CN111545145A - A temperature-controlled fiber-integrated micro-reaction chamber - Google Patents
A temperature-controlled fiber-integrated micro-reaction chamber Download PDFInfo
- Publication number
- CN111545145A CN111545145A CN202010276052.7A CN202010276052A CN111545145A CN 111545145 A CN111545145 A CN 111545145A CN 202010276052 A CN202010276052 A CN 202010276052A CN 111545145 A CN111545145 A CN 111545145A
- Authority
- CN
- China
- Prior art keywords
- fiber
- core
- temperature
- liquid
- micro
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract 10
- 239000000835 fiber Substances 0.000 claims abstract 26
- 239000007788 liquid Substances 0.000 claims abstract 11
- 239000013307 optical fiber Substances 0.000 claims abstract 6
- 239000012530 fluid Substances 0.000 claims abstract 4
- 238000010521 absorption reaction Methods 0.000 claims abstract 3
- 238000002347 injection Methods 0.000 claims abstract 3
- 239000007924 injection Substances 0.000 claims abstract 3
- 238000001228 spectrum Methods 0.000 claims abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract 3
- 238000005253 cladding Methods 0.000 claims 3
- 239000000725 suspension Substances 0.000 claims 3
- 230000008878 coupling Effects 0.000 claims 2
- 238000010168 coupling process Methods 0.000 claims 2
- 238000005859 coupling reaction Methods 0.000 claims 2
- 230000031700 light absorption Effects 0.000 claims 2
- 238000005086 pumping Methods 0.000 claims 2
- 238000009792 diffusion process Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000003466 welding Methods 0.000 claims 1
- 238000005842 biochemical reaction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 abstract 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02057—Optical fibres with cladding with or without a coating comprising gratings
- G02B6/02076—Refractive index modulation gratings, e.g. Bragg gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
- G02B6/02314—Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
(一)技术领域(1) Technical field
本发明涉及的是一种温度可控的纤维集成微量反应腔,属于微流控制技术领域。The invention relates to a temperature-controllable fiber-integrated micro-reaction chamber, which belongs to the technical field of micro-flow control.
(二)背景技术(2) Background technology
微流控制系统是指利用精密加工技术将微通道、微泵、微阀、微反应器、微传感器、微检测器等各种功能单元集成在一块微小的芯片上,通过控制微量液体在其中的流动,来完成生物和化学领域所涉及的样品制备、混合、反应、分离、检测、生化分析等功能的微分析系统。微流控系统具有极快的分析速度,极少的试剂消耗,体积集成化,功能集成化,操作简单,价格便宜等众多的独特性能。可广泛应用于生物医学,分析化学,药物筛选,环境监测等领域。Microfluidic control system refers to the use of precision machining technology to integrate various functional units such as microchannels, micropumps, microvalves, microreactors, microsensors, and microdetectors on a tiny chip. It is a micro-analysis system that completes the functions of sample preparation, mixing, reaction, separation, detection, and biochemical analysis in the field of biology and chemistry. The microfluidic system has many unique properties such as extremely fast analysis speed, minimal reagent consumption, volume integration, function integration, simple operation, and low price. It can be widely used in biomedicine, analytical chemistry, drug screening, environmental monitoring and other fields.
相对于宏观上的反应来说,微反应器至少具备以下的几个优点:Compared with macroscopic reactions, microreactors have at least the following advantages:
(1)在微米量级的微反应器中,微量液体的溶质所需的扩散距离短,传质更快,混合迅速而且均匀。(1) In micron-scale microreactors, the diffusion distance required for the solute of the trace liquid is short, the mass transfer is faster, and the mixing is rapid and uniform.
(2)由于微反应器的尺度只有微米量级,这为反应器带来了很大的比表面积。这使得反应器具备了超大的换热面积,使得微反应器的热传导系数与常规的反应器相比高出一个量级,相对来说,其对反应温度和反应时间的控制更加容易和准确。(2) Since the scale of the microreactor is only in the order of microns, it brings a large specific surface area to the reactor. This makes the reactor have a large heat exchange area, and the thermal conductivity of the microreactor is an order of magnitude higher than that of the conventional reactor. Relatively speaking, it is easier and more accurate to control the reaction temperature and reaction time.
(3)微反应器的整体体积小,在微反应器中可以进行反应所需的试剂量小。对于许多需要使用有毒有害的试剂来说,其提供了一个更加绿色环保的途径;对于许多需要昂贵试剂的反应来说,其更是减少了试剂的浪费和节约了成本。(3) The overall volume of the microreactor is small, and the amount of reagents required for the reaction in the microreactor is small. For many reactions that require the use of toxic and harmful reagents, it provides a more environmentally friendly approach; for many reactions that require expensive reagents, it reduces the waste of reagents and saves costs.
传统的微量反应器大多是基于光刻、蚀刻和机械微加工的方法,在硅片,石英,PMMA(聚甲基丙稀酸甲酯)和PDMS(聚二甲基硅氧烷)等材料上制备。这些制备方法所使用的设备昂贵,工艺繁杂,带来的不仅仅是成本上的增加,也难以实现高成品率的批量生产。Traditional microreactors are mostly based on photolithography, etching and mechanical micromachining methods on materials such as silicon wafers, quartz, PMMA (polymethyl methacrylate) and PDMS (polydimethylsiloxane) preparation. The equipment used in these preparation methods is expensive and the process is complicated, which not only brings about an increase in cost, but also makes it difficult to achieve mass production with high yield.
(三)发明内容(3) Contents of the invention
本发明的目的在于提供一种温度可控,操作方便灵活的纤维集成微量反应腔。The purpose of the present invention is to provide a fiber-integrated micro-reaction chamber with controllable temperature, convenient and flexible operation.
本发明的目的是这样实现的:The object of the present invention is achieved in this way:
一种温度可控的纤维集成微量反应腔。它由多芯带孔光纤1,宽谱光源2a,泵浦光源2b,光纤波分复用器8,光谱仪3,注射泵4,光纤环形器5,标准单模光纤6和盛有吸光匹配液的水槽7组成。所述系统中:(1)多芯带孔光纤1上制备有微孔1-5,为微量液体9的入口和出口;(2)宽谱光源2a和泵浦光源2b的输出光由标准单模光纤6引出,经过光纤波分复用器8后,一起注入带孔光纤1的多个纤芯;(3)注射泵4用于控制微量液体9在光纤微孔腔中的流入和流出;(4)悬挂芯内传输的泵浦光被腔内液体吸收,转化为内能,可通过控制输入功率的大小来调节腔内液体的反应温度;(5)包埋于环形包层中的纤芯上制备有Bragg光栅1-7,用于反应腔内的温度监控;(6)在光纤的尾端接有盛有吸光匹配液的水槽7,用于吸收透过光,消除端面反射。A temperature-controlled fiber-integrated micro-reaction chamber. It consists of a multi-core holey fiber 1, a broad-
本发明采用多芯带孔光纤1,该光纤由中间的空气孔1-1、环形包层1-2、包埋于环形包层里的纤芯1-4和悬挂在空气孔中的悬挂芯1-3组成。The present invention adopts a multi-core holey fiber 1, which consists of an air hole 1-1 in the middle, an annular cladding 1-2, a fiber core 1-4 embedded in the annular cladding, and a suspension core suspended in the air hole 1-3 compositions.
可选地,所述悬挂芯1-3可以是一个,也可以是多个,还可以是环形的纤芯。Optionally, the suspension cores 1-3 may be one, or multiple, or may be annular cores.
所述多芯带孔光纤的空气孔作为微量液体的反应微腔,其腔壁上制备有两个或多个微孔1-5,用作微量液体的进出口通道。The air hole of the multi-core holey optical fiber is used as a reaction microcavity of trace liquid, and two or more micropores 1-5 are prepared on the cavity wall, which are used as the inlet and outlet channels of trace liquid.
所述的泵浦光源2b的波段为腔内液体强吸收波段,所述的宽带光源2a为C+L波段的ASE光源。The wavelength band of the
所述的入射光向多芯带孔光纤的耦合方式可以有两种:(1)将多芯带孔光纤的一端电弧塌缩后和标准单模光纤焊接,然后拉锥,使入射光耦合进各个纤芯;(2)将多芯带孔光纤的一端电弧塌缩后和标准单模光纤焊接,然后在焊点处加热,使用热扩散耦合的方式,让入射光在热扩散区域1-6耦合进各个纤芯中去。There are two ways of coupling the incident light to the multi-core holey fiber: (1) After the arc collapse of one end of the multi-core holey fiber, it is welded to the standard single-mode fiber, and then tapered to couple the incident light into the hole. Each core; (2) One end of the multi-core holey fiber is arc-collapsed and welded to the standard single-mode fiber, and then heated at the welding point, using the thermal diffusion coupling method, so that the incident light is in the thermal diffusion area 1-6 coupled into each fiber core.
本发明可以实现微量物质的生物化学反应,相比较现存的微量反应器,具有以下明显的优点:The present invention can realize the biochemical reaction of trace substances, and has the following obvious advantages compared with the existing trace reactors:
(1)本发明将这些反应装置高度集成于一根光纤之内,具有高操作灵活性和易集成的特点,并且光纤制备工艺已经相当成熟,制备成本低廉,光纤的制作满足于一次可大量制备的要求,规格上具有很好的一致性。这将十分有利于微反应腔器件的批量生产。(1) The present invention highly integrates these reaction devices into an optical fiber, which has the characteristics of high operational flexibility and easy integration, and the optical fiber preparation process is quite mature, the preparation cost is low, and the production of optical fibers is satisfied that a large number of optical fibers can be prepared at one time. requirements, the specifications have good consistency. This will be very beneficial to the mass production of micro-reaction cavity devices.
(2)本发明采用光热转换的加热方式,实现对微量反应试剂无接触式加热,并可以通过对输入光功率的大小来精确控制温度,从而控制整个生物化学反应的进程。(2) The present invention adopts the heating method of photothermal conversion, realizes non-contact heating of trace reaction reagents, and can precisely control the temperature by the magnitude of the input optical power, thereby controlling the process of the entire biochemical reaction.
(3)本发明采用Bragg光栅,该结构对温度有很好的灵敏度,因此可以高精度监控反应腔的反应温度,给予反馈,方便对整个生物化学反应的进程监控。(3) The present invention adopts Bragg grating, which has good sensitivity to temperature, so it can monitor the reaction temperature of the reaction chamber with high precision and give feedback, which is convenient for monitoring the progress of the entire biochemical reaction.
综合以上所述,本发明适用于微量液体的混合反应,尤其适用于对反应温度要求苛刻的实验需求。To sum up the above, the present invention is suitable for the mixed reaction of trace liquids, and is especially suitable for the experimental requirements with strict requirements on the reaction temperature.
(四)附图说明(4) Description of drawings
图1是实施例中所述的可采用的几种特种光纤的端面结构。Fig. 1 is the end face structure of several kinds of special optical fibers that can be used as described in the embodiment.
图2是温度可控的纤维集成微量反应腔的系统结构示意图。Figure 2 is a schematic diagram of the system structure of a temperature-controllable fiber-integrated micro-reaction chamber.
图3是温度可控的纤维集成微量反应腔的原理示意图。Figure 3 is a schematic diagram of the principle of a temperature-controlled fiber-integrated micro-reaction chamber.
图4是实施例2中所述的PCR流程图。FIG. 4 is a flow diagram of the PCR described in Example 2. FIG.
(五)具体实施方式(5) Specific implementation methods
下面结合具体的附图和实施例来进一步阐述本发明,但是不应以此限制本发明的保护范围。The present invention will be further described below in conjunction with the specific drawings and embodiments, but the protection scope of the present invention should not be limited by this.
