, the robot can repeat the actions of the human, thereby replacing or reducing the dangerous or repetitive work performed by the human.

作为使用这种机器人的系统(机器人系统),例如,专利文献1中提出了一种用于使物品从入库到出库实现自动化以及省力化的自动物流系统,具备:搬运容器储存机构,暂时储存搬运容器;以及物品自动送出机构,基于出库信息,将搬运容器内的物品自动集约在出厂用容器内。As a system (robot system) using such a robot, for example, Patent Document 1 proposes an automatic distribution system for automating and labor-saving from storage to delivery of articles, including a transport container storage mechanism, a temporary A storage and transportation container; and an automatic article delivery mechanism, which automatically collects the articles in the transportation container into the shipping container based on the out-of-stock information.

现有技术文献prior art literature

专利文献Patent Literature

专利文献1:日本特开2018-167950号公报Patent Document 1: Japanese Patent Laid-Open No. 2018-167950

发明内容SUMMARY OF THE INVENTION

但是,不管技术进步与否,在机器人较多的情况下,缺乏用于再现执行较大和/或较复杂作业的人工参与作业所需的精细度。因此,机器人系统下的自动化以及高性能化并不充分,存在不少难以替代人工参与的作业,另外,机器人系统在所执行的动作中缺乏粒度(granularity)精细的控制以及灵活性。因此,仍然需要用于管理机器人之间的各种动作和/或对话并进一步促进机器人系统的自动化以及高性能化的技术改良。因此,本公开的目的在于提供机器人系统的控制装置以及控制方法等,能够实现包含机器人的单元之间的高度协作,例如充分提高操作对象的收纳效率。However, regardless of technological advancement, with more robots, the sophistication needed to reproduce human-engaged jobs that perform larger and/or more complex jobs is lacking. Therefore, the automation and high performance of the robot system are not sufficient, and there are many operations that are difficult to replace manual participation. In addition, the robot system lacks granularity and fine control and flexibility in the actions performed. Therefore, technical improvements for managing various actions and/or dialogues between robots and further promoting automation and performance enhancement of robot systems are still required. Therefore, an object of the present disclosure is to provide a control device, a control method, and the like of a robot system, which can realize a high degree of cooperation among units including robots, for example, to sufficiently improve the storage efficiency of operation objects.

本发明为了解决上述课题,采用以下结构。In order to solve the above-mentioned problems, the present invention adopts the following structures.

[1]即,本公开所涉及的包含带有机器人臂和末端执行器的机器人的机器人系统的控制方法包含:获取所述末端执行器把持(夹持)操作对象的接近位置;获取对所述操作对象的标识进行扫描的扫描位置;以及基于所述接近位置和所述扫描位置,创建或者获取控制序列,指令所述机器人执行该控制序列。并且,所述控制序列包含以下的(1)~(4):[1] That is, the control method of a robot system including a robot with a robot arm and an end effector according to the present disclosure includes: acquiring an approach position where the end effector holds (clamping) an operation object; A scanning position where the identification of the manipulation object is scanned; and based on the approach position and the scanning position, a control sequence is created or acquired, and the robot is instructed to execute the control sequence. In addition, the control sequence includes the following (1) to (4):

(1)从开始位置把持所述操作对象;(1) Holding the operation object from the starting position;

(2)利用位于所述开始位置与所述作业位置之间的扫描仪来扫描所述操作对象的识别信息(例如,条形码、快速响应(QR)码(注册商标))等计算机可读标识);(2) Scan the identification information of the operation object (for example, a computer-readable mark such as a barcode, a quick response (QR) code (registered trademark), etc.) with a scanner located between the start position and the work position. ;

(3)在满足规定条件时,将所述操作对象在把持变换位置从所述末端执行器暂时释放,并且以把持变换的方式由所述末端执行器再次进行把持;以及(3) when a predetermined condition is satisfied, temporarily release the operation object from the end effector at the grip changing position, and re-grip by the end effector in a grip changing manner; and

(4)将所述操作对象移动至作业位置。(4) Move the operation object to the work position.

其中,“操作对象”表示机器人系统所具备的操作机器人所操作的对象物,例如,包含一个以上的物品(商品)、载置或者收纳它们的瓶、集装箱、箱等容器,该容器可以是封装的,也可以是封装打开的,另外,可以是容器的局部(例如上面)开放。另外,在其他实施方式以及实施例中,“操作对象”还可以是包含搁架、托板、传送带、其他临时放置场所等的概念。另外,“控制序列”表示机器人系统具备的一个以上机器人等单元中进行用于执行各个作业的控制时预先设定的动作的顺序Among them, the "operation object" refers to the object operated by the operation robot provided in the robot system. For example, it includes one or more articles (commodities), containers such as bottles, containers, and boxes on which they are placed or stored. The container may be a package. It can also be packaged open, and in addition, it can be a part of the container (for example, the top) that is open. In addition, in other embodiments and examples, the "operation object" may also be a concept including a shelf, a pallet, a conveyor belt, other temporary placement places, and the like. In addition, the "control sequence" refers to the sequence of operations that are set in advance when the control for executing each work is performed in one or more units such as robots included in the robot system.

[2]在上述结构中,所述控制序列可以构成为包含以下的(5)和(6):[2] In the above configuration, the control sequence may be configured to include the following (5) and (6):

(5)在对所述操作对象进行把持变换而变更由所述末端执行器把持的方向的情况下,将提高所述作业位置处的所述操作对象的收纳效率设定为所述规定条件;以及(5) in the case of changing the gripping direction of the operation object by changing the gripping direction of the operation object, setting improvement of the storage efficiency of the operation object at the working position as the predetermined condition; as well as

(6)计算对所述操作对象进行把持变换之前的所述作业位置处的收纳效率以及对所述操作对象进行把持变换之后的所述作业位置处的收纳效率。(6) Calculate the storage efficiency at the work position before the grip change of the operation object and the storage efficiency at the work position after the grip change of the operation object.

[3]在上述结构中,所述控制序列还可以构成为包含以下的(7)和(8):[3] In the above-mentioned structure, the control sequence may also be configured to include the following (7) and (8):

(7)获取所述操作对象的高度;以及(7) obtaining the height of the operation object; and

(8)基于所述操作对象的高度,计算所述收纳效率。(8) Calculate the storage efficiency based on the height of the operation object.

[4]在上述结构中,可以构成为根据所述操作对象的顶部表面的高度位置(水平高度)以及在所述末端执行器把持的状态下测得的所述操作对象的底部表面的高度位置(水平高度),计算所述操作对象的高度。[4] In the above configuration, it may be configured based on the height position (horizontal height) of the top surface of the operation object and the height position of the bottom surface of the operation object measured in the state held by the end effector (horizontal height), the height of the operation object is calculated.

[5]在上述结构中,可以构成为在所述扫描仪扫描所述操作对象时测定所述测定对象的高度。[5] In the above configuration, the height of the measurement object may be measured when the scanner scans the operation object.

[6]在上述结构中,所述控制序列可以构成为包含:(9)在满足所述规定条件时,将所述操作对象在所述把持变换位置载置于临时放置台并从所述末端执行器暂时释放。[6] In the above configuration, the control sequence may be configured to include (9) when the predetermined condition is satisfied, placing the operation object on the temporary placement table at the grip changing position, and moving from the end The actuator is temporarily released.

[7]在上述结构中,还可以构成为包含:获取表示包含所述操作对象的拾取区域的拍摄数据;基于所述拍摄数据,判定所述操作对象的最初姿态;计算表示所述操作对象的最初姿态正确的可能性的可靠基准;以及基于所述可靠基准,获取所述接近位置和所述扫描位置。[7] In the above configuration, it may further include: acquiring photographing data indicating a pickup area including the operation object; judging the initial posture of the operation object based on the photographing data; calculating an image indicating the operation object a reliable reference for the likelihood that the initial pose is correct; and based on the reliable reference, the approach position and the scan position are obtained.

其中,“姿态”表示操作对象的位置和/或朝向(例如,包含停止中状态的朝向的姿态),包含机器人系统所使用的网格系统中的平行移动的成分和/或旋转的成分。另外,“姿态”可以由向量、角度的集合(例如,欧拉角、和/或侧倾-俯仰-横摆角)、齐次变换、或者它们的组合表示,操作对象的“姿态”中的这些坐标转换等可以包含平行移动的成分、旋转的成分、它们的变化、或者它们的组合。Among them, "pose" refers to the position and/or orientation of the operation object (for example, a posture including the orientation of the stopped state), and includes the parallel movement component and/or the rotation component in the grid system used by the robot system. Additionally, a "pose" may be represented by a vector, a collection of angles (eg, Euler angles, and/or roll-pitch-yaw angles), a homogeneous transformation, or a combination thereof, and the "pose" of the manipulated object These coordinate transformations and the like may contain translational components, rotational components, variations thereof, or combinations thereof.

另外,“可靠基准”表示定量化的基准,用于表示所判定的操作对象的姿态与现实世界中的操作对象的实际姿态的一致程度(确定性或者可能性的程度)。换言之,“可靠基准”是表示所判定的操作对象的姿态的正确度的基准,或者,表示所判定的姿态与操作对象的实际姿态匹配的可能性的指标。该“可靠基准”例如能够基于包含操作对象的拾取区域的图像数据中的操作对象的一个以上可视特性(例如,形状、颜色、图像、设计、标记、文本等)与主数据中存储的操作对象的可视特性相关的信息之间的匹配结果进行定量化。In addition, the "reliable reference" refers to a quantitative reference for indicating the degree of agreement (degree of certainty or possibility) between the determined posture of the operator and the actual posture of the operator in the real world. In other words, the "reliable reference" is a reference indicating the accuracy of the determined posture of the operation object, or an index indicating the possibility that the determined posture matches the actual posture of the operation object. This "reliable reference" can, for example, be based on one or more visual characteristics (eg, shape, color, image, design, marking, text, etc.) of the manipulation object in the image data containing the pickup area of the manipulation object and the manipulation stored in the master data The matching results between the information related to the visual properties of the objects are quantified.

[8]在上述结构中,所述控制序列可以构成为包含:(10)基于所述可靠基准与充分性阈值的比较结果,根据性能的度量(metric)和/或扫描的度量,选择性地计算所述接近位置和所述扫描位置,所述扫描的度量与所述操作对象的最初姿态正确与否无关,而与所述操作对象的标识未被所述末端执行器覆盖的可能性相关。[8] In the above structure, the control sequence may be configured to include: (10) based on the comparison result of the reliable benchmark and the sufficiency threshold, according to a metric of performance and/or a metric of scanning, selectively The approaching position and the scanning position are calculated, and the measurement of the scanning is not related to whether the initial posture of the operation object is correct or not, but is related to the possibility that the identification of the operation object is not covered by the end effector.

[9]在上述结构中,可以构成为在所述可靠基准不满足所述充分性阈值的情况下,基于所述扫描的度量来获取所述接近位置和所述扫描位置,或者,使所述扫描的度量优先于所述性能的度量,基于该扫描的度量来获取所述接近位置和所述扫描位置。[9] In the above configuration, when the reliability reference does not satisfy the sufficiency threshold, the approach position and the scan position may be acquired based on the scan metric, or the The metric of the scan over which the metric of the performance is based on which the proximity position and the swept position are obtained is obtained.

[10]或者,在上述结构中,可以构成为在所述可靠基准满足所述充分性阈值的情况下,基于所述性能的度量来获取所述接近位置和所述扫描位置。[10] Alternatively, in the above configuration, when the reliability criterion satisfies the sufficiency threshold, the approach position and the scanning position may be acquired based on the performance metric.

[11]在上述结构中,所述控制序列可以构成为包含以下的(11和(12):[11] In the above configuration, the control sequence may be configured to include the following (11 and (12):

(11)获取用于将所述操作对象的识别信息提供给所述扫描仪的第一扫描位置以及用于将所述操作对象的替代的识别信息提供给所述扫描仪的第二扫描位置;(11) acquiring a first scanning position for providing identification information of the operation object to the scanner and a second scanning position for providing the alternative identification information of the operation object to the scanner;

(12)直到将所述操作对象移动至所述第一扫描位置后,在所述扫描结果表示成功的扫描的情况下,将所述操作对象移动至所述作业位置,并且无视所述第二扫描位置,或者,在所述扫描结果表示失败的扫描的情况下,将所述操作对象移动至所述第二扫描位置。(12) After the operation object is moved to the first scan position, if the scan result indicates a successful scan, move the operation object to the work position and ignore the second A scan position, or, if the scan result indicates a failed scan, moving the operation object to the second scan position.

[12]另外,本公开提供存储有处理器命令的非暂时性计算机可读存储介质,所述处理器命令用于实施包含带有机器人臂和末端执行器的机器人的机器人系统的控制方法,所述处理器命令包含:获取所述末端执行器把持操作对象的接近位置的命令;获取对所述操作对象的识别信息进行扫描的扫描位置的命令;以及基于所述接近位置和所述扫描位置,创建或者获取控制序列,指令所述机器人执行该控制序列的命令。并且,所述控制序列包含以下的(1)~(4):[12] In addition, the present disclosure provides a non-transitory computer-readable storage medium storing processor commands for implementing a control method of a robotic system including a robot with a robotic arm and an end effector, so The processor command includes: a command for acquiring an approach position where the end effector holds an operating object; a command for acquiring a scanning position for scanning the identification information of the operating object; and based on the approaching position and the scanning position, Create or acquire a control sequence, instructing the robot to execute the commands of the control sequence. In addition, the control sequence includes the following (1) to (4):

(1)从开始位置把持所述操作对象;(1) Holding the operation object from the starting position;

(2)利用位于所述开始位置与所述作业位置之间的扫描仪来扫描所述操作对象的标识;(2) using the scanner located between the starting position and the working position to scan the identification of the operating object;

(3)在满足规定条件时,将所述操作对象在把持变换位置从所述末端执行器暂时释放,并且以把持变换的方式利用所述末端执行器再次进行把持;以及(3) when a predetermined condition is satisfied, temporarily release the operation object from the end effector at the grip changing position, and perform gripping again with the end effector in a grip changing manner; and

(4)将所述操作对象移动至作业位置。(4) Move the operation object to the work position.

[13]在上述结构中,所述控制序列可以构成为包含以下的(5)和(6):[13] In the above configuration, the control sequence may be configured to include the following (5) and (6):

(5)在对所述操作对象进行把持变换而变更由所述末端执行器把持的方向的情况下,将提高所述作业位置处的所述操作对象的收纳效率设定为所述规定条件;以及(5) in the case of changing the gripping direction of the operation object by changing the gripping direction of the operation object, setting improvement of the storage efficiency of the operation object at the working position as the predetermined condition; as well as

(6)计算对所述操作对象进行把持变换之前的所述作业位置处的收纳效率以及对所述操作对象进行把持变换之后的所述作业位置处的收纳效率。(6) Calculate the storage efficiency at the work position before the grip change of the operation object and the storage efficiency at the work position after the grip change of the operation object.

[14]在上述结构中,所述控制序列可以构成为包含以下的(7)以及(8):[14] In the above configuration, the control sequence may be configured to include the following (7) and (8):

(7)获取所述操作对象的高度;以及(7) obtaining the height of the operation object; and

(8)基于所述操作对象的高度,计算所述收纳效率。(8) Calculate the storage efficiency based on the height of the operation object.

[15]在上述结构中,可以构成为根据所述操作对象的顶部表面的高度位置(水平高度)以及在所述末端执行器把持的状态下测得的所述测定对象的底部表面的高度位置(水平高度),计算所述测定对象的高度。[15] In the above configuration, it may be configured based on the height position (horizontal height) of the top surface of the operation object and the height position of the bottom surface of the measurement object measured in the state held by the end effector (horizontal height), the height of the measurement object is calculated.

[16]另外,本公开的包含带有机器人臂和末端执行器的机器人的机器人系统的控制装置用于执行所述[1]~[11]中任一项所述的控制方法。[16] In addition, a control device of a robot system including a robot with a robot arm and an end effector of the present disclosure is used to execute the control method according to any one of the above [1] to [11].

附图说明Description of drawings

图1是表示本公开的一实施方式所涉及的机器人系统运转的示例环境的图。FIG. 1 is a diagram showing an example environment in which a robot system according to an embodiment of the present disclosure operates.

图2是表示本公开的一实施方式所涉及的机器人系统的硬件结构的一个例子的框图。2 is a block diagram showing an example of a hardware configuration of a robot system according to an embodiment of the present disclosure.

图3A是示意性表示操作对象的第一姿态的立体图。3A is a perspective view schematically showing a first posture of an operation object.

图3B是示意性表示操作对象的第二姿态的立体图。3B is a perspective view schematically showing a second posture of the operation object.

图3C是示意性表示操作对象的第三姿态的立体图。3C is a perspective view schematically showing a third posture of the operation object.

图4A是表示本公开的一实施方式所涉及的机器人系统所执行的示例性作业的俯视图。4A is a plan view showing an exemplary operation performed by the robot system according to the embodiment of the present disclosure.

图4B是表示本公开的一实施方式所涉及的机器人系统所执行的示例性作业的正视图。4B is a front view showing an exemplary operation performed by the robot system according to the embodiment of the present disclosure.

图5A是表示本公开的一实施方式所涉及的机器人系统的动作顺序的一个例子的流程图。5A is a flowchart showing an example of an operation sequence of the robot system according to the embodiment of the present disclosure.

图5B是表示本公开的一实施方式所涉及的机器人系统的动作顺序的一个例子的流程图。5B is a flowchart showing an example of an operation sequence of the robot system according to the embodiment of the present disclosure.

附图标记说明Description of reference numerals

100…机器人系统;102…卸货单元;104…移送单元;106…输送单元;108…堆货单元;112…操作对象;114…开始位置;116…作业位置;118…把持变换位置;202…处理器;204…存储设备;206…通信设备;208…输入-输出设备;210…显示器;212…运转设备;214…移送电动机;216…传感器;222…拍摄设备;224…位置传感器;226…接触传感器;252…主数据;254…跟踪数据;302…操作对象;304…第一露出表面;306…第二露出表面;312…第一姿态;314…第二姿态;316…第三姿态;322…顶部表面;324…底部表面;326…外周表面;332…标识;334…标识位置;402、404…作业;412、416…扫描仪;414…机器人臂;422…第一控制序列;424…第二控制序列;432…第一接近位置;434…第二接近位置;442…第一提供位置;444…第二提供位置;450…收纳容器;464…自走式台车;464…托板;466…距离测定设备;468…临时放置台;472、474…控制序列。100...Robot system; 102...Unloading unit; 104...Transfer unit; 106...Conveying unit; 108...Stacking unit; 204...storage equipment; 206...communication equipment; 208...input-output equipment; 210...display; 212...operation equipment; 214...transfer motor; 216...sensor; sensor; 252...main data; 254...tracking data; 302...operating object; 304...first exposed surface; 306...second exposed surface; 312...first attitude; 314...second attitude; 316...third attitude; 322 ...top surface; 324...bottom surface; 326...peripheral surface; 332...identity; 334...identity position; 402, 404...job; 412, 416...scanner; 432...first access position; 434...second access position; 442...first delivery position; 444...second delivery position; 450...reservoir; 464...self-propelled trolley; ; 466... Distance measuring equipment; 468... Temporary placement table; 472, 474... Control sequence.

具体实施方式Detailed ways

根据本公开,提供将多个单元(例如,各种机器人、各种设备、与它们一体或者单独设置的控制装置等)高度统合的机器人系统、其控制装置,以及具备它们的物流系统,以及用于它们的方法等。即,本公开的实施方式的机器人系统例如是能够自主执行一个以上任务的统合系统。另外,本公开的实施方式所涉及的机器人系统在将操作对象收纳于收纳容器等时,基于操作对象的形状、尺寸以及收纳容器的空间容积,以包含能够大幅度提高其收纳效率的高度化处理的方式进行运转。另外,基于与操作对象的最初姿态相关联的可靠基准,创建或者获取控制序列并执行,从而提供操作对象被高度化的扫描作业。According to the present disclosure, there are provided a robot system that highly integrates a plurality of units (for example, various robots, various devices, a control device provided integrally with them or separately, etc.), a control device thereof, and a logistics system provided with them, and a on their methods, etc. That is, the robot system of the embodiment of the present disclosure is, for example, an integrated system capable of autonomously executing one or more tasks. In addition, when the robot system according to the embodiment of the present disclosure stores the operation object in the storage container or the like, based on the shape and size of the operation object and the space volume of the storage container, the robot system includes advanced processing that can greatly improve the storage efficiency. way to operate. In addition, a control sequence is created or acquired and executed based on a reliable reference associated with the initial pose of the operation object, thereby providing a scan job in which the operation object is heightened.

本公开的实施方式所涉及的机器人系统能够构成为基于对操作对象进行操作(例如,物理移动和/或定向),从而执行作业。具体地讲,机器人系统例如能够从包含开始位置的拾取区域(例如,作为操作对象的供给源的大箱、瓶、集装箱、托板、收纳容器、桶、货笼、传送带等)拾取操作对象,将其向包含目标作业位置的放置区域(例如,作为操作对象的移动目的地的大箱、瓶、集装箱、托板、收纳容器、桶、货笼、传送带等)移动,将各种操作对象进行排列变换或者替换等。The robot system according to the embodiment of the present disclosure can be configured to perform work based on manipulation (eg, physical movement and/or orientation) of the manipulation object. Specifically, the robot system can, for example, pick up an operation object from a pickup area including a start position (for example, a large box, a bottle, a container, a pallet, a storage container, a bucket, a cage, a conveyor belt, etc., which are a supply source of the operation object), Move it to the placement area including the target work position (for example, a large box, a bottle, a container, a pallet, a storage container, a bucket, a cage, a conveyor belt, etc., which are the moving destination of the operation object), and carry out various operation objects. permutation or replacement.

另外,在机器人系统所执行的控制序列中,可以包含将位于操作对象的一个以上特定位置和/或表面上的一个以上的标识(例如,条形码或者快速响应(QR)码(注册商标)等)在移送时进行扫描。因此,机器人系统能够执行以下各种作业:把持拾取操作对象,在适当位置/朝向扫描标识,调整姿态,改变姿态进行把持变换(释放把持,从新再次把持并拾取),向作业位置移送,释放把持,配置在作业位置。In addition, in the control sequence executed by the robotic system, one or more identifications (eg, barcodes or Quick Response (QR) codes (registered trademarks), etc.) to be located at one or more specific locations and/or surfaces of the operating object may be included Scan during transfer. Therefore, the robot system can perform the following various tasks: grasp and pick up the operation object, scan the mark at the appropriate position/orientation, adjust the posture, change the posture to perform grasp transformation (release the grasp, re-hold and pick up), transfer to the working position, and release the grasp , configured in the job location.

另外,机器人系统可以具备用于识别操作对象的位置以及姿态、操作对象的周围环境的拍摄设备(例如,照相机、红外线传感器/照相机、雷达、激光雷达等)。并且,机器人系统能够计算与操作对象的姿态相关的可靠基准。另外,机器人系统能够获取表示向包含开始位置的拾取区域、包含作业位置的放置区域、以及位于操作对象的移动路径中途的把持变换位置的区域(例如,临时放置台等适当的作业台、其他机器人)等移送时的操作对象的位置以及朝向的图像。In addition, the robot system may be provided with a photographing device (eg, camera, infrared sensor/camera, radar, lidar, etc.) for recognizing the position and posture of the operation object and the surrounding environment of the operation object. Also, the robot system can calculate a reliable reference related to the posture of the manipulation object. In addition, the robot system can acquire an area indicating a pick-up area including a start position, a placement area including a work position, and a grip change position in the middle of the movement path of the operation object (for example, a suitable work table such as a temporary placement table, other robots ) and other images of the position and orientation of the operation object during transfer.

进而,机器人系统能够将操作对象按照规定的顺序(例如,从上到底,从外侧到内侧、从内侧到外侧等),以识别或者选择的方式进行图像处理。并且进而,机器人系统例如能够基于拍摄数据的图案图像中的像素的颜色、亮度、深度/位置、和/或它们的组合、这些值的变化,识别操作对象的轮廓,另外,通过将它们分组等,能够从该图像中判定例如拾取区域中的操作对象的最初姿态。在最初姿态的判定中,机器人系统能够按照规定的流程和/或方程式,计算可靠基准。Furthermore, the robot system can perform image processing in a manner of identifying or selecting the operation objects in a predetermined order (for example, from top to bottom, from outside to inside, from inside to outside, etc.). And further, the robot system can, for example, recognize the contour of the operation object based on the color, brightness, depth/position, and/or combinations thereof, changes in these values of pixels in the pattern image of the captured data, and in addition, by grouping them, etc. , for example, the initial posture of the operation object in the pickup area can be determined from this image. In the determination of the initial pose, the robot system can calculate a reliable reference according to prescribed procedures and/or equations.

另外,机器人系统在从包含开始位置的拾取区域等到包含作业位置的放置区域等的路径中途设置的把持变换位置,根据需要,可以进行操作对象的把持变换(变更操作对象的把持位置)。并且,机器人系统在操作对象从包含开始位置的拾取区域等向包含作业位置的放置区域等移动的过程中,例如可以通过具有测距功能的拍摄设备,根据需要,获取操作对象的高度。In addition, the robot system can perform the grip transformation (change the grip position of the operation object) of the manipulation object at the grip transformation position set in the middle of the path from the pick-up area including the start position to the placement area including the work position, etc., as necessary. In addition, during the movement of the operation object from the pick-up area including the start position to the placement area including the work position, the robot system can obtain the height of the operation object as required, for example, through a photographing device with a ranging function.

另外,机器人系统能够根据操作对象的位置、姿态、高度、可靠基准或者它们的组合、和/或机器人的位置、姿态、或者它们的组合,执行用于执行各作业的控制序列。例如,能够通过运动规划、深度学习等机械学习等创建或者获取上述控制序列。控制序列例如为了操作对象的排列变换、把持变换、替换等,应对以下处理:在开始位置和/或移动中途的任意位置把持操作对象、操纵操作对象、将操作对象放置于目标作业位置等。In addition, the robot system can execute a control sequence for performing each job according to the position, attitude, height, reliable reference, or a combination thereof of the operation object, and/or the position, attitude, or combination of the robot. For example, the above-mentioned control sequence can be created or acquired through motion planning, machine learning such as deep learning, or the like. The control sequence, for example, for arrangement transformation, grip transformation, replacement, etc. of the operation object, handles the following processing: grasping the operation object at the start position and/or any position in the middle of the movement, manipulating the operation object, placing the operation object at the target work position, and the like.

这里,现有的机器人系统中执行以下控制序列:在包含开始位置的拾取区域等把持操作对象,将操作对象以该把持状态向包含作业位置的放置区域等移动,进行释放。因此,在现有的系统中,把持的操作对象以该把持状态移动,仅从该把持状态进行释放,而无法有效利用堆积或收纳操作对象的空间。因此,从操作对象的堆积或者收纳效率方面考虑,有时需要人工介入(调整、重放、补充、系统停止等)以及为此的操作输入。Here, a conventional robot system executes a control sequence of grasping the operation object in a pick-up area including the start position, etc., moving the operation object in the grasped state to a placement area including the work position, etc., and releasing. Therefore, in the conventional system, the grasped operation object moves in the grasped state, and is only released from the grasped state, and the space for stacking or accommodating the operation object cannot be effectively used. Therefore, manual intervention (adjustment, reproduction, replenishment, system stop, etc.) and operation input therefor are sometimes required in view of the stacking or storage efficiency of the operation objects.

另一方面,本公开中的机器人系统与现有的不同,能够基于操作对象的形状信息、以及操作对象的堆积或者收纳信息,创建或者获取控制序列并执行。换言之,本公开中的机器人系统能够基于操作对象的形状信息、以及操作对象的堆积或者收纳信息,进一步最优化操作对象的堆积或者收纳效率。另外,本公开中的机器人系统在位于从开始位置到作业位置中途的把持变换位置,能够将操作对象的把持位置变更为适合最优化操作对象的堆积或者收纳效率的把持位置。On the other hand, the robot system in the present disclosure can create or acquire and execute a control sequence based on the shape information of the operation object and the stacking or storage information of the operation object, unlike the conventional one. In other words, the robot system in the present disclosure can further optimize the stacking or storage efficiency of the manipulation objects based on the shape information of the manipulation objects and the stacking or storage information of the manipulation objects. In addition, the robot system of the present disclosure can change the grasping position of the operation object to a grasping position suitable for optimizing stacking or storage efficiency of the operation object at the grasping change position located halfway from the start position to the working position.

另外,本公开中的机器人系统与现有的系统不同,能够根据需要,按照操作对象的实际高度,创建或者获取适合最优化操作对象的堆积或者收纳效率的控制序列并执行。例如,即使扫描到的位于操作对象的一个以上特定的位置和/或表面上的一个以上的标识为同一操作对象,在实际中也可能具有不同的形状尺寸。因此,在比把持变换位置更靠近上游的控制序列的上游侧(前阶段),例如,通过在竖直方向上定位的拍摄设备(照相机、距离测定设备),基于到支撑位置已知的操作对象的距离信息,实际测定操作对象的高度。然后,能够基于实际测得的操作对象的高度,计算作业位置处的操作对象的堆积或者收纳效率,基于该结果,能够进一步最优化控制序列。In addition, unlike the existing system, the robot system of the present disclosure can create or acquire and execute a control sequence suitable for optimizing the stacking or storage efficiency of the operation object according to the actual height of the operation object as required. For example, even if the scanned symbols located at more than one specific position and/or on the surface of the operation object are the same operation object, they may have different shapes and sizes in practice. Therefore, on the upstream side (pre-stage) of the control sequence that is closer to the upstream than the grip change position, for example, by the photographing device (camera, distance measuring device) positioned in the vertical direction, based on the operation object known to the support position the distance information, and actually measure the height of the operation object. Then, the stacking or storage efficiency of the manipulation objects at the work position can be calculated based on the actually measured heights of the manipulation objects, and based on the results, the control sequence can be further optimized.

并且,本公开中的机器人系统与现有的系统不同,可以根据需要,按照可靠基准,创建或者获取控制序列并执行。例如,能够按照可靠基准,使针对操作对象的方式变化,变更操作对象上的把持位置,变更操作对象的姿态/位置,和/或变更移动路径的一部分。Moreover, the robot system in the present disclosure is different from the existing system, and can create or acquire a control sequence and execute it according to a reliable reference as needed. For example, it is possible to change the orientation of the operation object, change the grip position on the operation object, change the posture/position of the operation object, and/or change a part of the movement path according to a reliable reference.

另外,对于在拾取区域等把持的测定对象的姿态,通常,其顶部表面水平朝向地(向上方)露出,并且,操作对象的侧部表面垂直朝向地(向横向)露出。因此,本公开中的机器人系统在主数据中,操作对象在操作对象的底部表面(即,与操作对象的顶部表面相反的一侧)具有一个标识,并且,在操作对象的侧部表面具有另一个标识。In addition, with regard to the posture of the measurement object held in the pick-up area or the like, generally, the top surface is exposed horizontally (upward), and the side surface of the operation object is exposed vertically (laterally). Therefore, in the robot system of the present disclosure, in the master data, the operation object has an identification on the bottom surface of the operation object (ie, the side opposite to the top surface of the operation object), and has another identification on the side surface of the operation object. an identity.

另外,本公开中的机器人系统在操作对象的识别中对拾取区域的图像进行处理时,可以根据需要计算可靠基准。在该可靠基准超过充分性阈值,认识到操作对象的顶部表面露出的充分确定性的情况下,机器人系统能够在该露出的顶部表面上配置末端执行器,把持顶部表面,以在扫描仪的前面按规定位置提供操作对象的底部表面的方式,使操作对象旋转。另一方面,在可靠基准小于充分性阈值,无法识别操作对象的顶部表面或者底部表面是否露出的情况下,机器人系统能够沿操作对象的一个侧部表面配置末端执行器,把持操作对象的侧部表面,例如以通过相对的扫描仪组之间的方式,使操作对象旋转。In addition, when the robot system in the present disclosure processes the image of the pickup area in the recognition of the operation object, a reliable reference can be calculated as needed. In the event that the reliable reference exceeds the adequacy threshold, recognizing the sufficient certainty that the top surface of the manipulation object is exposed, the robotic system can deploy the end effector on this exposed top surface, grasping the top surface to be in front of the scanner Rotates the operand by providing the bottom surface of the operand at the specified location. On the other hand, if the reliable reference is smaller than the sufficiency threshold and it is impossible to identify whether the top surface or bottom surface of the operation object is exposed, the robot system can arrange the end effector along one side surface of the operation object and hold the side of the operation object. The surface, for example by passing between opposing sets of scanners, rotates the operand.

在该情况下,在操作对象的移动路径内,例如,在包含开始位置的拾取区域与包含作业位置的放置区域之间等扫描操作对象,从而提高作业效率以及作业速度。此时,本公开中的机器人系统在扫描位置创建或者获取与扫描仪也协动的控制序列,从而能够将操作对象的移动作业与操作对象的扫描作业有效组合。进而,通过基于操作对象的最初姿态的可靠基准创建或者获取控制序列,能够进一步提高扫描作业相关的效率、速度以及精度。In this case, the operation object is scanned within the movement path of the operation object, for example, between the pickup area including the start position and the placement area including the work position, thereby improving work efficiency and work speed. At this time, the robot system in the present disclosure creates or acquires a control sequence that also cooperates with the scanner at the scanning position, so that the movement operation of the operation object and the scanning operation of the operation object can be effectively combined. Furthermore, by creating or acquiring a control sequence based on a reliable reference of the initial posture of the operation object, it is possible to further improve the efficiency, speed, and accuracy related to the scanning operation.

另外,本公开中的机器人系统在操作对象的最初姿态不正确的情况下,能够创建或者获取对应的控制序列。由此,即使在操作对象的姿态判定错误(例如,校正错误、预期外姿态、预期外光条件等结果的判定错误)的情况下,也能够增大正确且可靠扫描操作对象的可能性。其结果,能够增大机器人系统相关的整体吞吐量,并且进一步减少操作者的劳力/介入。In addition, the robot system in the present disclosure can create or acquire a corresponding control sequence when the initial posture of the operation object is incorrect. Thereby, even in the case where the attitude determination of the operation object is wrong (for example, the result of correction error, unexpected attitude, expected outside light condition, etc. is wrongly determined), the possibility of correct and reliable scanning of the operation object can be increased. As a result, the overall throughput related to the robot system can be increased, and the labor/intervention of the operator can be further reduced.

此外,本说明书中,多处特定的详细说明是为了完全理解本公开而进行的说明,本公开并不限于此。另外,在本公开的实施方式中,可以在没有这些具体细节的情况下实施本说明书中记载的技术。此外,对于周知的特定功能或例程等,为了避免不必要地使本公开难以理解,未记载细节。本说明书的“实施方式(an embodiment)”、“一个实施方式(oneembodiment)”等的参照意味着所记载的特定特征、结构、材料或特性被包括在本公开的至少一个实施方式中。因此,本说明书中这样的用语表述不一定全部参照所有相同的实施方式。另一方面,这样的参照不一定是相互排斥的。进而,在一个以上的实施方式中,特定特征、结构、材料或特性可以任何合适的方式组合。在此基础上,应当理解,图示的各种实施方式仅是说明性表达,并且不一定按比例示出。In addition, in this specification, many specific detailed descriptions are provided in order to fully understand this disclosure, and this disclosure is not limited to these. In addition, in the embodiments of the present disclosure, the techniques described in this specification may be implemented without these specific details. Further, details of well-known specific functions, routines, and the like are not described in order to avoid unnecessarily obscuring the present disclosure. Reference in this specification to "an embodiment," "one embodiment," and the like, means that a particular feature, structure, material, or characteristic recited is included in at least one embodiment of the present disclosure. Therefore, such terminology in this specification does not necessarily refer to all the same embodiments. On the other hand, such references are not necessarily mutually exclusive. Furthermore, in one or more embodiments, the particular features, structures, materials or characteristics may be combined in any suitable manner. On this basis, it should be understood that the various embodiments shown are illustrative only and are not necessarily shown to scale.

此外,对于周知的通常与机器人系统和子系统相关联并且不必要地阻碍本公开的若干显著方面的结构或过程,为了使本公开清楚的目的而省略说明。进而,虽然本说明书描述了本公开的各种实施例,但是本公开作为其他实施方式可包括与该部分中记载不同的结构或具有不同构成要素的结构。因此,本公开可包括具有附加要素或不具有以下记载的若干要素的其他实施方式。Furthermore, descriptions of well-known structures or processes that are commonly associated with robotic systems and subsystems and that unnecessarily obscure several prominent aspects of the present disclosure are omitted for the purpose of clarifying the present disclosure. Furthermore, although this specification describes various embodiments of the present disclosure, the present disclosure as other embodiments may include structures different from those described in this section or structures having different constituent elements. Accordingly, the present disclosure may include other embodiments with additional elements or without some of the elements recited below.

此外,本公开的各实施方式可以采用命令的形式,所述命令包括由可编程计算机或控制器执行的例程,并且可以由计算机或控制器执行。应当注意,本公开所属领域的技术人员能够理解本公开的技术可在包括各种计算机或控制器的系统中实施。本公开的技术可以用被编程、配置或构建的专用计算机或数据处理器实施,以在各种计算机上执行一个以上的命令。因此,本说明书所使用的用语“计算机(computer)”和“控制器(controller)”可以是任何数据处理器,并且可以包括因特网设备和手持设备(包括掌上型计算机、可穿戴计算机、蜂窝或移动电话、多处理器系统、基于处理器或可编程的家用电器、网络计算机、微型计算机等)。由这些计算机和控制器处理的信息可以提供至任何合适的显示介质,诸如液晶显示器(LCD)。用于执行计算机或控制器可执行操作的命令可存储在任何合适的计算机可读存储介质中,包括硬件、固件或硬件和固件的组合。此外,这些命令可被存储在任何合适的存储器设备中,包括例如闪存驱动器和/或其它合适的介质。Furthermore, various embodiments of the present disclosure may take the form of commands, including routines executed by a programmable computer or controller, and which may be executed by the computer or controller. It should be noted that those skilled in the art to which this disclosure pertains can understand that the techniques of this disclosure may be implemented in systems including various computers or controllers. The techniques of this disclosure can be implemented with special purpose computers or data processors programmed, configured, or constructed to execute more than one command on various computers. Thus, the terms "computer" and "controller" as used in this specification can be any data processor, and can include Internet devices and handheld devices (including palmtop computers, wearable computers, cellular or mobile telephones, multiprocessor systems, processor-based or programmable home appliances, network computers, microcomputers, etc.). Information processed by these computers and controllers can be provided to any suitable display medium, such as a liquid crystal display (LCD). Commands for performing computer- or controller-executable operations may be stored in any suitable computer-readable storage medium, including hardware, firmware, or a combination of hardware and firmware. Furthermore, these commands may be stored in any suitable memory device including, for example, a flash drive and/or other suitable media.

另外,本说明书中的“耦合(coupled)”和“连接(connected)”等用语可用于派生形式,并且描述构成元件之间的结构关系。应理解为这些用语并不意味着相互同义。具体地,在特定实施方式中,“连接(connected)”可以用于指示两个以上元件彼此直接接触。除非上下文另有明确规定,用语“耦合(coupled)”可用于表示两个以上元件彼此直接或间接接触(在其间存在其他中间元件),或两个以上元件彼此协动或相互作用(诸如与信号的发送/接收或函数调用相关等一样存在因果关系),或者表示这二者。Also, terms such as "coupled" and "connected" in this specification may be used in derivative forms and describe structural relationships between constituent elements. It should be understood that these terms are not intended to be synonymous with each other. Specifically, in certain embodiments, "connected" may be used to indicate that two or more elements are in direct contact with each other. Unless the context clearly dictates otherwise, the term "coupled" may be used to mean that two or more elements are in direct or indirect contact with each other (with other intervening elements therebetween), or that two or more elements act or interact with each other (such as with a signal send/receive or function call correlation, etc.), or both.

[适当的环境][appropriate environment]

图1是表示本公开的一个实施方式所涉及的机器人系统100运转的示例的环境的图。机器人系统100具备构成为执行一个以上作业的一个以上的机器人等单元。FIG. 1 is a diagram showing an example of an environment in which a robot system 100 according to an embodiment of the present disclosure operates. The robot system 100 includes one or more units such as robots configured to execute one or more tasks.

对于图1所示的例子,机器人系统100可具备仓库或者分配/输送枢纽内的卸货单元102、移送单元104、输送单元106、堆货单元108或者它们的组合。在这些单元中,作为对操作对象进行操作的机器人,例如可以列举用于通过被称为拆箱机器人、拣件机器人、抓取机器人的机器人臂以及末端执行器等对操作对象进行操作的机器人。另外,机器人系统100中的各个单元以实施多个作业的方式执行将多个作业组合的控制序列,上述多个作业为一个以上的作业,例如为了储藏到仓库而从卡车、货车等对操作对象进行卸货,从储藏位置对操作对象进行卸货,例如在集装箱之间移动操作对象,为了输送操作对象而堆货到卡车、货车等。即,这里的“作业”是包含以从“某个位置”向“其他某位置”移载操作对象为目的的各种操作和动作的概念。For the example shown in FIG. 1, the robotic system 100 may have an unloading unit 102, a transfer unit 104, a conveying unit 106, a stacking unit 108, or a combination thereof within a warehouse or distribution/conveying hub. Among these units, for example, a robot that operates an operation object by a robot arm called an unpacking robot, a picking robot, a picking robot, an end effector, or the like can be mentioned as the robot that operates the operation object. In addition, each unit in the robot system 100 executes a control sequence for combining a plurality of operations, such as one or more operations, to perform a plurality of operations, such as a truck, a truck, or the like, for the operation object to be stored in a warehouse. Unloading is performed, and the operation object is unloaded from the storage location, for example, the operation object is moved between containers, and the operation object is stacked on a truck, a truck, or the like for transporting the operation object. That is, the "job" here is a concept including various operations and actions for the purpose of transferring an operation object from "a certain position" to "another certain position".

更具体地讲,“作业”包含使操作对象112从操作对象112的开始位置114向作业位置116的操作(例如,移动、定向、姿态变更等)、在设置于开始位置114到作业位置116的操作对象112的移动路径中途的把持变换位置118上的操作对象112的把持变换、用于获取操作对象112的识别信息的操作对象112的扫描等。More specifically, "work" includes an operation (eg, movement, orientation, attitude change, etc.) of causing the operation object 112 to move from the start position 114 of the operation object 112 to the work position 116 , and the operation of the operation object 112 set at the start position 114 to the work position 116 . The grip transformation of the operation object 112 at the grip transformation position 118 in the middle of the movement path of the operation object 112 , the scanning of the operation object 112 for acquiring the identification information of the operation object 112 , and the like.

另外,例如,卸货单元102能够构成为将操作对象112从运输工具(例如,货车)内的某个位置移送到传送带上的某个位置。并且,移送单元104能够构成为将操作对象112从某个位置(例如,包含开始位置的拾取区域)向其他位置(例如,包含输送单元106上的作业位置的放置区域)移送,并且在该移动路径的中途对该操作对象112进行把持变换。进而,输送单元106能够将操作对象112从移送单元104相关的区域向堆货单元108相关的区域移送。并且,堆货单元108能够例如通过移动用于载置操作对象112的托板等,从而将操作对象112从移送单元104移送至储藏位置(例如,仓库中的货架等搁板的规定位置)。In addition, for example, the unloading unit 102 can be configured to move the operation object 112 from a certain position within a vehicle (eg, a truck) to a certain position on a conveyor belt. Further, the transfer unit 104 can be configured to transfer the operation object 112 from a certain position (for example, a pickup area including a start position) to another position (for example, a placement area including a work position on the conveying unit 106 ), and in this movement In the middle of the path, the operation object 112 is grasped and transformed. Further, the conveying unit 106 can transfer the operation object 112 from the area related to the transfer unit 104 to the area related to the stacking unit 108 . Further, the stocking unit 108 can transfer the operation object 112 from the transfer unit 104 to a storage position (for example, a predetermined position of a shelf such as a shelf in a warehouse), for example, by moving a pallet or the like on which the operation object 112 is placed.

此外,在此处的说明中,记载了机器人系统100应用于输送中心的一个例子,但是,可以理解,机器人系统100为了实施制造、组装、捆包、保健、和/或其他类型的自动化作业,也可以构成为以其他环境/其他目的执行作业。可以理解,机器人系统100可以包含图1中未示出的操作器、服务机器人、模块式机器人等其他单元。例如,机器人系统100可包含例如从笼车或者托板向输送机或者其他托板移送操作对象112的来自托板的卸货单元、用于在集装箱间移送操作对象112的集装箱切换单元、用于将操作对象112包装的包装单元、根据操作对象112的特性进行分组的排列变换单元、根据操作对象112的特性对操作对象112进行各种操作(例如,排列变换、分组和/或移送)的拾取单元、使用于收纳操作对象112的托板、货架移动的自走式台车单元(例如,自动搬运车、无人搬运车等)、或者它们的组合。In addition, in the description herein, an example in which the robot system 100 is applied to a conveying center is described, however, it is understood that the robot system 100 is used to perform manufacturing, assembly, packaging, health care, and/or other types of automated operations. It can also be configured to execute jobs in other environments/other purposes. It will be understood that the robotic system 100 may include other units such as manipulators, service robots, modular robots, etc. not shown in FIG. 1 . For example, the robotic system 100 may include, for example, an unloading unit from pallets for transferring objects 112 from cages or pallets to conveyors or other pallets, a container switching unit for transferring objects 112 between containers, A packing unit for packing the operation objects 112, an arrangement and transformation unit for grouping according to the characteristics of the operation objects 112, and a pick-up unit for performing various operations on the operation objects 112 according to the characteristics of the operation objects 112 (for example, arrangement transformation, grouping and/or transfer) , a pallet for accommodating the operation object 112, a self-propelled trolley unit (eg, an automatic pallet truck, an unmanned pallet truck, etc.) for moving a rack, or a combination thereof.

[适合的系统][suitable system]

图2是表示本公开的一个实施方式所涉及的机器人系统100的硬件结构的一个例子的框图。机器人系统100例如具备一个以上处理器202、一个以上存储设备204、一个以上通信设备206、一个以上输入-输出设备208、一个以上运转设备212、一个以上移送电动机214、一个以上传感器216或者它们的组合等的电子或者电气设备。这些电子或者电气设备通过有线连接和/或无线连接彼此耦合。FIG. 2 is a block diagram showing an example of the hardware configuration of the robot system 100 according to the embodiment of the present disclosure. The robot system 100 includes, for example, one or more processors 202, one or more storage devices 204, one or more communication devices 206, one or more input-output devices 208, one or more operation devices 212, one or more transfer motors 214, one or more sensors 216, or any of these. Combination of electronic or electrical equipment, etc. These electronic or electrical devices are coupled to each other by wired and/or wireless connections.

另外,机器人系统100可以是例如系统总线、外围组件互连(PCI)总线或PCI-express总线、Hyper Transport或行业标准配置(ISA)总线、小型计算机系统接口(SCSI)总线、通用串行总线(USB)、IIC(I2C)总线或诸如电气与电子工程师协会(IEEE)标准1394总线(也称为“火线”)之类的总线。此外,机器人系统100可以包括例如桥、适配器、控制器或其他与信号有关的设备,以提供电子或电气设备之间的有线连接。另外,无线连接可以是例如蜂窝通信协议(例如3G、4G、LTE、5G等)、无线局域网(LAN)协议(例如忠实的无线通信环境(无线保真度(WIFI))、对等或设备到设备通信协议(例如,

Figure BDA0002376050950000131
近场通信(NFC)等)、物联网(IoT)协议(例如,NB-IoT,LTE-M等)和/或其他基于无线通信协议的无线连接。Additionally, the robotic system 100 may be, for example, a system bus, a Peripheral Component Interconnect (PCI) bus or a PCI-express bus, a Hyper Transport or Industry Standard Configuration (ISA) bus, a Small Computer System Interface (SCSI) bus, a Universal Serial Bus ( USB), IIC (I2C) bus, or a bus such as the Institute of Electrical and Electronics Engineers (IEEE) Standard 1394 bus (also known as "FireWire"). Additionally, the robotic system 100 may include, for example, bridges, adapters, controllers, or other signal-related devices to provide wired connections between electronic or electrical devices. Additionally, the wireless connection may be, for example, a cellular communication protocol (eg, 3G, 4G, LTE, 5G, etc.), a wireless local area network (LAN) protocol (eg, a faithful wireless communication environment (Wireless Fidelity (WIFI)), peer-to-peer or device-to-device Device communication protocols (for example,
Figure BDA0002376050950000131
Near Field Communication (NFC), etc.), Internet of Things (IoT) protocols (eg, NB-IoT, LTE-M, etc.) and/or other wireless connectivity based on wireless communication protocols.

处理器202可包括被配置为执行存储在存储设备204(例如,计算机存储器)中的命令(例如,软件命令)的数据处理器(例如,中央处理器(CPU),专用计算机、和/或板载服务器)。处理器202可以执行程序命令以控制其他设备/与其他设备交互,从而使机器人系统100执行包括各种动作、作业和/或操作的控制序列。Processor 202 may include a data processor (eg, central processing unit (CPU), special purpose computer, and/or board) configured to execute commands (eg, software commands) stored in storage device 204 (eg, computer memory) upload server). The processor 202 may execute program commands to control/interact with other devices, thereby causing the robotic system 100 to perform control sequences including various actions, jobs, and/or operations.

存储设备204可以包括其上存储有程序命令(例如,软件)的非暂时性计算机可读存储介质。存储设备204可列举例如易失性存储器(例如,高速缓存和/或随机存取存储器(RAM))和/或非易失性存储器(例如,闪存和/或磁盘驱动器)、便携式存储器驱动器和/或云存储设备等。存储设备204还可以用于进一步存储处理结果和/或规定数据/阈值,并提供访问,例如可存储包括关于操作对象112的信息的主数据252。Storage device 204 may include a non-transitory computer-readable storage medium having program commands (eg, software) stored thereon. Storage device 204 may enumerate, for example, volatile memory (eg, cache and/or random access memory (RAM)) and/or non-volatile memory (eg, flash memory and/or disk drives), portable memory drives, and/or or cloud storage devices, etc. The storage device 204 may also be used to further store processing results and/or specified data/thresholds, and provide access, such as may store master data 252 that includes information about the operational objects 112 .

该主数据252作为与操作对象112相关的信息,可包括例如尺寸、形状、质量、重心、质心的位置、与姿势和轮廓有关的模板、用于识别不同姿势的模型数据、以及库存管理单元(SKU:Stock Keeping Unit)、配色方案、图像、识别信息、标识、操作对象的预期位置、预期的传感器测定值(例如,力、扭矩、压力、与接触基准值相关的物理量)、或它们的组合。The master data 252, as information related to the operation object 112, may include, for example, size, shape, mass, center of gravity, position of the center of mass, templates related to postures and contours, model data for recognizing different postures, and inventory management units ( SKU: Stock Keeping Unit), color scheme, image, identification information, logo, expected position of the operating object, expected sensor measurements (eg, force, torque, pressure, physical quantities related to contact reference values), or a combination thereof .

此外,存储设备204可以存储例如操作对象112的跟踪数据254。该跟踪数据254可包括被扫描或操作的操作对象的日志、在一个以上位置(例如适当的开始位置、作业位置、把持变换位置等)处的操作对象112的拍摄数据(例如照片、点云、实时视频等)、在一个以上位置上的操作对象112的位置和/或姿态。Additionally, storage device 204 may store, for example, tracking data 254 of object 112 . The tracking data 254 may include a log of the object being scanned or manipulated, photographed data (eg, photographs, point clouds, real-time video, etc.), the position and/or pose of the manipulation object 112 at more than one location.

通信设备206可包括例如配置为通过网络与外部或远程设备进行通信的电路、接收器、发送器、调节器/解调器(调制解调器)、信号检测器、信号编码器/解码器,连接器端口、网卡等。另外,通信设备206可以被配置为根据一种以上的通信协议(例如,互联网协议(IP)、无线通信协议等)来发送、接收和/或处理电信号。例如,机器人系统100为了报告、数据收集、分析和故障排除等适当的目的,可以使用通信设备206在各单元之间交换信息或者与外部系统或外部设备交换信息。Communication device 206 may include, for example, circuitry configured to communicate with external or remote devices over a network, receivers, transmitters, conditioners/demodulators (modems), signal detectors, signal encoders/decoders, connector ports , network card, etc. Additionally, the communication device 206 may be configured to send, receive and/or process electrical signals in accordance with one or more communication protocols (eg, Internet Protocol (IP), wireless communication protocols, etc.). For example, robotic system 100 may use communication device 206 to exchange information between units or with external systems or external devices for appropriate purposes such as reporting, data collection, analysis, and troubleshooting.

输入-输出设备208作为用户界面设备,被配置为输入来自操作者的信息和指令、与操作者进行的信息通信以及提示等,例如可包含键盘、鼠标、触摸屏、麦克风、用户界面(UI)传感器(例如,用于接收运动命令的照相机)、可穿戴输入设备等输入设备以及显示器210、扬声器、触觉电路、触觉反馈设备等输出设备。另外,机器人系统100在执行动作、作业、操作或它们的组合时,可以使用输入-输出设备208与操作者相互进行意思疏通。The input-output device 208 acts as a user interface device configured to input information and instructions from the operator, communicate information with the operator, prompts, etc., and may include, for example, a keyboard, mouse, touch screen, microphone, user interface (UI) sensors (eg, a camera for receiving motion commands), input devices such as wearable input devices, and output devices such as display 210, speakers, haptic circuits, haptic feedback devices. Additionally, the robotic system 100 may use the input-output device 208 to communicate with the operator when performing actions, tasks, operations, or combinations thereof.

机器人系统100可包括例如通过链部或接头连接的物理或构造部件(例如,机器人操纵器、机器人臂等。以下,简称为“构造部件”),以执行包括例如操作对象112的移动或旋转等变位的控制序列。这种物理或构造部件以及链部或接头可以构成为操作在机器人系统100上执行一个以上作业(例如,把持、旋转、焊接、组装等)的末端执行器(例如,夹具、手等)。另外,机器人系统100可以包括构成为围绕接头或在接头处驱动或操纵(例如,变位和/或重定向)构造部件的运转设备212(例如,电动机、致动器、线、人造肌肉、电活性聚合物等)、以及构成为将单元从某个位置移送至其他位置的移送电动机214。The robotic system 100 may include physical or structural components (eg, robotic manipulators, robotic arms, etc., hereinafter, simply referred to as “constructive components”) connected, for example, by chains or joints to perform operations including, for example, movement or rotation of the object 112 , etc. Displaced control sequence. Such physical or structural components and links or joints may be configured to operate end effectors (eg, grippers, hands, etc.) that perform one or more tasks (eg, grip, rotate, weld, assemble, etc.) on the robotic system 100 . Additionally, the robotic system 100 may include a motion device 212 (eg, motor, actuator, wire, artificial muscle, electrical active polymer, etc.), and the transfer motor 214 configured to transfer the unit from a certain position to another position.

另外,机器人系统100可以包括传感器216,该传感器216构成为获取用于执行操纵构造部件和/或移送单元的作业的信息。传感器216构成为检测或测定机器人系统100的一个以上物理特性(例如,一个以上构造部件、链部或接头等的状态、条件、位置等)和/或周围环境特性的设备,例如可以包括加速度计、陀螺仪、力传感器、应变仪、触觉传感器、扭矩传感器、位置编码器等。Additionally, the robotic system 100 may include a sensor 216 configured to acquire information for performing a job of manipulating the construction member and/or the transfer unit. Sensors 216 are devices configured to detect or measure one or more physical properties of robotic system 100 (eg, the state, condition, location, etc. of one or more structural components, links or joints, etc.) and/or properties of the surrounding environment, and may include, for example, accelerometers , gyroscopes, force sensors, strain gauges, tactile sensors, torque sensors, position encoders, etc.

进而,传感器216可以包括构成为检测周围环境的一个以上拍摄设备222(例如,可见和/或红外照相机、二维和/或三维成像照相机、激光雷达或雷达等距离测定设备等)。拍摄设备222为了例如获得用于自动检查、机器人引导和其他机器人应用的视觉信息,可以生成数字图像和/或点云等检测环境的显示。Further, the sensors 216 may include one or more photographing devices 222 (eg, visible and/or infrared cameras, two- and/or three-dimensional imaging cameras, lidar or radar isometry devices, etc.) configured to detect the surrounding environment. The camera device 222 may generate digital images and/or displays of the inspection environment, such as point clouds, in order to obtain visual information, eg, for automated inspection, robot guidance, and other robotic applications.

另外,机器人系统100例如能够经由处理器202,处理数字图像、点云、测距数据等,识别图1的操作对象112、图1的开始位置114、图1的作业位置116、开始位置114与作业位置116之间的把持变换位置118、操作对象112的姿态、开始位置114等的操作对象的姿态相关的可靠基准、操作对象112的高度相关的可靠基准、或者它们的组合。In addition, the robot system 100 can process digital images, point clouds, ranging data, etc. via the processor 202, for example, to identify the operation object 112 in FIG. 1 , the start position 114 in FIG. 1 , the work position 116 in FIG. Reliable reference for the grip transition position 118 between the work positions 116 , the posture of the operation object 112 , the posture of the operation object at the start position 114 , etc., the reliable reference for the height of the operation object 112 , or a combination thereof.

进而,机器人系统100为了对操作对象112进行操作,将指定的区域(例如,货车内或者传送带上的拾取区域、传送带上用于配置操作对象112的放置区域、用于对操作对象112进行把持变换的区域、用于在集装箱内配置操作对象的区域、用于堆积操作对象112的托板上的区域等)的图像通过各种单元获取并进行分析,能够识别操作对象112、其开始位置114、其作业位置116、把持变换位置118等。另外,拍摄设备222例如包含构成为用于生成拾取区域、放置区域、以及设定在它们之间的用于对操作对象112进行把持变换的区域等的图像的一个以上照相机。Furthermore, in order to operate the operation object 112 , the robot system 100 converts a designated area (for example, a pickup area in a truck or on a conveyor belt, a placement area on the conveyor belt for arranging the operation object 112 , and a grip conversion for the operation object 112 ). The image of the area for arranging the operation object 112 in the container, the area on the pallet for stacking the operation object 112, etc.) is acquired and analyzed by various units, and the operation object 112, its start position 114, The working position 116, the grip changing position 118, and the like. In addition, the imaging device 222 includes, for example, one or more cameras configured to generate images of a pickup area, a drop area, and an area set therebetween for grasping and transforming the operation object 112 .

另外,拍摄设备222可包含构成为在比把持变换位置118靠近上游的上游侧(前阶段)例如测定距离规定位置支撑的操作对象112的距离的激光雷达或者雷达等一个以上距离测定设备。机器人系统100能够基于获取的图像和/或测距数据,判定开始位置114、作业位置116、把持变换位置118、相关姿态、操作对象112的实际高度、可靠基准等。In addition, the imaging device 222 may include one or more distance measuring devices such as lidar or radar configured to measure the distance from the operation object 112 supported at a predetermined position on the upstream side (previous stage) upstream of the grip change position 118 . The robot system 100 can determine the start position 114 , the work position 116 , the grip transformation position 118 , the relative posture, the actual height of the operation object 112 , a reliable reference, and the like based on the acquired image and/or distance measurement data.

另外,拍摄设备222为了进行操作对象112的扫描,可包含构成为在操作对象的输送或者移动过程中,例如,在开始位置114与作业位置116(优选在把持变换位置118的前阶段)之间扫描操作对象112的识别信息(例如,后面所述的图3A和/或图3C的标识332)的一个以上扫描仪412、416(例如,条形码扫描仪、QR码扫描仪(注册商标)等,参照后面所述的图4A以及图4B)。并且,机器人系统100针对一个以上扫描仪412,能够创建或者获取用于提供操作对象112的一个以上部分的控制序列。In addition, in order to scan the operation object 112 , the imaging device 222 may be configured to be, for example, between the start position 114 and the operation position 116 (preferably in the previous stage of the grip change position 118 ) during the conveyance or movement of the operation object. one or more scanners 412, 416 (eg, barcode scanners, QR code scanners (registered trademark), etc.) that scan the identification information of the operation object 112 (eg, the logo 332 of FIG. 3A and/or FIG. 3C described later), etc., Refer to FIG. 4A and FIG. 4B described later). Also, the robotic system 100 can create or acquire control sequences for providing one or more portions of the manipulation object 112 for the one or more scanners 412 .

进而,传感器216例如可以包含构成为检测构造部件、链部或者接头的位置的位置传感器224(例如,位置编码器、电位器等)。该位置传感器224在执行作业期间,用于跟踪构造部件、链部或者接头的位置和/或朝向。Further, the sensor 216 may include, for example, a position sensor 224 (eg, a position encoder, a potentiometer, etc.) configured to detect the position of a structural member, a chain, or a joint. The position sensor 224 is used to track the position and/or orientation of the structural component, chain or joint during execution of the work.

另外,传感器216例如可以包含构成为测定物理构造或者表面之间接触相关特性的接触传感器226(例如,压力传感器、力传感器,应变仪,压阻式/压电式传感器、电容式传感器、弹性电阻式传感器、其他触觉传感器等)。接触传感器226能够测定操作对象112的末端执行器的把持所对应的特性。由此,接触传感器226能够输出表示末端执行器与操作对象112之间的接触程度对应的定量化的测定值(例如,测得的力、力矩、位置等)的接触基准。其中,“接触基准”可以包含例如由末端执行器施加给操作对象112的力相关的一个以上的力或者力矩的读取值。Additionally, sensors 216 may include, for example, contact sensors 226 (eg, pressure sensors, force sensors, strain gauges, piezoresistive/piezoelectric sensors, capacitive sensors, elastic resistance sensors, other tactile sensors, etc.). The touch sensor 226 can measure the characteristic corresponding to the grip of the end effector of the manipulation object 112 . Thereby, the contact sensor 226 can output a contact reference indicating a quantitative measurement value (eg, measured force, moment, position, etc.) corresponding to the degree of contact between the end effector and the operation object 112 . The "contact reference" may include, for example, a read value of one or more forces or moments related to the force applied by the end effector to the manipulation object 112 .

[最初姿态相关的可靠基准的判定][Judgment of reliable reference for initial posture]

图3A、图3B、以及图3C分别作为操作对象302的各种姿态(位置以及朝向)的一个例子,为示意性示出第一姿态312、第二姿态314、以及第三姿态316的立体图。机器人系统100为了识别操作对象302的姿态,例如,可以处理来自拍摄设备222的二维图像、三维图像、点云、和/或其他拍摄数据。另外,机器人系统100例如为了识别操作对象302的最初姿态,可以分析朝向拾取区域的一个以上拍摄设备222的拍摄数据。FIGS. 3A , 3B, and 3C are perspective views schematically illustrating a first posture 312 , a second posture 314 , and a third posture 316 as examples of various postures (positions and orientations) of the operation object 302 , respectively. The robotic system 100 may, for example, process two-dimensional images, three-dimensional images, point clouds, and/or other photographed data from the photographing device 222 in order to recognize the pose of the manipulation object 302 . In addition, the robot system 100 may analyze the photographing data of one or more photographing devices 222 toward the pickup area, for example, in order to recognize the initial posture of the manipulation object 302 .

机器人系统100为了识别操作对象302的姿态,首先,基于规定的识别机理、识别规则、和/或姿态、轮廓相关的模板,分析拍摄数据中的操作对象302的图案图像,识别操作对象302的轮廓(例如,周围的缘部或者表面),或者将其分组。更具体地讲,机器人系统100例如基于主数据252的轮廓、姿态的模板,能够对操作对象的整个轮廓识别与颜色、亮度、深度/位置、和/或它们的组合、它们的值的变化中的图案(例如,是否为相同值,是否以已知的比例/图案进行变化等)对应的轮廓的分组。In order to recognize the posture of the operation object 302, the robot system 100 firstly analyzes the pattern image of the operation object 302 in the photographed data based on the prescribed recognition mechanism, recognition rules, and/or templates related to the attitude and outline, and recognizes the outline of the operation object 302. (eg surrounding edges or surfaces), or group them. More specifically, the robot system 100, for example, based on a template of the outline and posture of the master data 252, can identify the entire outline of the manipulation object with the color, brightness, depth/position, and/or combinations thereof, and changes in their values. The grouping of contours corresponding to the pattern of (eg, whether it is the same value, whether it varies in a known scale/pattern, etc.).

如果将操作对象302的轮廓分组,则机器人系统100能够在机器人系统100所使用的网格或者坐标系中,识别例如操作对象302的一个以上表面、缘部、和/或点以及姿态。If the contours of manipulated objects 302 are grouped, robotic system 100 is able to identify, for example, one or more surfaces, edges, and/or points and poses of manipulated objects 302 in the grid or coordinate system used by robotic system 100 .

另外,机器人系统100能够识别拍摄数据内的操作对象302的一个以上露出表面(例如,第一露出表面304、第二露出表面306等)。进而,机器人系统100例如根据操作对象302的轮廓以及校准所涉及的拍摄数据、或者拍摄设备222相关的映射数据,判定操作对象302的轮廓的形状、一个以上的多个尺寸(例如,长度、宽度、和/或高度),将判定后的尺寸与主数据252内对应的数据相比较,能够识别操作对象302。进而,机器人系统100基于识别了露出表面的尺寸的操作对象302的长度、宽度、以及高度,能够识别该露出表面是顶部表面322、底部表面324、以及外周表面326的哪一个。In addition, the robotic system 100 can identify one or more exposed surfaces (eg, the first exposed surface 304 , the second exposed surface 306 , etc.) of the manipulation object 302 within the captured data. Furthermore, the robot system 100 determines the shape of the outline of the operation object 302 and one or more dimensions (eg, length, width, etc.) based on, for example, the outline of the operation object 302 and imaging data related to calibration, or mapping data related to the imaging device 222 . , and/or height), the determined size is compared with the corresponding data in the master data 252, and the operation object 302 can be identified. Furthermore, the robot system 100 can identify which of the top surface 322 , the bottom surface 324 , and the outer peripheral surface 326 the exposed surface is based on the length, width, and height of the operation object 302 that recognizes the size of the exposed surface.

另外,机器人系统100例如将一个以上露出表面上显示的一个以上标记(例如,文字、数量、形状、可视图像、标记、或者它们的组合)与主数据252内的一个以上规定的图像相比较,能够识别操作对象302。在该情况下,主数据252例如可以包含操作对象302的包装表面上的商品名、标记、设计/图像、或者它们的组合的一个以上图像。另外,机器人系统100将拍摄数据的一部分(例如,操作对象302的轮廓内的部分)与主数据252相比较,识别操作对象302,另外,同样,基于表面特有的规定的图像图案,能够识别操作对象302的姿态(特别是朝向)。Additionally, the robotic system 100, for example, compares one or more indicia (eg, text, numbers, shapes, visual images, indicia, or combinations thereof) displayed on one or more exposed surfaces with one or more specified images within the master data 252 , the operation object 302 can be identified. In this case, the master data 252 may contain, for example, one or more images of the trade name, logo, design/image, or a combination thereof on the packaging surface of the manipulation object 302 . In addition, the robot system 100 compares a part of the photographed data (for example, a part within the outline of the operation object 302 ) with the master data 252 to recognize the operation object 302 , and also recognizes the operation based on a predetermined image pattern unique to the surface. The pose (especially the orientation) of the object 302 .

其中,图3A表示第一露出表面304(例如,朝向上方的露出表面)是操作对象302的顶部表面322,第二露出表面306(例如,大致朝向拍摄数据的源头的露出表面)是操作对象302的外周表面326之一的情况下的第一姿态312。3A shows that the first exposed surface 304 (eg, the exposed surface facing upward) is the top surface 322 of the operation object 302 , and the second exposed surface 306 (eg, the exposed surface generally facing the source of the captured data) is the operation object 302 the first posture 312 in the case of one of the peripheral surfaces 326 .

在露出表面的识别中,机器人系统100处理图3A的拍摄数据,能够使用规定的校准或者映射功能,将第一露出表面304和/或第二露出表面306的尺寸(例如,像素数)的测定值映射为现实世界的尺寸。另外,机器人系统100能够将映射后的尺寸与主数据252内的已知/预期的操作对象302的尺寸相比较,基于该结果,识别操作对象302。进而,机器人系统100在确定第一露出表面304的边界的一对交叉的缘部与识别后的操作对象302的长度以及宽度相匹配后,能够识别出第一露出表面304是顶部表面322还是底部表面324。同样,机器人系统100在规定第二露出表面306的一个缘部与识别的操作对象302的高度相匹配后,能够将第二露出表面306识别为外周表面326。In the identification of exposed surfaces, the robotic system 100 processes the captured data of FIG. 3A and can use a prescribed calibration or mapping function to determine the dimensions (eg, number of pixels) of the first exposed surface 304 and/or the second exposed surface 306 Values are mapped to real-world dimensions. Additionally, the robotic system 100 can compare the mapped size to the known/expected size of the manipulative object 302 within the master data 252, and based on the result, identify the manipulative object 302. Furthermore, the robotic system 100 can identify whether the first exposed surface 304 is the top surface 322 or the bottom after determining that a pair of intersecting edges of the boundary of the first exposed surface 304 match the length and width of the recognized operation object 302 . Surface 324. Likewise, the robot system 100 can recognize the second exposed surface 306 as the outer peripheral surface 326 after specifying that one edge of the second exposed surface 306 matches the height of the recognized operation object 302 .

另外,机器人系统100能够对图3A的拍摄数据进行处理并识别操作对象302的表面特有的一个以上标记。在该情况下,主数据252可以包含上述的操作对象302的表面和/或特有的标记的一个以上图像和/或其他视觉特性(例如,颜色、尺寸、大小等)。如图3A所示,操作对象302在顶部表面322具有“A”,因此,机器人系统100能够将操作对象302识别为主数据252中存储的操作对象,进而能够将第一露出表面304识别为操作对象302的顶部表面322。Additionally, the robotic system 100 can process the captured data of FIG. 3A and identify one or more markers unique to the surface of the manipulation object 302 . In this case, the master data 252 may include one or more images and/or other visual characteristics (eg, color, size, size, etc.) of the surface and/or characteristic indicia of the manipulation object 302 described above. As shown in FIG. 3A, the manipulation object 302 has an "A" on the top surface 322, so the robotic system 100 can identify the manipulation object 302 as the manipulation object stored in the master data 252, and thus the first exposed surface 304 as the manipulation Top surface 322 of object 302 .

另外,主数据252可以包含作为操作对象302的识别信息的标识332。更具体地讲,主数据252可以包含操作对象302的标识332的图像和/或编码化的消息、针对表面和/或缘部的集合的标识332的位置334、其中一个以上视觉特性、或它们的组合。如图3A所示,机器人系统100基于标识332的存在、和/或它们与标识332的位置334相匹配的位置,能够将第二露出表面306识别为外周表面326。In addition, the master data 252 may contain the identification 332 as identification information of the operation object 302 . More specifically, the master data 252 may contain an image and/or encoded message of the identification 332 of the manipulation object 302, the location 334 of the identification 332 for a set of surfaces and/or edges, one or more visual characteristics thereof, or the like. The combination. As shown in FIG. 3A , the robotic system 100 can identify the second exposed surface 306 as the peripheral surface 326 based on the presence of the markers 332 , and/or their matching positions with the locations 334 of the markers 332 .

另外,图3B表示将操作对象302沿图3A的方向B绕垂直轴旋转90度的第二姿态314。例如,操作对象302的基准点“α”可以是图3A的左下角以及图3B的右下角。由此,与第一姿态312相比,操作对象302的顶部表面322在拍摄数据中识别为不同的朝向,和/或无法视觉识别具有标识332的操作对象302的外周表面326。In addition, FIG. 3B shows a second posture 314 in which the operation object 302 is rotated 90 degrees around the vertical axis in the direction B of FIG. 3A . For example, the reference point "α" of the operation object 302 may be the lower left corner of FIG. 3A and the lower right corner of FIG. 3B . As a result, the top surface 322 of the operation object 302 is recognized as a different orientation in the shooting data compared to the first gesture 312 , and/or the outer peripheral surface 326 of the operation object 302 with the identification 332 cannot be visually recognized.

机器人系统100可以基于一个以上视觉特征的标识332的特定朝向,识别操作对象302的各种姿态。例如,在与操作对象302的已知长度相匹配的尺寸在拍摄数据中水平延伸、与操作对象302的已知高度相匹配的尺寸在拍摄数据中垂直延伸、和/或与操作对象302的已知宽度相匹配的尺寸在拍摄数据中沿深度轴延伸的情况下,可以判定第一姿态312和/或第三姿态316。同样,对于机器人系统100,在与宽度相匹配的尺寸在拍摄数据中沿水平延伸、与高度相匹配的尺寸在拍摄数据中垂直延伸、和/或与长度相匹配的尺寸在拍摄数据中沿深度轴延伸的情况下,可以判定第二姿态314。The robotic system 100 may recognize various gestures of the manipulation object 302 based on the particular orientation of the identification 332 of one or more visual features. For example, the size that matches the known length of the operation object 302 extends horizontally in the shooting data, the size that matches the known height of the operation object 302 extends vertically in the shooting data, and/or the size that matches the known height of the operation object 302 extends vertically in the shooting data. The first posture 312 and/or the third posture 316 can be determined in the case that the dimension matching the width extends along the depth axis in the shooting data. Likewise, for the robotic system 100, a dimension that matches the width extends horizontally in the shot data, a dimension that matches the height extends vertically in the shot data, and/or a dimension that matches the length extends along the depth in the shot data With the shaft extended, the second posture 314 can be determined.

另外,机器人系统100例如基于图3A以及图3B所示的“A”等视觉标记的朝向,能够判定操作对象302处于第一姿态312或者第二姿态314。进而,机器人系统100例如在操作对象302的标识332在随着标记“A”(即,不同的表面上)而被视觉确认的情况下,基于各表面的组合中待视觉识别的视觉识别标记,能够判定操作对象302处于第一姿态312内。In addition, the robot system 100 can determine that the operation object 302 is in the first posture 312 or the second posture 314 based on, for example, the orientation of visual markers such as "A" shown in FIGS. 3A and 3B . Further, the robotic system 100, for example, in the case where the identification 332 of the manipulation object 302 is visually recognized with the marking "A" (ie, on a different surface), based on the visual recognition marking to be visually recognized in the combination of the surfaces, It can be determined that the operation object 302 is in the first posture 312 .

进而,图3C表示操作对象302沿图3A的方向C绕水平轴旋转180度的第三姿态316。例如,操作对象302的基准点“α”是图3A的左下前方角以及图3C的左上后方角。因此,与第一姿态312相比,第一露出表面304是操作对象的底部表面324,另外,无法视觉识别操作对象302的具有标识332的顶部表面322以及外周表面326这二者。Furthermore, FIG. 3C shows a third posture 316 in which the operation object 302 is rotated 180 degrees around the horizontal axis along the direction C of FIG. 3A . For example, the reference point "α" of the operation object 302 is the lower left front corner of FIG. 3A and the upper left rear corner of FIG. 3C . Therefore, compared to the first gesture 312, the first exposed surface 304 is the bottom surface 324 of the operation object, and in addition, both the top surface 322 with the logo 332 and the outer peripheral surface 326 of the operation object 302 cannot be visually recognized.

如上所述,机器人系统100能够基于根据图像数据所判定的尺寸,识别操作对象302处于第一姿态312或者第三姿态316,在能够看到顶部表面322的标记(例如,“A”)的情况下,可以识别操作对象302处于第一姿态312。另外,机器人系统100在能够看到底部表面的标记(例如,操作对象的标识332的例子)的情况下,可以识别操作对象302处于第三姿态316。As described above, the robotic system 100 can recognize, based on the size determined from the image data, that the manipulation object 302 is in the first pose 312 or the third pose 316, where the marking (eg, "A") of the top surface 322 can be seen Next, it can be recognized that the operation object 302 is in the first gesture 312 . In addition, the robotic system 100 can recognize that the manipulation object 302 is in the third pose 316 if the indicia on the bottom surface (eg, an example of the manipulation object's identification 332 ) can be seen.

另外,在判定操作对象302的姿态时,现实世界的状况有时会对判定的正确性产生影响。例如,由于光的状况引起反射和/或阴影等,有时会降低表面标记的视觉识别性。进而,由于操作对象302的实际朝向,有时会降低一个以上表面的露出或者视觉识别角度,因此,有时无法识别到表面上的任一标记。因此,机器人系统100可以计算判定后的操作对象302的姿态相关的可靠基准。In addition, when the posture of the operation object 302 is determined, the situation in the real world may affect the accuracy of the determination. For example, due to light conditions, reflections and/or shadows, etc., sometimes reduce the visibility of surface markings. Furthermore, depending on the actual orientation of the operation object 302 , the exposure or visual recognition angle of one or more surfaces may be reduced, so that any mark on the surface may not be recognized. Therefore, the robot system 100 can calculate a reliable reference related to the determined posture of the operation object 302 .

另外,机器人系统100可以基于拍摄数据中的图像内的尺寸测定相关的确定性的间隔(interval),计算可靠基准。在该情况下,随着操作对象302与拍摄源(例如,拍摄设备222)之间的距离减少、和/或随着操作对象302的被测定的缘部向与从拍摄源放射的方向正交的方向靠近,确定性的间隔可以在远离平行于放射方向的方向的情况下增大。进而,机器人系统100例如可以基于拍摄数据中的标记或者设计与主数据252中的已知的标记/设计之间的匹配程度,计算可靠基准。进而,机器人系统100可以测定拍摄数据的至少一部分与规定的标记/图像之间的重复或者偏离的程度。In addition, the robot system 100 can calculate a reliable reference based on the deterministic interval (interval) associated with the dimension measurement in the image in the captured data. In this case, as the distance between the operation object 302 and the imaging source (for example, the imaging device 222 ) decreases, and/or as the measured edge of the operation object 302 becomes orthogonal to the direction radiated from the imaging source The deterministic spacing can be increased away from the direction parallel to the radial direction. In turn, the robotic system 100 may calculate a reliable benchmark based on, for example, the degree of match between the markings or designs in the captured data and known markings/designs in the master data 252 . Furthermore, the robot system 100 can measure the degree of overlap or deviation between at least a part of the captured data and a predetermined mark/image.

在该情况下,机器人系统100按照最小均方误差(MMSE)的机理相关的等测定最大重复和/或最低偏离,能够识别操作对象302和/或其朝向,进而,基于得到的重复/偏离的程度,可以计算可靠基准。并且,机器人系统100基于得到的可靠基准,能够计算控制序列中的操作对象302的移动路径,换言之,机器人系统100基于得到的可靠基准,能够使操作对象302适当地移动。In this case, the robot system 100 measures the maximum repetition and/or minimum deviation according to the mechanism-dependent minimum mean square error (MMSE), etc., and can identify the manipulation object 302 and/or its orientation, and further, based on the obtained repetition/deviation degree, a reliable benchmark can be calculated. In addition, the robot system 100 can calculate the movement path of the operation object 302 in the control sequence based on the obtained reliable reference. In other words, the robot system 100 can appropriately move the operation object 302 based on the obtained reliable reference.

[系统操作][system operation]

图4A是表示本公开的一个实施方式所涉及的机器人系统100执行的示例性作业402的俯视图。如上所述,作业402是机器人系统100执行的(例如,由图1所示的单元等执行的)控制序列的一个例子。如图4A所示,例如,作业402可以包含:将操作对象112从包含开始位置114的拾取区域经由把持变换位置118移动至包含作业位置116的放置区域;从开始位置114向作业位置116移动的过程中扫描操作对象112;以及在把持变换位置118处对操作对象112进行把持变换(变更把持位置)。由此,机器人系统100通过在操作对象112的跟踪数据254中追加扫描的操作对象112、从跟踪数据254中除去操作对象112、和/或评价操作对象112等,能够随时更新跟踪数据254。FIG. 4A is a plan view showing an exemplary job 402 performed by the robotic system 100 according to one embodiment of the present disclosure. As described above, job 402 is an example of a control sequence performed by robotic system 100 (eg, performed by the unit or the like shown in FIG. 1 ). As shown in FIG. 4A , for example, the job 402 may include: moving the operation object 112 from the pick area containing the start position 114 to the drop area containing the work position 116 via the grip transformation position 118 ; In the process, the operation object 112 is scanned; and the operation object 112 is grip-transformed (changing the grip position) at the grip-transformation position 118 . Accordingly, the robot system 100 can update the tracking data 254 at any time by adding the scanned operation object 112 to the tracking data 254 of the operation object 112 , removing the operation object 112 from the tracking data 254 , and/or evaluating the operation object 112 .

另外,机器人系统100为了识别和/或确定开始位置114,可以包含用于拍摄拾取区域(更具体地讲,例如,对部件调配用的托板或者大箱指定的区域、和/或传送带的接收侧的区域等)的朝向拾取区域的3D视觉等扫描仪412(拍摄设备222的一个例子),由此,能够获取指定区域的拍摄数据。并且,机器人系统100例如为了通过处理器202识别位于指定区域的各种操作对象112,可以执行拍摄数据的计算机图像处理(视野处理)。In addition, the robotic system 100 may include, in order to identify and/or determine the starting position 114, a method for photographing the pick-up area (more specifically, for example, the area designated for pallets or totes used for component deployment, and/or the receipt of conveyor belts). The scanner 412 (an example of the imaging device 222 ), such as a 3D vision scanner 412 (an example of the imaging device 222 ), which is directed toward the pickup region, can acquire imaging data of the specified region. Also, the robot system 100 may perform computer image processing (visual field processing) of photographed data, for example, in order to recognize various manipulation objects 112 located in a designated area through the processor 202 .

另外,机器人系统100从识别后的操作对象112中,例如基于规定的选择基准、和/或选择规则、和/或姿态、轮廓相关的模板,选择用于执行作业402的操作对象112,对于该操作对象112,为了判定开始位置114和/或最初姿态,可以进一步处理拍摄数据。In addition, the robot system 100 selects the operation object 112 for executing the operation 402 from the recognized operation object 112, for example, based on a predetermined selection criterion, and/or selection rule, and/or a template related to a posture and an outline. The operation object 112 may further process the photographed data in order to determine the start position 114 and/or the initial posture.

机器人系统100为了识别和/或确定作业位置116以及把持变换位置118,可以包含用于拍摄放置区域以及其他规定的区域(更具体地讲,例如对排列变换的托板或者大箱、和/或传送带的发送侧区域所指定的区域等)的朝向这些区域的其他扫描仪416(拍摄设备222的一个例子),由此,能够获取指定区域的拍摄数据。并且,机器人系统100例如为了通过处理器202识别用于配置操作对象112的作业位置116、把持变换位置118、和/或操作对象112的姿态,可以进行拍摄数据的计算机图像处理(视野处理)。另外,机器人系统100可以基于用于堆积和/或配置多个操作对象112的规定基准或者规则,识别以及选择作业位置116以及把持变换位置118(基于拍摄结果或者不基于拍摄结果)。In order to identify and/or determine the work position 116 and the grip change position 118, the robot system 100 may include a placement area and other specified areas for imaging (more specifically, for example, a pallet or a large box, and/or The other scanner 416 (an example of the imaging device 222 ) facing the area designated by the transmission side area of the conveyor belt, etc., can acquire imaging data of the designated area. In addition, the robot system 100 may perform computer image processing (field of view processing) of the captured data, for example, in order to recognize the work position 116 for arranging the operation object 112 , the grip transformation position 118 , and/or the posture of the operation object 112 by the processor 202 . In addition, the robotic system 100 may identify and select the work position 116 and the grip transformation position 118 (based on or not based on the photographing results) based on prescribed criteria or rules for stacking and/or arranging the plurality of manipulation objects 112 .

其中,对于扫描仪416可以朝向水平方向进行配置,以扫描与其相邻(例如处于与对应的扫描仪(可多个)的高度对应的高度)且垂直朝向的操作对象112的表面上存在的标记。进而,扫描仪416为了扫描存在于上下方且朝向水平的操作对象112的表面上存在的标记,可以朝向垂直方向配置。并且,扫描仪416可以彼此相对配置,以扫描位于扫描仪416之间的操作对象112的两侧。Among them, the scanner 416 can be configured to face the horizontal direction to scan the mark existing on the surface of the operation object 112 which is adjacent to it (for example, at a height corresponding to the height of the corresponding scanner(s)) and faces vertically . Furthermore, the scanner 416 may be arranged in the vertical direction in order to scan the marks existing on the surface of the operation object 112 which are vertically and horizontally oriented. Also, the scanners 416 may be disposed opposite to each other to scan both sides of the operation object 112 located between the scanners 416 .

另外,机器人系统100可以根据扫描仪416的位置和/或扫描方向,以将操作对象112放置于提供位置、和/或通过扫描仪416能够扫描操作对象112的一个以上表面/部分的方式,对操作对象112进行操作。进而,机器人系统100例如可以包含构成为通过扫描仪416进行扫描且测定其支撑位置已知的操作对象112的底部表面324的高度位置的拍摄设备222(参照图4B)。In addition, the robotic system 100 may position the object 112 at the provided location based on the position and/or scanning direction of the scanner 416, and/or in such a manner that the scanner 416 can scan more than one surface/portion of the object 112. The operation object 112 operates. Furthermore, the robot system 100 may include, for example, the imaging device 222 (see FIG. 4B ) configured to scan with the scanner 416 and measure the height position of the bottom surface 324 of the operation object 112 whose supporting position is known.

这样,使用识别后的开始位置114、把持变换位置118、和/或作业位置116,机器人系统100为了执行作业402,能够操作各单元的一个以上构造部件(例如,机器人臂414和/或末端执行器)。由此,机器人系统100例如能够通过处理器202创建或者获取由用于执行作业402的对应单元实施的一个以上动作对应的控制序列。In this way, using the identified start position 114 , grip transition position 118 , and/or work position 116 , the robotic system 100 can operate one or more structural components of each cell (eg, the robotic arm 414 and/or the end effector) in order to perform the job 402 . device). Thus, the robotic system 100 can, for example, by the processor 202 create or obtain a control sequence corresponding to one or more actions performed by the corresponding unit for performing the job 402 .

例如,移送单元104相关的控制序列可以包含:在接近位置(例如,用于配置用于把持操作对象112的末端执行器的位置/场所)配置末端执行器;把持操作对象112;将操作对象112提升;将操作对象112从开始位置114上移动至用于扫描操作的提供位置/姿态;在把持变换位置118对操作对象112进行把持变换(变更把持位置);将操作对象112从开始位置114根据需要经由把持变换位置118移动至作业位置116上;降低操作对象112;以及释放操作对象112的把持。For example, the control sequence associated with the transfer unit 104 may include: deploying the end effector at an approaching location (eg, a location/location for configuring an end effector for holding the manipulation object 112 ); grasping the manipulation object 112 ; placing the manipulation object 112 Lift; move the operation object 112 from the start position 114 to the provided position/pose for the scanning operation; perform a grip transformation (change the grip position) on the operation object 112 at the grip transformation position 118; move the operation object 112 from the start position 114 according to the It is necessary to move to the working position 116 via the grip change position 118 ; lower the operation object 112 ; and release the grip of the operation object 112 .

另外,机器人系统100可以判定用于操作机器人臂414和/或末端执行器的一个以上运转设备212的命令和/或设定的序列,创建或者获取控制序列。在该情况下,机器人系统100例如使用处理器202可以计算用于操纵末端执行器以及机器人臂414的运转设备212的命令和/或设定,以使末端执行器放置于开始位置114周围的接近位置,通过末端执行器把持操作对象112,将末端执行器放置于扫描位置、把持变换位置118周围的接近位置,将末端执行器放置于作业位置116周围的接近位置,将操作对象112从末端执行器上释放。由此,机器人系统100根据命令和/或设定所判定的控制序列来操作运转设备212,能够执行用于完成作业402的操作。Additionally, the robotic system 100 may determine a sequence of commands and/or settings for operating the robotic arm 414 and/or one or more operational devices 212 of the end effector, creating or acquiring control sequences. In this case, the robotic system 100 , eg, using the processor 202 , may calculate commands and/or settings for manipulating the end effector and the motion device 212 of the robotic arm 414 to place the end effector in proximity around the starting position 114 . Position, hold the operation object 112 by the end effector, place the end effector in the scanning position, hold the proximity position around the transformation position 118, place the end effector in the proximity position around the work position 116, and execute the operation object 112 from the end release on the device. Thereby, the robot system 100 can operate the operation equipment 212 according to the control sequence determined by the command and/or setting, and can execute the operation for completing the work 402 .

另外,机器人系统100能够基于操作对象112的姿态相关的可靠基准,创建或者获取控制序列。在该情况下,机器人系统100例如按照姿态相关的可靠基准,为了把持或者覆盖不同的表面,可以将末端执行器放置于用于拾取的各种位置,计算操作对象112相关的各种提供位置/姿态,或者将它们进行组合。In addition, the robotic system 100 can create or acquire control sequences based on reliable fiducials related to the pose of the manipulated object 112 . In this case, the robot system 100 can place the end effector at various positions for picking up in order to hold or cover different surfaces, for example, according to a reliable reference related to the posture, and calculate various provided positions/provided positions related to the operation object 112 . gestures, or combine them.

作为一个例子,操作对象112是处于图3A的第一姿态312的操作对象302(在该情况下,操作对象302的顶部表面322整体朝向上方露出),在姿态相关的可靠基准较高(即,确定性的程度超过充分性阈值,所判定的姿态是正确的可能性较高)的情况下,机器人系统100能够创建或者获取包含第一接近位置432以及第一提供位置442的第一控制序列422。此时,例如,由于操作对象302的顶部表面322朝向上方(即,图3C的具有对象标识332的底部表面324朝向下方)的确定性充分,机器人系统100可以计算包含用于将末端执行器直接放置于操作对象302的顶部表面322上的第一接近位置432的第一控制序列422。As an example, the operation object 112 is the operation object 302 in the first posture 312 of FIG. 3A (in this case, the top surface 322 of the operation object 302 is exposed upward as a whole), and the posture-related reliability benchmark is high (ie, If the degree of certainty exceeds the sufficiency threshold, the probability that the determined pose is correct is high), the robotic system 100 can create or acquire the first control sequence 422 including the first approaching position 432 and the first providing position 442 . At this point, for example, with sufficient certainty that the top surface 322 of the manipulation object 302 is facing upward (ie, the bottom surface 324 with the object identification 332 of FIG. 3C is facing downward), the robotic system 100 may calculate the A first control sequence 422 of a first access location 432 placed on the top surface 322 of the manipulation object 302.

其结果,机器人系统100能够通过接触/覆盖操作对象302的顶部表面322的末端执行器将操作对象112把持,以使操作对象302的底部表面324露出。另外,机器人系统100可以计算包含用于使操作对象112成为扫描位于底部表面324的标识332的朝上的扫描仪416的正上方的第一提供位置442的第一控制序列422。As a result, the robot system 100 can hold the manipulation object 112 by the end effector contacting/covering the top surface 322 of the manipulation object 302 so that the bottom surface 324 of the manipulation object 302 is exposed. Additionally, the robotic system 100 may calculate a first control sequence 422 that includes a first control sequence 422 for causing the manipulation object 112 to be the first providing location 442 that scans the upward facing scanner 416 located on the bottom surface 324 for the marking 332 .

另一方面,在姿态相关的可靠基准较低(即,确定性的程度小于充分性阈值,所判定的姿态是正确的可能性较低)的情况下,机器人系统100可以创建或者获取包含第二接近位置434以及一个以上第二提供位置444的第二控制序列424(即,与第一控制序列422不同)。此时,机器人系统100例如可以测定操作对象112的尺寸并与主数据252进行比较,判定操作对象302是图3A的第一姿态312或者图3C的第三姿态316(例如,在测定的确定性的水平高度超过规定的阈值的情况下)。On the other hand, in situations where the pose-related reliable benchmark is low (ie, the degree of certainty is less than the sufficiency threshold, the probability that the determined pose is correct is low), the robotic system 100 may create or acquire a second A second control sequence 424 (ie, different from the first control sequence 422 ) is proximate to location 434 and one or more second provision locations 444 . At this time, the robotic system 100 may, for example, measure the size of the manipulation object 112 and compare it with the master data 252, and determine that the manipulation object 302 is the first posture 312 of FIG. 3A or the third posture 316 of FIG. the level exceeds the specified threshold).

但是,在机器人系统100中,有时难以拍摄/处理操作对象112的表面上印刷的标记,其结果,所判定的姿态相关的可靠基准小于充分性阈值。换言之,机器人系统100有时并不能够充分确定操作对象302的朝向上方的露出表面是其顶部表面322(例如,第一姿态312)还是其底部表面324(例如,第三姿态316)。However, in the robot system 100 , it may be difficult to image and process the marks printed on the surface of the operation object 112 , and as a result, the determined attitude-related reliability criterion is smaller than the sufficiency threshold. In other words, the robotic system 100 is sometimes not able to adequately determine whether the upwardly facing exposed surface of the manipulation object 302 is its top surface 322 (eg, first pose 312 ) or its bottom surface 324 (eg, third pose 316 ).

在该情况下,由于可靠基准较低(确定性程度较低),机器人系统100可以计算包含用于与图3A的操作对象302的一个外周表面326邻接(例如,相对于操作对象302的顶部表面322和/或底部表面324在平行的方向上定向和/或面向)配置末端执行器的第二接近位置434的第二控制序列424。In this case, due to the low reliability fiducial (low degree of certainty), the robotic system 100 may calculate the inclusion for abutment with one peripheral surface 326 of the manipulated object 302 of FIG. 3A (eg, relative to the top surface of the manipulated object 302 ). 322 and/or the bottom surface 324 are oriented and/or facing in a parallel direction) a second control sequence 424 that configures the second access position 434 of the end effector.

其结果,机器人系统100能够通过接触/覆盖操作对象302的一个外周表面326且使操作对象302的顶部表面322以及底部表面324都露出的末端执行器来把持操作对象112。另外,机器人系统100在扫描仪416的前面(例如,扫描领域内和/或面向扫描领域),可以同时或连续提供或放置操作对象302的顶部表面322以及底部表面324。在操作对象112位于扫描位置的情况下,机器人系统100可以使用扫描仪416(例如,至少是朝向操作对象302的顶部表面322以及底部表面324的扫描仪416),同时和/或连续扫描所提供的表面,获取其上的操作对象302的标识332(可多个)。As a result, the robot system 100 can hold the manipulation object 112 by the end effector which contacts/covers one outer peripheral surface 326 of the manipulation object 302 and exposes both the top surface 322 and the bottom surface 324 of the manipulation object 302 . Additionally, robotic system 100 may provide or place top surface 322 and bottom surface 324 of object 302 simultaneously or sequentially in front of scanner 416 (eg, within and/or facing the scanning field). With the object 112 in the scanning position, the robotic system 100 may use the scanner 416 (eg, at least the scanner 416 toward the top surface 322 and bottom surface 324 of the object 302 ), while simultaneously and/or continuously scanning the provided , obtain the identification 332 (multiple) of the operation object 302 on the surface.

另外,第二控制序列424包含第二提供位置444(可多个),用于使最初朝向下方的表面(操作对象302的底部表面324)水平且配置在朝向上方的扫描仪416的正上方、和/或使最初朝向上方的表面(操作对象的顶部表面322)垂直且放置于朝向水平的扫描仪416的正前方。第二控制序列424为了提供两个提供位置/姿态,包含再次定向/旋转的动作(例如,虚线中空圆所示的动作),由此,使用正交朝向的扫描仪416,扫描顶部表面322以及底部表面324这二者。进而,机器人系统100例如可以将操作对象302的顶部表面322连续提供给朝向上方的扫描仪进行扫描,然后,使操作对象302旋转90度,将其底部表面324提供给用于扫描的朝向水平的扫描仪416。此时,在读取操作对象302的标识332失败的情况下,再次定向/旋转的动作可以带有条件,以使机器人系统100实施对应的命令。In addition, the second control sequence 424 includes a second supply position 444 (which may be multiple) for making the initially downward facing surface (the bottom surface 324 of the manipulation object 302 ) horizontal and disposed directly above the upward facing scanner 416, And/or make the initially upward facing surface (top surface 322 of the manipulation object) vertical and placed directly in front of the horizontally facing scanner 416 . The second control sequence 424 includes the action of reorienting/rotating (eg, the action shown by the dashed hollow circle) in order to provide the two provided positions/poses, whereby, using the orthogonally oriented scanner 416, scanning the top surface 322 and Bottom surface 324 both. Further, the robotic system 100 may, for example, continuously provide the top surface 322 of the object 302 to the scanner facing upward for scanning, and then rotate the object 302 by 90 degrees to provide the bottom surface 324 of the object 302 to the horizontally facing scanner for scanning. Scanner 416. At this time, in the case of failure to read the identification 332 of the operation object 302, the action of reorienting/rotating may be conditional, so that the robot system 100 implements the corresponding command.

可替代地,作为一个例子,机器人系统100在可靠基准较低的情况下,可以创建或者获取用于把持/覆盖沿操作对象302的宽度的一个外周表面326的控制序列(未图示)。在该情况下,机器人系统100在水平相对的一对扫描仪416之间移动操作对象302,沿其长度提供操作对象302的外周表面326,例如,如图3A所示,能够扫描外周表面326之一上的标识332。此外,基于可靠基准的控制序列的相关详细内容参照后面的图5A以及图5B稍后进行说明。Alternatively, as an example, the robotic system 100 may create or acquire a control sequence (not shown) for grasping/covering a peripheral surface 326 along the width of the manipulated object 302 with a low reliability benchmark. In this case, the robotic system 100 moves the object 302 between the horizontally opposed pair of scanners 416, providing a peripheral surface 326 of the object 302 along its length, eg, as shown in FIG. 3A, capable of scanning between the peripheral surfaces 326 Logo 332 on one. Further, details related to the control sequence based on the reliable reference will be described later with reference to FIG. 5A and FIG. 5B below.

另外,机器人系统100可以基于末端执行器把持的操作对象112(以下,将“操作对象302”替换称为“操作对象112”)的二维或者三维形状以及放置于作业位置116的收纳容器450(例如大箱、桶等)内的操作对象112相关信息,再次获取控制序列。In addition, the robot system 100 can be based on the two-dimensional or three-dimensional shape of the operation object 112 (hereinafter, the "operation object 302" is replaced by "the operation object 112") held by the end effector and the storage container 450 ( For example, the relevant information of the operation object 112 in a large box, a bucket, etc.), the control sequence is obtained again.

作为一个例子,机器人系统100例如在上述第一控制序列以及第二控制序列的任意情况下均把握操作对象112的尺寸。另外,放置在作业位置116的收纳容器450内已经收纳的其他操作对象112及其尺寸是已知的,因此,机器人系统100能够求出收纳容器450内的空置容积的空间信息。机器人系统100能够计算末端执行器把持的操作对象112的各种姿态发生二维或者三维变化时的操作对象112的空间形状参数。由此,将这些空间形状参数与收纳容器450内的空间信息相比较,从而能够最优化选择在收纳容器450内以更高填充密度收纳该操作对象112的模式或者方案。As an example, the robot system 100 grasps the size of the operation object 112 in any of the above-described first control sequence and second control sequence, for example. In addition, the other operation objects 112 already stored in the storage container 450 placed at the work position 116 and their dimensions are known, so the robot system 100 can obtain the spatial information of the vacant volume in the storage container 450 . The robot system 100 can calculate the spatial shape parameters of the operation object 112 when various postures of the operation object 112 held by the end effector change in two or three dimensions. Therefore, by comparing these spatial shape parameters with the spatial information in the storage container 450 , it is possible to optimally select a mode or plan for storing the operation object 112 in the storage container 450 with a higher packing density.

在该情况下,机器人系统100在末端执行器访问收纳容器450时,可以考虑末端执行器与收纳容器450已经收纳的操作对象112是否存在干扰。并且,与此时将把持的操作对象112以当前朝向直接收纳在收纳容器450中相比,改变操作对象112的姿态在操作对象112对收纳容器450的填充率高时,机器人系统100可以创建或者获取包含以最优化收纳的姿态对操作对象112进行把持变换的操作的控制序列。In this case, when the end effector accesses the storage container 450 , the robot system 100 may consider whether there is interference between the end effector and the operation object 112 already stored in the storage container 450 . In addition, compared with directly storing the grasped operation object 112 in the storage container 450 at the current orientation, changing the posture of the operation object 112 when the filling rate of the operation object 112 to the storage container 450 is high, the robot system 100 can create A control sequence including an operation to transform the grip of the operation object 112 in an optimally stored posture is acquired.

图4B是表示本公开的一个实施方式所涉及的机器人系统100执行的示例性作业404的正面图。在该例子中,多个操作对象112混合载置在托板464上,该托板464以搭载在例如AGV(Automated Guided Vehicle:自动运输车)的自走式台车462的状态下向包含开始位置114的拾取区域搬运。此外,在图4B中,示出了同一形状的多个操作对象112有序混合载置的状态,但是,应注意,根据实际的卸货状况,尺寸形状不同的多个操作对象112随机堆积在托板464上的情况较多。FIG. 4B is a front view showing an exemplary job 404 performed by the robotic system 100 according to one embodiment of the present disclosure. In this example, a plurality of operation objects 112 are mixed and placed on a pallet 464, and the pallet 464 starts to include in a state of being mounted on a self-propelled cart 462 such as an AGV (Automated Guided Vehicle), for example. Pickup area handling at location 114. In addition, in FIG. 4B , a state in which a plurality of operation objects 112 of the same shape are mixed and placed in an orderly manner is shown. However, it should be noted that a plurality of operation objects 112 of different sizes and shapes are randomly stacked on the pallet according to the actual unloading situation. More on board 464.

搬运有托板464的拾取区域通过扫描仪412进行拍摄,与图4A的说明同样,选择操作对象112。所选择的操作对象112通过设置于移送单元104的机器人臂414的前端部的末端执行器,在该例子中把持操作对象112的顶部表面322,通过扫描仪416进行扫描,获取标识332。机器人系统100例如可以将该操作对象112的标识332的信息与主数据252相比较,把握包含操作对象112的尺寸的信息。The pick-up area in which the pallet 464 is conveyed is imaged by the scanner 412, and the operation object 112 is selected in the same manner as in the description of FIG. 4A. The selected manipulation object 112 passes through the end effector provided at the front end of the robot arm 414 of the transfer unit 104 , in this example, grasps the top surface 322 of the manipulation object 112 , and scans with the scanner 416 to acquire the marker 332 . For example, the robot system 100 can compare the information of the identifier 332 of the manipulation object 112 with the master data 252 to grasp the information including the size of the manipulation object 112 .

另一方面,即使是标识332相同的操作对象112,实际中有时具有不同的尺寸(特别是高度)。因此,机器人系统100例如在扫描操作对象112时,通过设置于作业空间的地面或者地面附近的距离测定设备466(拍摄设备222的一个例子),测定到达操作对象112的底部表面324的距离。此时,在进行扫描时而使操作对象112的移动暂时停止的情况下,可以在该暂时停止期间测定距操作对象112的底部表面324的距离。此外,在图4B中,示出了刚刚将操作对象112从托板464卸货(卸垛)之后,通过距离测定设备466进行测定的情况,但是,只要该测定的时刻在控制序列中相比把持变换位置118在上游位置进行即可,不特别限定。On the other hand, even the operation objects 112 with the same identification 332 may actually have different sizes (especially heights). Therefore, when scanning the operation object 112, the robot system 100 measures the distance to the bottom surface 324 of the operation object 112 by the distance measuring device 466 (an example of the imaging device 222) installed on or near the ground of the work space, for example. At this time, when the movement of the operation object 112 is temporarily stopped during scanning, the distance to the bottom surface 324 of the operation object 112 may be measured during the temporary stop. In addition, FIG. 4B shows the case where the distance measuring device 466 performs the measurement immediately after the operation object 112 is unloaded (destacked) from the pallet 464. However, as long as the timing of the measurement is compared with the control sequence The conversion position 118 may be performed at the upstream position, and is not particularly limited.

在该例子中,机器人系统100能够通过控制序列或者适当的位置测定来把握测定时的操作对象112的顶部表面322的高度位置(把持水平高度)。由此,能够通过获取到达操作对象112的底部表面324的距离的测定值,求出操作对象112的高度112h。即,机器人系统100能够通过距离测定设备466获取操作对象112的底部表面324的测定数据,根据该获取的测定数据以及操作对象112的顶部表面322的高度位置(把持水平高度),计算高度112h。在该高度112h与作为操作对象112的主数据252存储的值不同的情况下,机器人系统100可以替换主数据252,或者在主数据252中追加并更新。In this example, the robot system 100 can grasp the height position (holding level) of the top surface 322 of the operation object 112 at the time of measurement by a control sequence or appropriate position measurement. Thereby, the height 112h of the operation object 112 can be obtained by acquiring the measured value of the distance to the bottom surface 324 of the operation object 112 . That is, the robot system 100 can acquire the measurement data of the bottom surface 324 of the operation object 112 by the distance measurement device 466, and calculate the height 112h based on the acquired measurement data and the height position (holding level) of the top surface 322 of the operation object 112. When the height 112h is different from the value stored in the master data 252 of the operation object 112 , the robot system 100 may replace the master data 252 or add and update the master data 252 .

这样,在判明操作对象112的实际尺寸之后,机器人系统100可以计算从各个方向把持操作对象112时的姿态的空间形状参数。然后,机器人系统100将这些空间形状参数与放置于作业位置116的收纳容器450内的空间信息相比较,最优化选择在收纳容器450内以更高的填充密度收纳该操作对象112的方案或者模式。In this way, after determining the actual size of the operation object 112 , the robot system 100 can calculate the spatial shape parameters of the posture when the operation object 112 is grasped from various directions. Then, the robot system 100 compares these spatial shape parameters with the spatial information in the storage container 450 placed at the working position 116, and optimally selects a plan or mode for storing the operation object 112 in the storage container 450 with a higher packing density .

此时,机器人系统100在末端执行器访问收纳容器450时,计算末端执行器与收纳容器450已经收纳的操作对象112是否发生干扰,在可能发生干扰的情况下,能够排除该模式。并且,能够再次创建包含对操作对象112进行把持变换的操作的控制序列,由此,与在该时刻将把持的操作对象112以当前朝向直接收纳于收纳容器450相比,改变操作对象112的姿态的方式能够在操作对象112对收纳容器450的填充率高时,机器人系统100变更到此为止的控制序列472(相当于图4A以及图4B的第一控制序列422或者第二控制序列424),形成最优化收纳的姿态。At this time, when the end effector accesses the storage container 450 , the robot system 100 calculates whether interference occurs between the end effector and the operation object 112 already stored in the storage container 450 , and if interference may occur, this mode can be eliminated. In addition, the control sequence including the operation of changing the grip of the manipulation object 112 can be recreated, thereby changing the posture of the manipulation object 112 compared to directly storing the gripped manipulation object 112 in the storage container 450 with the current orientation at that moment. In this way, when the filling rate of the storage container 450 by the operation object 112 is high, the robot system 100 can change the control sequence 472 up to this point (equivalent to the first control sequence 422 or the second control sequence 424 in FIG. 4A and FIG. 4B ), Form an optimal storage posture.

相反,在当前把持的操作对象112的姿态在收纳效率方面最佳的情况下,机器人系统100不变更控制序列472,而将把持的操作对象112收纳在作业位置116的输送单元106的入库用输送机上载置的桶等收纳容器450中。Conversely, when the posture of the currently grasped manipulation object 112 is optimal in terms of storage efficiency, the robot system 100 does not change the control sequence 472 and stores the grasped manipulation object 112 at the work position 116 for storage of the conveying unit 106 . In the storage container 450, such as a bucket, mounted on the conveyor.

另外,机器人系统100在对操作对象112进行把持变换的情况下,根据再计算后的控制序列474,对操作对象112进行操作。例如,将扫描后的操作对象112向把持变换位置118的周边区域移动,使末端执行器朝向规定方向将操作对象112设置为临时放置姿态,在该状态下载置于临时放置台468,释放把持。作为临时放置台,不特别限定,例如,从将操作对象112以至少两面能够露出的方式载置,特别是易于把持以及把持时的稳定性考虑,能够将操作对象112支撑并以倾斜状态保持的台座列举为优选例子。机器人系统100能够改变末端执行器的朝向,把持与临时放置前把持的面不同的面,从而对操作对象112进行把持变换。In addition, when the manipulation object 112 is grasped and transformed, the robot system 100 operates the manipulation object 112 according to the recalculated control sequence 474 . For example, the scanned operation object 112 is moved to the surrounding area of the grip transformation position 118, the end effector is directed in a predetermined direction, and the operation object 112 is set to the temporary placement posture, and the operation object 112 is loaded and placed on the temporary placement table 468 in this state, and the grip is released. The temporary placing table is not particularly limited. For example, the operation object 112 can be supported and held in a tilted state from the standpoint of placing the operation object 112 in such a way that at least both sides can be exposed, particularly in view of ease of gripping and stability during gripping. A pedestal is listed as a preferred example. The robot system 100 can change the grip of the operation object 112 by changing the orientation of the end effector and gripping a surface different from the surface gripped before the temporary placement.

机器人系统100将该把持变换的操作对象112收纳于作业位置116的输送单元106的入库用输送机等上载置的桶等收纳容器450中。此时,可以不直接暂时定位末端执行器,例如,以相对于目的位置前后/左右/上下摇动的方式操作。另外,可以设置多台或者多单元的末端执行器,按照与操作对象112的尺寸的关系,分别使用各个末端执行器进行控制。The robot system 100 stores the manipulation object 112 whose grip has been converted into a storage container 450 such as a bucket placed on a storage conveyor or the like of the conveying unit 106 at the work position 116 . At this time, the end effector may not be directly and temporarily positioned, for example, it may be operated in a forward/backward/leftward/leftward/upward-downward-moving manner relative to the target position. In addition, a plurality of or multi-unit end effectors may be provided, and each end effector may be used for control according to the relationship with the size of the operation object 112 .

此外,在上述中,为了执行作业402相关的动作,机器人系统100可以跟踪操作对象112的当前位置(例如,机器人系统100所使用的网格对应的坐标集合)、和/或当前的姿态。例如,机器人系统100可以经由例如处理器202,根据来自图2的位置传感器224的数据,跟踪当前的位置/姿态。机器人系统100根据来自位置传感器224的数据,能够配置机器人臂414的一个以上部分(例如,链部、接头)。机器人系统100可以基于机器人臂414的位置以及朝向,进一步计算末端执行器的位置/姿态,由此,能够计算末端执行器所保持的操作对象112的当前位置。另外,机器人系统100可以按照推测机理,基于其他传感器的读取值(例如,力的读取值或者加速度的读取值)的处理、所执行的运转命令/设定、和/或相关的时序、或者它们的组合来跟踪当前的位置。In addition, in the above, in order to perform actions related to the job 402, the robot system 100 can track the current position of the operation object 112 (eg, the coordinate set corresponding to the grid used by the robot system 100), and/or the current posture. For example, the robotic system 100 may track the current position/pose based on data from the position sensor 224 of FIG. 2 via, eg, the processor 202 . The robotic system 100 can configure one or more portions (eg, chains, joints) of the robotic arm 414 based on data from the position sensors 224 . The robot system 100 can further calculate the position/posture of the end effector based on the position and orientation of the robot arm 414 , thereby calculating the current position of the operation object 112 held by the end effector. In addition, the robotic system 100 may be based on the processing of readings from other sensors (eg, force readings or acceleration readings), operating commands/settings executed, and/or related timing, in a speculative mechanism. , or a combination of them to track the current location.

[操作流程(基于可靠基准的控制序列)][Operational flow (control sequence based on reliable benchmarks)]

图5A是表示本公开的一个实施方式所涉及的机器人系统100的动作的流程的一个例子的方法500的流程图。为了按照操作对象112的最初姿态的判定相关的可靠基准来执行图4A的作业402,方法500包含基于可靠基准获取/计算控制序列并实施的步骤。另外,方法500可以通过一个以上处理器202基于执行一个以上存储设备204中存储的命令来实施。5A is a flowchart of a method 500 showing an example of a flow of operations of the robot system 100 according to an embodiment of the present disclosure. In order to perform the job 402 of FIG. 4A according to a reliable reference related to the determination of the initial pose of the manipulated object 112, the method 500 includes the steps of obtaining/computing a control sequence based on the reliable reference and executing it. Additionally, method 500 may be implemented by one or more processors 202 based on executing commands stored in one or more storage devices 204 .

框501中,机器人系统100可以识别图2的一个以上拍摄设备222的扫描领域。例如,机器人系统100通过例如一个以上处理器202,可以识别图4A以及图4B的扫描仪412、416等一个以上拍摄设备222所扫描的空间。机器人系统100根据扫描仪416的朝向,识别朝向相对方向(opposite directions)和/或正交的方向的扫描领域。如图4A以及图4B所示,扫描仪416可以在水平方向的两侧、或者垂直方向的两侧、彼此相对侧和/或彼此面对进行配置。另外,扫描仪416还可以配置为一个朝上或者朝下、其他朝向水平方向等彼此垂直。In block 501 , the robotic system 100 may identify the scanning area of the one or more camera devices 222 of FIG. 2 . For example, the robotic system 100, through, for example, one or more processors 202, can identify the space scanned by one or more imaging devices 222, such as scanners 412, 416 in FIGS. 4A and 4B. Based on the orientation of the scanner 416, the robotic system 100 identifies areas of scanning that are oriented in opposite and/or orthogonal directions. As shown in FIGS. 4A and 4B , the scanners 416 may be disposed on both sides in the horizontal direction, or both sides in the vertical direction, opposite sides of each other, and/or facing each other. In addition, the scanners 416 may also be configured with one facing up or down, the other facing horizontally, etc. perpendicular to each other.

机器人系统100例如可以根据主数据252来识别扫描领域。主数据252包含拍摄设备222和/或表示对应的扫描领域的网格位置、坐标、和/或其他标记。主数据252可以根据拍摄设备222的布局和/或物理配置、拍摄设备222的能力、环境因素(例如,光条件、和/或遮蔽物/构造)或它们的组合来预先判定。另外,机器人系统100为了识别扫描领域,可以实施校准流程。例如,机器人系统100使用移送单元104,在位置集合中配置已知的标记或者编码,能够判定对应的拍摄设备222是否正确扫描了已知的标记。机器人系统100可以基于作为正确的扫描结果的已知标记的位置,识别扫描领域。The robotic system 100 may, for example, identify the scanning area from the master data 252 . The master data 252 contains the camera device 222 and/or grid locations, coordinates, and/or other indicia representing the corresponding scan field. The master data 252 may be pre-determined based on the layout and/or physical configuration of the camera 222, the capabilities of the camera 222, environmental factors (eg, light conditions, and/or obstructions/configurations), or a combination thereof. Additionally, the robotic system 100 may perform a calibration procedure in order to identify the scanning area. For example, the robot system 100 uses the transfer unit 104 to configure known markers or codes in the position set, and can determine whether the corresponding imaging device 222 correctly scans the known markers. The robotic system 100 can identify the scan area based on the location of the known marker as the correct scan result.

框502中,机器人系统100能够扫描指定的区域。机器人系统100例如可以通过处理器202发送的命令/提示符使用一个以上拍摄设备222(例如,图4A以及图4B的扫描仪412和/或其他区域扫描仪),生成拾取区域和/或放置区域等一个以上指定区域的拍摄数据(例如,获取的数字图像和/或点云)。拍摄数据能够由拍摄设备222与一个以上处理器202通信。因此,一个以上处理器202为了此后处理,可以接收表示拾取区域(例如,包含作业执行前的操作对象112)、把持变换区域、和/或放置区域(例如,包含作业执行后的操作对象112)的拍摄数据。In block 502, the robotic system 100 can scan the designated area. The robotic system 100 may use one or more imaging devices 222 (eg, scanners 412 of FIGS. 4A and 4B and/or other area scanners), for example, through commands/prompts sent by the processor 202, to generate pick areas and/or drop areas Capture data (eg, acquired digital images and/or point clouds) for more than one designated area. Capture data can be communicated by capture device 222 with one or more processors 202 . Thus, for subsequent processing, one or more processors 202 may receive representations of pick regions (eg, containing operands 112 before job execution), hold transform areas, and/or drop areas (eg, containing operands 112 after job execution) shooting data.

在框504中,机器人系统100能够识别操作对象112以及关联的位置(例如,图1的开始位置114、和/或图1的作业位置116)、和/或操作对象112的最初姿态。为了识别操作对象112的轮廓(例如,周围的缘部和/或表面),机器人系统100例如可以通过处理器202基于图案识别机理和/或识别规则,分析拍摄数据。机器人系统100可以进一步基于各种操作对象112对应的例如规定的识别机理、识别规则、和/或姿态、轮廓相关的模板来识别操作对象112的轮廓和/或表面的分组。In block 504 , the robotic system 100 can identify the manipulation object 112 and associated locations (eg, starting position 114 of FIG. 1 , and/or work position 116 of FIG. 1 ), and/or the initial pose of the manipulation object 112 . In order to identify the contours (eg, surrounding edges and/or surfaces) of the manipulation object 112 , the robotic system 100 may analyze the captured data, eg, by the processor 202 based on pattern recognition mechanisms and/or recognition rules. The robotic system 100 may further identify groups of contours and/or surfaces of the manipulation objects 112 based on, for example, prescribed recognition mechanisms, identification rules, and/or pose, contour-related templates corresponding to the various manipulation objects 112 .

机器人系统100例如能够识别操作对象112的整个轮廓的颜色、亮度、深度/位置、和/或它们的组合的图案(例如,是否相同值,是否以已知的比例/图案发生变化)对应的操作对象112的轮廓的分组。另外,例如,机器人系统100根据主数据252中规定的规定形状/姿态的模板、图像、或者它们的组合,可以识别操作对象112的轮廓和/或表面的分组。The robotic system 100 can, for example, identify the operation corresponding to the color, brightness, depth/position, and/or a combination of the patterns (eg, whether the same value, whether it changes at a known scale/pattern) of the entire outline of the operation object 112 . Grouping of outlines of objects 112 . In addition, for example, the robotic system 100 may recognize groupings of contours and/or surfaces of the manipulation object 112 based on templates, images, or combinations of prescribed shapes/poses specified in the master data 252 .

从拾取区域识别的操作对象112中,机器人系统100可以(例如,按照规定的序列或者规则集合、和/或操作对象的轮廓的模板)选择一个操作对象作为操作对象112。机器人系统100例如可以根据表示扫描仪412的已知位置对应的距离/位置的点云,选择操作对象112。另外,机器人系统100例如可以选择位于角/缘部且具有在拍摄结果露出/显示的两个以上表面的操作对象112。并且,机器人系统100根据规定的模式或者序列(例如,相对于基准位置,从左到右、从最近到最远等),可以选择操作对象112。From the manipulation objects 112 identified in the pickup area, the robotic system 100 may select an manipulation object as the manipulation object 112 (eg, according to a prescribed sequence or set of rules, and/or a template of the manipulation object's outline). The robotic system 100 may select the manipulation object 112 based on, for example, a point cloud representing distances/positions corresponding to known positions of the scanner 412 . In addition, the robot system 100 can select, for example, an operation object 112 located at a corner/edge and having two or more surfaces exposed/displayed in the photographed result. Also, the robot system 100 can select the operation object 112 according to a predetermined pattern or sequence (for example, from left to right, from nearest to farthest, etc., relative to the reference position).

对于选择的操作对象112,机器人系统100为了判定开始位置114和/或最初姿态,可以进一步处理拍摄数据。例如,机器人系统100将拍摄数据中的操作对象112的位置(例如,所判定的姿态相关的规定基准点)映射到机器人系统100所使用的网格内的位置,从而可以判定开始位置114,按照规定的校准地图映射位置。For the selected manipulation object 112, the robot system 100 may further process the photographed data in order to determine the start position 114 and/or the initial posture. For example, the robot system 100 maps the position of the operation object 112 in the photographed data (for example, a predetermined reference point related to the determined posture) to the position in the grid used by the robot system 100, so that the start position 114 can be determined, according to The specified calibration map map location.

机器人系统100可以对放置区域的拍摄数据进行处理,判定操作对象112之间的空置空间。机器人系统100根据将图像的位置映射到现实的位置和/或系统所使用的坐标的规定校准地图,对操作对象112的轮廓进行映射,基于此,能够判定空置空间。机器人系统100可以将空置空间判定为属于不同分组的操作对象112的轮廓(甚至操作对象112的表面)之间的空间。并且,机器人系统100测定空置空间的一个以上的尺寸,将测得的尺寸与操作对象112的一个以上尺寸(例如,主数据252中存储的尺寸)进行比较,判定对于操作对象112而言的适当的空置空间。另外,机器人系统100可以根据规定的模式(例如,相对于基准位置、从左到右、从最近到最远、从底部到顶部等),选择一个适当的/空闲的空间,作为作业位置116。The robot system 100 may process the photographed data of the placement area to determine the vacant space between the operation objects 112 . The robot system 100 can determine the vacant space by mapping the outline of the operation object 112 based on a predetermined calibration map that maps the position of the image to the actual position and/or coordinates used by the system. The robot system 100 may determine the vacant space as the space between the contours (or even the surfaces of the operation objects 112 ) of the operation objects 112 belonging to different groups. Then, the robot system 100 measures one or more dimensions of the vacant space, compares the measured dimensions with one or more dimensions of the operation object 112 (for example, the dimensions stored in the master data 252 ), and determines the appropriateness for the operation object 112 vacant space. Additionally, the robotic system 100 may select an appropriate/empty space as the work position 116 according to a prescribed pattern (eg, relative to a reference position, left to right, closest to furthest, bottom to top, etc.).

机器人系统100可以在对拍摄数据不进行处理或者进行处理的基础上,判定作业位置116。例如,机器人系统100可以不拍摄区域,根据规定的控制序列以及位置,向配置区域配置操作对象112。另外,例如,机器人系统100为了进行多个作业(例如,移动位于堆栈共用的层/列的操作对象112的相关物等、多个操作对象112),可以对拍摄数据进行处理。The robot system 100 may determine the work position 116 on the basis of not processing or processing the photographed data. For example, the robot system 100 may arrange the operation object 112 in the arrangement area according to a predetermined control sequence and position without imaging the area. In addition, for example, the robot system 100 may process the photographed data in order to perform a plurality of operations (for example, moving the related objects of the operation objects 112 located in the common layer/column of the stack, and the like, and the plurality of operation objects 112 ).

框522中,例如,机器人系统100基于拍摄数据(例如,来自扫描仪412的拍摄数据)的处理,可以判定最初姿态(例如,拾取区域中的操作对象112停止的姿态的推定)。机器人系统100将操作对象112的轮廓与主数据252的规定姿态模板的轮廓相比较(例如,将像素值进行比较),由此,可以判定操作对象112的最初姿态。在规定的姿态模板中,例如可以包含预期的操作对象112对应的朝向所涉及的操作对象112的轮廓可能不同的配置。机器人系统100能够识别所选择的操作对象112以及此前关联的操作对象112的轮廓的集合(例如,图3A和/或图3C的第一露出表面304、和/或图3A的第二露出表面306等的露出表面的缘部)。机器人系统100通过选择经比较的操作对象112的轮廓间的差异最少的测定所对应的一个姿态模板,可以判定最初姿态。In block 522 , for example, the robotic system 100 may determine an initial pose (eg, an estimation of the pose in which the manipulation object 112 in the pickup area stopped) based on processing of photographed data (eg, from the scanner 412 ). The robot system 100 can determine the initial posture of the operation object 112 by comparing the outline of the operation object 112 with the outline of the predetermined pose template of the master data 252 (for example, by comparing pixel values). In the prescribed gesture template, for example, a configuration in which the contour of the involved operation object 112 may be different in the direction corresponding to the expected operation object 112 may be included. The robotic system 100 can identify the selected manipulator 112 and a set of previously associated contours of the manipulator 112 (eg, the first exposed surface 304 of FIGS. 3A and/or 3C, and/or the second exposed surface 306 of FIG. 3A ). etc., the edge of the exposed surface). The robot system 100 can determine the initial pose by selecting a pose template corresponding to the measurement with the least difference between the compared contours of the manipulation objects 112 .

对于进一步的例子,机器人系统100可以基于操作对象112的物理尺寸,判定操作对象112的最初姿态。机器人系统100基于通过拍摄数据获取的露出表面的尺寸,可以估算操作对象112的物理尺寸。机器人系统100测定分别与拍摄数据中的操作对象112的轮廓相关的长度和/或角度,然后,使用校准地图、换算表或者处理、规定的方程式、或它们的组合,能够将测得的长度映射或者转换成现实世界的长度或者标准的长度。机器人系统100为了识别与物理尺寸对应的操作对象112和/或露出表面(可多个),可以使用测得的尺寸。For a further example, the robotic system 100 may determine the initial pose of the manipulation object 112 based on the physical size of the manipulation object 112 . The robot system 100 can estimate the physical size of the manipulation object 112 based on the size of the exposed surface acquired through the photographing data. The robotic system 100 determines lengths and/or angles respectively associated with the contours of the manipulated objects 112 in the captured data, and can then map the measured lengths using a calibration map, conversion table or process, prescribed equations, or a combination thereof Or convert to real world length or standard length. The robotic system 100 may use the measured dimensions in order to identify the manipulation object 112 and/or exposed surface(s) corresponding to the physical dimensions.

机器人系统100可以将估算的物理尺寸与主数据252内的操作对象112的已知尺寸集合(例如,高度、长度、和/或宽度)及其表面相比较,从而识别操作对象112和/或露出表面(可多个)。机器人系统100可以使用匹配的尺寸集合,识别露出表面(可多个)以及对应的姿态。例如,机器人系统100在露出表面的尺寸与预期的操作对象112相关的长度以及宽度相匹配的情况下,可以将露出表面识别为图3A的操作对象302的顶部表面322或者图3B的操作对象302的底部表面324(例如,一对的两侧表面)。基于露出表面的朝向,机器人系统100可以判定操作对象112的最初姿态(例如,在露出表面朝上的情况下,操作对象302的第一姿态312或者第三姿态316)。The robotic system 100 may compare the estimated physical size to a known set of dimensions (eg, height, length, and/or width) of the manipulative object 112 and its surface within the master data 252 to identify the manipulative object 112 and/or expose surface (multiple). The robotic system 100 may use the matched set of dimensions to identify the exposed surface(s) and corresponding poses. For example, the robotic system 100 may identify the exposed surface as the top surface 322 of the manipulation object 302 of FIG. 3A or the manipulation object 302 of FIG. 3B if the size of the exposed surface matches the length and width associated with the intended manipulation object 112 bottom surface 324 (eg, a pair of side surfaces). Based on the orientation of the exposed surface, the robotic system 100 may determine the initial pose of the manipulation object 112 (eg, the first pose 312 or the third pose 316 of the manipulation object 302 with the exposed surface facing up).

例如,机器人系统100可以基于操作对象112的一个以上表面、和/或其一个以上标记的可视图像,判定操作对象112的最初姿态。机器人系统100可以将所连接的轮廓集合的像素值与主数据252的规定的标记基础的姿态模板相比较。标记基础的姿态模板中可以包含例如预期各种不同朝向的操作对象112的一个以上的特有标记。机器人系统100通过选择作为经比较的图像相关的差异最少的测定结果的表面、表面朝向、和/或对应的一个姿态,可以判定操作对象112的最初姿态。For example, the robotic system 100 may determine the initial pose of the manipulation object 112 based on one or more surfaces of the manipulation object 112, and/or one or more marked visual images thereof. The robotic system 100 may compare the pixel values of the connected set of contours to a prescribed marker-based pose template of the master data 252 . The marker-based gesture template may include, for example, one or more unique markers that anticipate variously oriented manipulation objects 112 . The robotic system 100 can determine the initial pose of the manipulated object 112 by selecting the surface, the surface orientation, and/or the corresponding one of the poses that are the measurements with the least difference in relation to the compared images.

框524中,机器人系统100可以计算操作对象112的最初姿态相关的可靠基准。机器人系统100可以计算可靠基准作为判定最初姿态处理的一部分。例如,可靠基准可以对应操作对象112的轮廓与上述选择的模板的轮廓之间差异的基准。另外,例如,可靠基准可以对应上述估算的物理尺寸和/或角度相关的公差级别。另外,例如,可靠基准可以对应拍摄数据内的可视标记与上述模板的图像之间差异的基准。In block 524 , the robotic system 100 may calculate a reliable reference relative to the initial pose of the manipulated object 112 . The robotic system 100 may compute a reliable reference as part of the process of determining the initial pose. For example, the reliable reference may correspond to a reference for the difference between the contour of the operation object 112 and the contour of the template selected above. Additionally, for example, the reliable reference may correspond to the above-described estimated physical dimension and/or angle-related tolerance levels. In addition, for example, the reliable reference may correspond to a reference for the difference between a visible marker within the shot data and the image of the template described above.

框506中,机器人系统100可以计算包含用于执行操作对象112相关作业402的控制序列(例如,图4A的第一控制序列422、图4A的第二控制序列424、图4B的控制序列472等)以及图4B所示的操作对象112的把持变换操作的控制序列474。In block 506, the robotic system 100 may calculate a control sequence (eg, the first control sequence 422 of FIG. 4A, the second control sequence 424 of ) and the control sequence 474 of the grip transformation operation of the operation object 112 shown in FIG. 4B .

例如,机器人系统100通过计算操作图4A以及图4B的机器人臂414和/或末端执行器的运转设备212相关命令或者设定的序列、或它们的组合,可以创建或者获取控制序列。关于一些作业,机器人系统100计算操纵机器人臂414和/或末端执行器,将操作对象112从开始位置114根据需要经由把持变换位置118向作业位置116移动的控制序列以及设定值。机器人系统100可以实施构成为计算空间内的移动路径的控制序列机理(例如,处理、功能、方程式、算法、计算机生成的/可读模型、或它们的组合)。For example, the robotic system 100 may create or acquire control sequences by computing a sequence of commands or settings associated with operating the robotic arm 414 and/or the end effector 212 of FIGS. 4A and 4B , or a combination thereof. For some jobs, the robotic system 100 calculates control sequences and setpoints for manipulating the robotic arm 414 and/or the end effector to move the manipulated object 112 from the start position 114 to the work position 116 via the grip transition position 118 as needed. Robotic system 100 may implement control sequence mechanisms (eg, processes, functions, equations, algorithms, computer-generated/readable models, or combinations thereof) that are configured to compute paths of movement within space.

例如,机器人系统100为了使操作对象112从开始位置114根据需要经由把持变换位置118通过一个以上提供的姿态/位置(例如,用于末端执行器的一个以上对应的扫描位置)移动至作业位置116,可以使用基于A*算法、D*算法、和/或其他网格的检索,以计算通过空间的移动路径。控制序列机理使用进一步的处理、功能、或者方程式、和/或映射表,将移动路径转换成运转设备212相关的命令或者设定的序列、或它们的组合。在使用控制序列机理时,机器人系统100可以操纵机器人臂414和/或末端执行器,计算沿对操作对象112计算的移动路径的控制序列。For example, the robotic system 100 moves the manipulated object 112 from the start position 114 via the grip transformation position 118 through one or more provided poses/positions (eg, one or more corresponding scan positions for the end effector) to the work position 116 as needed. , A* algorithm, D* algorithm, and/or other grid-based searches may be used to calculate movement paths through space. The control sequence mechanism uses further processing, functions, or equations, and/or mapping tables, to convert the movement path into a sequence of commands or settings related to operating the device 212, or a combination thereof. When using the control sequence mechanism, the robotic system 100 may manipulate the robotic arm 414 and/or the end effector to calculate a control sequence along the calculated movement path for the manipulated object 112 .

机器人系统100可以基于可靠基准,选择性地创建或者获取控制序列。机器人系统100可以根据可靠基准,计算包含接近位置(例如,图4A的第一接近位置432和/或图4A的第二接近位置434)、一个以上扫描位置(例如,图4的第一提供位置442和/或图4的第二提供位置444)、或它们的组合的控制序列。例如,机器人系统100可以基于可靠基准与充分性阈值的比较结果,计算度量(例如,性能的度量、和/或扫描的度量)相关的接近位置和/或扫描位置。扫描位置是在扫描操作对象112的一个以上标识332的一个以上对应的对象扫描仪416的前面(即,其扫描领域),以提供操作对象112的一个以上表面的方式配置末端执行器的位置。The robotic system 100 may selectively create or acquire control sequences based on reliable benchmarks. The robotic system 100 may calculate, based on a reliable reference, an approach location (eg, the first approach location 432 of FIG. 4A and/or the second approach location 434 of FIG. 4A ), one or more scan locations (eg, the first provided location of FIG. 4 ) 442 and/or the second providing position 444 of FIG. 4), or a control sequence of a combination thereof. For example, the robotic system 100 may calculate the proximity position and/or scan position relative to a metric (eg, a metric of performance, and/or a metric of scanning) based on a comparison of a reliable baseline to an adequacy threshold. A scan position is a position in which the end effector is configured in a manner that provides one or more surfaces of the manipulated object 112 in front of one or more corresponding object scanners 416 that scan the one or more identifiers 332 of the manipulated object 112 (ie, its scanning field).

框532中,机器人系统100例如可以通过处理器202,计算可利用的接近位置的集合。可利用的接近位置可对应充分配置末端执行器的在开始位置114周围开放或者未被占据的位置。另外,机器人系统100为了不妨碍其他操作对象112而接触以及把持操作对象112,可以在选择的接近位置放置末端执行器。In block 532, the robotic system 100 may, for example, by the processor 202, calculate the set of available proximity locations. The available access positions may correspond to positions that are open or unoccupied about the starting position 114 in which the end effector is fully deployed. In addition, the robot system 100 may place an end effector at a selected approach position in order to contact and hold the operation object 112 without interfering with other operation objects 112 .

例如,机器人系统100通过计算操作对象112的轮廓与相邻的操作对象112的轮廓之间的分离距离,可以计算可利用的接近位置的集合。机器人系统100可以将该分离距离与末端执行器的物理尺寸/形状、和/或各种朝向对应的规定的距离集合进行比较。机器人系统在对应的分离距离超过末端执行器的尺寸对应的距离的规定集合的情况下,可以识别各个可利用的接近位置。For example, the robotic system 100 may calculate the set of available proximity positions by calculating the separation distance between the contour of the manipulation object 112 and the contours of the adjacent manipulation objects 112 . The robotic system 100 may compare the separation distance to a prescribed set of distances corresponding to the physical size/shape of the end effector, and/or various orientations. The robotic system can identify each of the available approach positions where the corresponding separation distance exceeds a prescribed set of distances corresponding to the size of the end effector.

确定框534中,机器人系统100可以将可靠基准与一个以上充分性阈值相比较,判定是否满足。框536所示的可靠基准满足充分性阈值的情况下(例如,可靠基准超过所需的充分性阈值的情况下),机器人系统100可以基于性能的度量,计算控制序列(例如,第一控制序列422)。在可靠基准满足充分性阈值的情况下,机器人系统100可以推定最初姿态适当,不考虑扫描操作对象112的至少一个标识332相关的可能性、和/或最初姿态不正确情况的可能性对应的扫描的度量,计算控制序列。In determination block 534, the robotic system 100 may compare the reliability benchmark to one or more adequacy thresholds to determine if they are satisfied. In the event that the reliable benchmark shown in block 536 satisfies the adequacy threshold (eg, where the reliable benchmark exceeds the desired adequacy threshold), the robotic system 100 may calculate a control sequence (eg, the first control sequence) based on the metric of performance. 422). In the event that the reliable benchmark satisfies the sufficiency threshold, the robotic system 100 may infer that the initial posture is appropriate, regardless of the possibility of scanning the corresponding scan of at least one identifier 332 of the manipulation object 112 and/or the possibility that the initial posture is incorrect metric to calculate the control sequence.

作为一个例子,机器人系统100在框542中,可以计算候补的方案。候补的方案可以分别是可利用的接近位置与扫描位置的特有组合(例如,操作对象112相关对应的提供位置/朝向)对应的控制序列的例子。机器人系统100使主数据252内的标识332的位置(可多个)334或者对应的模型/姿态旋转,从而根据最初姿态,可以计算标识332的位置334。机器人系统100可以去除被末端执行器覆盖标识332的位置334的(例如,放置在正上方、前方、和/或阈值距离内)可利用的接近位置。As an example, the robotic system 100 may calculate candidate solutions in block 542 . The candidate solutions may each be an example of a control sequence corresponding to a unique combination of an available approach position and a scan position (eg, a corresponding provided position/orientation in relation to the operation object 112 ). The robotic system 100 rotates the position(s) 334 of the marker 332 within the master data 252 or the corresponding model/pose so that the position 334 of the marker 332 can be calculated from the initial pose. The robotic system 100 may remove available access locations that are covered by the end effector over the location 334 of the marker 332 (eg, placed directly above, in front of, and/or within a threshold distance).

机器人系统100针对集合内剩余的各个可利用的接近位置(例如,框532的计算结果),可以计算候补的方案。对于各个候补的方案,机器人系统100可以根据可利用的接近位置,进一步计算特有的扫描位置。机器人系统100可以基于操作对象112的模型的旋转和/或移动,计算扫描位置,由此,标识332的位置334对应的表面位于扫描领域内,并且,面对对应的扫描仪416。机器人系统100可以根据规定的流程、方程式、函数等,旋转和/或移动模型。The robotic system 100 may compute candidate solutions for each of the remaining available proximity locations within the set (eg, the results of the computation of block 532). For each candidate solution, the robot system 100 may further calculate a unique scanning position according to the available approach positions. The robotic system 100 may calculate the scan position based on the rotation and/or movement of the model of the manipulated object 112 such that the surface corresponding to the position 334 of the marker 332 is within the scan field and faces the corresponding scanner 416 . The robotic system 100 may rotate and/or move the model according to prescribed procedures, equations, functions, and the like.

框544中,机器人系统100可以计算各候补的方案相关的性能的度量。机器人系统100可以计算完成作业402相关的吞吐量(率)对应的性能的度量。例如,性能的度量可以与候补的方案相关的操作对象112移动的距离、估算的移动时间、运转设备212相关的命令和/或设定的变更数量、完成率(即,与件损失量互补)或它们的组合相关联。机器人系统100可以使用一个以上测定的或者已知的数据(例如,设定/命令相关的加速度/速度、和/或把持表面和/或动向相关的件损失的比例)、以及规定的计算流程、方程式、函数等,计算候补的控制序列相关对应的值。In block 544, the robotic system 100 may calculate a measure of performance associated with each candidate solution. The robotic system 100 may calculate a measure of performance corresponding to the throughput (rate) associated with completing the job 402 . For example, a measure of performance may relate to the distance traveled by the operator 112 related to the candidate solution, the estimated time to travel, the number of changes to commands and/or settings related to the operating equipment 212, the completion rate (ie, complementary to the amount of lost pieces) or their combination. The robotic system 100 may use one or more measured or known data (eg, set/command-related acceleration/velocity, and/or grip surface and/or motion-related piece loss ratios), as well as prescribed computational procedures, Equations, functions, etc., calculate the values corresponding to the candidate control sequences.

框546中,机器人系统100可以选择具有最大性能的度量的候补方案(即,伴随对应的接近位置)作为控制序列。例如,机器人系统100作为控制序列,在候补方案的集合中选择最高的完成率、最短的移动距离、最少的命令和/或设定的变更数、最快的移动持续时间、或它们的组合对应的候补方案。由此,机器人系统100可以选择与最高的性能的度量对应的集合内的可利用的接近位置作为接近位置。In block 546, the robotic system 100 may select the candidate solution with the metric of maximum performance (ie, with the corresponding approach position) as the control sequence. For example, the robotic system 100 selects the highest completion rate, the shortest travel distance, the fewest number of command and/or setting changes, the fastest travel duration, or a combination thereof among the set of candidate solutions as a control sequence. alternate program. Thus, the robotic system 100 may select the available approach locations within the set corresponding to the highest performance metric as the approach locations.

如果进行比较,机器人系统100在可靠基准不满足充分性阈值(例如,可靠基准小于所需的充分性阈值)的情况下,可以根据不同的基准,计算候补方案。如框538所示,机器人系统100可以基于扫描的度量,计算控制序列(例如,第二控制序列424)。对于扫描的度量,与操作对象112的至少一个标识332的最初姿态是否正确无关,是保持没有被末端执行器覆盖的状态且能够扫描的与可能性对应的值(例如,两个要素的值、或者非两个要素的得分/百分比)。If the comparison is made, the robot system 100 can calculate candidate solutions according to different criteria when the reliable benchmark does not satisfy the sufficiency threshold (eg, the reliable benchmark is smaller than the required sufficiency threshold). As represented by block 538, the robotic system 100 may calculate a control sequence (eg, the second control sequence 424) based on the scanned metrics. The metric for scanning, regardless of whether the initial posture of the at least one marker 332 of the manipulation object 112 is correct, is a value corresponding to the possibility that can be scanned without being covered by the end effector (for example, the value of two elements, or score/percentage for non-two elements).

例如,机器人系统100在可靠基准不满足充分性阈值的情况下,可以使扫描的度量优先于性能的度量(例如,最初满足和/或赋予更重要的重要度)。由此,机器人系统100可以计算包含在一个以上扫描仪416的前面用于提供至少一个未覆盖的操作对象112的标识332的一个以上扫描位置(即,位于扫描领域内和/或朝向对应的扫描仪)的控制序列。For example, the robotic system 100 may prioritize scan metrics over performance metrics (eg, initially satisfy and/or assign greater importance) if the reliable benchmark does not meet the adequacy threshold. As such, the robotic system 100 may calculate one or more scan locations included in front of the one or more scanners 416 for providing the identification 332 of the at least one uncovered manipulated object 112 (ie, within the scan field and/or toward the corresponding scan instrument) control sequence.

图5B是表示本公开的一个实施方式所涉及的机器人系统的动作顺序的一个例子的流程图,表示基于扫描的度量,用于选择性计算控制序列(例如,用于末端执行器的一个以上位置)的流程图538。5B is a flowchart showing an example of a sequence of actions of a robotic system according to an embodiment of the present disclosure, showing scan-based metrics for selectively calculating a control sequence (eg, for one or more positions of an end effector) ) flow chart 538.

在该例子中,基于扫描的度量计算控制序列如框552所示,可以包含计算露出的标识332的位置集合。机器人系统100可以对于操作对象112的最初姿态计算露出的标识332的位置集合(例如,在把持位置,通过末端执行器可直接扫描的标识332的位置334)。机器人系统100可以计算可利用的接近位置各自相关的露出的标识332的位置334。假设最初姿态正确,在对应的接近位置处,露出的标识332的位置334与处于没有被末端执行器覆盖的操作对象112的标识332的位置334相对应。In this example, calculating a control sequence based on the metric of the scan, as indicated by block 552 , may include calculating the set of positions of the exposed markers 332 . The robotic system 100 may calculate the set of positions of the exposed markers 332 for the initial pose of the manipulated object 112 (eg, the positions 334 of the markers 332 directly scannable by the end effector in the holding position). The robotic system 100 may calculate the position 334 of the exposed marker 332 associated with each of the available proximity positions. Assuming the initial posture is correct, at the corresponding approach position, the position 334 of the exposed marker 332 corresponds to the position 334 of the marker 332 of the manipulation object 112 that is not covered by the end effector.

如框542所述,主数据252可以包含记载有预期的各个操作对象112相关的标识332的位置334的计算机模型或者模板(例如,相对于一个以上操作对象112的缘部和/或图像的偏移量的测定)。机器人系统100以匹配最初姿态的方式,基于使主数据252内的规定的模型/模板旋转和/或移动,可以计算露出的标识332的位置集合。机器人系统100可以去除被末端执行器覆盖标识332的位置334的(例如,放置在正上方、前方和/或阈值的距离内)接近位置。换言之,机器人系统100可以去除位于标识332的位置334的正上方、前方和/或阈值的距离内的可利用的接近位置。As described in block 542 , the master data 252 may include a computer model or template documenting the locations 334 of the expected identifications 332 associated with each operand 112 (eg, offsets relative to the edges and/or images of one or more operands 112 ). displacement measurement). The robotic system 100 can calculate the set of positions of the exposed markers 332 based on rotating and/or moving a prescribed model/template within the master data 252 in a manner that matches the initial pose. The robotic system 100 may remove the proximity position that is covered by the end effector over the position 334 of the marker 332 (eg, placed directly above, in front of, and/or within a threshold distance). In other words, robotic system 100 may remove available proximity locations that are directly above, in front of, and/or within a threshold distance of location 334 of marker 332 .

框554中,机器人系统100可以计算替代的标识332的位置334的集合。机器人系统100针对最初姿态的替代姿态,可以计算替代的标识332的位置334的集合。对于各个可利用的接近位置,机器人系统100可以计算替代的姿态,对于各个的替代的姿态,机器人系统100可以计算替代的标识332的位置。由此,假设最初姿态不正确,在对应的接近位置,替代的标识332的位置可以对应保持未被末端执行器覆盖状态的操作对象112的标识332的位置334。关于露出的标识332的位置334,如上所述,机器人系统100根据替代的姿态,基于使主数据252内的规定的模型/模板旋转和/或移动,能够计算替代的标识332的位置334。In block 554 , the robotic system 100 may calculate the set of locations 334 of the alternative identifiers 332 . The robotic system 100 may calculate a set of locations 334 of the alternate signatures 332 for an alternate pose to the original pose. For each of the available proximity positions, the robotic system 100 may calculate an alternate pose, and for each alternate pose, the robotic system 100 may calculate the position of the alternate marker 332 . Thus, assuming that the initial posture is incorrect, at the corresponding approach position, the position of the alternative marker 332 may correspond to the position 334 of the marker 332 of the operation object 112 that remains uncovered by the end effector. Regarding the position 334 of the exposed marker 332, as described above, the robotic system 100 can calculate the position 334 of the replacement marker 332 based on the rotation and/or movement of the specified model/template within the master data 252 based on the replacement pose.

框556中,机器人系统100可以计算各个接近位置、各个替代的姿态、各个操作对象112的标识332、或它们的组合相关的露出可能性。露出可能性表示一个以上操作对象112的标识保持露出的状态并且从对应的接近位置由把持操作对象112的末端执行器保持可扫描状态的可能性。露出可能性表示最初姿态正确的场景以及最初姿态不正确的场景这两种场景。换言之,露出的可能性即使在最初姿态不正确的情况下也可以表示一个以上操作对象112的标识保持露出的状态并且保持可扫描状态的可能性。In block 556, the robotic system 100 may calculate the exposure likelihood associated with each approached position, each alternate pose, each manipulative object 112 identification 332, or a combination thereof. Exposure likelihood represents the likelihood that the identification of one or more manipulation objects 112 remains exposed and remains scannable by the end effector holding the manipulation object 112 from the corresponding approach position. The exposure possibility indicates two scenarios, a scene in which the initial posture is correct and a scene in which the initial posture is incorrect. In other words, the possibility of exposure may indicate the possibility that the identification of one or more operation objects 112 remains exposed and remains in a scannable state even when the initial posture is incorrect.

例如,机器人系统100可以计算露出可能性,作为特定条件(例如,接近位置、替代的姿态、操作对象112的标识、或它们的组合的特有例子)对应的概率值等条件相关的确定性。机器人系统100可以基于将条件相关的确定性与特定条件为真实的确定性/可能性(例如,与可靠基准相近的值)相结合(例如,通过进行追加和/或多倍)来计算露出可能性。机器人系统100可以在多个标识以考虑的接近位置和/或考虑的姿态露出时,基于附加预料露出的各个标识相关的确定性,来计算露出可能性。For example, robotic system 100 may calculate exposure likelihood as condition-related certainty as a specific instance of a probability value corresponding to a particular condition (eg, proximity location, alternate pose, identity of manipulated object 112, or a combination thereof). The robotic system 100 may calculate exposure likelihood based on combining (eg, by appending and/or multiplying) the certainty associated with the condition with the certainty/likelihood that the particular condition is true (eg, a value close to a reliable benchmark) sex. The robotic system 100 may calculate a likelihood of exposure based on additional certainty associated with each of the markers that are expected to be exposed when multiple markers are exposed at the considered proximity positions and/or the considered poses.

机器人系统100可以通过结合考虑的接近位置相关的潜在的各个姿态等的露出的标识的位置以及替代的标识的位置的确定性值,来计算露出可能性。例如,机器人系统100可以使用露出的标识的位置以及具有逆符号(例如,正以及负)的替代的标识的位置相关的确定性,计算露出可能性。机器人系统100通过将两个确定性的大小相加、和/或带着符号将确定性相加,计算露出可能性。整体大小可以表示操作对象112的一个以上标识332保持可扫描状态的整体的可能性,带有符号的/向量的可能性可表示在操作对象112的一个以上标识在最初姿态不正确的情况下也保持可扫描状态的可能性。由此,无论最初姿态正确与否,由于表示可扫描操作对象112的标识332的类似的可能性等,因此,接近位置在整体大小较大时是理想的,带有符号的/向量的可能性接近零。The robotic system 100 may calculate the exposure likelihood by combining the position of the exposed marker and the certainty value of the position of the surrogate marker for the potential respective poses, etc., relative to the considered approach position. For example, the robotic system 100 may calculate the likelihood of exposure using the position of the exposed marker and the relative certainty of the location of the alternate marker with inverse signs (eg, positive and negative). The robotic system 100 calculates the exposure likelihood by adding the magnitude of the two deterministic values, and/or adding the deterministic values with a sign. The overall size may represent the overall likelihood that one or more markers 332 of the operand 112 will remain scannable, and the signed/vector likelihood may represent the likelihood that one or more markers 332 of the operand 112 will remain in a scannable state if the initial pose is incorrect. Possibility to remain scannable. Thus, regardless of whether the initial posture is correct or not, the approach position is ideal when the overall size is large due to the similar possibility of the identification 332 representing the scannable manipulation object 112, with the possibility of a sign/vector close to zero.

框558中,机器人系统100可以选择接近位置。机器人系统100作为接近位置,在露出的标识332的集合(例如,假定最初姿态正确的操作对象112的标识332的估算位置的集合)以及替代的标识332的集合(例如,假定最初姿态不正确的操作对象112的标识332的估算位置的一个以上的集合)这两者中,可以选择包含未被覆盖的标识332的位置334的可利用的接近位置。换言之,机器人系统100无论最初姿态的正确性如何,可以选择露出的可扫描的操作对象112的剩余至少一个标识332的接近位置。机器人系统100可以选择整体大小最大、和/或带有符号的/向量的可能性接近零等与目标条件匹配、和/或与最近的露出可能性对应的可利用的接近位置作为接近位置。In block 558, the robotic system 100 may select an approach location. The robotic system 100 as an approach position, at the set of exposed markers 332 (eg, a set of estimated positions of the markers 332 of the manipulator 112 assuming the initial pose is correct) and a set of alternative markers 332 (eg, assuming the initial pose is incorrect) Of the one or more sets of estimated positions of the identification 332 of the manipulation object 112), an available proximity position that includes the position 334 of the identification 332 uncovered may be selected. In other words, the robot system 100 can select the proximity position of the remaining at least one marker 332 of the exposed scannable manipulation object 112 regardless of the correctness of the initial posture. The robotic system 100 may select an available approach location with the largest overall size, and/or a signed/vector likelihood close to zero, etc. that matches the target conditions, and/or corresponds to the closest exposure likelihood.

机器人系统100可以基于露出可能性,计算扫描的可能性(例如,露出的操作对象112的标识332可成功扫描的可能性)。例如,机器人系统100可以将露出的可能性与对应的露出的操作对象112的标识332相关联的评价值(例如,成功扫描的跟踪比例、物理尺寸、和/或标识332的类型)进行结合。机器人系统100可以选择与最高的扫描可能性对应的可利用的接近位置作为接近位置。The robotic system 100 may calculate the likelihood of scanning based on the exposure likelihood (eg, the likelihood that the identification 332 of the exposed manipulation object 112 can be successfully scanned). For example, the robotic system 100 may combine the likelihood of exposure with an evaluation value associated with the identification 332 of the corresponding exposed manipulation object 112 (eg, tracked percentage of successful scans, physical size, and/or type of identification 332). The robotic system 100 may select the available approach location corresponding to the highest scanning probability as the approach location.

机器人系统100将露出的标识332的集合与替代的标识332的集合相比较,可以判定露出的标识332的集合以及替代的标识332的集合是否包含操作对象112的相对表面的位置(例如,第一姿态312与第三姿态316之间)。因此,机器人系统100可以选择与两个相对表面正交的第三表面(例如,操作对象302的一个外周表面326)对应的可利用的接近位置。The robotic system 100 compares the set of exposed indicia 332 to the set of alternate indicia 332, and can determine whether the set of exposed indicia 332 and the set of substitute indicia 332 contain the location of the opposite surface of the manipulated object 112 (eg, the first set of indicia 332). between pose 312 and third pose 316). Thus, the robotic system 100 may select an available approach location corresponding to a third surface (eg, one peripheral surface 326 of the manipulation object 302 ) that is orthogonal to the two opposing surfaces.

框560中,在可靠基准不满足充分性阈值等情况下,机器人系统100基于选择的接近位置,可以创建或获取作为候补的控制序列。机器人系统100可以计算作为候补的控制序列,该候补的控制序列包含将操作对象112的标识332放置于露出的标识332的集合以及替代的标识332的集合二者中的一个以上提供位置/朝向对应的末端执行器相关的一个以上扫描位置。换言之,机器人系统100不管最初姿态正确与否,都能够计算可扫描操作对象112的候补的控制序列。In block 560, the robotic system 100 may create or acquire a control sequence as a candidate based on the selected approach position in the event that the reliable reference does not satisfy the sufficiency threshold or the like. The robotic system 100 may compute a control sequence as a candidate that includes placing the marker 332 of the manipulation object 112 in one or more of the set of exposed markers 332 and the set of substituted markers 332 to provide position/orientation correspondence. more than one scan position associated with the end effector. In other words, the robot system 100 can calculate the control sequence of the candidates that can scan the operation object 112 regardless of whether the initial posture is correct or not.

机器人系统100可以创建或者获取在露出的标识332的集合以及替代的标识332的集合两者中应对标识332的位置334的候补的控制序列。例如,机器人系统100可以计算相对的和/或正交的表面的存在可能性的标识332的位置应对的候补的控制序列。因此,机器人系统100在最初姿态的基础上,能够应对逆朝向的姿态(例如,操作对象112的轮廓基于视觉确认位置/角度相同放置的朝向逆向的姿态)、和/或旋转的其他姿态。作为说明例,再次参照图3A以及图3C,机器人系统100在把持位置与操作对象302的一个外周表面326对应的情况下,可以计算应对第一姿态312以及第三姿态316这两者的候补的控制序列。The robotic system 100 may create or acquire control sequences that address candidates for the location 334 of the marker 332 in both the set of exposed markers 332 and the set of substituted markers 332 . For example, the robotic system 100 may calculate a candidate control sequence for the location of the identification 332 of the likelihood of existence of opposing and/or orthogonal surfaces. Therefore, the robot system 100 can cope with the reverse orientation based on the original orientation (eg, the contour of the manipulation object 112 is located in the reverse orientation based on the visual confirmation of the same position/angle), and/or other rotation orientations. As an illustrative example, referring again to FIGS. 3A and 3C , when the gripping position corresponds to one outer peripheral surface 326 of the operation object 302 , the robot system 100 can calculate the candidate corresponding to both the first posture 312 and the third posture 316 . control sequence.

为了应对存在多个可能性的姿态(例如,最初姿态的错误估算),机器人系统100可以计算将操作对象112的标识332放置于露出的标识332的集合以及替代的标识332的集合这两者的扫描姿态。如框562所示,机器人系统100可以通过扫描领域内或者扫描领域来计算操作对象112相关的候补姿态的集合。如果选择接近位置,则机器人系统100以在扫描领域内配置标识332的位置334的方式,使标识332的位置334的模型旋转和/或移动等,由此,如框542所述,可以计算作为候补的扫描位置。To account for poses where there are multiple possibilities (eg, a misestimation of the original pose), the robotic system 100 may calculate the cost of placing the identity 332 of the manipulated object 112 on both the set of exposed tokens 332 and the set of surrogate tokens 332 . Scan posture. As represented by block 562, the robotic system 100 may calculate a set of candidate poses associated with the manipulation object 112 by scanning the field or scanning the field. If the proximity location is selected, the robotic system 100 rotates and/or moves the model of the location 334 of the marker 332 in a manner that configures the location 334 of the marker 332 within the scanning field, whereby, as described in block 542, can be calculated as Alternate scan positions.

框564中,机器人系统100可以将露出的标识332的集合以及替代的标识332的集合分别映射到候补的扫描位置。机器人系统100可以将最初姿态作为起点,基于使标识332的位置335的模型旋转,映射露出的标识332的集合。机器人系统100可以将一个替代姿态(例如,逆朝向的姿态)作为起点,基于使标识332的位置334的模型旋转,映射替代的标识332的集合。In block 564, the robotic system 100 may map the set of exposed indicia 332 and the set of alternate indicia 332 to candidate scan locations, respectively. The robotic system 100 may map the set of exposed markers 332 based on rotating the model of the location 335 of the markers 332 using the initial pose as a starting point. The robotic system 100 may map a set of alternate markers 332 based on rotating the model of the location 334 of the marker 332, using one surrogate pose (eg, a reverse-oriented pose) as a starting point.

当映射标识332的位置334时,框568中,机器人系统100可以将露出的标识332的集合以及替代的标识332的集合这两者中的操作对象112的标识332的位置334和/或朝向与扫描领域进行比较。确定框570中,机器人系统100可以判定候补的姿态是否将露出的标识332的集合以及替代的标识332的集合这两者中的操作对象112的标识332同时提供给扫描仪。When mapping the location 334 of the indicia 332, in block 568, the robotic system 100 may associate the position 334 and/or the orientation of the indicia 332 of the manipulated object 112 in both the set of exposed indicia 332 and the set of alternate indicia 332 with the Scan fields for comparison. In determination block 570 , the robotic system 100 may determine whether the candidate pose provides the identifier 332 of the manipulation object 112 in both the set of exposed markers 332 and the set of substitute markers 332 to the scanner simultaneously.

框572中,机器人系统100可以将露出的标识332的集合以及替代的标识332的集合这两者中的操作对象112的标识332同时提供给不同的扫描仪/扫描领域的候补姿态识别为扫描姿态。例如,在露出的操作对象112的标识332的集合以及替代的标识332的集合中的操作对象112的位置位于相对的表面上的状态下,当把持位置对应操作对象112的一个外周表面326时,机器人系统100在操作对象112的两侧表面分别朝向扫描仪之一的状态下,可以识别在相对/对面的一对扫描仪之间放置操作对象112的扫描姿态。In block 572, the robotic system 100 may identify candidate gestures that simultaneously provide the identifiers 332 of the manipulated objects 112 in both the set of exposed identifiers 332 and the set of alternative identifiers 332 to different scanners/scanning fields as scanning gestures. . For example, in a state where the positions of the operation objects 112 in the set of marks 332 of the exposed operation objects 112 and the set of substitute marks 332 are located on opposite surfaces, when the holding position corresponds to one outer peripheral surface 326 of the operation object 112, The robot system 100 can recognize the scanning posture of placing the operation object 112 between the opposite/opposite pair of scanners in a state in which the two side surfaces of the operation object 112 face one of the scanners respectively.

框574中,候补姿态的任一种都没有在露出的操作对象112的标识332的集合以及替代的标识332的集合两者中同时提供操作对象112的标识332的情况下,机器人系统100可以根据露出的操作对象112的标识332的集合以及替代的标识332的集合,计算分别提供至少一个操作对象112的标识332的多个扫描位置(例如,第一扫描位置以及第二扫描位置)。例如,第一扫描位置可以将露出的操作对象112的标识332的集合内的一个以上标识332的位置334提供给一个对象扫描仪,第二扫描位置可以将替代的操作对象112的标识332的集合内的一个以上标识332的位置334提供给一个扫描仪。第二扫描位置可与从第一扫描位置使末端执行器绕轴旋转、平行移动末端执行器、或它们的组合相关。In block 574, in the event that neither of the candidate poses provides the identifier 332 of the manipulator 112 in both the set of identifiers 332 of the exposed manipulator 112 and the set of substitute identifiers 332, the robotic system 100 may The set of identities 332 of the exposed operand 112 and the set of surrogate identities 332 are calculated to provide a plurality of scan positions (eg, a first scan position and a second scan position) of the identity 332 of at least one operand 112, respectively. For example, a first scan position may provide an object scanner with the positions 334 of one or more identifications 332 within the set of identifications 332 of the exposed manipulation object 112, and the second scan position may provide an alternate set of identifications 332 of manipulation objects 112 The location 334 of one or more markers 332 within is provided to a scanner. The second scan position may be associated with pivoting the end effector from the first scan position, translating the end effector in parallel, or a combination thereof.

另外,若再次参照图4A以及图4B所示的例子,第二控制序列424如上所述,可以与两个相对的表面(例如,第一姿态312以及第三姿态316相关的)正交的第三表面(例如,操作对象112的一个外周表面326)所对应的第二接近位置434相对应。因此,第一扫描位置可以对应于将最初姿势(例如,第一姿势312)所对应的表面(例如,估算为操作对象112的底部表面324)位于朝上的扫描器416上方且朝向扫描仪的第二提供位置444中的一个第一位置。第二扫描位置对应使操作对象112旋转90、例如,相对于大致从开始位置114向作业位置116整体移动方向逆时针旋转的方向旋转的第二提供位置444的一个第二位置。因此,第二扫描位置对应第二提供位置444,该第二提供位置444将替代的姿态(例如,第三姿态316)对应的表面(例如,判定操作对象112的底部表面324)设置于朝向水平的扫描仪416的前方并且配置在朝向扫描仪416的垂直的朝向。In addition, referring again to the example shown in FIGS. 4A and 4B , the second control sequence 424 may be orthogonal to two opposing surfaces (eg, associated with the first pose 312 and the third pose 316 ) as described above. The second approach position 434 corresponding to the three surfaces (eg, one outer peripheral surface 326 of the operation object 112 ) corresponds to. Thus, the first scan position may correspond to positioning the surface (eg, estimated to be the bottom surface 324 of the manipulated object 112 ) to which the initial gesture (eg, the first gesture 312 ) corresponds, over the upward facing scanner 416 and facing the scanner. A first one of the second providing locations 444 . The second scan position corresponds to a second position that rotates the operation object 112 by 90 degrees, eg, a second supply position 444 that rotates substantially counterclockwise in the overall movement direction from the start position 114 to the work position 116 . Thus, the second scan position corresponds to the second providing position 444 that sets the surface (eg, the bottom surface 324 of the determination manipulation object 112 ) corresponding to the alternative gesture (eg, the third gesture 316 ) in a horizontal orientation The scanner 416 is positioned in front of the scanner 416 and in a vertical orientation towards the scanner 416 .

根据作为结果得到的扫描姿态和/或扫描位置的集合,机器人系统100可以创建或者获取候补的控制序列。机器人系统100使用上述的一个以上机理(例如,A*机理),将末端执行器放置于选择的接近位置,与其对应地接触以及把持操作对象112,另外,计算将操作对象112提升并且移动至已识别的扫描姿态和/或扫描位置的集合的候补方案。例如,识别扫描姿态时,机器人系统100可以计算候补方案,确定扫描领域内或者通过扫描领域的操作对象112相关的扫描姿态。机器人系统100在无法识别扫描姿态的情况下,机器人系统100计算候补方案,能够以连续通过多个扫描位置的集合的方式使末端执行器移动/定向,由此,根据多个提供位置/朝向,使操作对象112连续移动/旋转。Based on the resulting set of scan poses and/or scan positions, the robotic system 100 may create or acquire candidate control sequences. Using one or more of the mechanisms described above (eg, the A* mechanism), the robotic system 100 places the end effector at a selected proximity position, touches and holds the operand 112 accordingly, and calculates to lift and move the operand 112 to a position where it has been reached. Candidates for the set of identified scan poses and/or scan positions. For example, when recognizing the scan pose, the robotic system 100 may calculate alternatives and determine the scan pose relative to the manipulation object 112 within the scan field or through the scan field. In the case where the robot system 100 cannot recognize the scanning posture, the robot system 100 calculates a candidate solution and can move/orient the end effector in a manner of continuously passing through a set of a plurality of scanning positions, thereby, according to the plurality of provided positions/orientations, The operation object 112 is continuously moved/rotated.

框576中,机器人系统100可以再创建或者更新候补的各个控制序列相关的扫描可能性。机器人系统100可以基于组合框544相关的上述各种可能性和/或优先度(例如,接近位置、扫描位置、利用的扫描仪416、认为露出的标识332、关联的错误、和/或损失率、或它们的组合相关的可能性和/或得分)来更新扫描可能性,但可以代替性能的度量,针对扫描的度量更新扫描可能性。In block 576, the robotic system 100 may recreate or update the scan likelihood associated with each control sequence of the candidate. The robotic system 100 may be based on the various possibilities and/or priorities described above in relation to the combo box 544 (eg, proximity location, scan location, scanner 416 utilized, identification 332 considered exposed, associated errors, and/or loss rate). , or their combination related likelihoods and/or scores) to update the scan likelihood, but instead of a measure of performance, the scan likelihood is updated for the measure of the scan.

框578中,机器人系统100根据扫描可能性,基于候补方案的选择,可以创建或者获取控制序列。机器人系统100可以选择候补方案中的扫描可能性最大的候补方案作为控制序列。例如,机器人系统100在例如用于扫描开始位置114与作业位置116之间的空间的操作对象112的移动期间,可以选择一个以上扫描领域(即,一个以上扫描仪416的前面)的、配置露出的标识332的至少一个位置334以及替代的标识332的至少一个位置334的可能性最高的候补方案。In block 578, the robotic system 100 may create or acquire a control sequence based on the selection of alternatives based on the scanning likelihood. The robot system 100 may select the candidate with the highest scanning possibility among the candidate schemes as the control sequence. For example, the robotic system 100 may select one or more scan areas (ie, in front of the one or more scanners 416 ) during movement of the manipulation object 112 , eg, for scanning the space between the start position 114 and the work position 116 , and the configuration exposes The at least one position 334 of the identification 332 of the , and the at least one position 334 of the alternative identification 332 are the candidates with the highest probability.

在较小的差异值(例如,规定的阈值)内,在两个以上候补方案对应扫描可能性的情况下,机器人系统100可以计算以及评价与相应的候补方案对应的性能的度量(例如,如框544以及框546所述)。机器人系统100可以选择与目标条件最近的候补方案作为控制序列。Within a small difference value (eg, a specified threshold), where more than two candidate solutions correspond to scan probabilities, the robotic system 100 may calculate and evaluate a metric of performance corresponding to the corresponding candidate solutions (eg, such as Blocks 544 and 546). The robotic system 100 can select the candidate that is closest to the target condition as the control sequence.

机器人系统100可以脱离图示的示例性流程。例如,机器人系统100如上所述,可以选择接近位置。基于选择的接近位置,机器人系统100可以实施对操作对象112进行把持、提升、再次定向,水平移动、返回下方并释放、或它们的组合等动作的规定集合。在动作的规定集合期间或者之后,机器人系统100可以(例如,通过以返回框502的方式循环)再次拍摄或者扫描拾取区域,再次判定最初姿态以及可靠基准(例如,通过框522以及框524)。The robotic system 100 may depart from the illustrated exemplary flow. For example, the robotic system 100 may select an approach location as described above. Based on the selected approach position, the robotic system 100 may implement a prescribed set of actions to grasp, lift, reorient, move horizontally, return down and release, or a combination thereof, on the manipulation object 112 . During or after the specified set of actions, the robotic system 100 may (eg, by looping back to block 502 ) again photograph or scan the pickup area, redetermining the original pose and reliable fiducials (eg, through blocks 522 and 524 ).

如果返回图5A,在框508中,机器人系统100可以开始实施作为结果的控制序列。机器人系统100将控制序列的命令和/或设定发送给其他设备(例如,对应的运转设备212和/或其他处理器),以执行作业402、404的方式实施基于操作一个以上处理器202的控制序列。由此,机器人系统100根据命令或者设定、或它们的组合的序列,操作运转设备212,从而执行控制序列。例如,机器人系统100可以操作运转设备212,将末端执行器配置在开始位置114周围的接近位置,接触以及把持操作对象112,或执行它们的组合。If returning to FIG. 5A, in block 508, the robotic system 100 may begin implementing the resulting control sequence. The robotic system 100 sends commands and/or settings of control sequences to other devices (eg, corresponding operating devices 212 and/or other processors) to implement operations based on operating one or more processors 202 in a manner to perform operations 402, 404. control sequence. Thus, the robot system 100 operates the operating equipment 212 according to the sequence of commands or settings, or a combination thereof, thereby executing the control sequence. For example, the robotic system 100 may operate the operating device 212, deploy the end effector in an approached position about the starting position 114, contact and hold the manipulation object 112, or perform a combination thereof.

框582中,机器人系统100能够将末端执行器移动至扫描位置,由此,使操作对象112移动至提供位置/朝向。例如,在将操作对象112从开始位置114提升后,或者随着提升,机器人系统100移动末端执行器,能够建立操作对象112相关的扫描姿态。另外,机器人系统100可以将末端执行器移动至第一扫描位置。In block 582, the robotic system 100 can move the end effector to the scan position, thereby moving the manipulated object 112 to the provided position/orientation. For example, after the manipulation object 112 is lifted from the starting position 114 , or as the robotic system 100 moves the end effector, a scanning pose relative to the manipulation object 112 can be established. Additionally, the robotic system 100 can move the end effector to the first scan position.

框584中,机器人系统100可以操作扫描仪416,扫描操作对象112。例如,一个以上处理器202可以将命令发送给扫描仪416,进行扫描,和/或将询问发送给扫描仪416,接收扫描状态和/或扫描值。框585等中,在控制序列包含扫描姿态的情况下,机器人系统100可以执行控制序列,沿与扫描领域的朝向正交的方向遍及扫描领域,使扫描姿态的操作对象112移动。在操作对象112移动的期间,扫描仪416可以(同时和/或连续)扫描操作对象112的标识332的多个存在可能性的位置334相关的多个表面。In block 584 , the robotic system 100 may operate the scanner 416 to scan the manipulation object 112 . For example, one or more processors 202 may send commands to scanner 416 to perform a scan, and/or send a query to scanner 416 to receive scan status and/or scan values. In block 585 or the like, where the control sequence includes a scan pose, the robotic system 100 may execute a control sequence to move the manipulated object 112 in the scan pose throughout the scan area in a direction orthogonal to the scan area's orientation. During the movement of the object 112, the scanner 416 may scan (simultaneously and/or consecutively) a plurality of surfaces associated with a plurality of possible locations 334 of the identification 332 of the object 112.

确定框586中,机器人系统100评价扫描结果(例如,状态和/或扫描值),判定是否扫描到操作对象112。例如,机器人系统100可以将控制序列执行到第一扫描位置之后,评价扫描结果。框588等中,在表示扫描结果为操作对象112的扫描成功(例如,状态对应有效的码/标识的检测、和/或扫描值与识别/预期的操作对象112匹配)的情况下,机器人系统100可以将操作对象112向作业位置116移动。基于扫描成功,机器人系统100可以无视此后的扫描位置(例如,第二扫描位置),将操作对象112直接移动至作业位置116。In determination block 586, the robotic system 100 evaluates the scan results (eg, status and/or scan values) to determine whether the manipulation object 112 was scanned. For example, the robotic system 100 may evaluate the scan results after executing the control sequence to the first scan position. In block 588 or the like, in the event that the indicated scan result is that the scan of the manipulation object 112 was successful (eg, the status corresponds to the detection of a valid code/identification, and/or the scan value matches the identified/expected manipulation object 112), the robotic system 100 can move the operation object 112 to the work position 116 . Based on the successful scanning, the robot system 100 may directly move the operation object 112 to the working position 116 regardless of the subsequent scanning position (eg, the second scanning position).

在扫描结果表示操作对象112的扫描不成功的情况下,机器人系统100在确定框590中,判定当前的扫描位置是否是控制序列的最后。在不是最后的控制序列的情况下,机器人系统100可以以返回框582的循环所示的方式,将操作对象112向下一个提供位置/朝向移动。If the scan result indicates that the scan of the operating object 112 was unsuccessful, the robotic system 100 determines in determination block 590 whether the current scan position is the last of the control sequence. Without being the final control sequence, the robotic system 100 may move the manipulated object 112 to the next provided position/orientation in the manner shown in the loop returning to block 582 .

在当前的扫描位置是控制序列的最后的情况下,机器人系统100如框592所示,可以实施一个以上改善作业。机器人系统100在控制序列的所有扫描位置相关的扫描结果表示扫描失败的情况下,可以停止和/或取消控制序列。机器人系统100可以生成用于提示操作者的错误的状态/消息。机器人系统100可以在扫描失败的操作对象112相关的指定区域内(即,与开始位置114以及作业位置116不同的位置)配置操作对象112。In the event that the current scan position is the last of the control sequence, the robotic system 100, as indicated by block 592, may perform one or more improvement operations. The robotic system 100 may stop and/or cancel the control sequence in the event that the scan results associated with all scan positions of the control sequence indicate a scan failure. The robotic system 100 may generate status/messages to alert the operator of errors. The robot system 100 may configure the operation object 112 in a designated area (ie, a position different from the start position 114 and the work position 116 ) in relation to the operation object 112 that failed to scan.

基于作业402、404(即,操作对象112的扫描成功,放置于作业位置116)成功结束或者实施了改善作业,机器人系统100可以进行下一个作业/操作对象112的移动。机器人系统100如返回框502的循环所示,可以再次扫描指定区域,另外,如返回框504的循环所示,可以使用已有的拍摄数据,选择下一个操作对象112。Based on the successful completion of the jobs 402 , 404 (ie, the successful scanning of the operation object 112 and placement in the operation position 116 ) or the implementation of the improvement operation, the robot system 100 can proceed to the next operation/operation object 112 movement. The robot system 100 may scan the designated area again, as shown in the loop returning to block 502 , and may select the next operation object 112 using the existing photographing data, as shown in the loop returning to block 504 .

通过在空间内(例如,开始位置114与作业位置116之间的位置)扫描操作对象112,可以提高执行作业402、404相关的效率以及速度。通过计算包含扫描位置且与扫描仪416协同动作的控制序列,机器人系统100能够将用于移动操作对象112的作业与用于扫描操作对象112的作业有效组合。进而,通过根据最初姿态的可靠基准来创建或者获取控制序列,可以进一步提高扫描作业相关的效率、速度以及精度。如上所述,机器人系统100能够创建或者获取与最初姿态不正确的场景对应的替代的朝向所应对的控制序列。因此,机器人系统100即使在由于校准错误、未预料姿态、未预料的光条件等引起的错误等的姿态判定错误的情况下,也能够增加正确/成功扫描操作对象112的可能性。增加正确的扫描的可能性能够增加与机器人系统100相关的整体吞吐量,并且减少操作者的劳力/介入。By scanning the operand 112 within a space (eg, a location between the start location 114 and the job location 116 ), the efficiency and speed associated with performing the jobs 402 , 404 may be improved. By calculating a control sequence that includes the scan position and cooperates with the scanner 416 , the robotic system 100 can effectively combine the job for moving the manipulation object 112 with the job for scanning the manipulation object 112 . Furthermore, by creating or acquiring control sequences based on a reliable reference of the initial pose, the efficiency, speed, and accuracy associated with scanning operations can be further improved. As described above, the robotic system 100 can create or acquire control sequences for alternate orientations corresponding to scenarios in which the initial pose was incorrect. Therefore, the robot system 100 can increase the probability of correct/successful scanning of the manipulation object 112 even in the event of a posture determination error due to calibration errors, unexpected postures, errors due to unexpected light conditions, and the like. Increasing the likelihood of a correct scan can increase the overall throughput associated with the robotic system 100 and reduce operator effort/intervention.

[总结][Summarize]

本公开的实施例的上述具体实施方式并非旨在是排他性的或将本公开限制于前述公开的明确方式。虽然以上出于说明性目的描述了本公开的特定实施例,但是如本领域技术人员所认识的,在本公开的范围内可进行各种等同变型方式。例如,虽然按给定顺序提供了流程或框,但是通过替代实施方式,可以按不同顺序执行具有步骤的例程或采用具有框的系统,另外,一些流程或框可以被删除、移动、添加、细分、组合和/或变形以提供替代或子组合。这些流程或框分别可以以各种不同的方法来实施。此外,虽然在所示的时间点连续地实施流程或框,但是这些流程或框可以替代地并行实施或执行、或者在不同的时间实施。此外,本文所示的任何特定数量仅是示例,并且在替代的实施方式中可以采用不同的值或范围。The above detailed description of the embodiments of the present disclosure is not intended to be exhaustive or to limit the present disclosure to the precise manners disclosed above. While specific embodiments of the present disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the present disclosure, as those skilled in the art will recognize. For example, although flows or blocks are provided in a given order, by alternative implementations, a routine with steps may be performed in a different order or a system with blocks may be employed, in addition, some flows or blocks may be deleted, moved, added, Subdivide, combine and/or morph to provide alternatives or sub-combinations. These processes or blocks, respectively, can be implemented in a variety of different ways. Additionally, although processes or blocks are performed consecutively at the points in time shown, these processes or blocks may alternatively be performed or performed in parallel, or at different times. Furthermore, any specific numbers shown herein are examples only, and different values or ranges may be employed in alternative implementations.

可以根据上述具体实施方式对本公开做出这些和其他改变。具体实施方式中描述了本公开的具体实施例和假定的最佳模式,但本公开可以以多种方法实施,而与文本中如何详细示出上述说明无关。在其特定实施方案中,本系统的细节可以显著变化,但仍包含在本文所公开的技术内。如上所述,在描述本公开的特定特征或方面时使用的特定术语不应理解为暗示该术语在本文中重新定义为被限定于与该术语相关联的本公开的任何特定特性、特征或方面。因此,本发明不受限制,除非由所附权利要求书限定。通常,所附权利要求书中使用的术语不应被解释为将本公开限制于本文所公开的特定实施例,除非以上详细描述的部分明确地规定了这样的术语。These and other changes can be made to the present disclosure in light of the above-described detailed description. Specific embodiments of the disclosure and the assumed best mode are described in the detailed description, but the disclosure can be practiced in a variety of ways, regardless of how the above description is presented in detail in the text. The details of the present system may vary significantly in specific embodiments thereof, while still being encompassed by the techniques disclosed herein. As noted above, the use of a particular term in describing a particular feature or aspect of the present disclosure should not be construed to imply that the term is redefined herein to be limited to any particular feature, feature, or aspect of the present disclosure to which the term is associated . Accordingly, the invention is not to be limited except as defined by the appended claims. In general, the terms used in the appended claims should not be construed to limit the disclosure to the specific embodiments disclosed herein, unless portions of the above Detailed Description explicitly state such terms.

尽管本发明的某些方面已经以所附的特定权利要求的形式给出,但是本申请的申请人以任何数量的权利要求的方式设想了本发明的各种方面。因此,本申请的申请人在本申请或接续申请中提交本申请之后,将保留进一步作出权利要求书的权利,并作出这种附加权利要求。While certain aspects of the invention have been presented in the form of the specific claims appended hereto, the applicants of the present application contemplate various aspects of the invention by way of any number of claims. Accordingly, the applicant of the present application reserves the right to make further claims and to make such additional claims after filing this application in this or a continuation application.

Claims (16)

1. A control method of a robot system including a robot with a robot arm and an end effector, the control method of the robot system comprising:
acquiring an approach position at which the end effector grips an operation object;
acquiring a scanning position for scanning the identifier of the operation object; and
creating or acquiring a control sequence based on the approach position and the scanning position, instructing the robot to execute the control sequence,
the control sequence includes the following (1) to (4):
(1) holding the operation object from a start position;
(2) scanning identification information of the operation object with a scanner located between the start position and the working position;
(3) when a predetermined condition is satisfied, temporarily releasing the operation object from the end effector at a grip conversion position, and again gripping the operation object with the end effector so as to convert the grip; and
(4) and moving the operation object to a working position.
2. The control method of a robot system according to claim 1,
the control sequence includes the following (5) and (6):
(5) setting, as the predetermined condition, an improvement in efficiency of storing the operation object at the working position when the direction in which the operation object is gripped by the end effector is changed by changing the gripping direction of the operation object; and
(6) calculating storage efficiency at the work position before the gripping conversion of the operation object and storage efficiency at the work position after the gripping conversion of the operation object.
3. The control method of a robot system according to claim 2,
the control sequence includes the following (7) and (8):
(7) acquiring the height of the operation object; and
(8) calculating the storage efficiency based on the height of the operation object.
4. The control method of a robot system according to claim 3,
calculating the height of the operation object from the height position of the top surface of the operation object and the height position of the bottom surface of the operation object measured in the end effector gripping state.
5. The control method of a robot system according to claim 3 or 4, wherein,
the height of the measurement object is measured while the operation object is scanned by the scanner.
6. The control method of a robot system according to any one of claims 1 to 5, wherein,
the control sequence includes: (9) when the predetermined condition is satisfied, the operation object is placed on the temporary placement table at the grip conversion position and is temporarily released from the end effector.
7. The control method of a robot system according to any one of claims 1 to 6, wherein,
the control method of the robot system further includes:
acquiring shooting data representing a pickup area including the operation object;
determining an initial posture of the operation object based on the shot data;
calculating a reliable reference representing a likelihood that an initial pose of the operational object is correct; and
acquiring the approach position and the scan position based on the reliable reference.
8. The control method of a robot system according to claim 7,
the control sequence includes: (10) selectively calculating the approach location and the scan location in terms of a measure of performance and/or a measure of scanning based on a result of comparing the reliable reference to a sufficiency threshold,
the metric of the scan is independent of whether the initial pose of the manipulator is correct or incorrect, and is related to the likelihood that the identity of the manipulator is not covered by the end effector.
9. The control method of a robot system according to claim 7,
in the event that the confidence measure does not meet the sufficiency threshold, the approach location and the scan location are acquired based on a metric of the scan, or the approach location and the scan location are acquired based on a metric of the scan with priority over a metric of the performance.
10. The control method of a robot system according to claim 7,
acquiring the approach location and the scan location based on a metric of the performance if the reliable reference satisfies the sufficiency threshold.
11. The control method of a robot system according to any one of claims 1 to 10,
the control sequence includes the following (11) and (12):
(11) acquiring a first scanning position for providing identification information of the operation object to the scanner and a second scanning position for providing alternative identification information of the operation object to the scanner;
(12) until the operation object is moved to the first scanning position, in a case where the scanning result indicates a successful scan, the operation object is moved to the job position and the second scanning position is disregarded, or, in a case where the scanning result indicates a failed scan, the operation object is moved to the second scanning position.
12. A non-transitory computer readable storage medium storing processor commands for implementing a method of controlling a robotic system including a robot with a robot arm and an end effector,
the processor command includes:
acquiring a command for the end effector to grip an approach position of an operation object;
acquiring a command of a scanning position for scanning the identification information of the operation object; and
creating or retrieving a control sequence based on the approach position and the scanning position, instructing the robot to execute commands of the control sequence,
the control sequence includes the following (1) to (4):
(1) holding the operation object from a start position;
(2) scanning an identification of the operation object with a scanner located between the start position and the job position;
(3) when a predetermined condition is satisfied, temporarily releasing the operation object from the end effector at a grip conversion position, and again gripping the operation object with the end effector so as to convert the grip; and
(4) and moving the operation object to a working position.
13. The non-transitory computer-readable storage medium of claim 12,
the control sequence includes the following (5) and (6):
(5) setting, as the predetermined condition, an improvement in efficiency of storing the operation object at the working position when the direction in which the operation object is gripped by the end effector is changed by changing the gripping direction of the operation object; and
(6) calculating storage efficiency at the work position before the gripping conversion of the operation object and storage efficiency at the work position after the gripping conversion of the operation object.
14. The non-transitory computer-readable storage medium of claim 13,
the control sequence includes the following (7) and (8):
(7) acquiring the height of the operation object; and
(8) calculating the storage efficiency based on the height of the operation object.
15. The non-transitory computer-readable storage medium of claim 14,
the height of the operation object is calculated from the height position of the top surface of the operation object and the height position of the bottom surface of the operation object measured in a state where the end effector is held.
16. A control device for a robot system comprising a robot having a robot arm and an end effector, and performing the control method according to any one of claims 1 to 11.
CN202010066275.0A 2019-01-25 2020-01-20 Robot system control method and control device Pending CN111483750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010277929.4A CN111470244B (en) 2019-01-25 2020-01-20 Control method and control device for robot system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US16/258,120 US10456915B1 (en) 2019-01-25 2019-01-25 Robotic system with enhanced scanning mechanism
US16/258,120 2019-01-25
JP2019118678 2019-06-26
JP2019-118678 2019-06-26
JP2019-213029 2019-11-26
JP2019213029A JP6697204B1 (en) 2019-01-25 2019-11-26 Robot system control method, non-transitory computer-readable recording medium, and robot system control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010277929.4A Division CN111470244B (en) 2019-01-25 2020-01-20 Control method and control device for robot system

Publications (1)

Publication Number Publication Date
CN111483750A true CN111483750A (en) 2020-08-04

Family

ID=70682480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010066275.0A Pending CN111483750A (en) 2019-01-25 2020-01-20 Robot system control method and control device

Country Status (3)

Country Link
JP (2) JP6697204B1 (en)
CN (1) CN111483750A (en)
DE (1) DE102020101767B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117295480A (en) * 2021-04-29 2023-12-26 X趋势人工智能公司 Robot apparatus for dispensing specified items

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021202340A1 (en) 2021-03-10 2022-09-15 Robert Bosch Gesellschaft mit beschränkter Haftung METHOD OF CONTROLLING A ROBOT TO PICK AND INSPECT AN OBJECT AND ROBOT CONTROL DEVICE
DE102021115473A1 (en) * 2021-06-15 2022-12-15 Linde Material Handling Gmbh Methods for automatic picking and mobile picking robots
JP2023072410A (en) * 2021-11-12 2023-05-24 株式会社東芝 Picking system, control device, picking method, program, and storage medium
DE102022101825B3 (en) 2022-01-26 2023-02-23 Ssi Schäfer Automation Gmbh (At) Method and system for automated material handling including 100% verification
DE102022203410B4 (en) 2022-04-06 2024-12-19 Robert Bosch Gesellschaft mit beschränkter Haftung Method for controlling a robot device
DE102022121538A1 (en) * 2022-08-25 2024-03-07 Bayerische Motoren Werke Aktiengesellschaft Method for depositing an object using a robot
CN115673712A (en) * 2022-10-28 2023-02-03 广汽丰田汽车有限公司 Relay feeding assembly method and device and computer readable storage medium
WO2024134794A1 (en) * 2022-12-21 2024-06-27 日本電気株式会社 Processing device, robot system, processing method, and recording medium
CN116002368B (en) * 2023-02-09 2023-08-04 安徽布拉特智能科技有限公司 Battery cell feeding control method, electronic equipment and storage medium
KR102851107B1 (en) * 2024-12-05 2025-08-28 쎄라콘크리트주식회사 Method of loading blocks onto a pallet for block loading

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217014A (en) * 1992-02-07 1993-08-27 Fujitsu Ltd Barcode reading method
JP2013078825A (en) 2011-10-04 2013-05-02 Yaskawa Electric Corp Robot apparatus, robot system, and method for manufacturing workpiece
JP5366031B2 (en) 2011-10-17 2013-12-11 株式会社安川電機 Robot sorting system, robot apparatus, and method for manufacturing sorted articles
JP5803769B2 (en) * 2012-03-23 2015-11-04 トヨタ自動車株式会社 Mobile robot
JP6415291B2 (en) 2014-12-09 2018-10-31 キヤノン株式会社 Information processing apparatus, information processing method, and program
JP6466297B2 (en) 2015-09-14 2019-02-06 株式会社東芝 Object detection apparatus, method, depalletizing automation apparatus, and packing box
JP6724499B2 (en) * 2016-04-05 2020-07-15 株式会社リコー Object gripping device and grip control program
AT519176B1 (en) 2016-10-14 2019-02-15 Engel Austria Gmbh robot system
JP7001354B2 (en) 2017-03-29 2022-01-19 トーヨーカネツ株式会社 Automatic logistics system
JP7045139B2 (en) 2017-06-05 2022-03-31 株式会社日立製作所 Machine learning equipment, machine learning methods, and machine learning programs
DE102017005882B4 (en) 2017-06-22 2019-08-01 FPT Robotik GmbH & Co. KG Method of operating a robot to verify its working environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117295480A (en) * 2021-04-29 2023-12-26 X趋势人工智能公司 Robot apparatus for dispensing specified items

Also Published As

Publication number Publication date
JP6697204B1 (en) 2020-05-20
DE102020101767A1 (en) 2020-07-30
JP7495688B2 (en) 2024-06-05
JP2021003801A (en) 2021-01-14
JP2021003800A (en) 2021-01-14
DE102020101767B4 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US12194638B2 (en) Robotic system control method and controller
JP7671462B2 (en) Robotic system with advanced scanning mechanism
CN111483750A (en) Robot system control method and control device
JP6738112B2 (en) Robot system control device and control method
CN110171010B (en) Robotic system with lost object management mechanism
JP7598112B2 (en) Robot system with cooperative transport mechanism
JP2021501102A (en) Robot system with automatic package scanning and registration mechanism, and how it works
JP7175487B1 (en) Robotic system with image-based sizing mechanism and method for operating the robotic system
CN111470244B (en) Control method and control device for robot system
JP7218881B1 (en) ROBOT SYSTEM WITH OBJECT UPDATE MECHANISM AND METHOD FOR OPERATING ROBOT SYSTEM
JP7633423B2 (en) Training data generating device and training data generating method, and machine learning device and machine learning method using training data
CN115609569A (en) Robot system with image-based sizing mechanism and method of operating the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination