CN111696462B - Output buffers and methods of operation - Google Patents
Output buffers and methods of operation Download PDFInfo
- Publication number
- CN111696462B CN111696462B CN201910192183.4A CN201910192183A CN111696462B CN 111696462 B CN111696462 B CN 111696462B CN 201910192183 A CN201910192183 A CN 201910192183A CN 111696462 B CN111696462 B CN 111696462B
- Authority
- CN
- China
- Prior art keywords
- terminal
- voltage
- transistor
- coupled
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000872 buffer Substances 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000000630 rising effect Effects 0.000 claims abstract description 35
- 230000001052 transient effect Effects 0.000 claims abstract description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 8
- 238000003491 array Methods 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0291—Details of output amplifiers or buffers arranged for use in a driving circuit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Logic Circuits (AREA)
Abstract
一种输出缓冲器及其操作方法。所述输出缓冲器包括输入级电路、输出级电路、上升控制电路以及下降控制电路。输入级电路依照输出缓冲器的输入电压对应地产生第一闸控电压与第二闸控电压。输出级电路依照第一闸控电压与第二闸控电压对应地产生输出缓冲器的输出电压。当输出电压要被拉升时,上升控制电路于第一暂态期间拉降第一闸控电压与第二闸控电压。当输出电压要被拉降时,下降控制电路于第二暂态期间拉升第一闸控电压与第二闸控电压。
An output buffer and method of operation thereof. The output buffer includes an input stage circuit, an output stage circuit, a rising control circuit and a falling control circuit. The input stage circuit correspondingly generates a first gate control voltage and a second gate control voltage according to the input voltage of the output buffer. The output stage circuit generates the output voltage of the output buffer correspondingly according to the first gating voltage and the second gating voltage. When the output voltage is to be pulled up, the rising control circuit pulls down the first gating voltage and the second gating voltage during the first transient period. When the output voltage is to be pulled down, the drop control circuit pulls up the first gating voltage and the second gating voltage during the second transient period.
Description
技术领域technical field
本发明是有关于一种电子电路,且特别是有关于一种输出缓冲器及其操作方法。The present invention relates to an electronic circuit, and more particularly to an output buffer and its operating method.
背景技术Background technique
一般而言,源极驱动器配置有输出缓冲器。在源极驱动器中,输出缓冲器可以将数字模拟转换器的模拟电压增益后输出给显示面板的资料线(或称源极线)。随着显示面板的解析度以及/或是帧率(Frame rate)越来越高,对一条扫描线的充电时间越来越短。为了要在短时间对一个像素(pixel)进行驱动(充电或放电),输出缓冲器须要足够高的驱动能力。亦即,输出缓冲器须要足够高的回转率(Slew Rate)。为了提升回转率,已知的输出缓冲器的尾电流(tail current)会被加大。尾电流的增加,意味着功耗的增加。In general, a source driver is configured with an output buffer. In the source driver, the output buffer can gain the analog voltage of the digital-to-analog converter and output it to the data line (or source line) of the display panel. As the resolution and/or frame rate of the display panel becomes higher and higher, the charging time for one scan line becomes shorter and shorter. In order to drive (charge or discharge) a pixel in a short time, the output buffer needs a sufficiently high driving capability. That is, the output buffer needs a sufficiently high slew rate. In order to increase the slew rate, the known tail current of the output buffer is increased. An increase in tail current means an increase in power consumption.
发明内容Contents of the invention
本发明提供一种输出缓冲器及其操作方法,以提升输出电压的回转率。The invention provides an output buffer and its operation method to increase the slew rate of the output voltage.
本发明的一实施例提供一种输出缓冲器。所述输出缓冲器包括输入级电路、输出级电路、上升控制电路以及下降控制电路。输入级电路经配置用以接收输出缓冲器的输入电压。输入级电路依照输入电压对应地产生第一闸控电压与第二闸控电压。输出级电路耦接至输入级电路,以接收第一闸控电压与第二闸控电压。输出级电路经配置用以依照第一闸控电压与第二闸控电压对应地产生输出缓冲器的输出电压。上升控制电路经配置用以比较输入电压与输出电压,而获得第一比较结果。当第一比较结果表示输出电压要被拉升时,上升控制电路于第一暂态期间拉降第一闸控电压与第二闸控电压。下降控制电路经配置用以比较输入电压与输出电压,而获得第二比较结果。当第二比较结果表示输出电压要被拉降时,下降控制电路于第二暂态期间拉升第一闸控电压与第二闸控电压。An embodiment of the invention provides an output buffer. The output buffer includes an input stage circuit, an output stage circuit, a rising control circuit and a falling control circuit. The input stage circuit is configured to receive an input voltage of the output buffer. The input stage circuit correspondingly generates a first gate control voltage and a second gate control voltage according to the input voltage. The output stage circuit is coupled to the input stage circuit to receive the first gating control voltage and the second gating control voltage. The output stage circuit is configured to correspondingly generate the output voltage of the output buffer according to the first gating voltage and the second gating voltage. The rising control circuit is configured to compare the input voltage and the output voltage to obtain a first comparison result. When the first comparison result indicates that the output voltage is to be pulled up, the rising control circuit pulls down the first gating voltage and the second gating voltage during the first transient period. The falling control circuit is configured to compare the input voltage and the output voltage to obtain a second comparison result. When the second comparison result indicates that the output voltage is about to be pulled down, the drop control circuit pulls up the first gating voltage and the second gating voltage during the second transient period.
本发明的一实施例提供一种输出缓冲器的操作方法。所述操作方法包括:由输入级电路依照输出缓冲器的输入电压对应地产生第一闸控电压与第二闸控电压;由输出级电路依照第一闸控电压与第二闸控电压对应地产生输出缓冲器的输出电压;由上升控制电路比较输入电压与输出电压,而获得第一比较结果;当第一比较结果表示输出电压要被拉升时,由上升控制电路于第一暂态期间拉降第一闸控电压与第二闸控电压;由下降控制电路比较输入电压与输出电压,而获得第二比较结果;以及当第二比较结果表示输出电压要被拉降时,由下降控制电路于第二暂态期间拉升第一闸控电压与第二闸控电压。An embodiment of the invention provides an operation method of an output buffer. The operation method includes: correspondingly generating a first gating voltage and a second gating voltage by the input stage circuit according to the input voltage of the output buffer; generating an output voltage of the output buffer by the output stage circuit correspondingly according to the first gating voltage and the second gating voltage; comparing the input voltage and the output voltage by the rising control circuit to obtain a first comparison result; when the first comparison result indicates that the output voltage is to be pulled up, the rising control circuit pulls down the first gating voltage and the second gating voltage during the first transient period; the falling control circuit compares the input voltage and the output voltage to obtain the second comparison result; And when the second comparison result indicates that the output voltage is to be pulled down, the drop control circuit pulls up the first gating voltage and the second gating voltage during the second transient period.