实施例1:Example 1:
图1是可用于本发明的几种多芯带孔微结构光纤1,该光纤包含中间的空气孔1-1,环形的包层1-2,暴露在空气孔中的悬挂芯1-3和包埋于环形包层1-2中的纤芯1-4。其中空气孔1-1作为微量液体的反应腔;悬挂1-3芯用于传输腔内液体特征吸收波段的激光2-2,通过改变该波段激光能量的输入大小来控制反应腔里的反应温度;纤芯1-4上制备有Bragg光栅,用于反应腔内温度的监控和反馈。其中纤芯1-4可以是一个(如图1a),也可以是多个(如图1b的1-3a和1-3b),还可以是环形的纤芯(如图1c)。Fig. 1 shows several multi-core holey microstructured optical fibers 1 that can be used in the present invention, the optical fiber comprising an air hole 1-1 in the middle, an annular cladding 1-2, a suspended core 1-3 exposed in the air hole and Core 1-4 embedded in annular cladding 1-2. The air hole 1-1 is used as the reaction cavity for the trace liquid; the suspension core 1-3 is used to transmit the laser 2-2 of the characteristic absorption band of the liquid in the cavity, and the reaction temperature in the reaction cavity is controlled by changing the input size of the laser energy in this band. ; Bragg gratings are prepared on the cores 1-4 for monitoring and feedback of the temperature in the reaction chamber. The fiber core 1-4 may be one (as shown in FIG. 1a ), or multiple (as shown in FIG. 1-3a and 1-3b in FIG. 1b ), or may be a ring-shaped fiber core (as shown in FIG. 1c ).
本实施例采取热扩散耦合的方式向多芯带孔光纤内输入光束。微量反应腔的制备方法为:In this embodiment, the light beam is input into the multi-core holey fiber by means of thermal diffusion coupling. The preparation method of the micro-reaction chamber is as follows:
(1)取一段多芯带孔光纤1,剥去涂覆层并切割制备平整的端面;(1) Take a section of multi-core holey optical fiber 1, strip off the coating layer and cut to prepare a flat end face;
(2)使用电弧加热,塌缩多芯带孔光纤1的两端,直至两端的空气孔1-1完全熔缩成实心;(2) Use arc heating to collapse both ends of the multi-core holey fiber 1 until the air holes 1-1 at both ends are completely fused into a solid;
(3)将标准单模光纤6和多芯带孔光纤1塌缩端面上的悬挂芯1-3对芯焊接。(3) The standard single-mode
(4)在焊点处采用热扩散耦合的方式,局部加热至1500℃,使得纤芯内的掺杂物质扩散,形成热扩散耦合区1-6,使得含有宽谱激光的输入光2-1耦合进包埋于包层中的纤芯1-4。(4) The thermal diffusion coupling method is adopted at the solder joint, and the local heating to 1500°C makes the dopant in the core diffuse to form the thermal diffusion coupling region 1-6, so that the input light 2-1 containing the broad-spectrum laser Coupling into cores 1-4 embedded in the cladding.
(5)使用光纤光栅制备设备,在包埋在包层中的纤芯1-4上写入Bragg光栅1-7。(5) Bragg gratings 1-7 are written on the cores 1-4 embedded in the cladding using a fiber grating preparation device.
(6)使用飞秒激光,在不破坏包埋于包层中的纤芯1-4的情况下,制备微流的进出口1-5。(6) Using a femtosecond laser, without destroying the cores 1-4 embedded in the cladding, the inlets and outlets 1-5 of the microfluidics are prepared.
图2是温度可控的纤维集成微量反应腔的系统结构示意图,图3是微量反应腔的原理示意图。其中宽谱光源2a是用于温度敏感光栅1-8的信号源,泵浦光源2b的输出光是腔内反应液体9吸收的特征波段,其波长为λa(以水溶液为例,λa可以是1480nm),用于反应腔的温度调制。两个光源2a、2b的光束2-1由标准单模光纤6引出,经过光纤波分复用器8和环形器5耦合输入多芯带孔光纤1。经由包埋于包层中的Bragg光纤光栅反射回来的光λb2-2经由环形器5,输出到光谱仪3中,根据λb的位置建立与温度的一一对应关系,从而达到对反应腔内温度监控反馈的功能。在多芯带孔光纤的另一端具备一个吸收匹配液的水槽7,用于吸收透过光,减少端面反射。注射泵4用于微量反应溶液9的注入和输出。FIG. 2 is a schematic diagram of the system structure of a temperature-controllable fiber-integrated micro-reaction chamber, and FIG. 3 is a schematic diagram of the principle of the micro-reaction chamber. The broad-
实施例2:Example 2:
下面以DNA的聚合酶链式反应为例,介绍本发明所述的微量液体反应腔作为PCR的应用(如图4所示)。The following takes DNA polymerase chain reaction as an example to introduce the application of the micro-liquid reaction chamber of the present invention as PCR (as shown in FIG. 4 ).
步骤1:准备反应材料,4种dNTP混合物各200umol/L,引物各10~100pmol,模板DNA0.1~2μg,Taq DNA聚合酶2.5μg,Mg2+1.5mmol/L;Step 1: Prepare reaction materials, 200umol/L of 4 dNTP mixtures, 10-100pmol of primers, 0.1-2μg of template DNA, 2.5μg of Taq DNA polymerase, 1.5mmol/L of Mg 2+ ;
步骤2:使用注射泵4,将待反应原料注入多芯带孔光纤微腔;Step 2: use the
步骤3:变性。打开激光光源2a、2b,调节泵浦光源2b的功率大小,观察光纤光栅1-7传感反馈的腔内温度,使得腔内温度达到94℃,并持续30s,高温使双链DNA解离形成单链;Step 3: Denaturation. Turn on the
步骤4:退火。调节液体特征吸收波段光源2b的功率大小,将温度调节至60~65℃并持续30s,低温下,引物与模板DNA互补区结合;Step 4: Annealing. Adjust the power of the liquid characteristic absorption band
步骤5:延伸。调节腔内温度到70~75℃,并保持30~60s,DNA聚合酶催化以引物为起始点的DNA链延伸反应;Step 5: Extend. Adjust the temperature in the chamber to 70~75℃, and keep it for 30~60s, the DNA polymerase catalyzes the DNA chain extension reaction with the primer as the starting point;
步骤6:重复步骤2~4,直至DNA数量达到要求后,使用注射泵4将反应产物泵出。Step 6: Repeat steps 2 to 4 until the required amount of DNA is reached, and then use the
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010276052.7A CN111545145A (en) | 2020-04-10 | 2020-04-10 | A temperature-controlled fiber-integrated micro-reaction chamber |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010276052.7A CN111545145A (en) | 2020-04-10 | 2020-04-10 | A temperature-controlled fiber-integrated micro-reaction chamber |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111545145A true CN111545145A (en) | 2020-08-18 |
Family
ID=71998510
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010276052.7A Pending CN111545145A (en) | 2020-04-10 | 2020-04-10 | A temperature-controlled fiber-integrated micro-reaction chamber |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111545145A (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002296448A (en) * | 2001-03-29 | 2002-10-09 | Kyocera Corp | Optical fiber ferrule and optical module pigtail using this ferrule |
| US20070280597A1 (en) * | 2006-05-30 | 2007-12-06 | Fujikura Ltd. | Multi-port coupler, optical amplifier, and fiber laser |
| CN102262062A (en) * | 2011-04-26 | 2011-11-30 | 浙江大学 | Microstructure fiber Bragg grating gas sensor and detection device |
| CN103900992A (en) * | 2014-04-04 | 2014-07-02 | 哈尔滨工程大学 | Internal suspension core optical fiber grating temperature self-compensation microfluidic sensor and internal suspension core optical fiber |
| CN109752794A (en) * | 2017-11-03 | 2019-05-14 | 桂林电子科技大学 | A hybrid integrated dual-core optical fiber with an optical waveguide surrounding a microfluidic channel and a preparation method thereof |
| CN110274884A (en) * | 2019-06-28 | 2019-09-24 | 天津理工大学 | Bimolecular sensors based on photo-thermal micro-fluidic in microstructured optical fibers |
-
2020
- 2020-04-10 CN CN202010276052.7A patent/CN111545145A/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002296448A (en) * | 2001-03-29 | 2002-10-09 | Kyocera Corp | Optical fiber ferrule and optical module pigtail using this ferrule |
| US20070280597A1 (en) * | 2006-05-30 | 2007-12-06 | Fujikura Ltd. | Multi-port coupler, optical amplifier, and fiber laser |
| CN102262062A (en) * | 2011-04-26 | 2011-11-30 | 浙江大学 | Microstructure fiber Bragg grating gas sensor and detection device |
| CN103900992A (en) * | 2014-04-04 | 2014-07-02 | 哈尔滨工程大学 | Internal suspension core optical fiber grating temperature self-compensation microfluidic sensor and internal suspension core optical fiber |
| CN109752794A (en) * | 2017-11-03 | 2019-05-14 | 桂林电子科技大学 | A hybrid integrated dual-core optical fiber with an optical waveguide surrounding a microfluidic channel and a preparation method thereof |
| CN110274884A (en) * | 2019-06-28 | 2019-09-24 | 天津理工大学 | Bimolecular sensors based on photo-thermal micro-fluidic in microstructured optical fibers |
Non-Patent Citations (1)
| Title |
|---|
| 朱荻 等: "《微机电系统与微细加工技术》", 31 May 2008, 哈尔滨工程大学出版社 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Li et al. | Using printing orientation for tuning fluidic behavior in microfluidic chips made by fused deposition modeling 3D printing | |
| Yu et al. | Microfluidic paper-based analytical devices fabricated by low-cost photolithography and embossing of Parafilm® | |
| Dorfman et al. | Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications | |
| CN106215985B (en) | A kind of micro-fluidic chip for quickly mixing and detecting for fluid | |
| Ruano-Lopez et al. | A new SU-8 process to integrate buried waveguides and sealed microchannels for a Lab-on-a-Chip | |
| AU2020100684A4 (en) | A photothermal microfluidic mixer based on holey optical fiber | |
| CN207446126U (en) | A kind of passive type micro-mixer | |
| CN102240534A (en) | Method for manufacturing three-dimensional micromixer microfluidic chip | |
| Hou et al. | Rapid glucose concentration detection utilizing disposable integrated microfluidic chip | |
| CN102580799B (en) | A kind of fabrication method of micro-droplet microfluidic chip | |
| CN110068556A (en) | Optical fiber micro flow chip for spectral measurement | |
| Ma et al. | Droplet microfluidic devices: working principles, fabrication methods, and scale‐up applications | |
| Cai et al. | Rapid prototyping of cyclic olefin copolymer based microfluidic system with CO2 laser ablation | |
| CN205886751U (en) | Flow mixer passively declines | |
| CN112779125A (en) | Light-driven circulating polymerase chain reaction micro-fluidic device and application thereof | |
| CN208642693U (en) | Chip and water quality many reference amounts detection device | |
| AU2020100685A4 (en) | A photothermal micro-thruster based on holey microstructure optical fiber | |
| CN207446125U (en) | A kind of passive microfluid mixer | |
| Wang et al. | Temperature control of a droplet heated by an infrared laser for PCR applications | |
| CN103331121A (en) | Micro Fluid Mixing System | |
| CN101716485B (en) | Tapered quartz capillary tube-based micro-reactor | |
| CN111545145A (en) | A temperature-controlled fiber-integrated micro-reaction chamber | |
| CN111637034A (en) | Photothermal micropropeller based on annular core capillary fiber | |
| Lee et al. | Experimental and numerical investigation into mixing efficiency of micromixers with different geometric barriers | |
| CN111637032A (en) | Photothermal Micropump Based on Capillary Fiber |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200818 |
|
| WD01 | Invention patent application deemed withdrawn after publication |