CN111929964A - Combined amplification method and device of few-mode parameter and strong coupling Raman - Google Patents
Combined amplification method and device of few-mode parameter and strong coupling Raman Download PDFInfo
- Publication number
- CN111929964A CN111929964A CN202010999307.2A CN202010999307A CN111929964A CN 111929964 A CN111929964 A CN 111929964A CN 202010999307 A CN202010999307 A CN 202010999307A CN 111929964 A CN111929964 A CN 111929964A
- Authority
- CN
- China
- Prior art keywords
- light
- mode
- few
- signal
- pump light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003321 amplification Effects 0.000 title claims abstract description 26
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 26
- 238000001069 Raman spectroscopy Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000010168 coupling process Methods 0.000 title claims abstract description 12
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 12
- 230000008878 coupling Effects 0.000 title claims abstract description 10
- 239000000835 fiber Substances 0.000 claims abstract description 34
- 239000013307 optical fiber Substances 0.000 claims abstract description 21
- 230000010287 polarization Effects 0.000 claims abstract description 19
- 238000005516 engineering process Methods 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 abstract description 11
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 230000003287 optical effect Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/39—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
- G02F1/395—Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves in optical waveguides
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信领域的光放大技术,特别涉及一种少模参量与强耦合拉曼的联合放大方法及装置。The invention relates to an optical amplification technology in the communication field, in particular to a joint amplification method and device of few-mode parametric and strong coupling Raman.
背景技术Background technique
随着云计算、大数据、网络电视等业务的快速发展,以及5G时代的到来,对于光纤通信系统的传输容量、传输速率、传输距离的需求越来越高。为了满足对于光纤通信系统的需求,光时分复用、波分复用、偏振复用、空分复用、密集波分复用等复用技术不断被提出,并运用于光通信系统的扩容,但是,这些技术对于长距离传输的光纤通信系统而言,光束的折射、散射,以及光纤对于光波的散射和吸收都将会使得所传输的信号光衰减,光纤通信系统的性能变差,在接收端无法准确接收到原始信号的信息。为了保证光纤通信系统的传输质量,就需要在信号传输过程中增加光放大器件对信号进行放大,从而使得信号能够长距离传输。With the rapid development of cloud computing, big data, Internet TV and other services, and the arrival of the 5G era, the demand for the transmission capacity, transmission rate, and transmission distance of optical fiber communication systems is getting higher and higher. In order to meet the needs of optical fiber communication systems, multiplexing technologies such as optical time division multiplexing, wavelength division multiplexing, polarization multiplexing, space division multiplexing, and dense wavelength division multiplexing have been continuously proposed and applied to the expansion of optical communication systems. However, for these technologies for long-distance optical fiber communication systems, the refraction and scattering of light beams, as well as the scattering and absorption of light waves by optical fibers, will attenuate the transmitted signal light, and the performance of optical fiber communication systems will deteriorate. The terminal cannot accurately receive the information of the original signal. In order to ensure the transmission quality of the optical fiber communication system, it is necessary to add an optical amplifier device to amplify the signal during the signal transmission process, so that the signal can be transmitted over a long distance.
目前,国内外所采用的光放大器主要包括以下三种:掺铒光纤放大器、光纤拉曼放大器和光纤参量放大器。其中,掺铒光纤放大器的增益不平坦,增益的带宽比较窄,只能对波长为1550nm左右的光进行放大;光纤拉曼放大器的缺点在于单位长度上的增益比较低;光纤参量放大器在光纤参量放大中的相位匹配比较困难,且增益谱为驼峰状,中心凹陷,无法实现平坦增益。利用这三种不同的放大器设计出有着平坦的增益谱的放大方式成为目前急需解决的问题。At present, the optical amplifiers used at home and abroad mainly include the following three types: erbium-doped fiber amplifiers, fiber Raman amplifiers and fiber parametric amplifiers. Among them, the gain of the erbium-doped fiber amplifier is not flat, the gain bandwidth is relatively narrow, and it can only amplify the light with a wavelength of about 1550nm; the disadvantage of the fiber Raman amplifier is that the gain per unit length is relatively low; Phase matching in amplification is difficult, and the gain spectrum is hump-shaped with a concave center, which makes it impossible to achieve flat gain. Using these three different amplifiers to design an amplification method with a flat gain spectrum has become an urgent problem to be solved at present.
发明内容SUMMARY OF THE INVENTION
发明目的:针对以上问题,本发明目的是提供一种均衡增益的少模参量与强耦合拉曼的联合放大方法,本发明的另一个目的是提供一种少模参量与强耦合拉曼的联合放大装置。Purpose of the invention: In view of the above problems, the purpose of the present invention is to provide a joint amplification method of few-mode parameters and strong coupling Raman with balanced gain, and another purpose of the present invention is to provide a combination of few-mode parameters and strong coupling Raman. magnifying device.
技术方案:本发明所述的一种少模参量与强耦合拉曼的联合放大方法,包括以下步骤:Technical solution: The joint amplification method of few-mode parameters and strong coupling Raman according to the present invention includes the following steps:
S1:将信号光进行信号调制,得到四种偏振模式信号光;S1: Perform signal modulation on the signal light to obtain four polarization modes of signal light;
S2:将所述四种偏振模式信号光经过光子灯笼模分复用技术进入到少模光纤;S2: Enter the signal light of the four polarization modes into the few-mode fiber through the photonic lantern mode division multiplexing technology;
S3:将泵浦光进行信号调制,得到四种偏振模式泵浦光,将这四种光耦合到长拉锥光纤中;S4:将S3中耦合输出后的泵浦光通过相位匹配,和S2少模光纤输出后的信号光耦合进入耦合器实现光纤参量放大过程,信号光得到大带宽、高增益的放大,之后将输出光输入到放大器;S3: The pump light is signal-modulated to obtain four polarization modes of pump light, and the four kinds of light are coupled into the long taper fiber; S4: The pump light coupled out in S3 is phase-matched, and S2 The signal light output by the few-mode fiber is coupled into the coupler to realize the fiber parametric amplification process, and the signal light is amplified with large bandwidth and high gain, and then the output light is input to the amplifier;
S5:将S4获得的放大光通过光子灯笼均衡输出。S5: The amplified light obtained by S4 is output through the photon lantern to equalize.
所述步骤S1四种偏振模式信号光的模式分别为LP01、LP11、LP21、LP02,由于这四种模式的信号光是正交模式,所以在少模光纤中的模间色散几乎为零。The modes of the four polarization modes of the signal light in the step S1 are LP 01 , LP 11 , LP 21 , and LP 02 respectively. Since the signal lights of these four modes are orthogonal modes, the intermodal dispersion in the few-mode fiber is almost zero.
所述步骤S3偏振模式泵浦光与步骤S1偏振模式信号光的模式相同。The polarization mode pump light in step S3 has the same mode as the polarization mode signal light in step S1.
所述步骤S4放大器包括少模光纤、耦合器以及泵浦光源,信号光通过少模光纤后进入耦合器,反向注入相同模式的泵浦光,实现后向拉曼放大,通过调节泵浦光波长,使得拉曼放大的增益谱与参量放大的增益谱相反,进而实现对于信号光的均衡增益。In step S4, the amplifier includes a few-mode fiber, a coupler and a pump light source. The signal light enters the coupler after passing through the few-mode fiber, and injects the pump light of the same mode in the reverse direction to realize backward Raman amplification. By adjusting the pump light wavelength, so that the gain spectrum of Raman amplification is opposite to that of parametric amplification, so as to achieve balanced gain for signal light.
一种少模参量与强耦合拉曼的联合放大装置,包括信号光源、第一光子灯笼、少模光纤、第一泵浦光源、相位匹配器、第一耦合器、放大器和第二光子灯笼,A joint amplification device of few-mode parametric and strongly coupled Raman, comprising a signal light source, a first photon lantern, a few-mode fiber, a first pump light source, a phase matcher, a first coupler, an amplifier and a second photon lantern,
所述信号光源产生信号光,经过信号调制后,输入到第一光子灯笼,输出的信号光输入到少模光纤;所述泵浦光源产生泵浦光,经过信号调制后,输入到长拉锥光纤,输出光入射到相位匹配器,经过相位匹配之后的泵浦光与从少模光纤输出的信号光通过耦合器入射到放大器,获得放大光,最终通过第二光子灯笼输出。The signal light source generates signal light, which is input to the first photon lantern after signal modulation, and the output signal light is input to the few-mode fiber; the pump light source generates pump light, which is input to the elongated cone after signal modulation The optical fiber, the output light is incident on the phase matcher, the pump light after phase matching and the signal light output from the few-mode fiber are incident on the amplifier through the coupler, and the amplified light is obtained, and finally output through the second photon lantern.
所述放大器包括少模光纤、第二耦合器以及第二泵浦光源,信号光通过少模光纤后进入第二耦合器,反向注入相同模式的泵浦光。The amplifier includes a few-mode fiber, a second coupler, and a second pump light source, and the signal light enters the second coupler after passing through the few-mode fiber, and reversely injects pump light of the same mode.
有益效果:本发明与现有技术相比,其显著优点是:Beneficial effect: Compared with the prior art, the present invention has the following significant advantages:
1、本发明利用光纤参量放大技术和后向拉曼放大技术,实现对信号光的高增益,大带宽的放大,从而实现对四种不同模式的信号光的均衡增益;1. The present invention utilizes the optical fiber parametric amplification technology and the backward Raman amplification technology to achieve high gain and large bandwidth amplification of the signal light, thereby realizing the balanced gain of the signal light of four different modes;
2、反向泵浦的泵浦光源噪声在传输过程中被平均,放大后的光束信噪比更高,光束质量更好,有效提高光纤通信系统的性能,提升光纤通信系统的传输距离。2. The noise of the pump light source of reverse pumping is averaged during the transmission process, and the amplified beam has a higher signal-to-noise ratio and better beam quality, which effectively improves the performance of the optical fiber communication system and increases the transmission distance of the optical fiber communication system.
附图说明Description of drawings
图1为本发明装置结构示意图。FIG. 1 is a schematic diagram of the structure of the device of the present invention.
具体实施方式Detailed ways
本实施例所述的一种少模参量与强耦合拉曼的联合放大方法,包括以下步骤:A method for joint amplification of few-mode parameters and strongly coupled Raman described in this embodiment includes the following steps:
S1:将信号光进行信号调制,得到四种偏振模式信号光,分别为LP012、LP113、LP214、LP025。S1: Perform signal modulation on the signal light to obtain four polarization mode signal lights, namely
S2:将四种偏振模式信号光经过光子灯笼模分复用技术进入到少模光纤10。S2: The signal light of the four polarization modes enters the few-
S3:将泵浦光进行信号调制,得到四种偏振模式泵浦光,分别为LP012、LP113、LP214、LP025。将这四种光耦合到长拉锥光纤6中。S3: Perform signal modulation on the pump light to obtain pump light with four polarization modes, namely
S4:将S3中耦合输出后的泵浦光通过相位匹配,和S2少模光纤10输出后的信号光耦合进入耦合器实现光纤参量放大,信号光得到大带宽、高增益的放大,之后将输出光输入到放大器。放大器包括少模光纤、耦合器以及泵浦光源,信号光通过少模光纤后进入耦合器,反向注入相同模式的泵浦光,实现后向拉曼放大,通过调节泵浦光波长,使得拉曼放大的增益谱与参量放大的增益谱相反,进而实现对于信号光的均衡增益。S4: The pump light coupled and output in S3 is phase matched, and the signal light output by the few-
S5:将S4获得的放大光通过光子灯笼均衡输出。S5: The amplified light obtained by S4 is output through the photon lantern to equalize.
如图1所示,本实例所述的一种少模参量与强耦合拉曼的联合放大装置,包括信号光源8、第一光子灯笼9、第一少模光纤10、第一泵浦光源1、相位匹配器7、第一耦合器11、放大器和第二光子灯笼13,信号光源8产生信号光,经过信号调制后,输入到第一光子灯笼9,输出的信号光输入到第一少模光纤10;第一泵浦光源1产生泵浦光,经过信号调制后,输入到长拉锥光纤6,输出光入射到相位匹配器7,经过相位匹配之后的泵浦光与从第一少模光纤10输出的信号光通过第一耦合器11入射到放大器,获得放大光,最终通过第二光子灯笼13输出。放大器包括少模光纤、第二耦合器12以及第二泵浦光源14,信号光通过少模光纤后进入第二耦合器12,反向注入相同模式的泵浦光。As shown in FIG. 1 , a joint amplification device of few-mode parametric and strongly coupled Raman described in this example includes a
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010999307.2A CN111929964A (en) | 2020-09-22 | 2020-09-22 | Combined amplification method and device of few-mode parameter and strong coupling Raman |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010999307.2A CN111929964A (en) | 2020-09-22 | 2020-09-22 | Combined amplification method and device of few-mode parameter and strong coupling Raman |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111929964A true CN111929964A (en) | 2020-11-13 |
Family
ID=73333893
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010999307.2A Pending CN111929964A (en) | 2020-09-22 | 2020-09-22 | Combined amplification method and device of few-mode parameter and strong coupling Raman |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111929964A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114089580A (en) * | 2021-11-12 | 2022-02-25 | 南京信息工程大学 | A Novel Few Mode Loop Wavelength Conversion Device |
| CN114499676A (en) * | 2022-03-16 | 2022-05-13 | 南京信息工程大学 | Signal transmission method based on mode cycle conversion |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102103300A (en) * | 2001-08-16 | 2011-06-22 | 艾利森电话股份有限公司 | Optical amplifier |
| CN102844689A (en) * | 2010-01-27 | 2012-12-26 | 中弗罗里达州大学研究基金会 | Optical transmission using few-mode fibers |
| WO2016103200A2 (en) * | 2014-12-23 | 2016-06-30 | Eni S.P.A. | Optical fiber vibration measurement system in multiphase flows with related method to monitor multiphase flows |
| CN111664881A (en) * | 2020-07-24 | 2020-09-15 | 南京信息工程大学 | Bidirectional distributed sensing system and method based on multi-core few-mode optical fiber |
-
2020
- 2020-09-22 CN CN202010999307.2A patent/CN111929964A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102103300A (en) * | 2001-08-16 | 2011-06-22 | 艾利森电话股份有限公司 | Optical amplifier |
| CN102844689A (en) * | 2010-01-27 | 2012-12-26 | 中弗罗里达州大学研究基金会 | Optical transmission using few-mode fibers |
| WO2016103200A2 (en) * | 2014-12-23 | 2016-06-30 | Eni S.P.A. | Optical fiber vibration measurement system in multiphase flows with related method to monitor multiphase flows |
| CN111664881A (en) * | 2020-07-24 | 2020-09-15 | 南京信息工程大学 | Bidirectional distributed sensing system and method based on multi-core few-mode optical fiber |
Non-Patent Citations (5)
| Title |
|---|
| JIAXIONG LI等: "Experimental demonstration of a few-mode Raman amplifier with a flat gain covering 1530–1605 nm", 《OPTICS LETTERS》 * |
| JIAXIONG LI等: "Ultra-Low-Noise Mode-Division Multiplexed WDM Transmission Over 100-km FMF Based on a Second-Order Few-Mode Raman Amplifier", 《JOURNAL OF LIGHTWAVE TECHNOLOGY》 * |
| JUNPENG LIANG等: "Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission", 《OPTICS LETTERS》 * |
| MIN-CHEN HO等: "200-nm-Bandwidth Fiber Optical Amplifier Combining Parametric and Raman Gain", 《JOURNAL OF LIGHTWAVE TECHNOLOGY》 * |
| 万峰: "第五章 基于少模光纤非线性的参量放大和全光再生研究", 《中国博士学位论文全文数据库-信息科技辑》 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114089580A (en) * | 2021-11-12 | 2022-02-25 | 南京信息工程大学 | A Novel Few Mode Loop Wavelength Conversion Device |
| CN114499676A (en) * | 2022-03-16 | 2022-05-13 | 南京信息工程大学 | Signal transmission method based on mode cycle conversion |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2933998B2 (en) | Erbium-doped fiber amplifier coupling device | |
| US20130163072A1 (en) | Multi-core optical fiber, wavelength division multiplexing coupler, and multi-core optical fiber amplifier | |
| CN108767636B (en) | All-fiber weak-coupling few-mode erbium-doped fiber amplifier | |
| CN111929964A (en) | Combined amplification method and device of few-mode parameter and strong coupling Raman | |
| CN109818241B (en) | High-power supercontinuum laser system | |
| JPH04371911A (en) | Optical isolator and fiber optical amplifier with added rare earth | |
| CN104269732B (en) | Method and device for generating microwave signal based on Brillouin amplification multi-wavelength laser device | |
| US6751421B1 (en) | Optical fiber communication system employing wavelength converter for broadband transmission | |
| CN101187771B (en) | Remotely pumped transportation system for promoting pumping performance by stimulated Raman effect | |
| CN101247181A (en) | Method and device for generating high-frequency microwave signals by using optical fiber stimulated Brillouin scattering | |
| JP2002502504A (en) | Optical isolator composite module and optical amplifier using the same | |
| CN110112636A (en) | The method and device of twice of Brillouin's frequency microwave signal is generated based on twin-core fiber | |
| CN111952828B (en) | Device for improving signal light gain by adopting twin-core and twin-pump optical fiber parametric amplifier | |
| CN110113104A (en) | A kind of method and device generating adjustable microwave signal based on single-mode dual-core optical fiber | |
| CN1617037A (en) | All-fiber multi-wavelength Raman laser with broadband envelope flattening | |
| JP2693133B2 (en) | Optical amplifier | |
| CN214313856U (en) | Bidirectional optical amplifier of single-core bidirectional communication system | |
| CN105259727B (en) | A kind of multi-mode field parameter amplification method | |
| CN110908214A (en) | All-fiber bright squeezed-state light field generator | |
| CN102158284B (en) | Light signal polarization direction determination and power equalization system | |
| CN111856836A (en) | An orthogonal mode optical parametric amplification method and device | |
| CN109787072B (en) | Multi-carrier optical signal generating device and method based on doped echo squash ball | |
| CN115189213A (en) | Bridging type large-mode-field optical fiber structure and optical fiber amplifier | |
| CN206594426U (en) | Area of light polarization locking device based on nonlinear fiber gain polarization sensitivity of quantum | |
| CN207009890U (en) | Combine raman pump source and raman amplifier |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201113 |
|
| RJ01 | Rejection of invention patent application after publication |