基于上述,本发明诸实施例所述输出缓冲器及其操作方法可以比较输入电压与输出电压。当输出电压要被拉升时,输出缓冲器的输出级电路的第一闸控电压与第二闸控电压都被拉降,以提升输出电压的回转率。当输出电压要被拉降时,输出缓冲器的输出级电路的第一闸控电压与第二闸控电压都被拉升,以提升输出电压的回转率。Based on the above, the output buffer and the operation method thereof according to the embodiments of the present invention can compare the input voltage and the output voltage. When the output voltage is going to be pulled up, both the first gating voltage and the second gating voltage of the output stage circuit of the output buffer are pulled down to increase the slew rate of the output voltage. When the output voltage is to be pulled down, both the first gating voltage and the second gating voltage of the output stage circuit of the output buffer are pulled up to increase the slew rate of the output voltage.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail with reference to the accompanying drawings.
附图说明Description of drawings
图1是依照本发明的一实施例所绘示的一种输出缓冲器的电路方块(circuitblock)示意图。FIG. 1 is a schematic diagram of a circuit block of an output buffer according to an embodiment of the present invention.
图2是依照本发明的一实施例所绘示的一种输出缓冲器的操作方法的流程示意图。FIG. 2 is a schematic flowchart of an operation method of an output buffer according to an embodiment of the present invention.
图3是依照本发明的一实施例说明图1所示上升控制电路的电路方块示意图。FIG. 3 is a circuit block diagram illustrating the rising control circuit shown in FIG. 1 according to an embodiment of the present invention.
图4是依照本发明的另一实施例说明图1所示上升控制电路的电路方块示意图。FIG. 4 is a circuit block diagram illustrating the rising control circuit shown in FIG. 1 according to another embodiment of the present invention.
图5是依照本发明的一实施例说明图1所示下降控制电路的电路方块示意图。FIG. 5 is a circuit block diagram illustrating the drop control circuit shown in FIG. 1 according to an embodiment of the present invention.
图6是依照本发明的另一实施例说明图1所示下降控制电路的电路方块示意图。FIG. 6 is a circuit block diagram illustrating the droop control circuit shown in FIG. 1 according to another embodiment of the present invention.
【附图标记说明】[Description of Reference Signs]
100:输出缓冲器100: output buffer
110:输入级电路110: Input stage circuit
120:输出级电路120: Output stage circuit
130:上升控制电路130: Rising control circuit
131:比较电路131: Comparison circuit
140:下降控制电路140: Down control circuit
141:比较电路141: Comparison circuit
310、510:电流镜310, 510: current mirror
EN、ENB:控制信号EN, ENB: control signal
N1~N12、P1~P12:电晶体N1~N12, P1~P12: Transistor
NGATE、PGATE:闸控电压NGATE, PGATE: Gating voltage
S210~S270:步骤S210~S270: steps
VC1、VC2:控制电压VC1, VC2: control voltage
VDDA:系统电压VDDA: system voltage
VIN:输入电压VIN: input voltage
VOUT:输出电压VOUT: output voltage
VSSA:参考电压VSSA: reference voltage
具体实施方式Detailed ways
在本案说明书全文(包括权利要求书)中所使用的「耦接(或连接)」一词可指任何直接或间接的连接手段。举例而言,若文中描述第一装置耦接(或连接)于第二装置,则应该被解释成该第一装置可以直接连接于该第二装置,或者该第一装置可以通过其他装置或某种连接手段而间接地连接至该第二装置。另外,凡可能之处,在附图及实施方式中使用相同附图标记的元件/构件/步骤代表相同或类似部分。不同实施例中使用相同附图标记或使用相同用语的元件/构件/步骤可以相互参照相关说明。As used throughout this specification (including the claims), the term "coupled (or connected)" may refer to any direct or indirect means of connection. For example, if it is described that a first device is coupled (or connected) to a second device, it should be interpreted that the first device can be directly connected to the second device, or the first device can be indirectly connected to the second device through other devices or some connection means. In addition, wherever possible, elements/components/steps using the same reference numerals in the drawings and the embodiments represent the same or similar parts. Elements/components/steps using the same reference numerals or using the same terms in different embodiments can refer to related descriptions.
图1是依照本发明的一实施例所绘示的一种输出缓冲器100的电路方块(circuitblock)示意图。输出缓冲器100的第一输入端从前级电路(未绘示)接收输入电压VIN,而输出缓冲器100的输出端将输出电压VOUT输出至后级电路(未绘示)。于图1所示实施例中,输出缓冲器100的输出电压VOUT被回授至输出缓冲器100的第二输入端。依照设计需求,在其他实施例中,输出缓冲器100的输出端可能经由其他元件/电路(未绘示)而耦接至输出缓冲器100的第二输入端,或者输出缓冲器100的输出端不耦接至输出缓冲器100的第二输入端。FIG. 1 is a schematic diagram of a circuit block of an output buffer 100 according to an embodiment of the present invention. The first input terminal of the output buffer 100 receives the input voltage VIN from the previous circuit (not shown), and the output terminal of the output buffer 100 outputs the output voltage VOUT to the subsequent circuit (not shown). In the embodiment shown in FIG. 1 , the output voltage VOUT of the output buffer 100 is fed back to the second input end of the output buffer 100 . According to design requirements, in other embodiments, the output end of the output buffer 100 may be coupled to the second input end of the output buffer 100 via other elements/circuits (not shown), or the output end of the output buffer 100 may not be coupled to the second input end of the output buffer 100.
于图1所示实施例中,输出缓冲器100包括输入级电路110、输出级电路120、上升控制电路130以及下降控制电路140。依照设计需求,输入级电路110可以包括差动输入对、增益电路以及/或是其他输入级电路。举例来说,输入级电路110可以是已知运算放大器的输入级电路或是其他放大器的输入级电路以及/或是增益级电路。输入级电路110的第一输入端耦接至输出缓冲器100的第一输入端,以便接收输入电压VIN。输入级电路110的第二输入端耦接至输出缓冲器100的第二输入端,以便接收输出电压VOUT。输入级电路110可以依照输入电压VIN对应地产生闸控电压PGATE与闸控电压NGATE。In the embodiment shown in FIG. 1 , the output buffer 100 includes an input stage circuit 110 , an output stage circuit 120 , a rising control circuit 130 and a falling control circuit 140 . According to design requirements, the input stage circuit 110 may include a differential input pair, a gain circuit and/or other input stage circuits. For example, the input stage circuit 110 may be an input stage circuit of a known operational amplifier or an input stage circuit and/or a gain stage circuit of other amplifiers. The first input terminal of the input stage circuit 110 is coupled to the first input terminal of the output buffer 100 to receive the input voltage VIN. The second input terminal of the input stage circuit 110 is coupled to the second input terminal of the output buffer 100 to receive the output voltage VOUT. The input stage circuit 110 can correspondingly generate the gating voltage PGATE and the gating voltage NGATE according to the input voltage VIN.
输出级电路120的第一输入端耦接至输入级电路110的第一输出端,以接收闸控电压PGATE。输出级电路120的第二输入端耦接至输入级电路110的第二输出端,以接收闸控电压NGATE。输出级电路120的输出端耦接至输出缓冲器100的输出端。输出级电路120可以依照闸控电压PGATE与闸控电压NGATE而对应地产生输出缓冲器100的输出电压VOUT。The first input terminal of the output stage circuit 120 is coupled to the first output terminal of the input stage circuit 110 to receive the gating voltage PGATE. The second input terminal of the output stage circuit 120 is coupled to the second output terminal of the input stage circuit 110 to receive the gating voltage NGATE. The output terminal of the output stage circuit 120 is coupled to the output terminal of the output buffer 100 . The output stage circuit 120 can correspondingly generate the output voltage VOUT of the output buffer 100 according to the gate control voltage PGATE and the gate control voltage NGATE.
于图1所示实施例中,输出级电路120包括电晶体P1与电晶体N1。电晶体P1的控制端(例如闸极)耦接至输入级电路110的第一输出端,以接收闸控电压PGATE。电晶体P1的第一端(例如源极)耦接至系统电压VDDA。系统电压VDDA的电平可以依照设计需求来决定。电晶体P1的第二端(例如漏极)耦接至输出级电路120的输出端,其中输出级电路120的输出端输出所述输出电压VOUT。电晶体N1的控制端(例如闸极)耦接至输入级电路110的第二输出端,以接收闸控电压NGATE。电晶体N1的第一端(例如源极)耦接至参考电压VSSA。参考电压VSSA的电平可以依照设计需求来决定。电晶体N1的第二端(例如漏极)耦接至输出级电路120的输出端与电晶体P1的第二端。In the embodiment shown in FIG. 1 , the output stage circuit 120 includes a transistor P1 and a transistor N1 . A control terminal (eg gate) of the transistor P1 is coupled to the first output terminal of the input stage circuit 110 to receive the gate control voltage PGATE. A first end (for example, a source) of the transistor P1 is coupled to the system voltage VDDA. The level of the system voltage VDDA can be determined according to design requirements. A second terminal (for example, a drain) of the transistor P1 is coupled to the output terminal of the output stage circuit 120 , wherein the output terminal of the output stage circuit 120 outputs the output voltage VOUT. A control terminal (eg gate) of the transistor N1 is coupled to the second output terminal of the input stage circuit 110 to receive the gate control voltage NGATE. A first end (for example, a source) of the transistor N1 is coupled to a reference voltage VSSA. The level of the reference voltage VSSA can be determined according to design requirements. The second terminal (eg, the drain) of the transistor N1 is coupled to the output terminal of the output stage circuit 120 and the second terminal of the transistor P1 .
图1所示输出级电路120是一个范例。无论如何,输出级电路120的实施方式不应受限于图1所示实施例。依照设计需求,输出级电路120可以包括任何类型的输出电路。举例来说,在其他实施例中,输出级电路120可以是已知运算放大器的输出级电路或是其他放大器的输出级电路。The output stage circuit 120 shown in FIG. 1 is an example. In any case, the implementation of the output stage circuit 120 should not be limited to the embodiment shown in FIG. 1 . According to design requirements, the output stage circuit 120 may include any type of output circuit. For example, in other embodiments, the output stage circuit 120 may be an output stage circuit of a known operational amplifier or an output stage circuit of other amplifiers.
图2是依照本发明的一实施例所绘示的一种输出缓冲器的操作方法的流程示意图。请参照图1与图2。于步骤S210中,输入级电路110依照输出缓冲器100的输入电压VIN而对应地产生闸控电压PGATE与闸控电压NGATE。于步骤S220中,输出级电路120依照闸控电压PGATE与闸控电压NGATE而对应地产生输出缓冲器100的输出电压VOUT。于步骤S230中,上升控制电路130比较输入电压VIN与输出电压VOUT而获得第一比较结果,以及下降控制电路140比较输入电压VIN与输出电压VOUT而获得第二比较结果。FIG. 2 is a schematic flowchart of an operation method of an output buffer according to an embodiment of the present invention. Please refer to Figure 1 and Figure 2. In step S210 , the input stage circuit 110 correspondingly generates a gating voltage PGATE and a gating voltage NGATE according to the input voltage VIN of the output buffer 100 . In step S220 , the output stage circuit 120 correspondingly generates the output voltage VOUT of the output buffer 100 according to the gate control voltage PGATE and the gate control voltage NGATE. In step S230 , the rising control circuit 130 compares the input voltage VIN and the output voltage VOUT to obtain a first comparison result, and the falling control circuit 140 compares the input voltage VIN and the output voltage VOUT to obtain a second comparison result.
当所述第一比较结果表示输出电压VOUT要被拉升时(步骤S240为“要被拉升”),上升控制电路130可以于暂态期间拉降闸控电压PGATE与闸控电压NGATE(步骤S250)。当上升控制电路130拉降闸控电压NGATE时,电晶体N1的截止(turn off)状态可以被确保,以避免出现短路电流。当上升控制电路130拉降闸控电压PGATE时,流经电晶体P1的电流可以暂时性地被增加,以便加速拉升输出电压VOUT。因此,输出电压VOUT的回转率(Slew Rate)可以被提升。When the first comparison result indicates that the output voltage VOUT is to be pulled up ("to be pulled up" in step S240), the rising control circuit 130 may pull down the gating voltages PGATE and NGATE during the transient period (step S250). When the rising control circuit 130 pulls down the gate control voltage NGATE, the turn-off state of the transistor N1 can be ensured to avoid short-circuit current. When the rising control circuit 130 pulls down the gate control voltage PGATE, the current flowing through the transistor P1 can be temporarily increased to speed up pulling up the output voltage VOUT. Therefore, the slew rate (Slew Rate) of the output voltage VOUT can be increased.
依照设计需求,在一些实施例中,步骤S250可能包括下述操作。当输入电压VIN大于输出电压VOUT时,上升控制电路130可以拉降闸控电压PGATE与闸控电压NGATE。当输入电压VIN小于或等于输出电压VOUT时,上升控制电路130可以不调整闸控电压PGATE与闸控电压NGATE。According to design requirements, in some embodiments, step S250 may include the following operations. When the input voltage VIN is greater than the output voltage VOUT, the rising control circuit 130 can pull down the gate control voltage PGATE and the gate control voltage NGATE. When the input voltage VIN is less than or equal to the output voltage VOUT, the rising control circuit 130 may not adjust the gate control voltage PGATE and the gate control voltage NGATE.
当所述第一比较结果与所述第二比较结果均表示输出电压VOUT不会被改变时(步骤S240为“没改变”),上升控制电路130以及下降控制电路140可以不调整闸控电压PGATE与闸控电压NGATE(步骤S260)。在上升控制电路130以及下降控制电路140没有干涉闸控电压PGATE与闸控电压NGATE的情况下,闸控电压PGATE的电平与闸控电压NGATE的电平是由输入级电路110来决定。When both the first comparison result and the second comparison result indicate that the output voltage VOUT will not be changed (“no change” in step S240), the rising control circuit 130 and the falling control circuit 140 may not adjust the gate control voltage PGATE and the gate control voltage NGATE (step S260). When the rising control circuit 130 and the falling control circuit 140 do not interfere with the gate voltage PGATE and the gate voltage NGATE, the levels of the gate voltage PGATE and the gate voltage NGATE are determined by the input stage circuit 110 .
当所述第二比较结果表示输出电压VOUT要被拉降时(步骤S240为“要被拉降”),下降控制电路140可以于暂态期间拉升闸控电压PGATE与闸控电压NGATE(步骤S270)。当下降控制电路140拉升闸控电压PGATE时,电晶体P1的截止(turn off)状态可以被确保,以避免出现短路电流。当下降控制电路140拉升闸控电压NGATE时,流经电晶体N1的电流可以暂时性地被增加,以便加速拉降输出电压VOUT。因此,输出电压VOUT的回转率可以被提升。When the second comparison result indicates that the output voltage VOUT is about to be pulled down (“to be pulled down” in step S240 ), the down control circuit 140 may pull up the gating voltages PGATE and NGATE during the transient period (step S270 ). When the down control circuit 140 pulls up the gate control voltage PGATE, the turn off state of the transistor P1 can be ensured to avoid short-circuit current. When the drop control circuit 140 pulls up the gate control voltage NGATE, the current flowing through the transistor N1 can be temporarily increased to speed up pulling down the output voltage VOUT. Therefore, the slew rate of the output voltage VOUT can be increased.
依照设计需求,在一些实施例中,步骤S270可能包括下述操作。当输入电压VIN小于输出电压VOUT时,下降控制电路140可以拉升闸控电压PGATE与闸控电压NGATE。当输入电压VIN大于或等于输出电压VOUT时,下降控制电路140可以不调整闸控电压PGATE与闸控电压NGATE。According to design requirements, in some embodiments, step S270 may include the following operations. When the input voltage VIN is lower than the output voltage VOUT, the drop control circuit 140 can pull up the gate control voltage PGATE and the gate control voltage NGATE. When the input voltage VIN is greater than or equal to the output voltage VOUT, the drop control circuit 140 may not adjust the gate control voltage PGATE and the gate control voltage NGATE.
依照不同的设计需求,上述上升控制电路130以及/或是下降控制电路140的方块的实现方式可以是硬件(hardware)、固件(firmware)、软件(software,即程序)或是前述三者中的多者的组合形式。以硬件形式而言,上述上升控制电路130以及/或是下降控制电路140的方块可以实现于集成电路(integrated circuit)上的逻辑电路。上述上升控制电路130以及/或是下降控制电路140的相关功能可以利用硬件描述语言(hardwaredescription languages,例如Verilog HDL或VHDL)或其他合适的编程语言来实现为硬件。举例来说,上述上升控制电路130以及/或是下降控制电路140的相关功能可以被实现于一或多个控制器、微控制器、微处理器、专用集成电路(Application-specific integratedcircuit,ASIC)、数字信号处理器(digital signal processor,DSP)、现场可编程门阵列(Field Programmable Gate Array,FPGA)及/或其他处理单元中的各种逻辑区块、模块和电路。According to different design requirements, the blocks of the rising control circuit 130 and/or the falling control circuit 140 may be implemented in the form of hardware, firmware, software, or a combination of the above three. In terms of hardware, the above-mentioned blocks of the rising control circuit 130 and/or the falling control circuit 140 may be implemented as logic circuits on an integrated circuit. The relevant functions of the above-mentioned rising control circuit 130 and/or the falling control circuit 140 can be implemented as hardware by using hardware description languages (such as Verilog HDL or VHDL) or other suitable programming languages. For example, related functions of the above-mentioned rising control circuit 130 and/or falling control circuit 140 may be implemented in one or more controllers, microcontrollers, microprocessors, application-specific integrated circuits (ASICs), digital signal processors (digital signal processors, DSPs), field programmable gate arrays (Field Programmable Gate Arrays, FPGAs) and/or various logic blocks, modules and circuits in other processing units.
图3是依照本发明的一实施例说明图1所示上升控制电路130的电路方块示意图。于图3所示实施例中,上升控制电路130包括比较电路131、电晶体N2以及电晶体N3。比较电路131可以比较输入电压VIN与输出电压VOUT而产生控制电压VC1作为所述第一比较结果。电晶体N2的控制端(例如闸极)耦接至比较电路131的输出端,以接收控制电压VC1。电晶体N2的第一端(例如源极)耦接至参考电压VSSA。电晶体N2的第二端(例如漏极)耦接至输出级电路120的第一输入端,以接收闸控电压PGATE。电晶体N3的控制端(例如闸极)耦接至比较电路131的输出端,以接收控制电压VC1。电晶体N3的第一端(例如源极)耦接至参考电压VSSA。电晶体N3的第二端(例如漏极)耦接至输出级电路120的第二输入端,以接收闸控电压NGATE。FIG. 3 is a schematic circuit block diagram illustrating the rising control circuit 130 shown in FIG. 1 according to an embodiment of the present invention. In the embodiment shown in FIG. 3 , the rising control circuit 130 includes a comparison circuit 131 , a transistor N2 and a transistor N3 . The comparison circuit 131 can compare the input voltage VIN and the output voltage VOUT to generate the control voltage VC1 as the first comparison result. A control terminal (eg gate) of the transistor N2 is coupled to the output terminal of the comparison circuit 131 to receive the control voltage VC1 . A first end (for example, a source) of the transistor N2 is coupled to the reference voltage VSSA. A second terminal (for example, a drain) of the transistor N2 is coupled to the first input terminal of the output stage circuit 120 to receive the gating voltage PGATE. A control terminal (eg gate) of the transistor N3 is coupled to the output terminal of the comparison circuit 131 to receive the control voltage VC1 . A first end (for example, a source) of the transistor N3 is coupled to the reference voltage VSSA. A second terminal (for example, a drain) of the transistor N3 is coupled to the second input terminal of the output stage circuit 120 to receive the gate control voltage NGATE.
当输入电压VIN大于输出电压VOUT时,比较电路131可以借由控制电压VC1去导通(turn on)电晶体N2以及电晶体N3,以拉降闸控电压PGATE与闸控电压NGATE。当输入电压VIN小于或等于输出电压VOUT时,比较电路131可以借由控制电压VC1去截止(turn off)电晶体N2以及电晶体N3,因此上升控制电路130可以不干涉(不调整)闸控电压PGATE与闸控电压NGATE。When the input voltage VIN is greater than the output voltage VOUT, the comparison circuit 131 can turn on the transistor N2 and the transistor N3 by controlling the voltage VC1 to pull down the gate voltage PGATE and the gate voltage NGATE. When the input voltage VIN is less than or equal to the output voltage VOUT, the comparison circuit 131 can turn off the transistor N2 and the transistor N3 by controlling the voltage VC1, so the rising control circuit 130 does not interfere with (not adjust) the gate control voltage PGATE and the gate control voltage NGATE.
在图3所示实施例中,比较电路131包括电晶体N4、电晶体N5以及电流镜310。电晶体N4的控制端(例如闸极)耦接至输入电压VIN。电晶体N4的第一端(例如源极)耦接至输出电压VOUT。电流镜310的主电流端耦接至电晶体N4的第二端(例如漏极)。电流镜310的从电流端耦接至比较电路131的输出端,其中比较电路131的所述输出端可以提供控制电压VC1给电晶体N2以及电晶体N3。电晶体N5的控制端(例如闸极)耦接至比较电路131的所述输出端。电晶体N5的第一端(例如源极)耦接至参考电压VSSA。电晶体N5的第二端(例如漏极)耦接至电流镜310的从电流端与电晶体N5的控制端。In the embodiment shown in FIG. 3 , the comparison circuit 131 includes a transistor N4 , a transistor N5 and a current mirror 310 . A control terminal (eg gate) of the transistor N4 is coupled to the input voltage VIN. A first end (for example, a source) of the transistor N4 is coupled to the output voltage VOUT. The main current terminal of the current mirror 310 is coupled to the second terminal (eg, the drain) of the transistor N4. The slave current terminal of the current mirror 310 is coupled to the output terminal of the comparison circuit 131 , wherein the output terminal of the comparison circuit 131 can provide the control voltage VC1 to the transistor N2 and the transistor N3 . A control terminal (eg gate) of the transistor N5 is coupled to the output terminal of the comparison circuit 131 . A first end (for example, a source) of the transistor N5 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N5 is coupled to the slave current terminal of the current mirror 310 and the control terminal of the transistor N5 .
于图3所示实施例中,电流镜310包括电晶体P2以及电晶体P3。电晶体P2的第一端(例如源极)耦接至系统电压VDDA。电晶体P2的第二端(例如漏极)与控制端(例如闸极)耦接至电流镜310的所述主电流端。电晶体P3的第一端(例如源极)耦接至系统电压VDDA。电晶体P3的第二端(例如漏极)耦接至电流镜310的所述从电流端。电晶体P3的控制端(例如闸极)耦接至电晶体P2的控制端。In the embodiment shown in FIG. 3 , the current mirror 310 includes a transistor P2 and a transistor P3 . A first terminal (for example, a source) of the transistor P2 is coupled to the system voltage VDDA. A second terminal (such as a drain) and a control terminal (such as a gate) of the transistor P2 are coupled to the main current terminal of the current mirror 310 . A first terminal (for example, a source) of the transistor P3 is coupled to the system voltage VDDA. A second terminal (for example, a drain) of the transistor P3 is coupled to the slave current terminal of the current mirror 310 . A control terminal (eg, a gate) of the transistor P3 is coupled to a control terminal of the transistor P2 .
图4是依照本发明的另一实施例说明图1所示上升控制电路130的电路方块示意图。于图4所示实施例中,上升控制电路130包括比较电路132、电晶体N2以及电晶体N3。图4所示比较电路132、电晶体N2以及电晶体N3可以参照图3所示比较电路131、电晶体N2以及电晶体N3的相关说明来类推,故不再赘述。FIG. 4 is a schematic circuit block diagram illustrating the rising control circuit 130 shown in FIG. 1 according to another embodiment of the present invention. In the embodiment shown in FIG. 4 , the rising control circuit 130 includes a comparison circuit 132 , a transistor N2 and a transistor N3 . The comparison circuit 132 , the transistor N2 and the transistor N3 shown in FIG. 4 can be analogized with reference to the relevant descriptions of the comparison circuit 131 , the transistor N2 and the transistor N3 shown in FIG. 3 , so details are not repeated here.
于图4所示实施例中,比较电路132包括电晶体N6、电晶体N7、电晶体N8、电晶体N9、电晶体P4以及电流镜310。电晶体N6的控制端(例如闸极)耦接至输入电压VIN。电晶体N6的第一端(例如源极)耦接至输出电压VOUT。电晶体N7的控制端(例如闸极)受控于控制信号EN。电晶体N7的第一端(例如源极)耦接至电晶体N6的第二端(例如漏极)。In the embodiment shown in FIG. 4 , the comparison circuit 132 includes a transistor N6 , a transistor N7 , a transistor N8 , a transistor N9 , a transistor P4 and a current mirror 310 . A control terminal (eg gate) of the transistor N6 is coupled to the input voltage VIN. A first end (for example, a source) of the transistor N6 is coupled to the output voltage VOUT. The control terminal (eg gate) of the transistor N7 is controlled by the control signal EN. A first terminal (such as a source) of the transistor N7 is coupled to a second terminal (such as a drain) of the transistor N6.
电流镜310的主电流端耦接至电晶体N7的第二端(例如漏极)。电流镜310的从电流端耦接至比较电路132的输出端,其中比较电路132的所述输出端可以提供控制电压VC1给电晶体N2以及电晶体N3。图4所示电流镜310可以参照图3所示电流镜310的相关说明来类推,故不再赘述。The main current terminal of the current mirror 310 is coupled to the second terminal (eg, the drain) of the transistor N7. The slave current terminal of the current mirror 310 is coupled to the output terminal of the comparison circuit 132 , wherein the output terminal of the comparison circuit 132 can provide the control voltage VC1 to the transistor N2 and the transistor N3 . The current mirror 310 shown in FIG. 4 can be deduced with reference to the relevant description of the current mirror 310 shown in FIG. 3 , so details are not repeated here.
电晶体P4的控制端(例如闸极)受控于控制信号EN。电晶体P4的第一端(例如源极)耦接至系统电压VDDA。电晶体P4的第二端(例如漏极)耦接至电流镜310的使能端。亦即,电晶体P4的第二端耦接至电晶体P2的控制端以及电晶体P3的控制端。电晶体N8的控制端(例如闸极)耦接至比较电路132的所述输出端。电晶体N8的第一端(例如源极)耦接至参考电压VSSA。电晶体N8的第二端(例如漏极)耦接至电流镜310的从电流端与电晶体N8的控制端。电晶体N9的控制端(例如闸极)受控于控制信号ENB。控制信号ENB是控制信号EN的反相信号。电晶体N9的第一端(例如源极)耦接至参考电压VSSA。电晶体N9的第二端(例如漏极)耦接至电晶体N8的控制端。The control terminal (eg gate) of the transistor P4 is controlled by the control signal EN. A first terminal (for example, a source) of the transistor P4 is coupled to the system voltage VDDA. A second terminal (for example, a drain) of the transistor P4 is coupled to an enable terminal of the current mirror 310 . That is, the second terminal of the transistor P4 is coupled to the control terminal of the transistor P2 and the control terminal of the transistor P3 . A control terminal (eg gate) of the transistor N8 is coupled to the output terminal of the comparison circuit 132 . A first terminal (for example, a source) of the transistor N8 is coupled to the reference voltage VSSA. The second terminal (for example, the drain) of the transistor N8 is coupled to the slave current terminal of the current mirror 310 and the control terminal of the transistor N8 . The control terminal (eg gate) of the transistor N9 is controlled by the control signal ENB. The control signal ENB is an inverted signal of the control signal EN. A first end (for example, a source) of the transistor N9 is coupled to the reference voltage VSSA. A second terminal (for example, a drain) of the transistor N9 is coupled to a control terminal of the transistor N8.
当控制信号EN为高电压电平(例如系统电压VDDA的电平或其他电平)时,亦即当控制信号ENB为低电压电平(例如参考电压VSSA的电平或其他电平)时,电晶体N7为导通(turnon),而电晶体P4与电晶体N9为截止(turn off),此时图4所示比较电路132的操作相似于图3所示比较电路131的操作。当控制信号EN为低电压电平(亦即控制信号ENB为高电压电平)时,电晶体N7为截止,而电晶体P4与电晶体N9为导通,此时图4所示比较电路132被禁用(disable),而且控制电压VC1被下拉至低电压电平。当控制电压VC1被下拉至低电压电平时,电晶体N2以及电晶体N3会被截止(turn off)。因此,当控制信号EN(控制信号ENB)禁用上升控制电路130时,上升控制电路130可以不干涉(不调整)闸控电压PGATE与闸控电压NGATE。When the control signal EN is at a high voltage level (such as the level of the system voltage VDDA or other levels), that is, when the control signal ENB is at a low voltage level (such as the level of the reference voltage VSSA or other levels), the transistor N7 is turned on, and the transistors P4 and transistor N9 are turned off. At this time, the operation of the comparison circuit 132 shown in FIG. 4 is similar to the operation of the comparison circuit 131 shown in FIG. 3 . When the control signal EN is at a low voltage level (that is, the control signal ENB is at a high voltage level), the transistor N7 is turned off, and the transistor P4 and the transistor N9 are turned on. At this time, the comparison circuit 132 shown in FIG. 4 is disabled, and the control voltage VC1 is pulled down to a low voltage level. When the control voltage VC1 is pulled down to a low voltage level, the transistor N2 and the transistor N3 are turned off. Therefore, when the control signal EN (control signal ENB) disables the boost control circuit 130 , the boost control circuit 130 may not interfere (not adjust) the gating voltages PGATE and NGATE.
在一些应用情境中,在输出电压VOUT被拉降后,输出电压VOUT可能会在特定期间低于(小于)输入电压VIN,然后在所述特定期间结束后输出电压VOUT的电平回归至与输入电压VIN一致。一般而言,所述特定期间是很短的。借由控制信号EN(控制信号ENB)的控制,上升控制电路130可以在所述特定期间内被禁能,以及在所述特定期间外被启用(enable)。因此,上升控制电路130在所述特定期间中的误动作可以被避免。In some application scenarios, after the output voltage VOUT is pulled down, the output voltage VOUT may be lower (less than) the input voltage VIN for a specific period, and then the level of the output voltage VOUT returns to be consistent with the input voltage VIN after the specific period ends. Generally, the specified period is short. Controlled by the control signal EN (control signal ENB), the rising control circuit 130 can be disabled during the specified period and enabled outside the specified period. Therefore, malfunction of the rise control circuit 130 during the specific period can be avoided.
图5是依照本发明的一实施例说明图1所示下降控制电路140的电路方块示意图。于图5所示实施例中,下降控制电路140包括比较电路141、电晶体P5以及电晶体P6。比较电路141可以比较输入电压VIN与输出电压VOUT而产生控制电压VC2作为所述第二比较结果。电晶体P5的控制端(例如闸极)耦接至比较电路141的输出端,以接收控制电压VC2。电晶体P5的第一端(例如源极)耦接至系统电压VDDA。电晶体P5的第二端(例如漏极)耦接至输出级电路120的第一输入端,以接收闸控电压PGATE。电晶体P6的控制端(例如闸极)耦接至比较电路141的输出端,以接收控制电压VC2。电晶体P6的第一端(例如源极)耦接至系统电压VDDA。电晶体P6的第二端(例如漏极)耦接至输出级电路120的第二输入端,以接收闸控电压NGATE。FIG. 5 is a circuit block diagram illustrating the drop control circuit 140 shown in FIG. 1 according to an embodiment of the present invention. In the embodiment shown in FIG. 5 , the falling control circuit 140 includes a comparison circuit 141 , a transistor P5 and a transistor P6 . The comparison circuit 141 can compare the input voltage VIN and the output voltage VOUT to generate the control voltage VC2 as the second comparison result. A control terminal (eg gate) of the transistor P5 is coupled to the output terminal of the comparison circuit 141 to receive the control voltage VC2 . A first end (for example, a source) of the transistor P5 is coupled to the system voltage VDDA. A second terminal (for example, a drain) of the transistor P5 is coupled to the first input terminal of the output stage circuit 120 to receive the gating voltage PGATE. A control terminal (eg gate) of the transistor P6 is coupled to the output terminal of the comparison circuit 141 to receive the control voltage VC2 . A first terminal (for example, a source) of the transistor P6 is coupled to the system voltage VDDA. A second terminal (for example, a drain) of the transistor P6 is coupled to the second input terminal of the output stage circuit 120 to receive the gate control voltage NGATE.
当输入电压VIN小于输出电压VOUT时,比较电路141可以借由控制电压VC2去导通(turn on)电晶体P5以及电晶体P6,以拉升闸控电压PGATE与闸控电压NGATE。当输入电压VIN大于或等于输出电压VOUT时,比较电路141可以借由控制电压VC2去截止(turn off)电晶体P5以及电晶体P6,因此下降控制电路140可以不干涉(不调整)闸控电压PGATE与闸控电压NGATE。When the input voltage VIN is lower than the output voltage VOUT, the comparison circuit 141 can turn on the transistor P5 and the transistor P6 by controlling the voltage VC2 to pull up the gate voltage PGATE and the gate voltage NGATE. When the input voltage VIN is greater than or equal to the output voltage VOUT, the comparison circuit 141 can turn off the transistor P5 and the transistor P6 through the control voltage VC2, so the drop control circuit 140 does not interfere with (not adjust) the gate control voltage PGATE and the gate control voltage NGATE.
在图5所示实施例中,比较电路141包括电晶体P7、电晶体P8以及电流镜510。电晶体P7的控制端(例如闸极)耦接至输入电压VIN。电晶体P7的第一端(例如源极)耦接至输出电压VOUT。电流镜510的主电流端耦接至电晶体P7的第二端(例如漏极)。电流镜510的从电流端耦接至比较电路141的输出端,其中比较电路141的所述输出端可以提供控制电压VC2给电晶体P5以及电晶体P6。电晶体P8的控制端(例如闸极)耦接至比较电路141的所述输出端。电晶体P8的第一端(例如源极)耦接至系统电压VDDA。电晶体P8的第二端(例如漏极)耦接至电流镜510的从电流端与电晶体P8的控制端。In the embodiment shown in FIG. 5 , the comparison circuit 141 includes a transistor P7 , a transistor P8 and a current mirror 510 . A control terminal (eg gate) of the transistor P7 is coupled to the input voltage VIN. A first end (for example, a source) of the transistor P7 is coupled to the output voltage VOUT. The main current terminal of the current mirror 510 is coupled to the second terminal (eg, the drain) of the transistor P7. The slave current terminal of the current mirror 510 is coupled to the output terminal of the comparison circuit 141 , wherein the output terminal of the comparison circuit 141 can provide the control voltage VC2 to the transistor P5 and the transistor P6 . A control terminal (eg gate) of the transistor P8 is coupled to the output terminal of the comparison circuit 141 . A first terminal (for example, a source) of the transistor P8 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P8 is coupled to the slave current terminal of the current mirror 510 and the control terminal of the transistor P8 .
于图5所示实施例中,电流镜510包括电晶体N10以及电晶体N11。电晶体N10的第一端(例如源极)耦接至参考电压VSSA。电晶体N10的第二端(例如漏极)与控制端(例如闸极)耦接至电流镜510的所述主电流端。电晶体N11的第一端(例如源极)耦接至参考电压VSSA。电晶体N11的第二端(例如漏极)耦接至电流镜510的所述从电流端。电晶体N11的控制端(例如闸极)耦接至电晶体N10的控制端。In the embodiment shown in FIG. 5 , the current mirror 510 includes a transistor N10 and a transistor N11 . A first end (for example, a source) of the transistor N10 is coupled to the reference voltage VSSA. A second terminal (such as a drain) and a control terminal (such as a gate) of the transistor N10 are coupled to the main current terminal of the current mirror 510 . A first end (for example, a source) of the transistor N11 is coupled to the reference voltage VSSA. A second terminal (for example, a drain) of the transistor N11 is coupled to the slave current terminal of the current mirror 510 . A control terminal (eg, a gate) of the transistor N11 is coupled to a control terminal of the transistor N10 .
图6是依照本发明的另一实施例说明图1所示下降控制电路140的电路方块示意图。于图6所示实施例中,下降控制电路140包括比较电路142、电晶体P5以及电晶体P6。图6所示比较电路142、电晶体P5以及电晶体P6可以参照图5所示比较电路141、电晶体P5以及电晶体P6的相关说明来类推,故不再赘述。FIG. 6 is a circuit block diagram illustrating the droop control circuit 140 shown in FIG. 1 according to another embodiment of the present invention. In the embodiment shown in FIG. 6 , the falling control circuit 140 includes a comparison circuit 142 , a transistor P5 and a transistor P6 . The comparison circuit 142 , transistor P5 and transistor P6 shown in FIG. 6 can be analogized with reference to the descriptions of the comparison circuit 141 , transistor P5 and transistor P6 shown in FIG. 5 , so details are not repeated here.
于图6所示实施例中,比较电路142包括电晶体P9、电晶体P10、电晶体P11、电晶体P12、电晶体N12以及电流镜510。电晶体P9的控制端(例如闸极)耦接至输入电压VIN。电晶体P9的第一端(例如源极)耦接至输出电压VOUT。电晶体P10的控制端(例如闸极)受控于控制信号ENB。电晶体P10的第一端(例如源极)耦接至电晶体P9的第二端(例如漏极)。In the embodiment shown in FIG. 6 , the comparison circuit 142 includes a transistor P9 , a transistor P10 , a transistor P11 , a transistor P12 , a transistor N12 and a current mirror 510 . A control terminal (eg gate) of the transistor P9 is coupled to the input voltage VIN. A first end (for example, a source) of the transistor P9 is coupled to the output voltage VOUT. The control terminal (eg gate) of the transistor P10 is controlled by the control signal ENB. A first terminal (such as a source) of the transistor P10 is coupled to a second terminal (such as a drain) of the transistor P9.
电流镜510的主电流端耦接至电晶体P10的第二端(例如漏极)。电流镜510的从电流端耦接至比较电路142的输出端,其中比较电路142的所述输出端可以提供控制电压VC2给电晶体P5以及电晶体P6。图6所示电流镜510可以参照图5所示电流镜510的相关说明来类推,故不再赘述。The main current terminal of the current mirror 510 is coupled to the second terminal (eg, the drain) of the transistor P10 . The slave current terminal of the current mirror 510 is coupled to the output terminal of the comparison circuit 142 , wherein the output terminal of the comparison circuit 142 can provide the control voltage VC2 to the transistor P5 and the transistor P6 . The current mirror 510 shown in FIG. 6 can be deduced by referring to the relevant description of the current mirror 510 shown in FIG. 5 , so details are not repeated here.
电晶体N12的控制端(例如闸极)受控于控制信号ENB。电晶体N12的第一端(例如源极)耦接至参考电压VSSA。电晶体N12的第二端(例如漏极)耦接至电流镜510的使能端。亦即,电晶体N12的第二端耦接至电晶体N10的控制端以及电晶体N11的控制端。电晶体P11的控制端(例如闸极)耦接至比较电路142的所述输出端。电晶体P11的第一端(例如源极)耦接至系统电压VDDA。电晶体P11的第二端(例如漏极)耦接至电流镜510的从电流端与电晶体P11的控制端。电晶体P12的控制端(例如闸极)受控于控制信号EN。控制信号EN是控制信号ENB的反相信号。电晶体P12的第一端(例如源极)耦接至系统电压VDDA。电晶体P12的第二端(例如漏极)耦接至电晶体P11的控制端。The control terminal (eg gate) of the transistor N12 is controlled by the control signal ENB. A first end (for example, a source) of the transistor N12 is coupled to the reference voltage VSSA. A second terminal (for example, a drain) of the transistor N12 is coupled to an enable terminal of the current mirror 510 . That is, the second terminal of the transistor N12 is coupled to the control terminal of the transistor N10 and the control terminal of the transistor N11 . A control terminal (eg gate) of the transistor P11 is coupled to the output terminal of the comparison circuit 142 . A first end (for example, a source) of the transistor P11 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P11 is coupled to the slave current terminal of the current mirror 510 and the control terminal of the transistor P11 . The control terminal (eg gate) of the transistor P12 is controlled by the control signal EN. The control signal EN is an inverted signal of the control signal ENB. A first end (for example, a source) of the transistor P12 is coupled to the system voltage VDDA. The second terminal (for example, the drain) of the transistor P12 is coupled to the control terminal of the transistor P11.
当控制信号EN为高电压电平(例如系统电压VDDA的电平或其他电平)时,亦即当控制信号ENB为低电压电平(例如参考电压VSSA的电平或其他电平)时,电晶体P10为导通(turn on),而电晶体N12与电晶体P12为截止(turn off),此时图6所示比较电路142的操作相似于图5所示比较电路141的操作。当控制信号EN为低电压电平(亦即控制信号ENB为高电压电平)时,电晶体P10为截止,而电晶体N12与电晶体P12为导通,此时图6所示比较电路142被禁用(disable),而且控制电压VC2被上拉至高电压电平。当控制电压VC2被上拉至高电压电平时,电晶体P5以及电晶体P6会被截止(turn off)。因此,当控制信号EN(控制信号ENB)禁用下降控制电路140时,下降控制电路140可以不干涉(不调整)闸控电压PGATE与闸控电压NGATE。When the control signal EN is at a high voltage level (such as the level of the system voltage VDDA or other levels), that is, when the control signal ENB is at a low voltage level (such as the level of the reference voltage VSSA or other levels), the transistor P10 is turned on, and the transistors N12 and P12 are turned off. At this time, the operation of the comparison circuit 142 shown in FIG. 6 is similar to the operation of the comparison circuit 141 shown in FIG. 5 . When the control signal EN is at a low voltage level (that is, the control signal ENB is at a high voltage level), the transistor P10 is turned off, and the transistor N12 and the transistor P12 are turned on. At this time, the comparison circuit 142 shown in FIG. 6 is disabled, and the control voltage VC2 is pulled up to a high voltage level. When the control voltage VC2 is pulled up to a high voltage level, the transistor P5 and the transistor P6 are turned off. Therefore, when the control signal EN (control signal ENB) disables the down control circuit 140 , the down control circuit 140 may not interfere (not adjust) the gating voltages PGATE and NGATE.
在一些应用情境中,在输出电压VOUT被拉升后,输出电压VOUT可能会在特定期间超出(大于)输入电压VIN,然后在所述特定期间结束后输出电压VOUT的电平回归至与输入电压VIN一致。一般而言,所述特定期间是很短的。借由控制信号EN(控制信号ENB)的控制,下降控制电路140可以在所述特定期间内被禁用,以及在所述特定期间外被启用(enable)。因此,下降控制电路140在所述特定期间中的误动作可以被避免。In some application scenarios, after the output voltage VOUT is pulled up, the output voltage VOUT may exceed (greater than) the input voltage VIN for a specific period, and then the level of the output voltage VOUT returns to be consistent with the input voltage VIN after the specific period ends. Generally, the specified period is short. Controlled by the control signal EN (control signal ENB), the drop control circuit 140 can be disabled during the specified period, and enabled (enable) outside the specified period. Therefore, malfunction of the drop control circuit 140 during the specific period can be avoided.
综上所述,本发明诸实施例所述输出缓冲器100及其操作方法可以比较输入电压VIN与输出电压VOUT。当输出电压VOUT要被拉升时,输出缓冲器100的输出级电路120的闸控电压PGATE与闸控电压NGATE都被拉降,以提升输出电压VOUT的回转率。当输出电压VOUT要被拉降时,输出缓冲器100的输出级电路120的闸控电压PGATE与闸控电压NGATE都被拉升,以提升输出电压VOUT的回转率。To sum up, the output buffer 100 and its operation method according to various embodiments of the present invention can compare the input voltage VIN and the output voltage VOUT. When the output voltage VOUT is to be pulled up, both the gating voltage PGATE and the gating voltage NGATE of the output stage circuit 120 of the output buffer 100 are pulled down to increase the slew rate of the output voltage VOUT. When the output voltage VOUT is to be pulled down, both the gate control voltage PGATE and the gate control voltage NGATE of the output stage circuit 120 of the output buffer 100 are pulled up to increase the slew rate of the output voltage VOUT.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与修饰,故本发明的保护范围当视随附的权利要求所界定者为准。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be as defined by the appended claims.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910192183.4A CN111696462B (en) | 2019-03-14 | 2019-03-14 | Output buffers and methods of operation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910192183.4A CN111696462B (en) | 2019-03-14 | 2019-03-14 | Output buffers and methods of operation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111696462A CN111696462A (en) | 2020-09-22 |
| CN111696462B true CN111696462B (en) | 2023-07-21 |
Family
ID=72475026
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910192183.4A Active CN111696462B (en) | 2019-03-14 | 2019-03-14 | Output buffers and methods of operation |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111696462B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113765491B (en) * | 2021-09-27 | 2024-08-13 | 常州欣盛半导体技术股份有限公司 | Channel operational amplifier circuit for dynamically adjusting bias current |
| CN113676141B (en) * | 2021-10-21 | 2022-04-08 | 常州欣盛半导体技术股份有限公司 | Low-power-consumption channel operational amplifier circuit and control method of operational amplifier |
| TWI804013B (en) * | 2021-10-21 | 2023-06-01 | 大陸商常州欣盛半導體技術股份有限公司 | Channel operational amplifier circuit of dynamically controlling low steady current of output stage |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IT1296611B1 (en) * | 1997-12-04 | 1999-07-14 | Sgs Thomson Microelectronics | INPUT / OUTPUT BUFFER CIRCUIT, IN PARTICULAR MADE IN CMOS TECHNOLOGY, WITH VOLTAGE VARIATION CONTROL |
| KR100308191B1 (en) * | 1998-05-28 | 2001-11-30 | 윤종용 | Semiconductor memory device having built-in parallel test circuit |
| JP3482159B2 (en) * | 1999-07-28 | 2003-12-22 | シャープ株式会社 | Power supply device and liquid crystal display device using the same |
| JP4191579B2 (en) * | 2003-11-25 | 2008-12-03 | 川崎マイクロエレクトロニクス株式会社 | Duty ratio correction circuit |
| US7218148B2 (en) * | 2004-11-30 | 2007-05-15 | Intel Corporation | Tracking unity gain for edge rate and timing control |
| US7986171B2 (en) * | 2008-10-21 | 2011-07-26 | Himax Technologies Limited | Mixed-voltage I/O buffer |
| CN101739961B (en) * | 2008-11-06 | 2012-07-25 | 瑞鼎科技股份有限公司 | source driver |
| TWI360947B (en) * | 2010-01-04 | 2012-03-21 | Himax Tech Ltd | Slew-rate enhancement output stage and output buff |
| CN105207658B (en) * | 2014-06-11 | 2018-03-27 | 华邦电子股份有限公司 | Output buffer |
-
2019
- 2019-03-14 CN CN201910192183.4A patent/CN111696462B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN111696462A (en) | 2020-09-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11054849B2 (en) | Source driver and output buffer thereof | |
| US11223352B2 (en) | Load driver | |
| CN111696462B (en) | Output buffers and methods of operation | |
| TWI486739B (en) | Signal generating circuit | |
| CN102339584B (en) | Switching rate promotes circuit, the output buffer with this circuit and method thereof | |
| US7843235B2 (en) | Output slew rate control in low voltage differential signal (LVDS) driver | |
| CN105446923B (en) | Differential driver with pull-up booster and pull-down booster | |
| TWI408638B (en) | Driver circuit system and method of elevating slew rate of operational amplifier | |
| US20150022562A1 (en) | Display driver | |
| CN101114421A (en) | Output drive device and display device | |
| US20070194804A1 (en) | Electronic device and method | |
| TWI741326B (en) | Source driver and output buffer thereof | |
| US10224813B2 (en) | Variable frequency soft-switching control of a buck converter | |
| TWI420473B (en) | Output buffer and source driver using the same | |
| US10452088B1 (en) | Source driver and operation method thereof | |
| US10505532B1 (en) | Output buffer and operation method thereof | |
| CN107633798B (en) | Potential conversion circuit and display panel | |
| US10505527B2 (en) | Current steering circuit, corresponding device, system and method | |
| TWI686784B (en) | Output buffer and operation method thereof | |
| US9537469B2 (en) | CMOS level shifter with reduced high voltage transistor count | |
| CN112349234B (en) | Source driver and output buffer thereof | |
| CN111862893B (en) | Source driver | |
| CN101267203A (en) | Analog Buffer with Voltage Compensation Mechanism | |
| CN101221304B (en) | Source driver and level shifting device thereof | |
| TWI699743B (en) | Source driver |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |