CN111880235B - Ocean electromagnetic formation anisotropic resistivity and emission source posture joint inversion method - Google Patents
Ocean electromagnetic formation anisotropic resistivity and emission source posture joint inversion method Download PDFInfo
- Publication number
- CN111880235B CN111880235B CN202010774913.4A CN202010774913A CN111880235B CN 111880235 B CN111880235 B CN 111880235B CN 202010774913 A CN202010774913 A CN 202010774913A CN 111880235 B CN111880235 B CN 111880235B
- Authority
- CN
- China
- Prior art keywords
- inversion
- parameter
- emission source
- parameters
- attitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 68
- 230000015572 biosynthetic process Effects 0.000 title claims description 13
- 239000011159 matrix material Substances 0.000 claims abstract description 42
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 18
- 230000008569 process Effects 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 10
- 230000010287 polarization Effects 0.000 claims description 4
- 229940050561 matrix product Drugs 0.000 claims description 3
- 238000013461 design Methods 0.000 claims description 2
- 238000005755 formation reaction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000013535 sea water Substances 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/38—Processing data, e.g. for analysis, for interpretation, for correction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Description
技术领域technical field
本发明涉及多参数联合反演的海洋地球物理技术领域,具体涉及一种海洋电磁地层各向异性电阻率与发射源姿态联合反演方法。The invention relates to the technical field of marine geophysics of multi-parameter joint inversion, in particular to a joint inversion method of the anisotropic resistivity of the marine electromagnetic formation and the attitude of the emission source.
背景技术Background technique
海洋可控源电磁法(CSEM)是探测海底油气资源和矿产资源的一种海洋地球物理勘探方法。随着资源开发和深地探测的需求不断提高,海洋电磁方法在矿产资源的调查、海洋地壳与地幔结构研究中正发挥越来越大的作用。频率域海洋CSEM方法通常使用拖曳在离海底上方几十米处的水平电偶极源作为发射源,并在被科考船拖曳过程中向电磁采集站发射范围为0.1-10Hz低频电磁信号,通过对布设在海底面采集站接收电磁信号进行反演获得海底介质的电性分布情况。电磁采集站接收电磁信号的强弱和质量高低不仅与海底介质的电阻率有关,同时与发射源和接收站的相对位置和姿态参数精度有直接的关系。在实际海上作业中发现,考察船在拖曳发射源的过程中发射源受海水运动和船速不稳定等因素影响,使得发射源不能按照预设的路径前进,其位置和姿态参数会出现较大范围的浮动,而这种变化量很难被监测和记录下来,致使发射源记录的位置和姿态参数与实际出现偏差,不准确的发射源位置和姿态数据对海洋电磁资料的处理和反演解释带来了极大的困难。因此,需对发射源的位置和姿态参数进行校准以提高海洋电磁信数据的质量。Controlled Source Electromagnetic Method (CSEM) is a marine geophysical exploration method for detecting seabed oil and gas resources and mineral resources. With the increasing demand for resource development and deep exploration, marine electromagnetic methods are playing an increasingly important role in the investigation of mineral resources and the study of the structure of the oceanic crust and mantle. The frequency-domain marine CSEM method usually uses a horizontal electric dipole source towed tens of meters above the seabed as the emission source, and transmits low-frequency electromagnetic signals in the range of 0.1-10Hz to the electromagnetic acquisition station during the process of being towed by the scientific research ship. The electrical distribution of the seabed medium is obtained by inverting the electromagnetic signals received by the collection stations on the seabed surface. The strength and quality of electromagnetic signals received by the electromagnetic acquisition station are not only related to the resistivity of the seabed medium, but also directly related to the relative position and attitude parameter accuracy of the transmitting source and receiving station. In the actual offshore operation, it was found that the launch source was affected by factors such as seawater movement and ship speed instability during the process of towing the launch source by the research ship, so that the launch source could not move forward according to the preset path, and its position and attitude parameters would appear larger. The fluctuation of the range, and this kind of change is difficult to be monitored and recorded, resulting in the deviation of the position and attitude parameters recorded by the emission source from the actual ones, and the inaccurate position and attitude data of the emission source for the processing and inversion interpretation of marine electromagnetic data posed great difficulties. Therefore, it is necessary to calibrate the position and attitude parameters of the transmitting source to improve the quality of marine electromagnetic signal data.
研究表明,世界上大约30%的油气资源赋存于电性各向异性地层中,并且海底介质的电性各向异性是获得海底介质正确的电性分布的重要影响因素,若在解释海洋电磁资料时忽略电阻率各向异性,则很有可能无法获得合理的海底地电模型。然而,目前应用广泛的反演解释方法仍为传统的地球物理反演方法,该类方法在反演海洋资源勘探获取的海洋电磁资料时,常常假定海底介质为电性各向同性,这样的反演方法可能给后期资料解释提供巨大误差的反演结果,这也可能将导致获得错误的解释结果。为此,解释海洋电磁资料时必须考虑海底介质的电阻率各向异性的性质。Studies have shown that about 30% of the world's oil and gas resources occur in electrically anisotropic formations, and the electrical anisotropy of the seabed medium is an important factor for obtaining the correct electrical distribution of the seabed medium. If the resistivity anisotropy is ignored in the data, it is very likely that a reasonable seabed geoelectric model cannot be obtained. However, the currently widely used inversion interpretation method is still the traditional geophysical inversion method, which often assumes that the seabed medium is electrically isotropic when inverting marine electromagnetic data obtained from marine resource exploration. The inversion method may provide inversion results with huge errors for later data interpretation, which may also lead to wrong interpretation results. For this reason, the nature of the resistivity anisotropy of the seafloor medium must be considered when interpreting oceanographic electromagnetic data.
在现有的反演方法中,鲜有考虑电磁发射源位置和姿态参数对反演结果的影响,大多方法均是直接利用存在误差的电磁发射源参数进行反演,其反演结果必定也存在误差。因此,若能提出一种有效改正电磁发射源位置和姿态参数的反演解释方法将有效提高电磁数据解释的准确性。In the existing inversion methods, the influence of the position and attitude parameters of the electromagnetic emission source on the inversion results is rarely considered. Most of the methods directly use the electromagnetic emission source parameters with errors for inversion, and the inversion results must also have error. Therefore, if an inversion interpretation method that effectively corrects the position and attitude parameters of the electromagnetic emission source can be proposed, the accuracy of electromagnetic data interpretation will be effectively improved.
发明内容Contents of the invention
本发明的目的在于提供一种海洋电磁地层各向异性电阻率与发射源姿态联合反演方法,该方法可应用于海洋电磁探测和反演解释的精确性。The purpose of the present invention is to provide a combined inversion method of the anisotropic resistivity of the marine electromagnetic formation and the attitude of the emission source, which can be applied to the accuracy of marine electromagnetic detection and inversion interpretation.
为了实现以上目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
1.一种海洋电磁地层各向异性电阻率与发射源姿态联合反演方法,其特征在于,主要包括:1. A joint inversion method for the anisotropic resistivity of the marine electromagnetic formation and the attitude of the emission source, characterized in that it mainly includes:
S1、读取并转换参与反演的海洋可控源电磁场数据,所述数据包括电磁场实部与虚部数据、振幅与相位数据、极化椭圆长轴与短轴参数;S1. Read and convert the ocean controllable source electromagnetic field data involved in the inversion, the data includes electromagnetic field real and imaginary part data, amplitude and phase data, and polarization ellipse major axis and minor axis parameters;
S2、设置联合反演执行参数,所述参数包括反演最大迭代次数、目标拟合差、最大迭代步长、步长比例系数、惩罚函数类型、正则化衰减系数;S2. Setting joint inversion execution parameters, said parameters including inversion maximum number of iterations, target fitting difference, maximum iteration step size, step size ratio coefficient, penalty function type, and regularization attenuation coefficient;
S3、建立观测系统并设计联合反演初始模型;S3. Establish the observation system and design the initial joint inversion model;
S4、构建各向异性电阻率和发射源姿态参数联合反演目标函数;S4. Constructing an objective function for joint inversion of anisotropic resistivity and emission source attitude parameters;
S5、求取电磁场关于各向异性电阻率和发射源姿态参数雅各比矩阵和海森矩阵;S5. Calculating the Jacobian matrix and the Hessian matrix of the electromagnetic field about the anisotropic resistivity and the attitude parameters of the emission source;
S6、基于反演参数特性自适应计算正则化因子;S6. Adaptively calculate the regularization factor based on the characteristics of the inversion parameters;
S7、求取各向异性电阻率和发射源姿态参数更新量;S7. Calculating the update amount of the anisotropic resistivity and the attitude parameter of the emission source;
S8、计算反演迭代模型的目标函数拟合差;S8. Calculate the fitting difference of the objective function of the inversion iterative model;
S9、判断是否满足反演要求,若满足则转向S10,不满足则转向S5;S9. Judging whether the inversion requirements are met, if so, turn to S10, and if not, turn to S5;
S10、输出最终反演模型。S10. Outputting the final inversion model.
2.如权利要求1所述的海洋电磁地层各向异性电阻率与发射源姿态联合反演方法,其特征在于,构建各向异性电阻率和发射源姿态参数联合反演目标函数为:2. the method for joint inversion of the anisotropic resistivity of the ocean electromagnetic formation as claimed in
式中,φ为反演算法的目标函数;m为模型反演参数向量,其包括海底各向异性电阻率参数mρ、发射源的位置参数mP和发射源的姿态参数mT,即m=mρ+mP+mT;为模型参数向量的梯度;||·||为标准差算子;d为反演使用的观测数据向量;Wd为数据加权矩阵;Wm为模型加权矩阵;F(m)表示模型m的正演响应算子;μρ、μp和μT分别为反演模型中海底各向异性电阻率参数mρ、发射源位置参数mP和发射源位置参数mT的正则化因子。In the formula, φ is the objective function of the inversion algorithm; m is the model inversion parameter vector, which includes the seabed anisotropic resistivity parameter m ρ , the position parameter m P of the emission source, and the attitude parameter m T of the emission source, that is, m =m ρ +m P +m T ; is the gradient of the model parameter vector; ||·|| is the standard deviation operator; d is the observed data vector used in the inversion; W d is the data weighting matrix; W m is the model weighting matrix; Forward modeling response operator; μ ρ , μ p and μ T are the regularization factors of seabed anisotropic resistivity parameter m ρ , emitter position parameter m P and emitter position parameter m T in the inversion model, respectively.
3.如权利要求1所述的海洋电磁地层各向异性电阻率与发射源姿态联合反演方法,其特征在于,所述自适应正则化因子按照如下公式确定:3. the joint inversion method of the anisotropic resistivity of marine electromagnetic stratum as claimed in
式中,i表示第i次反演迭代;μi为正则化因子;Max|·|为求取矩阵绝对值最大的元素;amj为矩阵乘积[(WdJ)T(WdJ)]的元素;M为矩阵乘积[(WdJ)T(WdJ)]的维度;χ为衰减系数;λ为反演模型海底地层的横向电阻率ρh、垂向电阻率ρv、发射源位置参数(x,y)和发射源姿态参数(Azm,Dip)的加权因子,采用以下公式确定 In the formula, i represents the i-th inversion iteration; μ i is the regularization factor ; Max|·| is the element with the largest absolute value of the matrix; ]; M is the dimension of the matrix product [(W d J) T (W d J)]; χ is the attenuation coefficient; λ is the lateral resistivity ρ h , vertical resistivity ρ v , The weighting factor of the emitter position parameter (x, y) and the emitter attitude parameter (Azm, Dip) is determined by the following formula
其中,α、β为权重系数,m为反演模型参数,(x,y)为发射源的横坐标和纵坐标,(Azm,Dip)为发射源的方位角和倾角。Among them, α and β are weight coefficients, m is the inversion model parameter, (x, y) is the abscissa and ordinate of the emission source, (Azm, Dip) is the azimuth and dip of the emission source.
4.如权利要求1所述的海洋电磁地层各向异性电阻率与发射源姿态联合反演方法,其特征在于,基于反演参数计算模型参数更新量的方法为:4. the marine electromagnetic stratum anisotropic resistivity and emitter attitude joint inversion method as claimed in
其中,Δm为下一次迭代的模型参数更新量,i为第i次反演迭代,Hi为海森矩阵,gi为目标函数的梯度。Among them, Δm is the update amount of model parameters in the next iteration, i is the i-th inversion iteration, H i is the Hessian matrix, and g i is the gradient of the objective function.
5.如权利要求4所述的海底各向异性电阻率与发射源位置联合反演方法,其特征在于,求取目标函数的极小值的方法为:5. seabed anisotropic resistivity as claimed in
其中,i为第i次反演迭代,Ji为雅各比矩阵。Among them, i is the i-th inversion iteration, J i is the Jacobian matrix.
6.如权利要求1所述的海底各向异性电阻率与发射源位置联合反演方法,其特征在于,求取雅各比矩阵Ji的方法为:6. seabed anisotropic resistivity as claimed in
其中,i为第i次反演迭代;Ji为正演响应F(m)的雅各比矩阵;ρ=(ρh,ρv)为地层的各向异性电阻率分布,P=(x,y)为发射源位置参数,T=(Azm,Dip)为发射源姿态参数。Where, i is the i-th inversion iteration; J i is the Jacobian matrix of the forward modeling response F(m); ρ=(ρ h , ρ v ) is the anisotropic resistivity distribution of the formation, P=(x , y) is the location parameter of the transmitter, and T=(Azm, Dip) is the attitude parameter of the transmitter.
7.如权利要求1所述的海底各向异性电阻率与发射源位置联合反演方法,其特征在于,求取海森矩阵Hi的方法为:7. seabed anisotropic resistivity as claimed in
其中,i表示第i次反演迭代次数。Among them, i represents the i-th inversion iteration number.
较现有技术相比,本发明一些实施例中,提供的方法的有益效果在于:Compared with the prior art, in some embodiments of the present invention, the beneficial effect of the method provided is:
本发明主要针对海洋可控源探测中广泛存在的海底介质各向异性问题,以及海洋可控源电磁发射源记录的位置和姿态参数与实际位置和姿态参数存在偏差导致数据质量不高的问题,提出了一种海洋电磁地层各向异性电阻率与发射源位置和姿态参数联合反演方法,该方法在反演过程中考虑海底介质电阻率各向异性的同时,也考虑发射源的位置和姿态参数对反演结果的影响,能够同时对海底介质各向异性电阻率,以及电磁发射源的位置参数进行反演,最终可以获得与实际数据拟合最佳的海底各向异性电阻率分布情况,以及电磁发射源的准确的位置和姿态参数信息。该反演方法不仅为复杂的海底介质电阻率各向异性电磁资料的解释提供了一种有效的反演方法,同时也为电磁发射源位置和姿态参数存在误差情况下的数据处理问题提供了一种可行的技术手段。较于传统的反演算法,该方法同时考虑海底介质电阻率各向异性和发射源的位置及姿态参数对反演结果的影响,联合二者作为反演参数同时进行反演,该方法能够有效解决发射源位置及姿态参数不准确给海洋可控源电磁资料解释带来的影响;所提出的联合反演方法适用性更广,能够适用于电阻率各向异性资料的反演解释;容错性更强,能够处理电磁发射源位置和姿态参数存在一定误差时的反演问题。The present invention mainly aims at the problem of the anisotropy of the seabed medium that widely exists in ocean controllable source detection, and the problem that the position and attitude parameters recorded by the ocean controllable source electromagnetic emission source deviate from the actual position and attitude parameters, resulting in low data quality. A joint inversion method of the anisotropic resistivity of the marine electromagnetic stratum and the location and attitude parameters of the transmitter is proposed. This method considers the anisotropy of the resistivity of the seabed medium and the location and attitude of the transmitter during the inversion process. The influence of parameters on the inversion results can simultaneously invert the anisotropic resistivity of the seabed medium and the location parameters of the electromagnetic emission source, and finally obtain the anisotropic resistivity distribution of the seabed that best fits the actual data. And the accurate position and attitude parameter information of the electromagnetic emission source. This inversion method not only provides an effective inversion method for the interpretation of electromagnetic data with anisotropic electrical resistivity in complex seabed media, but also provides an effective inversion method for data processing problems in the case of errors in the position and attitude parameters of electromagnetic emitters. a feasible technical means. Compared with the traditional inversion algorithm, this method also considers the influence of the anisotropy of the resistivity of the seabed medium and the position and attitude parameters of the transmitter on the inversion results, and combines the two as inversion parameters for simultaneous inversion. This method can effectively Solve the impact of inaccurate emission source position and attitude parameters on the interpretation of ocean controllable source electromagnetic data; the proposed joint inversion method has wider applicability and can be applied to the inversion interpretation of resistivity anisotropy data; fault tolerance It is stronger and can deal with the inversion problem when there is a certain error in the position and attitude parameters of the electromagnetic emission source.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the descriptions of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only of the present invention. For some embodiments, those of ordinary skill in the art can also obtain other drawings based on these drawings without paying creative efforts.
图1为本发明方法的程序流程框图;Fig. 1 is a program flow diagram of the inventive method;
图2为一维电阻率各向异性模型结构示意图;Fig. 2 is a structural schematic diagram of a one-dimensional resistivity anisotropy model;
图3为反演迭代模型目标拟合差与反演迭代次数的变化图;Fig. 3 is a change diagram of the target fitting difference of the inversion iterative model and the number of inversion iterations;
图4为发射源位置参数(x,y)的反演结果示意图;Fig. 4 is the schematic diagram of the inversion result of source position parameter (x, y);
图5为发射源姿态参数(Azm,Dip)的反演结果示意图;Fig. 5 is a schematic diagram of the inversion result of the emission source attitude parameters (Azm, Dip);
图6为海底各向异性电阻率的反演示意图。Fig. 6 is a schematic diagram of the inversion of seabed anisotropic resistivity.
具体实施方式Detailed ways
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本发明提供一种海洋电磁地层各向异性电阻率与发射源姿态联合反演方法,该方法同时考虑海底介质电阻率各向异性和发射源的位置参数对反演结果的影响,联合二者作为反演参数同时进行反演,该方法能够有效解决发射源位置和姿态参数不准确引起海洋可控源电磁资料质量不高的问题。The invention provides a joint inversion method of the anisotropic resistivity of the marine electromagnetic stratum and the attitude of the emission source. The inversion parameters are inverted at the same time. This method can effectively solve the problem of low quality of electromagnetic data from marine controllable sources caused by inaccurate emission source position and attitude parameters.
参见图1,一种海洋电磁地层各向异性电阻率与发射源姿态联合反演方法,主要包括以下步骤:Referring to Fig. 1, a joint inversion method of the anisotropic resistivity of the marine electromagnetic stratum and the attitude of the emitter mainly includes the following steps:
S1.读取并转换参与反演的海洋可控源电磁场数据,所述数据包括电磁场实部与虚部数据、振幅与相位数据、极化椭圆长轴与短轴参数。S1. Read and convert the ocean controllable source electromagnetic field data involved in the inversion, the data includes electromagnetic field real and imaginary part data, amplitude and phase data, and parameters of the major axis and minor axis of the polarization ellipse.
根据用户需求,将参与联合反演的海洋可控源电磁数据文件转换成特定格式的数据文件,并将输入的电磁场数据根据用户要求转换成特定参量(电磁场实部与虚部、振幅与相位、极化椭圆长轴与短轴参数等),完成反演数据的读入并启动联合反演。According to the needs of users, the ocean controllable source electromagnetic data files participating in the joint inversion are converted into data files of a specific format, and the input electromagnetic field data are converted into specific parameters (real and imaginary parts of the electromagnetic field, amplitude and phase, Polarization ellipse major axis and minor axis parameters, etc.), complete the reading of inversion data and start the joint inversion.
S2.设置联合反演执行参数,所述参数包括反演最大迭代次数、目标拟合差、最大迭代步长、步长比例系数、惩罚函数类型、正则化衰减系数。S2. Set joint inversion execution parameters, the parameters include inversion maximum number of iterations, target fitting difference, maximum iteration step size, step size ratio coefficient, penalty function type, and regularization attenuation coefficient.
联合反演过程是一个复杂且庞大的运算体系,在实现反演迭代直至获得最终的联合反演模型的过程中,需要运用到大量参数。不同的反演执行参数能够获得不同的反演效果,用户可根据参与联合反演数据的特点以及需要用于的特定需求设置反演执行参数。主要涉及的反演参数包括:反演最大迭代次数、目标拟合差、最大迭代步长、步长比例系数、惩罚函数类型、参与反演的数据分量、正则化衰减系数等。The joint inversion process is a complex and huge calculation system, and a large number of parameters need to be used in the process of inversion iteration until the final joint inversion model is obtained. Different inversion execution parameters can obtain different inversion effects, and users can set inversion execution parameters according to the characteristics of the data participating in the joint inversion and the specific needs of the application. The main inversion parameters involved include: maximum number of inversion iterations, target fitting difference, maximum iteration step size, step size ratio coefficient, penalty function type, data components participating in the inversion, regularization attenuation coefficient, etc.
S21.反演最大迭代次数:反演迭代次数的最大值。设置该参数能够使联合反演过程达到该最大迭代次数后退出联合反演程序,避免反演程序持续循环运行,提高程序计算效率。S21. Maximum number of iterations for inversion: the maximum number of iterations for inversion. Setting this parameter can make the joint inversion process exit the joint inversion program after reaching the maximum number of iterations, avoid the continuous loop operation of the inversion program, and improve the calculation efficiency of the program.
S22.目标拟合差:反演模型与真实模型拟合程度的目标值。联合反演的最终目标是让反演模型不断逼近于真实模型,数据拟合差即是判断反演模型与真实模型的拟合标准。用户根据数据质量设定目标拟合差,当反演模型的拟合差达到或者低于目标拟合差,联合反演退出;若反演模型的拟合差没有达到目标拟合差,联合反演程序将持续进行。S22. Target poor fit: the target value of the degree of fit between the inversion model and the real model. The ultimate goal of joint inversion is to make the inversion model continuously approach the real model, and the poor data fit is the criterion for judging the fit between the inversion model and the real model. The user sets the target fit difference according to the data quality. When the fit difference of the inversion model reaches or is lower than the target fit difference, the joint inversion exits; if the fit difference of the inversion model does not reach the target fit difference, the joint inversion The show will continue.
S23.最大迭代步长:用户设置联合反演过程中模型参数变化量的最大值。在联合反演中,由于海洋可控源电磁场(或其他参量)的数量级跨度较大,所以通常都是取对数后再参与联合反演运算。若迭代的模型变化量过大,其结果变化非常大,例如模型参量(取对数后)变化量为1.0,即其真实值即提高了一个数量级,这样的变化值通常情况是不合理的,因此设计该参数限制模型参数的变化量大小。S23. Maximum iteration step size: the user sets the maximum value of model parameter variation during the joint inversion process. In joint inversion, due to the large order of magnitude span of ocean controllable source electromagnetic field (or other parameters), it is usually taken logarithm before participating in joint inversion operation. If the variation of the iterated model is too large, the result will vary greatly. For example, the variation of the model parameter (after taking the logarithm) is 1.0, that is, the actual value is increased by an order of magnitude. Such a variation value is usually unreasonable. Therefore, this parameter is designed to limit the variation of model parameters.
S24.步长比例系数:用户设置联合反演过程中模型参数变换量的比例系数。联合反演涉及的反演参数较多,在反演迭代过程中,不同反演参数的变化程度不同,为使得整体的模型变化量在一个较为合理的范围,可将模型参数变化量乘以一个比率系数(即步长比例系数),以保证反演模型稳健收敛。S24. Step scale coefficient: the user sets the scale coefficient of the model parameter transformation amount in the joint inversion process. The joint inversion involves many inversion parameters. During the inversion iteration process, different inversion parameters change in different degrees. In order to make the overall model change in a reasonable range, the model parameter change can be multiplied by a Ratio coefficient (i.e. step scale coefficient) to ensure the robust convergence of the inversion model.
S25.惩罚函数类型:模型参量之间的制约方式。在联合反演过程中,所有的模型参量同时参与反演,不同反演参量之间存在一定的联系,通过选择不同的惩罚函数可实现模型参量之间的制约方式,可使得模型更加光滑或曲度增大等效果。S25. Penalty function type: a way of restricting model parameters. In the joint inversion process, all model parameters participate in the inversion at the same time, and there is a certain relationship between different inversion parameters. By choosing different penalty functions, the control mode between model parameters can be realized, which can make the model smoother or curved. Effects such as speed increase.
S26.正则化衰减系数:自适应选择正则化因子的衰减系数。在反演迭代过程中,为保证不同参数之间的比率关系,正则化因子需随反演次数的改变而做相应改变,该参数即是设置正则化因子随迭代次数的衰减系数。S26. Regularization attenuation coefficient: adaptively select the attenuation coefficient of the regularization factor. In the iterative process of inversion, in order to ensure the ratio relationship between different parameters, the regularization factor needs to be changed accordingly with the number of inversions. This parameter is to set the attenuation coefficient of the regularization factor with the number of iterations.
S3.设置联合反演初始模型参数,所述参数包括背景层电阻率参数、厚度参数、观测系统参数。S3. Setting the initial model parameters of the joint inversion, the parameters include background layer resistivity parameters, thickness parameters, and observation system parameters.
反演初始模型是联合反演模型参数的初始值,通常情况下需根据输入数据的观测系统和已知的水深数据等资料设定。The inversion initial model is the initial value of the parameters of the joint inversion model, and usually needs to be set according to the observation system of the input data and the known water depth data.
S4.构建各向异性电阻率和发射源位置、姿态参数联合反演目标函数。S4. Constructing an objective function for joint inversion of anisotropic resistivity and emission source position and attitude parameters.
海洋可控源电磁海底各向异性电阻率与电磁发射源位置、姿态参数联合反演涉及多属性的反演参数,参数间关系复杂。鉴于海底介质不同电阻率各向异性参数,以及发射源位置和姿态参数之间差异性,本发明利用正则化约束稳定海洋可控源电磁海底各向异性电阻率与电磁发射源位置参数联合反演过程。所采用的目标函数为:The joint inversion of ocean controllable source electromagnetic seabed anisotropic resistivity and electromagnetic emission source position and attitude parameters involves multi-attribute inversion parameters, and the relationship between parameters is complex. In view of the different resistivity anisotropy parameters of the seabed medium, and the differences between the location and attitude parameters of the emission source, the present invention uses regularization constraints to stabilize the joint inversion of the electromagnetic seabed anisotropic resistivity and electromagnetic emission source location parameters of the controlled source in the ocean process. The objective function used is:
式中,φ为反演算法的目标函数;m为模型反演参数向量,其包括海底各向异性电阻率参数mρ、发射源的位置参数mP和发射源的姿态参数mT,即m=mρ+mP+mT;为模型参数向量的梯度;||·||为标准差算子;d为反演使用的观测数据向量;Wd为数据加权矩阵;Wm为模型加权矩阵;F(m)表示模型m的正演响应算子;μρ、μp和μT分别为反演模型中海底各向异性电阻率参数mρ、发射源位置参数mP和发射源位置参数mT的正则化因子。In the formula, φ is the objective function of the inversion algorithm; m is the model inversion parameter vector, which includes the seabed anisotropic resistivity parameter m ρ , the position parameter m P of the emission source, and the attitude parameter m T of the emission source, that is, m =m ρ +m P +m T ; is the gradient of the model parameter vector; ||·|| is the standard deviation operator; d is the observed data vector used in the inversion; W d is the data weighting matrix; W m is the model weighting matrix; Forward modeling response operator; μ ρ , μ p and μ T are the regularization factors of seabed anisotropic resistivity parameter m ρ , emitter position parameter m P and emitter position parameter m T in the inversion model, respectively.
反演模型的海底电阻率反演参数mρ有以下形式:The seafloor resistivity inversion parameter m ρ of the inversion model has the following form:
式中,ρh和ρv分别为海底地层的横向电阻率和垂向电阻率,M为海底地层的层数。In the formula, ρ h and ρ v are the lateral resistivity and vertical resistivity of the seabed formation, respectively, and M is the number of layers of the seabed formation.
发射源位置参数mp有以下形式:The emitter position parameter m p has the following form:
mP=[l0g10x1…log10xt,log10y1…log10yt]T;m P = [l0g 10 x 1 ... log 10 x t , log 10 y 1 ... log 10 y t ] T ;
倾斜电偶极源的姿态反演参数mT有以下形式:The attitude inversion parameter m T of the tilted electric dipole source has the following form:
mT=[Azm1…Azmt,Dip1…Dipt]T;m T = [Azm 1 ... Azm t , Dip 1 ... Dip t ] T ;
式中,(x,y)为发射源位置参数(横坐标,纵坐标),(Azm,Dip)为发射源姿态参数(方位角,倾角),t为电偶极源的个数。In the formula, (x, y) is the location parameter of the transmitter (abscissa, ordinate), (Azm, Dip) is the attitude parameter of the transmitter (azimuth, inclination), and t is the number of electric dipole sources.
S5.求取电磁场关于各向异性电阻率和发射源姿态参数雅各比矩阵和海森矩阵。S5. Calculating the Jacobian matrix and the Hessian matrix of the electromagnetic field with respect to the anisotropic resistivity and the emission source attitude parameters.
S51.雅各比矩阵Ji是电磁场关于反演参数的偏导数矩阵,不同的反演参数有不同的形式:S51. The Jacobian matrix J i is the partial derivative matrix of the electromagnetic field with respect to the inversion parameters, and different inversion parameters have different forms:
其中,i为第i次反演迭代;Ji为正演响应F(m)的雅各比矩阵;ρ=(ρh,ρv)为地层的各向异性电阻率分布,P=(x,y)为发射源位置参数,T=(Azm,Dip)为发射源姿态参数。Where, i is the i-th inversion iteration; J i is the Jacobian matrix of the forward modeling response F(m); ρ=(ρ h , ρ v ) is the anisotropic resistivity distribution of the formation, P=(x , y) is the location parameter of the transmitter, and T=(Azm, Dip) is the attitude parameter of the transmitter.
若将电阻率张量ρ为反演模型横向电阻率ρh和垂向电阻率ρv的函数,即ρ=f(ρh,ρv),因此,电磁场关于电阻率张量ρ的雅克比矩阵有如下形式:If the resistivity tensor ρ is a function of the lateral resistivity ρ h and vertical resistivity ρ v of the inversion model, that is, ρ=f(ρ h , ρ v ), therefore, the Jacobian of the electromagnetic field with respect to the resistivity tensor ρ The matrix has the following form:
同理的,可得到电磁场关于倾斜电偶极源的位置反演参数mp和姿态参数mT的雅各比矩阵为:Similarly, the Jacobian matrix of the position inversion parameter m p and the attitude parameter m T of the electromagnetic field with respect to the inclined electric dipole source can be obtained as:
式中,(x,y)为发射源位置参数(横坐标,纵坐标),(Azm,Dip)为发射源姿态参数(方位角,倾角),t为电偶极源的个数。In the formula, (x, y) is the location parameter of the transmitter (abscissa, ordinate), (Azm, Dip) is the attitude parameter of the transmitter (azimuth, inclination), and t is the number of electric dipole sources.
S52.海森矩阵Hi为目标函数对反演参数的二阶导数,忽略二阶导数项和非对称项,海森矩阵Hi可简化为:S52. The Hessian matrix H i is the second order derivative of the objective function to the inversion parameters, ignoring the second order derivative term and the asymmetric item, the Hessian matrix H i can be simplified as:
其中,i为第i次反演迭代,Ji为正演响应F(m)的雅各比矩阵;mρ、mP和mT分别为海底电阻率参数、发射源的位置参数和姿态参数;为模型参数向量的梯度;||·||为标准差算子;d为反演使用的观测数据向量;Wd为数据加权矩阵;Wm为模型加权矩阵;μρ、μp和μT分别为反演模型中海底各向异性电阻率参数mρ、发射源位置参数mP和发射源位置参数mT的正则化因子。Among them, i is the i-th inversion iteration, J i is the Jacobian matrix of the forward modeling response F(m); m ρ , m P and m T are the seafloor resistivity parameters, the position parameters of the transmitter and the attitude parameters ; is the gradient of the model parameter vector; ||·|| is the standard deviation operator; d is the observed data vector used in the inversion; W d is the data weighting matrix; W m is the model weighting matrix; μ ρ , μ p and μ T are the regularization factors of seabed anisotropic resistivity parameter m ρ , emitter position parameter m P and emitter position parameter m T in the inversion model, respectively.
S6.基于反演参数特性自适应计算正则化因子。S6. Adaptively calculating a regularization factor based on the characteristics of the inversion parameters.
正则化因子μ的选择方式是求解海洋可控源电磁海底各向异性电阻率与电磁发射源参数联合反演问题合理与否的关键。在地球物理反演方法中,出现了许多正则化因子选择方法。在进行海洋可控源电磁海底各向异性电阻率与电磁发射源参数联合反演时,本发明针对不同的反演参数选择不同的正则化因子。首先,选择反演过程中的关于雅各比矩阵的特征参数作为基数,然后,再结合反演参数的特征及参数之间的关系调节不同反演参数的正则化因子大小,从而实现正则化因子的自适应选择。The selection of the regularization factor μ is the key to solving the joint inversion problem of controlled source electromagnetic seabed anisotropic resistivity and electromagnetic emission source parameters whether it is reasonable or not. In geophysical inversion methods, many regularization factor selection methods have emerged. When carrying out joint inversion of ocean controllable source electromagnetic seabed anisotropic resistivity and electromagnetic emission source parameters, the present invention selects different regularization factors for different inversion parameters. First, select the characteristic parameters of the Jacobian matrix in the inversion process as the base, and then adjust the regularization factors of different inversion parameters in combination with the characteristics of the inversion parameters and the relationship between parameters, so as to realize the regularization factor adaptive selection.
正则化因子μi可写成如下形式:The regularization factor μ i can be written as follows:
式中,i表示第i次反演迭代;μi为正则化因子;Max|·|为求取矩阵绝对值最大的元素;amj为矩阵乘积[(WdJ)T(WdJ)]的元素;M为矩阵乘积[(WdJ)T(WdJ)]的维度;χ为衰减系数;λ为反演模型横向电阻率ρh、垂向电阻率ρv、发射源位置参数(x,y)和发射源姿态参数(Azm,Dip)的加权因子,采用以下公式确定: In the formula, i represents the i-th inversion iteration; μ i is the regularization factor; Max|·| is the element with the largest absolute value of the matrix; ]; M is the dimension of the matrix product [(W d J) T (W d J )]; χ is the attenuation coefficient; The weighting factors of parameters (x, y) and emitter attitude parameters (Azm, Dip) are determined by the following formula:
其中,α、β为权重系数,m为反演模型参数,权重向量的初始值λ1为单位向量。当反演模型地层中存在电阻率各向异性时,正则化因子可根据电阻率各向异性率自适应地进行调节,从而调节目标函数中各元素之间的权重,从而达到自适应调节反演过程的效果。Among them, α and β are weight coefficients, m is an inversion model parameter, and the initial value λ 1 of the weight vector is a unit vector. When there is resistivity anisotropy in the inversion model formation, the regularization factor can be adjusted adaptively according to the resistivity anisotropy rate, thereby adjusting the weights among the elements in the objective function, so as to achieve adaptive adjustment of the inversion effect of the process.
S7.求取模型更新量。S7. Calculate the model update amount.
通过求取目标函数的极小值可计算模型更新量,即令目标函数梯度gi=0,可由下式确定The model update amount can be calculated by finding the minimum value of the objective function, that is, the objective function gradient g i =0, which can be determined by the following formula
其中,i为第i次反演迭代,Ji为正演响应F(m)的雅各比矩阵;φ为反演算法的目标函数;mρ、mP和mT分别为海底电阻率参数、发射源的位置参数和姿态参数;;为模型参数向量的梯度;||·||为标准差算子;d为反演使用的观测数据向量;Wd为数据加权矩阵;Wm为模型加权矩阵;F(m)表示模型m的正演响应算子;μρ、μp和μT分别为反演模型中海底各向异性电阻率参数mρ、发射源位置参数mP和发射源位置参数mT的正则化因子。Among them, i is the i-th inversion iteration, J i is the Jacobian matrix of the forward modeling response F(m); φ is the objective function of the inversion algorithm; m ρ , m P and m T are the seafloor resistivity parameters , the location parameters and attitude parameters of the emission source; is the gradient of the model parameter vector; ||·|| is the standard deviation operator; d is the observed data vector used in the inversion; W d is the data weighting matrix; W m is the model weighting matrix; Forward modeling response operator; μ ρ , μ p and μ T are the regularization factors of seabed anisotropic resistivity parameter m ρ , emitter position parameter m P and emitter position parameter m T in the inversion model, respectively.
计算得到下一次迭代的模型参量更新量为Δm,可表示为:The calculated model parameter update amount for the next iteration is Δm, which can be expressed as:
其中,Δm为下一次迭代的模型参数更新量,i为第i次反演迭代,Hi为海森矩阵,gi为目标函数的梯度。Among them, Δm is the update amount of model parameters in the next iteration, i is the i-th inversion iteration, H i is the Hessian matrix, and g i is the gradient of the objective function.
S8.计算反演迭代模型的目标函数拟合差。S8. Calculate the fitting difference of the objective function of the inversion iterative model.
在反演迭代过程中,反演迭代模型逐步收敛于真实模型,其目标函数拟合差ψ逐渐收敛于1.0。目标函数拟合差ψ有如下形式:During the inversion iteration process, the inversion iteration model gradually converges to the real model, and its objective function fitting difference ψ gradually converges to 1.0. The objective function fitting difference ψ has the following form:
其中,i为反演迭代次数,d为反演使用的观测数据向量;F(m)表示模型m的正演响应算子;N为反演数据的个数;k为反演数据的编号;δk为第k个数据的标准差。Among them, i is the number of inversion iterations, d is the observation data vector used in inversion; F(m) represents the forward response operator of model m; N is the number of inversion data; k is the serial number of inversion data; δ k is the standard deviation of the kth data.
S9.判断是否满足反演要求,若满足则转向S9,若不满足则转向S5。S9. Judging whether the inversion requirement is satisfied, if so, turn to S9, and if not, turn to S5.
判断是否退出联合反演的标准有两个:1)是否满足联合反演目标拟合差;2)反演迭代次数是否达到最大迭代次数。若否,则转向S5,继续迭代求解模型更新量;若是,则转向S10。There are two criteria for judging whether to quit the joint inversion: 1) whether the poor fit of the joint inversion target is met; 2) whether the number of inversion iterations reaches the maximum number of iterations. If not, turn to S5, and continue to iteratively solve the model update amount; if yes, turn to S10.
S10.输出最终反演模型。S10. Outputting the final inversion model.
参考图2,为一维典型地电模型原理图。为了验证海洋可控源电磁海底各向异性电阻率与电磁发射源参数联合反演的有效性,以图2所示一维电阻率各向异性模型为例,利用合成数据进行海底各向异性电阻率与发射源参数的联合反演。假设26个电磁发射源等间距地布置于测线500m-13000m范围内,且均位于海底正上方50m处,每个发射源的姿态都相同且方位角都为90度,倾角5度;1个接收站布设于海底面(0,0,1000)的位置。设定发射电流为1安培。反演数据由电磁场各分量的实部和虚部组成,各数据加入了2%的随机高斯噪声。在反演算例中,反演初始模型为空气、海水和电阻率为1Ωm的均匀半空间,空气层和海水电阻率和深度固定。设定反演初始模型中电磁发射源测线的位置与真实测线位置交叉(存在一个约45°的夹角)。Referring to Figure 2, it is a schematic diagram of a one-dimensional typical geoelectric model. In order to verify the validity of the combined inversion of ocean controlled source electromagnetic seabed anisotropic resistivity and electromagnetic emission source parameters, taking the one-dimensional resistivity anisotropy model shown in Fig. Joint inversion of rate and emitter parameters. It is assumed that 26 electromagnetic emission sources are arranged at equal intervals within the range of 500m-13000m of the survey line, and are all located 50m directly above the seabed. The attitude of each emission source is the same and the azimuth angle is 90 degrees, and the inclination angle is 5 degrees; The receiving station is arranged at (0, 0, 1000) on the seabed. Set the emission current to 1 amp. The inversion data consist of the real and imaginary parts of each component of the electromagnetic field, and 2% random Gaussian noise is added to each data. In the inversion calculation example, the initial inversion model is air, seawater and a uniform half space with a resistivity of 1Ωm, and the resistivity and depth of the air layer and seawater are fixed. Set the position of the survey line of the electromagnetic emission source in the inversion initial model to intersect with the position of the real survey line (there is an angle of about 45°).
参考图3,为反演迭代模型目标拟合差与反演迭代次数的关系示意图。由图可见,在联合反演过程中,目标函数拟合差持续减小并逐渐向真实模式靠近,并由最初较大的拟合差17,经过20次反演迭代后,最终收敛于3.1。Referring to Fig. 3, it is a schematic diagram of the relationship between the target fitting difference of the inversion iteration model and the number of inversion iterations. It can be seen from the figure that during the joint inversion process, the fitting difference of the objective function continues to decrease and gradually approaches the real model, and from the initial large fitting difference of 17, after 20 inversion iterations, it finally converges to 3.1.
参考图4,为发射源位置参数反演结果。由图4可见,图中纵坐标和横坐标分别为(x,y)的位置,空心三角为电磁发射源的初始位置,实心三角为电磁发射源真实位置,实心圆点为联合反演获得的电磁发射源位置,即使输入的发射源位置与真实位置差异较大(位置差异达100m),联合反演得仍然能够得到相对准确的位置信息(反演得到的电磁发射源位置与真实位置距离不超过25m),由此说明,联合反演得到的发射源位置是准确的。Referring to Fig. 4, it is the inversion result of the emission source position parameters. It can be seen from Fig. 4 that the ordinate and abscissa in the figure are the position of (x, y) respectively, the hollow triangle is the initial position of the electromagnetic emission source, the solid triangle is the real position of the electromagnetic emission source, and the solid circle is the joint inversion obtained The position of the electromagnetic emission source, even if the input position of the emission source is quite different from the real position (the position difference is as high as 100m), the joint inversion can still obtain relatively accurate position information (the distance between the electromagnetic emission source position obtained by the inversion and the real position is not the same. more than 25m), which shows that the emitter position obtained by the joint inversion is accurate.
参考图5,为发射源姿态参数反演结果。横坐标为发射源的y坐标,左纵坐标为电磁发射源的方位角,右纵坐标为电磁发射源的倾角,方块和六角形空心线分别为发射源方位角和倾角的初始值,方块和六角形实心线为联合反演得到的电磁发射源方位角和倾角,可见联合反演的发射源方位角和倾角与真实值的偏差分别不超过5度和1度,由此说明,反演得到的电磁发射源的姿态参数(方位角和倾角)均是准确的;Referring to Fig. 5, it is the inversion result of the emission source attitude parameters. The abscissa is the y-coordinate of the emission source, the left ordinate is the azimuth of the electromagnetic emission source, and the right ordinate is the inclination angle of the electromagnetic emission source. The squares and hexagonal hollow lines are the initial values of the azimuth and inclination of the emission source respectively. The squares and The hexagonal solid line is the azimuth and inclination angle of the electromagnetic emission source obtained by the joint inversion. It can be seen that the deviation of the azimuth and inclination angle of the emission source from the joint inversion and the true value is not more than 5 degrees and 1 degree respectively, which shows that the inversion obtained The attitude parameters (azimuth and inclination) of the electromagnetic emission source are all accurate;
参考图6,为海底各向异性电阻率的反演结果图,浅灰色和深灰色线段为真实的海底介质横向和垂向电阻率分布情况,浅灰色和深灰色阶梯曲线为反演得到的海底介质横向电阻率和垂向电阻率曲线,由图可见,联合反演的围岩的各向异性电阻率与真实情况相符,高阻层的埋深、厚度和垂向电阻率值也得到了较准确的恢复。综上所述,本发明提出的海洋可控源电磁海底各向异性电阻率与电磁发射源参数联合反演方法能够反演出海底介质的各向异性电阻率信息,以及电磁发射源的位置态参数。由此也说明,本发明提出的算法是有效的。Referring to Figure 6, it is the inversion result map of the anisotropic resistivity of the seabed. The light gray and dark gray line segments represent the real lateral and vertical resistivity distribution of the seabed medium, and the light gray and dark gray stepped curves represent the seabed obtained from the inversion. The lateral resistivity and vertical resistivity curves of the medium can be seen from the figure. The anisotropic resistivity of the surrounding rocks jointly inverted is consistent with the real situation, and the buried depth, thickness and vertical resistivity of the high-resistivity layer have also been compared. accurate recovery. To sum up, the combined inversion method of ocean controllable source electromagnetic seabed anisotropic resistivity and electromagnetic emission source parameters proposed by the present invention can invert the anisotropic resistivity information of the seabed medium and the position state parameters of the electromagnetic emission source . This also shows that the algorithm proposed by the present invention is effective.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. within range.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010774913.4A CN111880235B (en) | 2020-08-05 | 2020-08-05 | Ocean electromagnetic formation anisotropic resistivity and emission source posture joint inversion method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010774913.4A CN111880235B (en) | 2020-08-05 | 2020-08-05 | Ocean electromagnetic formation anisotropic resistivity and emission source posture joint inversion method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111880235A CN111880235A (en) | 2020-11-03 |
| CN111880235B true CN111880235B (en) | 2023-03-28 |
Family
ID=73210487
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010774913.4A Active CN111880235B (en) | 2020-08-05 | 2020-08-05 | Ocean electromagnetic formation anisotropic resistivity and emission source posture joint inversion method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111880235B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112578470B (en) * | 2020-11-10 | 2022-07-29 | 中国海洋大学 | Joint Inversion Method of Ocean Controlled Source Electromagnetic and Magnetotelluric Based on Product Function |
| CN113177330B (en) * | 2021-05-27 | 2022-07-22 | 吉林大学 | A Fast Statistical Inversion Method for Transient Electromagnetics |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1922660A1 (en) * | 2005-07-22 | 2008-05-21 | ExxonMobil Upstream Research Company | Method for determining receiver orientations |
| CN104280782A (en) * | 2013-07-12 | 2015-01-14 | 中国石油天然气集团公司 | One-dimensional joint inversion method for time-frequency electromagnetic data and magnetotelluric data |
| CN104375195A (en) * | 2013-08-15 | 2015-02-25 | 中国石油天然气集团公司 | Time-frequency electromagnetic multi-source multi-component three-dimensional joint inversion method |
| CN104598672A (en) * | 2014-12-30 | 2015-05-06 | 中国科学院地质与地球物理研究所 | Method for computing electromagnetic response error caused by emission source attitude change |
| CN104914473A (en) * | 2015-05-27 | 2015-09-16 | 中国石油天然气集团公司 | nversion method and apparatus of transient electromagnetic resistivity |
| CN108680964A (en) * | 2018-03-30 | 2018-10-19 | 吉林大学 | A kind of normalization weight magnetoelectricity shake joint inversion method based on structural constraint |
| CN111323830A (en) * | 2020-01-14 | 2020-06-23 | 东华理工大学 | Joint inversion method based on magnetotelluric and direct-current resistivity data |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008029420A1 (en) * | 2006-09-04 | 2008-03-13 | Geosystem S.R.L. | Method for building velocity models for pre-stack depth migration via the simultaneous joint inversion of seismic, gravity and magnetotelluric data |
| US10871590B2 (en) * | 2017-06-16 | 2020-12-22 | Pgs Geophysical As | Electromagnetic data inversion |
-
2020
- 2020-08-05 CN CN202010774913.4A patent/CN111880235B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1922660A1 (en) * | 2005-07-22 | 2008-05-21 | ExxonMobil Upstream Research Company | Method for determining receiver orientations |
| CN104280782A (en) * | 2013-07-12 | 2015-01-14 | 中国石油天然气集团公司 | One-dimensional joint inversion method for time-frequency electromagnetic data and magnetotelluric data |
| CN104375195A (en) * | 2013-08-15 | 2015-02-25 | 中国石油天然气集团公司 | Time-frequency electromagnetic multi-source multi-component three-dimensional joint inversion method |
| CN104598672A (en) * | 2014-12-30 | 2015-05-06 | 中国科学院地质与地球物理研究所 | Method for computing electromagnetic response error caused by emission source attitude change |
| CN104914473A (en) * | 2015-05-27 | 2015-09-16 | 中国石油天然气集团公司 | nversion method and apparatus of transient electromagnetic resistivity |
| CN108680964A (en) * | 2018-03-30 | 2018-10-19 | 吉林大学 | A kind of normalization weight magnetoelectricity shake joint inversion method based on structural constraint |
| CN111323830A (en) * | 2020-01-14 | 2020-06-23 | 东华理工大学 | Joint inversion method based on magnetotelluric and direct-current resistivity data |
Non-Patent Citations (2)
| Title |
|---|
| 一维垂直各向异性介质频率域海洋可控源电磁资料反演方法;罗鸣等;《地球物理学报》;20161130;第59卷(第11期);第4349-4359页 * |
| 层状垂直各向异性介质海洋CSEM发射源及接收站姿态和位置对电磁响应影响研究;罗鸣等;《地球物理学报》;20171231;第60卷(第12期);第4901-4915页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111880235A (en) | 2020-11-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN111856596B (en) | Layered medium resistivity anisotropy ocean controllable source electromagnetic rapid inversion method | |
| CN112578470B (en) | Joint Inversion Method of Ocean Controlled Source Electromagnetic and Magnetotelluric Based on Product Function | |
| CN101479627B (en) | Electromagnetic surveying | |
| CN104537714B (en) | Magnetic resonance and transient electromagnetic space constraint joint inversion method | |
| CN101228529B (en) | Method for determining receiver orientations | |
| CN111880235B (en) | Ocean electromagnetic formation anisotropic resistivity and emission source posture joint inversion method | |
| CN108345719B (en) | Post-drilling inversion method for electromagnetic wave logging data while drilling of highly deviated well/horizontal well | |
| CN114970213B (en) | Sea clutter dynamic simulation method under soliton internal wave fluctuation effect | |
| CN111856597B (en) | Towed marine electromagnetic formation resistivity and receiving station position joint inversion method | |
| CN111666534A (en) | Electrical random anisotropic electromagnetic field decoupling method | |
| Sun et al. | Angular misalignment calibration method for ultra‐short baseline positioning system based on matrix decomposition | |
| Colombo et al. | Machine-learning inversion via adaptive learning and statistical sampling: Application to airborne micro-TEM for seismic sand corrections | |
| CN110058316B (en) | Electromagnetic sounding constraint inversion method based on resistivity equivalence principle | |
| CN106443803B (en) | Ocean controllable source electromagnetic response computational methods based on emitter actual measurement morphological data | |
| CN117669362A (en) | Deep learning-assisted iterative inversion method of azimuthal electromagnetic wave logging data while drilling | |
| Ji et al. | Inversion method of a highly generalized neural network based on Rademacher complexity for rough media GATEM data | |
| CN115902794A (en) | Ground wave radar channel correction method based on AIS and Canopy-Kmeans algorithm | |
| Meju et al. | Structurally tailored 3D anisotropic controlled-source electromagnetic resistivity inversion with cross-gradient criterion and simultaneous model calibration | |
| CN116977842A (en) | SAR image water depth estimation method, system, equipment and medium for shallow sea partition environment | |
| CN113221651B (en) | Submarine sediment classification method using acoustic propagation data and unsupervised machine learning | |
| CN117008127A (en) | Three-dimensional imaging method and system based on directional drilling radar | |
| Zach et al. | 3D inversion-based interpretation of marine CSEM data | |
| Corte et al. | Seismic history matching in the pressure and saturation domain for reservoir connectivity assessment | |
| Wang et al. | Application of deep learning in first-break picking of shallow OBN data | |
| CN114526063B (en) | Method and device for obtaining structural parameters of edge detection electromagnetic wave logging instrument |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |