[go: up one dir, main page]

CN112034929B - Folding display screen, manufacturing method of folding display screen and terminal equipment - Google Patents

Folding display screen, manufacturing method of folding display screen and terminal equipment Download PDF

Info

Publication number
CN112034929B
CN112034929B CN201910623753.0A CN201910623753A CN112034929B CN 112034929 B CN112034929 B CN 112034929B CN 201910623753 A CN201910623753 A CN 201910623753A CN 112034929 B CN112034929 B CN 112034929B
Authority
CN
China
Prior art keywords
layer
inorganic
film
organic
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910623753.0A
Other languages
Chinese (zh)
Other versions
CN112034929A (en
Inventor
庞欢
杨洪生
王晓飞
苏兆梁
黄义宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to PCT/CN2020/093578 priority Critical patent/WO2020244469A1/en
Publication of CN112034929A publication Critical patent/CN112034929A/en
Application granted granted Critical
Publication of CN112034929B publication Critical patent/CN112034929B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)

Abstract

The application provides a folding display screen, a manufacturing method of the folding display screen and terminal equipment, and relates to the field of display screens. The foldable display screen comprises a flexible optical module layer, a CPI film, a glue joint layer, a bottoming layer and an anti-fingerprint film, wherein the glue joint layer is positioned between the flexible optical module layer and the CPI film, the bottoming layer is arranged on the CPI film, and the anti-fingerprint film is arranged on the bottoming layer. The anti-fingerprint film is a fluoride film layer, the priming layer is made of silicide, the priming layer is physically embedded and/or chemically combined with the CPI film, and the priming layer is chemically combined with the anti-fingerprint film and/or is physically combined among molecules. Therefore, the CPI film and the AF film can be firmly connected through the binding force of the bottom layer, the CPI film and the AF film, the AF film is prevented from falling off, and therefore the fingerprint and dirt resistance of the folding display screen is improved.

Description

一种折叠显示屏、折叠显示屏的制作方法及终端设备A folding display screen, a method for making a folding display screen, and a terminal device

本申请要求于2019年6月3日提交中国国知局、申请号为201910476850.1的中国专利申请的优先权。其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese patent application with the application number of 201910476850.1 submitted to the State Intellectual Property Office of China on June 3, 2019. The entire contents of which are incorporated herein by reference.

技术领域technical field

本申请涉及显示屏技术领域,尤其涉及一种折叠显示屏、折叠显示屏的制作方法及终端设备。The present application relates to the technical field of display screens, and in particular, to a folding display screen, a method for making a folding display screen, and a terminal device.

背景技术Background technique

为了增大终端设备的显示屏面积,同时不改变终端设备占用的空间,折叠显示屏应运而生。由于折叠显示屏需要多次弯折,因此,常规的无延展性的无机玻璃盖板可能无法满足折叠显示屏的规格要求。In order to increase the display area of the terminal device without changing the space occupied by the terminal device, the folding display screen came into being. Since the folding display needs to be bent many times, the conventional non-extensible inorganic glass cover may not meet the specification requirements of the folding display.

发明内容SUMMARY OF THE INVENTION

本申请实施例提供了一种折叠显示屏、折叠显示屏的制作方法及终端设备,以解决显示屏上防指纹膜容易脱落,防指纹效果差的问题。The embodiments of the present application provide a folding display screen, a method for manufacturing a folding display screen, and a terminal device, so as to solve the problem that the anti-fingerprint film on the display screen is easy to fall off and the anti-fingerprint effect is poor.

第一方面,本申请技术方案提供了一种折叠显示屏,包括:柔性光学模组层和无色聚酰亚胺(Colorless Polyimide,CPI)膜,位于所述柔性光学模组层和所述CPI膜之间的胶接层,所述胶接层连接所述柔性光学模组层和所述CPI膜、设置于所述CPI膜上的打底层、以及设置于所述打底层上的防指纹(Anti-Fingerprint,AF)膜;所述AF膜为氟化物膜层,所述打底层为与所述CPI膜物理嵌合和/或化学结合,所述打底层与所述AF 膜化学结合和/或分子间物理结合。In a first aspect, the technical solution of the present application provides a folding display screen, comprising: a flexible optical module layer and a Colorless Polyimide (CPI) film, located on the flexible optical module layer and the CPI The adhesive layer between the films, the adhesive layer connects the flexible optical module layer and the CPI film, a primer layer arranged on the CPI film, and an anti-fingerprint (anti-fingerprint) layer arranged on the primer layer. Anti-Fingerprint, AF) film; the AF film is a fluoride film layer, the primer layer is physically embedded and/or chemically combined with the CPI film, and the primer layer is chemically combined with the AF film and/or or intermolecular physical bonding.

根据上述提供的折叠显示屏,在CPI膜与AF膜之间设有打底层,与其他具有AF膜的显示屏相比,本申请技术方案的折叠显示屏增设的打底层能够与CPI膜发生化学结合和/或物理嵌合,同时与AF膜发生化学结合和/或分子间物理结合,从而保证AF膜牢固地粘附在折叠显示屏上,不易脱落。因此,本申请技术方案所提供的折叠显示屏具有更好的防指纹效果。当本申请技术方案的折叠显示屏应用在折叠手机、折叠电脑等终端设备中时,可以避免AF膜脱落的问题,终端设备保持优良的防指纹效果。According to the above-mentioned folding display screen, a primer layer is provided between the CPI film and the AF film. Compared with other display screens with AF film, the additional primer layer added to the folding display screen of the technical solution of the present application can chemically react with the CPI film. Bonding and/or physical chimera, and chemical bonding and/or intermolecular physical bonding with the AF film at the same time, so as to ensure that the AF film is firmly adhered to the folding display screen and is not easy to fall off. Therefore, the folding display screen provided by the technical solution of the present application has a better anti-fingerprint effect. When the foldable display screen of the technical solution of the present application is applied to terminal devices such as a foldable mobile phone and a foldable computer, the problem of the AF film falling off can be avoided, and the terminal device maintains an excellent anti-fingerprint effect.

在一种实现方式中,所述打底层为包含至少三层无机硅化物的无机打底层,或者为包含一层有机硅化物的有机打底层,或者为以无机硅化物连接所述CPI膜的无机-有机复合打底层,所述无机-有机复合打底层包含至少五层交替堆叠的无机硅化物与有机硅化物,或者为以有机硅化物连接所述CPI膜的有机-无机复合打底层,所述有机-无机复合打底层包含至少四层交替堆叠的无机硅化物与有机硅化物。In an implementation manner, the primer layer is an inorganic primer layer containing at least three layers of inorganic silicides, or an organic primer layer containing one layer of organic silicides, or an inorganic primer layer connected to the CPI film with inorganic silicides - an organic composite primer, the inorganic-organic composite primer comprises at least five layers of alternately stacked inorganic silicides and organic silicides, or an organic-inorganic composite primer with an organic silicide connecting the CPI film, the The organic-inorganic composite primer layer comprises at least four layers of alternately stacked inorganic silicides and organic silicides.

由此,无机打底层通过与CPI膜发生化学结合和物理嵌合,实现与CPI膜之间的牢固结合;通过与AF膜发生化学结合,实现与AF膜之间的牢固结合,进而实现CPI膜与 AF膜之间的牢固连接。有机打底层通过与CPI膜发生化学结合,实现与CPI膜之间的牢固结合;通过与AF膜发生化学结合和分子间物理结合,实现与AF膜之间的牢固结合,进而实现CPI膜与AF膜之间的牢固连接。无机-有机复合打底层通过无机硅化物与CPI 膜之间发生化学结合及物理嵌合,实现与CPI膜之间的牢固结合;通过无机硅化物与AF 膜之间发生化学结合,实现与AF膜之间的牢固结合,进而实现CPI膜与AF膜之间的牢固连接。有机-无机复合打底层通过有机硅化物与CPI膜之间发生化学结合,实现与CPI 膜之间的牢固结合;通过无机硅化物与AF膜之间发生化学结合,实现与AF膜之间的牢固结合,进而实现CPI膜与AF膜之间的牢固连接。As a result, the inorganic primer layer achieves a firm bond with the CPI film through chemical bonding and physical chimerism with the CPI film; through chemical bonding with the AF film, a firm bond with the AF film is achieved, and then the CPI film is realized. Strong connection with AF membrane. The organic bottom layer realizes a firm bond with the CPI film through chemical bonding with the CPI film; through the chemical bonding and intermolecular physical bonding with the AF film, the firm bonding with the AF film is realized, and then the CPI film and the AF film are realized. Strong connection between membranes. The inorganic-organic composite primer realizes a firm bond with the CPI film through chemical bonding and physical chimera between the inorganic silicide and the CPI film; through the chemical bonding between the inorganic silicide and the AF film, it realizes the chemical bonding with the AF film. A firm bond between the CPI film and the AF film is achieved. The organic-inorganic composite bottom layer realizes a strong bond with the CPI film through the chemical bonding between the organic silicide and the CPI film; through the chemical bonding between the inorganic silicide and the AF film, the firmness with the AF film is realized Combination, and then achieve a firm connection between the CPI film and the AF film.

在一种实现方式中,所述无机打底层包括:设置在所述CPI膜表面的基础层,所述基础层的材质为含有不完全酸化硅材料;设置在所述基础层上的中间层,所述中间层包含至少一层无机硅化物材料,以及设置在所述中间层与所述AF膜之间的表面层,所述表面层的材质为二氧化硅。In an implementation manner, the inorganic primer layer includes: a base layer disposed on the surface of the CPI film, the base layer is made of a material containing incompletely acidified silicon; an intermediate layer disposed on the base layer, The intermediate layer includes at least one layer of inorganic silicide material, and a surface layer disposed between the intermediate layer and the AF film, and the surface layer is made of silicon dioxide.

其中,至少一层无机硅化物可以为高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级-8级,例如取无机硅化物材料的莫氏硬度为6级或7级。Wherein, at least one layer of inorganic silicide may be a high-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material may range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7.

由此,CPI膜与含有不完全酸化硅材料的基础层具有更强的化学结合力,保证无机打底层与CPI膜之间的粘接效果。同时,无机硅化物材料能够为CPI膜提供一定的支撑力和固定力,防止CPI膜在弯折使用的过程中发生褶皱等有害变形。二氧化硅材料具有与AF膜发生化学反应的硅烷醇基,能够保证无机打底层与AF膜之间的结合力。而且,二氧化硅材料能够对高硬无机硅化物材料透射的光进一步干涉,令折叠显示屏的整体透光率不会受到具有高折射率的高硬无机硅化物材料的影响。Therefore, the CPI film and the base layer containing the incompletely acidified silicon material have stronger chemical bonding force to ensure the bonding effect between the inorganic primer layer and the CPI film. At the same time, the inorganic silicide material can provide a certain supporting force and fixing force for the CPI film to prevent the CPI film from wrinkling and other harmful deformation during the bending and use process. The silica material has a silanol group that chemically reacts with the AF film, which can ensure the bonding force between the inorganic primer layer and the AF film. Moreover, the silica material can further interfere with the light transmitted by the high-hardness inorganic silicide material, so that the overall light transmittance of the folding display screen will not be affected by the high-hardness inorganic silicide material with a high refractive index.

在一种实现方式中,所述无机-有机复合打底层包括设置在所述CPI膜表面的基础层,所述基础层的材质为含有不完全酸化硅材料,设置在所述基础层上的中间层,所述中间层包含交替堆叠的有机硅化物与无机硅化物,所述中间层的无机硅化物中包含至少一层无机硅化物,以及设置在所述中间层与所述AF膜之间的表面层,所述表面层的材质为二氧化硅的表面层。In an implementation manner, the inorganic-organic composite primer layer includes a base layer disposed on the surface of the CPI film, the base layer is made of incompletely acidified silicon material, and is disposed in the middle of the base layer. layer, the intermediate layer comprises alternately stacked organic silicides and inorganic silicides, the inorganic silicides of the intermediate layer comprise at least one layer of inorganic silicides, and a film disposed between the intermediate layer and the AF film The surface layer, the material of the surface layer is the surface layer of silicon dioxide.

或者, 所述有机-无机复合打底层包括设置在所述CPI膜表面的基础层,所述基础层的材质为有机硅化物,设置在所述基础层上的中间层,所述中间层包含交替堆叠的无机硅化物与有机硅化物,所述中间层的无机硅化物中包含至少一层无机硅化物,以及设置在所述中间层与所述AF膜之间的表面层,所述表面层的材质为二氧化硅。Or, the organic-inorganic composite primer layer includes a base layer disposed on the surface of the CPI film, the base layer is made of organic silicide, and an intermediate layer disposed on the base layer, the intermediate layer includes alternating Stacked inorganic silicide and organic silicide, the inorganic silicide of the intermediate layer includes at least one layer of inorganic silicide, and a surface layer disposed between the intermediate layer and the AF film, the surface layer is The material is silica.

其中,至少一层无机硅化物可以为高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级-8级,例如取无机硅化物材料的莫氏硬度为6级或7级。Wherein, at least one layer of inorganic silicide may be a high-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material may range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7.

由此,复合打底层具有两种镀覆类型,其中,基础层无论为无机硅化物材料,还是为有机硅化物,均能够与CPI膜牢固结合;材质为二氧化硅的表面层能够与AF膜牢固结合,从而保证CPI膜与AF膜之间的结合力。无机-有机复合打底层以及有机-无机复合打底层的中间层内的有机硅化物材料能够起到良好的缓冲作用,消除各层无机硅化物材料的镀膜应力,提高复合打底层的质量。此外,二氧化硅能够与AF膜发生化学结合,硅烷醇基能够对复合打底层中无机硅化物材料透射的光进一步干涉,令显示屏的整体透光率不会受到具有高折射率的无机硅化物材料的影响。Therefore, the composite primer layer has two types of plating, in which the base layer, whether it is an inorganic silicide material or an organic silicide material, can be firmly combined with the CPI film; the surface layer made of silicon dioxide can be combined with the AF film. Firmly combined, so as to ensure the binding force between the CPI film and the AF film. The inorganic-organic composite primer and the organic silicide material in the intermediate layer of the organic-inorganic composite primer can play a good buffer role, eliminate the coating stress of each layer of inorganic silicide materials, and improve the quality of the composite primer. In addition, silicon dioxide can be chemically combined with the AF film, and the silanol group can further interfere with the light transmitted by the inorganic silicide material in the composite primer, so that the overall light transmittance of the display screen will not be affected by the inorganic silicide with high refractive index. influence of material.

在一种实现方式中,所述无机打底层中的无机硅化物为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围为0-2,y的取值范围为0-1.5,z的取值范围为0-0.5。In an implementation manner, the inorganic silicide in the inorganic primer layer is a combination of one or more materials represented by the chemical formula SiO x N y Al z , wherein the value of x ranges from 0 to 2, The value range of y is 0-1.5, and the value range of z is 0-0.5.

在一种实现方式中,所述有机打底层中的有机硅化物为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,m与n的和为4。In an implementation manner, the organosilicon compound in the organic primer layer is a combination of one or more materials represented by the chemical formula Si(OR) m R n , wherein R represents an alkyl group or a heteroalkyl group, The sum of m and n is 4.

在一种实现方式中,所述无机-有机复合打底层和所述有机-无机复合打底层中的无机硅化物均为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围为 0-2,y的取值范围为0-1.5,z的取值范围为0-0.5,所述无机-有机复合打底层和所述有机-无机复合打底层中的有机硅化物均为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,m与n的和为4。In an implementation manner, the inorganic-organic composite primer layer and the inorganic silicide in the organic-inorganic composite primer layer are all made of one or more materials represented by the chemical formula SiO x N y Al z combination, wherein the value range of x is 0-2, the value range of y is 0-1.5, the value range of z is 0-0.5, the inorganic-organic composite primer layer and the organic-inorganic composite primer layer The organosilicon compounds in are a combination of one or more materials represented by the chemical formula Si(OR) m R n , wherein R represents an alkyl group or a heteroalkyl group, and the sum of m and n is 4.

在一种实现方式中,所述无机打底层的总厚度的取值范围为5nm-1000nm,其中所述无机打底层中每一层无机硅化物的厚度的取值范围为0.1nm-500nm。In an implementation manner, the total thickness of the inorganic primer layer ranges from 5 nm to 1000 nm, wherein the thickness of each layer of inorganic silicide in the inorganic primer layer ranges from 0.1 nm to 500 nm.

由此,能够避免镀覆的总厚度过薄而造成的不耐磨以及覆盖不均匀的问题,同时,能够避免镀覆的总厚度过厚而造成的弯曲易开裂的问题。并且,能够避免镀覆的单层厚度过薄而造成的镀覆可操作性差或者镀覆失败,同时能够避免镀覆的单层厚度过厚而造成单层弯曲易开裂。In this way, the problems of wear resistance and uneven coverage caused by too thin a total thickness of the plating can be avoided, and at the same time, the problems of easy bending and cracking caused by an excessively thick total thickness of the plating can be avoided. In addition, poor plating operability or failure of plating caused by too thin a single layer of plating can be avoided, and at the same time, it can be avoided that the thickness of a single layer of plating is too thick to cause bending and cracking of the single layer.

在一种实现方式中,所述有机打底层的总厚度的取值范围为5nm-200nm。In an implementation manner, the total thickness of the organic primer layer ranges from 5 nm to 200 nm.

由此,能够避免镀覆的总厚度过薄而造成镀覆失败的问题,同时,能够避免镀覆的总厚度过厚而造成的有机打底层附着力差,以及显示屏整体透光性差的问题。In this way, it is possible to avoid the problem that the total thickness of the coating is too thin and cause the failure of the coating, and at the same time, it can avoid the problems of poor adhesion of the organic primer layer and poor overall light transmittance of the display screen caused by the too thick total thickness of the coating. .

在一种实现方式中,所述无机-有机复合打底层和所述有机-无机复合打底层的总厚度的取值范围均为5nm-1000nm,其中所述无机-有机复合打底层和所述有机-无机复合打底层中每一层无机硅化物的厚度的取值范围均为0.1nm-500nm,所述无机-有机复合打底层和所述有机-无机复合打底层中每一层有机硅化物的厚度的取值范围均为5nm-200nm。In an implementation manner, the total thicknesses of the inorganic-organic composite primer and the organic-inorganic composite primer are both in the range of 5 nm to 1000 nm, wherein the inorganic-organic composite primer and the organic - The thickness of each layer of inorganic silicide in the inorganic composite primer is in the range of 0.1 nm to 500 nm, and the thickness of each layer of the organic silicide in the inorganic-organic composite primer and the organic-inorganic composite primer The thickness ranges from 5nm to 200nm.

由此,能够避免镀覆的总厚度过薄而造成的镀覆不均匀以及镀覆失败的问题,同时,能够避免镀覆的总厚度过厚而造成的弯曲易开裂,以及显示屏整体透光性差的问题。其中,每一层无机硅化物的厚度的取值范围可以在0.1nm-500nm之间,能够有效避免单层无机硅化物材料过薄而镀覆失败,同时避免单层无机硅化物材料过厚而弯曲易开裂,并且难以控制复合打底层总厚度的问题。In this way, the problems of uneven coating and coating failure caused by the total thickness of the coating being too thin can be avoided, and at the same time, bending and cracking caused by the total thickness of the coating being too thick can be avoided, and the overall light transmission of the display screen can be avoided. Sexual issues. Wherein, the thickness of each layer of inorganic silicide can range from 0.1 nm to 500 nm, which can effectively prevent the single-layer inorganic silicide material from being too thin and cause the plating failure, and at the same time avoid the single-layer inorganic silicide material being too thick and causing the failure of plating. Bending is prone to cracking, and it is difficult to control the overall thickness of the composite primer.

在一种实现方式中,所述无机打底层中至少一层无机硅化物,以及所述复合打底层中至少一层无机硅化物的莫氏硬度的取值范围可以为4级-8级。In an implementation manner, the Mohs hardness of at least one layer of inorganic silicide in the inorganic primer layer and at least one layer of inorganic silicide in the composite primer layer may range from 4 to 8.

由此,能够避免无机打底层、无机-有机复合打底层及有机-无机复合打底层的总体硬度过低,而失去对柔性CPI膜的支撑作用和固定作用,以及能够避免总体硬度过高,而降低折叠显示屏的整体弯曲效果。In this way, the overall hardness of the inorganic primer layer, the inorganic-organic composite primer layer, and the organic-inorganic composite primer layer can be prevented from being too low, and the supporting and fixing functions of the flexible CPI film can be lost, and the overall hardness can be avoided. Reduces the overall bending effect of the folded display.

第二方面,本申请技术方案提供了一种显示屏的制作方法,包括:利用胶接层连接柔性光学模组层与CPI膜;在所述CPI膜表面设置与所述CPI膜物理嵌合和/或化学结合的硅化物打底层;在所述硅化物打底层上设置与所述硅化物打底层化学结合和/或分子间物理结合的AF膜。In the second aspect, the technical solution of the present application provides a method for manufacturing a display screen, including: connecting a flexible optical module layer and a CPI film by an adhesive layer; /or a chemically bonded silicide primer layer; an AF film chemically combined with the silicide primer layer and/or physically combined with the silicide layer is arranged on the silicide primer layer.

由此,使用本申请技术方案的方法制作的折叠显示屏,在CPI膜与AF膜之间设有打底层,与其他具有AF膜的折叠显示屏相比,本申请技术方案的折叠显示屏的打底层能够与柔性CPI膜发生化学结合和/或物理嵌合,与AF膜发生化学结合和/或分子间物理结合,从而保证AF膜牢固的粘附在折叠显示屏上,不易脱落。因此,本申请技术方案所提供的折叠显示屏具有更好的防指纹效果。当本申请技术方案的折叠显示屏应用在折叠手机、折叠电脑等终端设备中,可以避免AF膜脱落的问题,终端设备保持优良的防指纹效果。Therefore, the folding display screen produced by the method of the technical solution of the present application is provided with a primer layer between the CPI film and the AF film. Compared with other folding display screens with the AF film, the folding display screen of the technical solution of the present application has a The bottom layer can be chemically combined and/or physically embedded with the flexible CPI film, and chemically combined and/or physically combined with the AF film, thereby ensuring that the AF film is firmly adhered to the folding display screen and is not easy to fall off. Therefore, the folding display screen provided by the technical solution of the present application has a better anti-fingerprint effect. When the foldable display screen of the technical solution of the present application is applied to terminal devices such as a foldable mobile phone and a foldable computer, the problem of the AF film falling off can be avoided, and the terminal device maintains an excellent anti-fingerprint effect.

在一种实现方式中,在CPI膜表面设置与CPI膜物理嵌合和/或化学结合的硅化物打底层之前包括:将所述CPI膜放置于真空腔内;对所述真空腔抽真空后,清洗所述CPI 膜。In an implementation manner, before disposing the silicide primer layer that is physically embedded and/or chemically combined with the CPI film on the surface of the CPI film, it includes: placing the CPI film in a vacuum chamber; after evacuating the vacuum chamber , clean the CPI membrane.

由此,能够有效保证CPI膜表面的清洁度,进而保证CPI膜与打底层之间的连接质量。In this way, the cleanliness of the surface of the CPI film can be effectively ensured, thereby ensuring the quality of the connection between the CPI film and the underlying layer.

在一种实现方式中,所述清洗CPI膜包括:使用等离子体清洗方式或辉光放电清洗方式清洗所述CPI膜。In an implementation manner, the cleaning of the CPI film includes: cleaning the CPI film by using a plasma cleaning method or a glow discharge cleaning method.

在一种实现方式中,所述在CPI膜表面设置与CPI膜物理嵌合和/或化学结合的硅化物打底层包括:在所述CPI膜表面设置包含至少三层无机硅化物的无机打底层,或者设置包含一层有机硅化物的有机打底层,或者设置以无机硅化物连接所述CPI膜的无机-有机复合打底层,所述无机-有机复合打底层包含至少五层交替堆叠的无机硅化物与有机硅化物;或者设置以有机硅化物连接所述CPI膜的有机-无机复合打底层,所述有机-无机复合打底层包含至少四层交替堆叠的无机硅化物与有机硅化物。In an implementation manner, the disposing a silicide primer layer that is physically embedded and/or chemically combined with the CPI film on the surface of the CPI film includes: disposing an inorganic primer layer containing at least three layers of inorganic silicide on the surface of the CPI film , or an organic primer layer comprising a layer of organic silicide is provided, or an inorganic-organic composite primer layer is provided that connects the CPI film with an inorganic silicide, and the inorganic-organic composite primer layer comprises at least five layers of alternately stacked inorganic silicide layers or an organic-inorganic composite primer layer connecting the CPI film with an organic silicide, the organic-inorganic composite primer layer comprising at least four layers of alternately stacked inorganic silicides and organic silicides.

在一种实现方式中,通过硅靶、铝靶或者硅铝复合靶,在O2、N2或O2与N2的混合气氛下,在所述CPI膜上磁控溅射所述无机打底层、所述无机-有机复合打底层或者有机-无机复合打底层中的各层无机硅化物,其中所述硅铝复合靶中硅元素与铝元素的质量比例在 99:1与40:60之间。In an implementation manner, the inorganic sparger is magnetron sputtered on the CPI film through a silicon target, an aluminum target or a silicon-aluminum composite target in a mixed atmosphere of O 2 , N 2 or O 2 and N 2 . The bottom layer, the inorganic-organic composite primer layer or each layer of inorganic silicide in the organic-inorganic composite primer layer, wherein the mass ratio of silicon element and aluminum element in the silicon-aluminum composite target is between 99:1 and 40:60. between.

由此,通过磁控溅射的方法镀覆二氧化硅、氮化硅、氮氧硅铝和氮氧化硅等无机打底层材料。并通过磁控溅射的方法将无机打底层或者两类复合打底层中的各层无机硅化物镀覆至 CPI膜的表面以及前一打底层材料上,磁控溅射能够令镀覆材料形成高能溅射粒子,令无机硅化物材料与CPI膜及前一打底层材料之间发生物理嵌合,进而通过物理嵌合所产生的作用力,增强打底层与CPI膜之间的结合力。In this way, inorganic primer materials such as silicon dioxide, silicon nitride, silicon oxynitride, and silicon oxynitride are plated by magnetron sputtering. And by the method of magnetron sputtering, each layer of inorganic silicide in the inorganic primer layer or two types of composite primer layers is plated on the surface of the CPI film and on the material of the previous primer layer. Magnetron sputtering can make the coating material form. The high-energy sputtering particles make the inorganic silicide material physically fit with the CPI film and the previous primer material, and then through the force generated by the physical fit, the bonding force between the primer layer and the CPI film is enhanced.

在一种实现方式中,采用热蒸发有机硅化物膜料的方式在所述CPI膜上沉积所述有机打底层、所述无机-有机复合打底层或者有机-无机复合打底层中的各层有机硅化物。In an implementation manner, each organic layer of the organic primer layer, the inorganic-organic composite primer layer, or the organic-inorganic composite primer layer is deposited on the CPI film by thermally evaporating an organic silicide film material. silicide.

在一种实现方式中,所述在CPI膜表面设置包含至少三层无机硅化物的无机打底层包括:在所述CPI膜表面设置材质为含有不完全酸化硅材料的基础层,在所述基础层上设置包含至少一层无机硅化物材料的中间层,在所述中间层与所述AF膜之间设置材质为二氧化硅的表面层。In an implementation manner, the step of disposing an inorganic primer layer containing at least three layers of inorganic silicides on the surface of the CPI film includes: disposing a base layer made of an incompletely acidified silicon material on the surface of the CPI film, on the base layer An intermediate layer containing at least one layer of inorganic silicide material is disposed on the layer, and a surface layer made of silicon dioxide is disposed between the intermediate layer and the AF film.

其中,至少一层无机硅化物可以为高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级-8级,例如取无机硅化物材料的莫氏硬度为6级或7级。Wherein, at least one layer of inorganic silicide may be a high-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material may range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7.

在一种实现方式中,所述设置以无机硅化物连接所述CPI膜的无机-有机复合打底层包括:在所述CPI膜表面设置材质为含有不完全酸化硅材料的基础层;在所述基础层上设置包含交替堆叠的有机硅化物与无机硅化物的中间层,所述中间层包含至少一层无机硅化物;在中间层上设置材质为二氧化硅的表面层。In an implementation manner, the setting of the inorganic-organic composite primer layer connecting the CPI film with an inorganic silicide comprises: setting a base layer made of an incompletely acidified silicon material on the surface of the CPI film; An intermediate layer comprising alternately stacked organic silicides and inorganic silicides is arranged on the base layer, and the intermediate layer includes at least one layer of inorganic silicides; a surface layer made of silicon dioxide is arranged on the intermediate layer.

其中,至少一层无机硅化物可以为高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级-8级,例如取无机硅化物材料的莫氏硬度为6级或7级。Wherein, at least one layer of inorganic silicide may be a high-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material may range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7.

在一种可能的方式中,所述设置以有机硅化物连接所述CPI膜的有机-无机复合打底层包括:在所述CPI膜表面设置材质为有机硅化物的基础层;在所述基础层上设置包含交替堆叠的无机硅化物与有机硅化物的中间层,所述中间层包含至少一层无机硅化物;在所述中间层上设置材质为二氧化硅的表面层。In a possible manner, the setting of the organic-inorganic composite primer layer connecting the CPI film with an organosilicon compound includes: disposing a base layer made of organosilicon compound on the surface of the CPI film; An intermediate layer comprising alternately stacked inorganic silicides and organic silicides is arranged on the upper layer, and the intermediate layer includes at least one layer of inorganic silicides; a surface layer made of silicon dioxide is arranged on the intermediate layer.

其中,至少一层无机硅化物可以为高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级-8级,例如取无机硅化物材料的莫氏硬度为6级或7级。Wherein, at least one layer of inorganic silicide may be a high-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material may range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7.

在一种实现方式中,所述无机打底层中的无机硅化物为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围为0-2,y的取值范围为0-1.5,z的取值范围为0-0.5。In an implementation manner, the inorganic silicide in the inorganic primer layer is a combination of one or more materials represented by the chemical formula SiO x N y Al z , wherein the value of x ranges from 0 to 2, The value range of y is 0-1.5, and the value range of z is 0-0.5.

在一种实现方式中,所述有机打底层中的有机硅化物为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,且m与n的和为4。In an implementation manner, the organosilicon compound in the organic primer layer is a combination of one or more materials represented by the chemical formula Si(OR) m R n , wherein R represents an alkyl group or a heteroalkyl group, And the sum of m and n is 4.

在一种实现方式中,所述无机-有机复合打底层和所述有机-无机复合打底层中的无机硅化物均为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围为 0-2,y的取值范围为0-1.5,z的取值范围为0-0.5,所述无机-有机复合打底层和所述有机-无机复合打底层中的有机硅化物均为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,且m与n的和为4。In an implementation manner, the inorganic-organic composite primer layer and the inorganic silicide in the organic-inorganic composite primer layer are all made of one or more materials represented by the chemical formula SiO x N y Al z combination, wherein the value range of x is 0-2, the value range of y is 0-1.5, the value range of z is 0-0.5, the inorganic-organic composite primer layer and the organic-inorganic composite primer layer The organosilicon compounds in are a combination of one or more materials represented by the chemical formula Si(OR) m R n , wherein R represents an alkyl group or a heteroalkyl group, and the sum of m and n is 4.

在一种实现方式中,所述无机打底层的总厚度的取值范围为5nm-1000nm,其中所述无机打底层中每一层无机硅化物的厚度的取值范围为0.1nm-500nm。In an implementation manner, the total thickness of the inorganic primer layer ranges from 5 nm to 1000 nm, wherein the thickness of each layer of inorganic silicide in the inorganic primer layer ranges from 0.1 nm to 500 nm.

在一种实现方式中,所述有机打底层的总厚度的取值范围为5nm-200nm。In an implementation manner, the total thickness of the organic primer layer ranges from 5 nm to 200 nm.

在一种实现方式中,所述无机-有机复合打底层和所述有机-无机复合打底层的总厚度的取值范围均为5nm-1000nm,其中所述无机-有机复合打底层和所述有机-无机复合打底层中每一层无机硅化物的厚度的取值范围均为0.1nm-500nm,所述无机-有机复合打底层和所述有机-无机复合打底层中每一层有机硅化物的厚度的取值范围均为5nm-200nm。In an implementation manner, the total thicknesses of the inorganic-organic composite primer and the organic-inorganic composite primer are both in the range of 5 nm to 1000 nm, wherein the inorganic-organic composite primer and the organic - The thickness of each layer of inorganic silicide in the inorganic composite primer is in the range of 0.1 nm to 500 nm, and the thickness of each layer of the organic silicide in the inorganic-organic composite primer and the organic-inorganic composite primer The thickness ranges from 5nm to 200nm.

在一种实现方式中,所述无机打底层中至少一层无机硅化物、所述无机-有机复合打底层以及所述有机-无机复合打底层中至少一层无机硅化物的莫氏硬度的取值范围为4级 -8级。In an implementation manner, the Mohs hardness of at least one layer of inorganic silicide in the inorganic primer layer, the inorganic-organic composite primer layer, and the at least one layer of inorganic silicide in the organic-inorganic composite primer layer Values range from level 4 to level 8.

第三方面,本申请技术方案提供了一种终端设备,该终端设备包括本申请技术方案提供的显示屏,该显示屏为折叠显示屏。In a third aspect, the technical solution of the present application provides a terminal device, the terminal device includes the display screen provided by the technical solution of the present application, and the display screen is a foldable display screen.

其中,折叠显示屏可以设置于终端设备的操作区域。本申请技术方案提供的折叠显示屏的AF膜与CPI膜之间结合力强,不易脱落,使用过程中AF膜与打底层不会影响显示屏本身的弯曲效果及透光效果,可以避免用户在操作终端设备时在显示屏上留下指纹、脏污等痕迹,进一步提升用户的使用体验。Wherein, the folding display screen can be set in the operation area of the terminal device. The AF film and the CPI film of the folding display screen provided by the technical solution of the present application have strong bonding force and are not easy to fall off. During the use process, the AF film and the bottom layer will not affect the bending effect and light transmission effect of the display screen itself, which can prevent users from Fingerprints, dirt and other traces are left on the display screen when operating the terminal device, which further improves the user experience.

附图说明Description of drawings

为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the present application more clearly, the accompanying drawings that need to be used in the embodiments will be briefly introduced below. Other drawings can also be obtained from these drawings.

图1展示了一种带有可折叠显示屏的终端设备的结构示意图;Figure 1 shows a schematic structural diagram of a terminal device with a foldable display screen;

图2展示了另一角度带有可折叠显示屏的终端设备的结构示意图;Figure 2 shows a schematic structural diagram of a terminal device with a foldable display screen from another angle;

图3展示了一种可折叠终端设备的结构示意图;FIG. 3 shows a schematic structural diagram of a foldable terminal device;

图4展示了镀覆AF膜前第一非形变区域在A处的横截面结构示意图;FIG. 4 shows a schematic diagram of the cross-sectional structure of the first non-deformed region at A before coating the AF film;

图5展示了镀覆AF膜前第二非形变区域在B处的横截面结构示意图;FIG. 5 shows a schematic diagram of the cross-sectional structure of the second non-deformed region at B before coating the AF film;

图6展示了镀覆AF膜前形变区域在C处的横截面结构示意图;Figure 6 shows a schematic diagram of the cross-sectional structure of the deformation region at C before coating the AF film;

图7展示了一种带有防指纹显示屏的可折叠终端设备的结构示意图;FIG. 7 shows a schematic structural diagram of a foldable terminal device with an anti-fingerprint display screen;

图8展示了一种打底层与AF膜的镀覆流程示意图;FIG. 8 shows a schematic diagram of the coating process of a primer layer and an AF film;

图9展示了镀覆AF膜后第一非形变区域在A处的横截面结构示意图;FIG. 9 shows a schematic diagram of the cross-sectional structure of the first non-deformed region at A after the AF film is coated;

图10展示了镀覆AF膜后第二非形变区域在B处的横截面结构示意图;FIG. 10 shows a schematic diagram of the cross-sectional structure of the second non-deformed region at B after the AF film is coated;

图11展示了镀覆AF膜后形变区域在C处的横截面结构示意图;Figure 11 shows a schematic diagram of the cross-sectional structure of the deformation region at C after coating the AF film;

图12展示了一种无机打底层分离放大的结构示意图;Figure 12 shows a schematic diagram of the structure of an inorganic primer layer separation and amplification;

图13展示了一种包含三层无机硅化物的无机打底层的结构示意图;Figure 13 shows a schematic structural diagram of an inorganic primer layer comprising three layers of inorganic silicide;

图14展示了一种有机打底层分离放大的结构示意图;Figure 14 shows a schematic structural diagram of the separation and enlargement of an organic bottom layer;

图15展示了一种无机-有机复合打底层分离放大的结构示意图;Figure 15 shows a schematic structural diagram of an inorganic-organic composite primer layer separation and amplification;

图16展示了一种包含五层打底材料的无机-有机复合打底层的结构示意图;Figure 16 shows a schematic structural diagram of an inorganic-organic composite primer comprising five layers of primer materials;

图17展示了一种有机-无机复合打底层分离放大的结构示意图;Figure 17 shows a schematic structural diagram of an organic-inorganic composite primer layer separation and amplification;

图18展示了一种包含四层打底材料的有机-无机复合打底层的结构示意图;FIG. 18 shows a schematic structural diagram of an organic-inorganic composite primer layer comprising four layers of primer materials;

图19展示了一种显示屏的制作方法的流程图。FIG. 19 shows a flow chart of a method for fabricating a display screen.

图示说明:Illustration description:

其中,1-第一非形变区域,2-第二非形变区域,3-形变区域,4-CPI膜,5-胶接层,6-柔性光学模组层,7-AF膜,8-第一机体,9-弯曲连接件,10-打底层,11-无机打底层, 11-1~11-(n+2)-无机打底层中的各层无机硅化物,12-有机打底层,13-无机-有机复合打底层,13-1~13-(2n+3)-无机-有机复合打底层中各层打底材料,14-有机-无机复合打底层,14-1~14-(2n+2)-有机-无机复合打底层中各层打底材料,15-第二机体,16-显示屏。Among them, 1-first non-deformation area, 2-second non-deformation area, 3-deformation area, 4-CPI film, 5-adhesive layer, 6-flexible optical module layer, 7-AF film, 8-th A body, 9-bending connecting piece, 10-priming layer, 11-inorganic priming layer, 11-1~11-(n+2)-inorganic silicide of each layer in inorganic priming layer, 12-organic priming layer, 13 -Inorganic-organic composite primer, 13-1~13-(2n+3)-Inorganic-organic composite primer for each layer of primer, 14-Organic-inorganic composite primer, 14-1~14-(2n +2)- Each layer of primer material in the organic-inorganic composite primer layer, 15- the second body, 16- display screen.

具体实施方式Detailed ways

在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的技术场景进行说明。Before describing the technical solutions of the embodiments of the present application, the technical scenarios of the embodiments of the present application are first described with reference to the accompanying drawings.

为了同时满足具有较大尺寸的操作界面和较小尺寸的携带体积这两种使用效果,带有可折叠显示屏的终端设备应运而生。图1和图2分别展示了一种带有可折叠显示屏的终端设备在两个角度的结构示意图。以是否发生形变为依据,将可折叠显示屏划分为两个非形变区域和一个形变区域,其中,图1展示了该可折叠显示屏的第一非形变区域1,图2展示了该可折叠显示屏的第二非形变区域2和形变区域3。如图1和图2所示,该终端设备的弯曲变形并不影响正常显示和操作。终端设备的显示屏包括光学模组层、无机玻璃层、以及用于连接光学模组层与无机玻璃层的胶接层。但是,由无机玻璃的材料特性可知,虽然超薄无机玻璃材料可以折叠,但是其机械性能较差,不耐跌,且易刺破,可能无法实现显示屏弯曲后正常显示和操作的需求。In order to satisfy the two use effects of a larger-sized operation interface and a smaller-sized carrying volume at the same time, terminal devices with foldable display screens have emerged as the times require. Figures 1 and 2 respectively show schematic structural diagrams of a terminal device with a foldable display screen at two angles. According to whether deformation occurs, the foldable display screen is divided into two non-deformable areas and one deformation area, wherein FIG. 1 shows the first non-deformation area 1 of the foldable display screen, and FIG. 2 shows the foldable display screen. The second non-deformable area 2 and the deformation area 3 of the display screen. As shown in Figures 1 and 2, the bending deformation of the terminal device does not affect normal display and operation. The display screen of the terminal device includes an optical module layer, an inorganic glass layer, and an adhesive layer for connecting the optical module layer and the inorganic glass layer. However, according to the material properties of inorganic glass, although the ultra-thin inorganic glass material can be folded, its mechanical properties are poor, it is not resistant to falling, and it is easy to be punctured, which may not meet the needs of normal display and operation after the display screen is bent.

为了实现上述需求,可以采用CPI膜代替无机玻璃层,因为CPI膜具有优异的抗蠕变性,同时又具有足够的物理机械强度以及光学性能,因此能够代替无机玻璃成为可折叠显示屏的盖板材料。图3展示了一种可折叠终端设备的结构示意图,如图3所示,可折叠终端设备包括显示屏16、第一机体8、弯曲连接件9和第二机体15。所述显示屏16 设置于所述第一机体8、所述弯曲连接件9和所述第二机体15的上方。其中,第一机体8所对应的显示屏16的区域与第一非形变区域1相对应,第二机体15所对应的显示屏 16的区域与第二非形变区域2相对应,弯曲连接件9所对应的显示屏16的区域与形变区域3相对应。具体地,显示屏16包括柔性光学模组层6、胶接层5和CPI膜4。其中,柔性光学模组层6可以具有弯曲的性能。柔性光学模组层6能够为显示屏16提供发光与显示功能。柔性光学模组层6可以采用OLED(Organic Light-Emitting Diode,有机发光二极管)。该显示屏16可以为全部区域可视的全面屏,俗称全面屏,也可以为部分区域可视的非全面屏,例如显示屏长度方向存在边框。第一机体8和第二机体15为显示屏 16提供支撑。弯曲连接件9设置于第一机体8和第二机体15之间,实现第一机体8和第二机体15之间的弯曲活动。In order to achieve the above requirements, CPI film can be used to replace the inorganic glass layer, because CPI film has excellent creep resistance, and at the same time has sufficient physical and mechanical strength and optical properties, so it can replace inorganic glass as a cover for foldable displays Material. FIG. 3 shows a schematic structural diagram of a foldable terminal device. As shown in FIG. 3 , the foldable terminal device includes a display screen 16 , a first body 8 , a bending connector 9 and a second body 15 . The display screen 16 is disposed above the first body 8 , the curved connecting member 9 and the second body 15 . The area of the display screen 16 corresponding to the first body 8 corresponds to the first non-deformable area 1 , the area of the display screen 16 corresponding to the second body 15 corresponds to the second non-deformable area 2 , and the bending connector 9 The corresponding area of the display screen 16 corresponds to the deformation area 3 . Specifically, the display screen 16 includes the flexible optical module layer 6 , the adhesive layer 5 and the CPI film 4 . Wherein, the flexible optical module layer 6 may have bending properties. The flexible optical module layer 6 can provide light-emitting and display functions for the display screen 16 . The flexible optical module layer 6 may be an OLED (Organic Light-Emitting Diode, organic light-emitting diode). The display screen 16 may be a full screen visible in all areas, commonly known as a full screen, or may be a non-full screen visible in some areas, for example, there is a frame in the length direction of the display screen. The first body 8 and the second body 15 provide support for the display screen 16. The bending connector 9 is arranged between the first body 8 and the second body 15 to realize the bending movement between the first body 8 and the second body 15 .

可以理解的,第一机体8和第二机体15可以为支撑板。弯曲连接件9可以为折叠结构、转轴机构等可弯曲连接机构。支撑板通过折叠机构连接,显示屏16可以通过粘接的方式固定在支撑板上。显示屏16也可以通过粘接的方式固定在折叠机构上。It can be understood that the first body 8 and the second body 15 can be support plates. The bendable connection member 9 may be a bendable connection mechanism such as a folding structure, a rotating shaft mechanism, or the like. The support plates are connected by a folding mechanism, and the display screen 16 can be fixed on the support plate by means of bonding. The display screen 16 can also be fixed on the folding mechanism by means of bonding.

具体地,图4-6分别展示了第一非形变区域1、第二非形变区域2以及形变区域3在终端设备A、B、C处的横截面结构示意图。如附图4所示,对于第一非形变区域1,第一机体8上设有柔性光学模组层6,并在柔性光学模组层6上设置CPI膜4,其中,柔性光学模组层6与CPI膜4之间通过胶接层5连接。如附图5所示,对于第二非形变区域 2,第二机体15上设有柔性光学模组层6,并在柔性光学模组层6上设置CPI膜4,其中,柔性光学模组层6与CPI膜4之间通过胶接层5连接。如附图6所示,对应于形变区域 3的位置设置弯曲连接件9,在弯曲连接件9上设置柔性光学模组层6,并在柔性光学模组层6上设置CPI膜4,其中,柔性光学模组层6与CPI膜4之间通过胶接层5连接。Specifically, FIGS. 4-6 show schematic cross-sectional structures of the first non-deformation area 1 , the second non-deformation area 2 , and the deformation area 3 at the terminal devices A, B, and C, respectively. As shown in FIG. 4 , for the first non-deformation area 1, a flexible optical module layer 6 is provided on the first body 8, and a CPI film 4 is provided on the flexible optical module layer 6, wherein the flexible optical module layer 6 is connected with the CPI film 4 through the adhesive layer 5 . As shown in FIG. 5 , for the second non-deformable area 2 , a flexible optical module layer 6 is provided on the second body 15 , and a CPI film 4 is provided on the flexible optical module layer 6 , wherein the flexible optical module layer 6 is connected with the CPI film 4 through the adhesive layer 5 . As shown in FIG. 6 , a bending connector 9 is arranged corresponding to the position of the deformation area 3 , a flexible optical module layer 6 is arranged on the bending connector 9 , and a CPI film 4 is arranged on the flexible optical module layer 6 , wherein, The flexible optical module layer 6 and the CPI film 4 are connected by an adhesive layer 5 .

在折叠显示屏的使用过程中,CPI膜会与外界接触,从而粘附指纹、脏污等,影响显示屏的操作灵敏度和视觉感受。为了减轻显示屏易粘附指纹、脏污的问题,可以在CPI 膜上直接镀覆一层防指纹(Anti-Fingerprint,AF)膜。AF膜的化学成分为全氟聚醚硅氧烷,分子量为300-8000g/mol,具有较低的表面能,其中,表面能代表物体表面分子间的作用力,AF膜的表面能较低,说明AF膜的表面与其他分子间的作用力较小,因此能够降低由于分子间的作用力而与指纹、脏污等产生的粘附作用,从而可以有效避免粘附指纹及脏污。可以采用以下两种方法来镀覆AF膜,例如,在CPI膜中添加氟化助剂,以降低CPI膜的表面能,令AF膜材料迁移到CPI膜的表面,形成AF膜。但是,AF膜材料在迁移的过程中,容易受到CPI膜中硬化层树脂的包裹,令AF膜材料难以与CPI膜结合,镀覆效果不佳;或者,直接在CPI膜表面湿法涂布AF药液,但是,由于AF药液中的有效成分不具有能够与CPI膜发生物理或化学反应的物质,因此,AF药液也难以与 CPI膜结合。可见,通过上述方式得到的AF膜与CPI膜之间的结合力较小,AF膜容易脱落,可能无法实现耐指纹及脏污的功能。During the use of the foldable display screen, the CPI film will come into contact with the outside world, thereby adhering to fingerprints, dirt, etc., affecting the operation sensitivity and visual experience of the display screen. In order to alleviate the problem of easy adhesion of fingerprints and dirt on the display screen, an anti-fingerprint (AF) film can be directly plated on the CPI film. The chemical composition of the AF film is perfluoropolyether siloxane, the molecular weight is 300-8000g/mol, and it has a low surface energy. The surface energy represents the intermolecular force on the surface of the object. The surface energy of the AF film is low. It shows that the force between the surface of the AF film and other molecules is small, so it can reduce the adhesion between fingerprints and dirt due to the force between molecules, so that the adhesion of fingerprints and dirt can be effectively avoided. The following two methods can be used to coat the AF film. For example, adding a fluorinated additive to the CPI film to reduce the surface energy of the CPI film, so that the AF film material migrates to the surface of the CPI film to form an AF film. However, in the process of migration, the AF film material is easily encapsulated by the resin of the hardened layer in the CPI film, which makes it difficult for the AF film material to combine with the CPI film, and the plating effect is not good; or, directly wet-coating AF on the surface of the CPI film However, since the active ingredient in the AF drug solution does not have a substance that can physically or chemically react with the CPI membrane, it is also difficult for the AF drug solution to bind to the CPI membrane. It can be seen that the binding force between the AF film obtained by the above method and the CPI film is small, the AF film is easy to fall off, and the function of anti-fingerprint and dirt may not be realized.

为了减轻AF膜易脱落的问题,如图7所示,本申请实施例提供了一种显示屏,包括:柔性光学模组层6、胶接层5、CPI膜4,胶接层5连接柔性光学模组层6和CPI 膜4。其中,显示屏16还包括设置于所述CPI膜4上的打底层10、以及设置于所述打底层10上的AF膜7。In order to alleviate the problem that the AF film is easy to fall off, as shown in FIG. 7 , an embodiment of the present application provides a display screen, including: a flexible optical module layer 6 , an adhesive layer 5 , and a CPI film 4 , and the adhesive layer 5 connects the flexible Optical module layer 6 and CPI film 4 . The display screen 16 further includes a primer layer 10 arranged on the CPI film 4 and an AF film 7 arranged on the primer layer 10 .

图8展示了一种打底层10与AF膜7的镀覆流程示意图。可见,先在CPI膜4上设置打底层10,然后在打底层10上镀覆AF膜7,得到带有AF膜的折叠显示屏。图9-11 分别展示了镀覆AF膜之后的第一非形变区域1、第二非形变区域2以及形变区域3在终端设备A、B、C处的横截面结构示意图。可见,对于第一非形变区域1、第二非形变区域2以及形变区域3,均在显示屏结构的基础上,在CPI膜4上增设了打底层10,并在打底层10上镀覆AF膜7。FIG. 8 shows a schematic diagram of a plating process of the primer layer 10 and the AF film 7 . It can be seen that a primer layer 10 is set on the CPI film 4 first, and then an AF film 7 is plated on the primer layer 10 to obtain a folding display screen with an AF film. 9-11 respectively show the schematic cross-sectional structures of the first non-deformation area 1 , the second non-deformation area 2 and the deformation area 3 at the terminal devices A, B, and C after the AF film is coated. It can be seen that for the first non-deformation area 1, the second non-deformation area 2 and the deformation area 3, based on the structure of the display screen, a primer layer 10 is added on the CPI film 4, and the primer layer 10 is plated with AF Membrane 7.

本申请实施例中所提供的打底层10相当于CPI膜4与AF膜7之间的过渡材料。The primer layer 10 provided in the embodiments of the present application is equivalent to a transition material between the CPI film 4 and the AF film 7 .

由于硅化物本身具备作为显示屏原材料的光学性能,同时,硅化物还具备与CPI膜4及AF膜7反应的分子结构和化学成分,因此,在一种实现方式中打底层10的材料可以为硅化物。可以理解的,打底层还可以称为底涂层、过渡层、粘接层、primer层等。Since the silicide itself has optical properties as the raw material of the display screen, and at the same time, the silicide also has the molecular structure and chemical composition to react with the CPI film 4 and the AF film 7, therefore, in an implementation manner, the material of the bottom layer 10 can be silicide. It can be understood that the primer layer can also be referred to as a primer layer, a transition layer, an adhesive layer, a primer layer, and the like.

在一种实现方式中,打底层10与CPI膜4之间通过化学结合所产生的结合力和/或物理嵌合所产生的作用力,能够令打底层10与柔性CPI膜4之间牢固结合。打底层10 与AF膜7之间通过化学结合所产生的结合力和/或分子间物理结合所产生的机械力,能够令打底层10与AF膜7之间牢固结合。因此,通过打底层10分别与柔性CPI膜4及 AF膜7之间的结合,使得CPI膜4与AF膜7之间牢固结合,有效避免AF膜7脱落,从而保证显示屏的防指纹、脏污的效果。In an implementation manner, the bonding force generated by the chemical bonding and/or the force generated by physical fitting between the primer layer 10 and the CPI film 4 can make the primer layer 10 and the flexible CPI film 4 firmly bonded . The bonding force generated by chemical bonding between the primer layer 10 and the AF film 7 and/or the mechanical force generated by the physical bonding between molecules can make the primer layer 10 and the AF film 7 firmly bonded. Therefore, through the combination between the bottom layer 10 and the flexible CPI film 4 and the AF film 7 respectively, the CPI film 4 and the AF film 7 are firmly bonded to effectively prevent the AF film 7 from falling off, thereby ensuring the anti-fingerprint and dirt resistance of the display screen. dirty effect.

图12展示了一种无机打底层的结构示意图。Figure 12 shows a schematic structural diagram of an inorganic primer layer.

打底层10可以为包含至少三层无机硅化物的无机打底层11,如图12所示,在CPI膜4与AF膜7之间设置(n+2)层无机硅化物,其中,1≤n≤100。首先,在CPI膜4上镀覆第一层无机硅化物11-1,然后,在无机硅化物11-1上镀覆第二层无机硅化物11-2,之后依次以前一层无机硅化物为基础镀覆无机硅化物,直至在第(n+1)层无机硅化物 11-(n+1)上镀覆第(n+2)层无机硅化物11-(n+2)。最后,在无机硅化物11-(n+2) 上镀覆AF膜7,得到防指纹的折叠显示屏。The primer layer 10 may be an inorganic primer layer 11 including at least three layers of inorganic silicides. As shown in FIG. 12 , (n+2) layers of inorganic silicides are arranged between the CPI film 4 and the AF film 7 , where 1≤n ≤100. First, a first layer of inorganic silicide 11-1 is plated on the CPI film 4, then a second layer of inorganic silicide 11-2 is plated on the inorganic silicide 11-1, and then the former layer of inorganic silicide is The inorganic silicide is basically plated until the (n+2)th layer of the inorganic silicide 11-(n+2) is plated on the (n+1)th layer of the inorganic silicide 11-(n+1). Finally, the AF film 7 is plated on the inorganic silicide 11-(n+2) to obtain an anti-fingerprint folding display screen.

其中,无机硅化物能够提供与CPI膜4及AF膜7发生化学结合的化学接枝活性官能团,例如硅醇基,这样无机硅化物能够通过化学接枝活性官能团与CPI膜4中的自由基和活性官能团等发生化学结合。另外,无机硅化物与CPI膜4可以为同类材质,根据同类材质易于结合的原理,无机打底层易于与CPI膜4反应,促使两者牢固结合。Among them, the inorganic silicide can provide a chemical grafting active functional group, such as a silanol group, which is chemically combined with the CPI film 4 and the AF film 7, so that the inorganic silicide can chemically graft the active functional group with the free radicals in the CPI film 4 and Active functional groups, etc. are chemically combined. In addition, the inorganic silicide and the CPI film 4 can be made of the same material. According to the principle that the same material is easy to combine, the inorganic base layer is easy to react with the CPI film 4, so that the two can be firmly combined.

无机硅化物能够通过化学接枝活性官能团与AF膜7中的硅氧烷等活化端基发生化学结合。这样无机打底层与AF膜7可以牢固结合。Inorganic silicides can chemically combine with activated end groups such as siloxane in the AF film 7 by chemically grafting active functional groups. In this way, the inorganic primer layer and the AF film 7 can be firmly bonded.

另外,可以采用磁控溅射的方法将无机打底层镀覆于CPI膜上,同样的,可以采用磁控溅射的方法实现无机打底层中各层无机硅化物之间的镀覆。磁控溅射的过程会令无机硅化物粒子带有较高的能量,在无机硅化物粒子到达被镀覆材料表面时,对被镀覆材料产生冲击,令溅射的无机硅化物粒子物理嵌合于被镀覆材料的表面,此时无机硅化物粒子与被镀覆材料之间会产生巨大的作用力,令无机硅化物粒子与被镀覆的材料牢固结合,可以增强无机打底层11与CPI膜4之间结合力,从而进一步增强AF膜7与CPI膜 4之间的结合力,防止AF膜7脱落。In addition, the method of magnetron sputtering can be used to coat the inorganic primer layer on the CPI film. Similarly, the method of magnetron sputtering can be used to realize the plating between each layer of inorganic silicide in the inorganic primer layer. The process of magnetron sputtering will make the inorganic silicide particles have higher energy. When the inorganic silicide particles reach the surface of the material to be plated, it will impact the material to be plated, so that the sputtered inorganic silicide particles are physically embedded. It is suitable for the surface of the material to be plated. At this time, a huge force will be generated between the inorganic silicide particles and the material to be plated, so that the inorganic silicide particles and the material to be plated are firmly combined, which can strengthen the inorganic silicide layer 11 and the material to be plated. The bonding force between the CPI films 4 is further enhanced, thereby further enhancing the bonding force between the AF film 7 and the CPI film 4 and preventing the AF film 7 from falling off.

图14展示了一种有机打底层的结构示意图。Figure 14 shows a schematic structural diagram of an organic base layer.

打底层10可以为包含一层有机硅化物的有机打底层12,如图14所示,在CPI膜4 与AF膜7之间设置一层有机硅化物。The primer layer 10 can be an organic primer layer 12 including a layer of organic silicide. As shown in FIG. 14 , a layer of organic silicide is arranged between the CPI film 4 and the AF film 7 .

在一种实现方式中,在CPI膜4上镀覆一层有机硅化物,然后,在有机硅化物上镀覆AF膜7,得到防指纹的显示屏。In an implementation manner, a layer of organic silicide is plated on the CPI film 4, and then an AF film 7 is plated on the organic silicide to obtain an anti-fingerprint display screen.

其中,有机硅化物能够提供与CPI膜4及AF膜7发生化学结合的化学接枝活性官能团,例如硅氧烷,这样有机硅化物能够通过化学接枝活性官能团与CPI膜4中的自由基和活性官能团等发生化学结合,实现有机打底层12与CPI膜4的牢固结合。Among them, the organosilicon compound can provide a chemical grafting active functional group, such as siloxane, which is chemically combined with the CPI film 4 and the AF film 7, so that the organosilicon compound can chemically graft the active functional group with the free radicals and the free radicals in the CPI film 4. The active functional groups and the like are chemically combined to realize the firm combination of the organic primer layer 12 and the CPI film 4 .

同时,有机硅化物能够通过化学接枝活性官能团与AF膜7中的硅氧烷等活化端基发生化学结合,令有机打底层与AF膜7牢固结合。另外,有机硅化物中的(杂)烷烃链锻能够与AF膜7中的氟醚链锻发生分子链的缠绕,从而产生分子间物理结合的机械力,有机硅化物与AF膜7牢固结合,进一步加强AF膜7与CPI膜4之间的结合力,防止AF膜7脱落。At the same time, the organosilicon compound can chemically bond with the activated end groups such as siloxane in the AF film 7 through chemical grafting of active functional groups, so that the organic primer layer is firmly bonded to the AF film 7 . In addition, the (hetero)alkane chain in the organosilicon compound can entangle the molecular chain with the fluoroether chain in the AF film 7, thereby generating a mechanical force of physical bonding between molecules, and the organosilicon compound is firmly bonded to the AF film 7, The bonding force between the AF film 7 and the CPI film 4 is further strengthened to prevent the AF film 7 from falling off.

图15展示了无机-有机复合打底层的结构示意图;图17展示了有机-无机复合打底层的结构示意图。Figure 15 shows a schematic structural diagram of an inorganic-organic composite primer; Figure 17 shows a schematic structural diagram of an organic-inorganic composite primer.

打底层10可以为包含交替堆叠的无机硅化物与有机硅化物的复合打底层,如图15和图17所示,在CPI膜4与AF膜7之间设置交替堆叠的无机硅化物和有机硅化物。The primer layer 10 can be a composite primer layer comprising alternately stacked inorganic silicides and organic silicides. As shown in FIG. 15 and FIG. 17 , alternately stacked inorganic silicides and organic silicides are arranged between the CPI film 4 and the AF film 7 thing.

在一种实现方式中,如图15所示,在CPI膜4与AF膜7之间设置(2n+3)层打底材料,其中,1≤n≤100。首先,在CPI膜4上镀覆第一层无机硅化物13-1,然后,在无机硅化物13-1上镀覆第二层有机硅化物13-2,在有机硅化物13-2上镀覆第三层无机硅化物13-3,之后依次以前一层打底材料为基础交替镀覆另一种打底材料,直至在第(2n+2) 层有机硅化物13-(2n+2)上镀覆第(2n+3)层无机硅化物13-(2n+3)。形成无机-有机- 无机-有机-…-有机-无机结构的无机-有机复合打底层。最后,在无机硅化物13-(2n+3) 上镀覆AF膜7,得到防指纹的显示屏。In an implementation manner, as shown in FIG. 15 , a (2n+3) layer of primer material is arranged between the CPI film 4 and the AF film 7 , where 1≦n≦100. First, a first layer of inorganic silicide 13-1 is plated on the CPI film 4, then a second layer of organic silicide 13-2 is plated on the inorganic silicide 13-1, and a second layer of organic silicide 13-2 is plated on the organic silicide 13-2 A third layer of inorganic silicide 13-3 is applied, and then another primer material is alternately plated on the basis of the previous layer of primer material until the (2n+2)th layer of organic silicide 13-(2n+2) The (2n+3)th layer of inorganic silicide 13-(2n+3) is plated on it. Inorganic-organic composite primer layer forming an inorganic-organic-inorganic-organic-…-organic-inorganic structure. Finally, the AF film 7 is plated on the inorganic silicide 13-(2n+3) to obtain an anti-fingerprint display screen.

在另一种实现方式中,如图17所示,在CPI膜4与AF膜7之间设置(2n+2)层打底材料,其中,1≤n≤100。首先,在CPI膜4上镀覆第一层有机硅化物14-1,然后,在有机硅化物14-1上镀覆第二层无机硅化物14-2,在无机硅化物14-2上镀覆第三层有机硅化物14-3,之后依次以前一层打底材料为基础交替镀覆另一种打底材料,直至在第(2n+1) 层有机硅化物14-(2n+1)上镀覆第(2n+2)层无机硅化物14-(2n+2)。形成有机-无机- 有机-…-有机-无机结构的有机-无机复合打底层。最后,在无机硅化物14-(2n+2)上镀覆AF膜7,得到防指纹的显示屏。In another implementation manner, as shown in FIG. 17 , a (2n+2) layer of primer material is provided between the CPI film 4 and the AF film 7 , where 1≦n≦100. First, a first layer of organic silicide 14-1 is plated on the CPI film 4, then a second layer of inorganic silicide 14-2 is plated on the organic silicide 14-1, and a second layer of inorganic silicide 14-2 is plated on the inorganic silicide 14-2 A third layer of organosilicon compound 14-3 is applied, and then another base material is alternately plated on the basis of the previous layer of primer material until the (2n+1)th layer of organosilicon compound 14-(2n+1) The (2n+2)th layer of inorganic silicide 14-(2n+2) is plated on it. An organic-inorganic composite primer layer that forms an organic-inorganic-organic-…-organic-inorganic structure. Finally, the AF film 7 is plated on the inorganic silicide 14-(2n+2) to obtain an anti-fingerprint display screen.

参见上文可知,无机硅化物与有机硅化物均能够通过所带有的化学接枝活性官能团活化CPI膜4,并与CPI膜4中的自由基和活性官能团等发生化学结合,这样无机硅化物或者有机硅化物能够与CPI膜4牢固结合,进而保证复合打底层与CPI膜4之间的牢固结合。同时,无机硅化物通过镀覆过程中产生的溅射力能够物理嵌合至CPI膜4内,进一步增强复合打底层与CPI膜4之间的结合力。无机硅化物因与CPI膜4可以为同类材料,可以更进一步增强与CPI膜4之间的结合力。It can be seen from the above that both inorganic silicides and organic silicides can activate the CPI film 4 through the chemical grafting active functional groups, and chemically combine with the free radicals and active functional groups in the CPI film 4, so that the inorganic silicides Or the organosilicon compound can be firmly bonded with the CPI film 4 , thereby ensuring the firm bonding between the composite primer layer and the CPI film 4 . At the same time, the inorganic silicide can be physically embedded into the CPI film 4 by the sputtering force generated during the plating process, which further enhances the bonding force between the composite primer layer and the CPI film 4 . Since the inorganic silicide and the CPI film 4 can be made of the same material, the bonding force with the CPI film 4 can be further enhanced.

在一种实现方式中,无机硅化物与有机硅化物之间能够通过各自的化学接枝活化官能团发生化学结合,这样复合打底层中的各层打底材料之间能够牢固结合。同时,无机硅化物通过镀覆过程中产生的溅射力能够与前一层有机硅化物材料物理嵌合,进一步加强复合打底层中各层打底材料之间的结合力。In an implementation manner, the inorganic silicides and the organic silicides can be chemically bonded through respective chemical graft activation functional groups, so that the primer materials of each layer in the composite primer layer can be firmly bonded. At the same time, the inorganic silicide can be physically embedded with the organic silicide material of the previous layer through the sputtering force generated in the plating process, which further strengthens the bonding force between the primer materials of each layer in the composite primer layer.

另外,无机硅化物与有机硅化物能够通过化学接枝活性官能团与AF膜7中的硅氧烷等活化端基发生化学结合,这样复合打底层能够与AF膜7牢固结合。同时,有机硅化物中的(杂)烷烃链锻能够与AF膜7中的氟醚链锻发生分子链的缠绕,从而产生分子间物理结合的机械力,这样有机硅化物能够与AF膜7牢固结合。In addition, inorganic silicides and organic silicides can be chemically bonded to activated end groups such as siloxane in the AF film 7 through chemical grafting of active functional groups, so that the composite primer layer can be firmly bonded to the AF film 7 . At the same time, the (hetero)alkane chain in the organosilicon compound can entangle the molecular chain with the fluoroether chain in the AF film 7, thereby generating a mechanical force of physical bonding between molecules, so that the organosilicon compound can be firmly attached to the AF film 7. combine.

可见,复合打底材料通过与AF膜7及CPI膜4之间牢固的结合力,有效防止AF膜 7脱落。It can be seen that the composite primer material can effectively prevent the AF film 7 from falling off through the firm binding force between the AF film 7 and the CPI film 4.

进一步地,对于无机打底层11,图13展示了一种包含三层无机硅化物的无机打底层的结构示意图,如图13所示,无机打底层11包含基础层、中间层和表面层,其中,基础层设置于CPI膜4上,中间层设置于基础层上,表面层设置于中间层与AF膜7之间。Further, for the inorganic primer layer 11, FIG. 13 shows a schematic structural diagram of an inorganic primer layer containing three layers of inorganic silicides. As shown in FIG. 13, the inorganic primer layer 11 includes a base layer, an intermediate layer and a surface layer, wherein , the base layer is set on the CPI film 4 , the intermediate layer is set on the base layer, and the surface layer is set between the intermediate layer and the AF film 7 .

具体地,基础层可以采用含有不完全酸化硅的材料,例如二氧化硅。不完全酸化硅能够与CPI膜4中的硬化层分子发生化学反应。通常采用等离子活化CPI膜4,这样CPI 膜4将产生活化的硬化层分子,例如C、Si、N分子,此时,基础层与CPI膜4之间可以发生Si-O-X反应,其中,X为C、Si、N分子。如果等离子为氧等离子,则CPI膜4 经过氧等离子活化后还会被氧化,从而产生羟基、羰基、氨基等活性官能团,可以与不完全酸化硅材料反应。因此,含有不完全酸化硅材料的基础层能够与柔性CPI膜4牢固结合。Specifically, the base layer may use a material containing incompletely acidified silicon, such as silicon dioxide. The incompletely acidified silicon can chemically react with the hardened layer molecules in the CPI film 4 . Plasma is usually used to activate the CPI film 4, so that the CPI film 4 will generate activated hardened layer molecules, such as C, Si, N molecules, at this time, Si-O-X reaction can occur between the base layer and the CPI film 4, wherein X is C, Si, N molecules. If the plasma is oxygen plasma, the CPI film 4 will be oxidized after being activated by oxygen plasma, thereby generating active functional groups such as hydroxyl group, carbonyl group and amino group, which can react with the incompletely acidified silicon material. Therefore, the base layer containing the incompletely acidified silicon material can be firmly bonded to the flexible CPI film 4 .

中间层可以采用高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级-8级,例如取无机硅化物材料的莫氏硬度为6级或7级。在实际应用中,CPI膜4需要在指定的折叠弯曲方向上发生伸缩形变,而避免在其他方向上发生形变。CPI膜4所具有的优异抗蠕变性,能够满足CPI膜4伸缩形变的要求,但是,可能难以保证只在指定方向上发生形变。CPI 膜4上镀覆的无机打底层11和AF膜7由于抗蠕变性相对较低,因此,不会在其他方向上产生较大的形变,这种形变差异会造成CPI膜4在其他方向上与无机打底层11和AF 膜7之间发生位移偏离,产生撕裂力。高硬无机硅化物材料作为中间层能够为CPI膜4 提供一定的支撑力和固定力,减少CPI膜4在其他方向上的形变,从而降低CPI膜4在其他方向上与无机打底层11以及AF膜7之间的撕裂力,保证CPI膜4与无机打底层11 之间的结合力。The intermediate layer may use a high-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material may range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7. In practical applications, the CPI film 4 needs to be stretched and deformed in a specified folded and bent direction, while avoiding deformation in other directions. The excellent creep resistance of the CPI film 4 can meet the requirements of the expansion deformation of the CPI film 4, but it may be difficult to ensure that the deformation occurs only in a specified direction. The inorganic primer layer 11 and the AF film 7 plated on the CPI film 4 are relatively low in creep resistance, so they will not produce large deformations in other directions. This deformation difference will cause the CPI film 4 to be in other directions. Displacement deviation occurs between the top and inorganic primer layer 11 and the AF film 7, and a tearing force is generated. The high-hard inorganic silicide material as an intermediate layer can provide a certain supporting force and fixing force for the CPI film 4, reduce the deformation of the CPI film 4 in other directions, thereby reducing the contact between the CPI film 4 and the inorganic bottom layer 11 and AF in other directions. The tearing force between the films 7 ensures the bonding force between the CPI film 4 and the inorganic primer layer 11 .

另外,由于中间层与CPI膜4之间存在基础层,基础层的材料模量介于高硬无机硅化物材料与柔性CPI膜4之间,因此,可以有效减轻高硬无机硅化物材料对CPI膜4直接作用时所产生的较高的抗形变力。In addition, since there is a base layer between the intermediate layer and the CPI film 4, the material modulus of the base layer is between the high-hardness inorganic silicide material and the flexible CPI film 4. Therefore, the effect of the high-hardness inorganic silicide material on the CPI can be effectively reduced. The higher deformation resistance generated when the membrane 4 acts directly.

表面层可以采用二氧化硅,二氧化硅带有硅羟基,可以与AF膜7中的硅氧烷发生化学结合,保证表面层与CPI膜4牢固结合。The surface layer can be made of silicon dioxide, and silicon dioxide has silicon hydroxyl groups, which can be chemically combined with the siloxane in the AF film 7 to ensure that the surface layer and the CPI film 4 are firmly combined.

另外,由于中间层中的高硬无机硅化物材料具有高折射率的特点,因此会影响光的正常传播,降低折叠显示屏的显示质量。二氧化硅对光具有干涉作用,能够改善经高硬无机硅化物材料折射后的光,可以增强无机打底层11的透射率,因此,采用二氧化硅作为表面层,可以保证显示屏的显示质量。In addition, since the high-hardness inorganic silicide material in the intermediate layer has the characteristics of high refractive index, it will affect the normal propagation of light and reduce the display quality of the folding display screen. Silica has an interference effect on light, which can improve the light refracted by the high-hard inorganic silicide material, and can enhance the transmittance of the inorganic base layer 11. Therefore, using silica as the surface layer can ensure the display quality of the display screen. .

另外,无机硅化物的镀覆方式可以采用磁控溅射,由上文可知,使用这种镀覆方法,无机硅化物的分子会带有较高的能量,能够嵌入被镀覆材料的表面,从而产生巨大的作用力,进一步保证CPI膜4与AF膜7之间的结合力。In addition, the plating method of inorganic silicide can use magnetron sputtering. It can be seen from the above that using this plating method, the molecules of inorganic silicide will have higher energy and can be embedded in the surface of the material to be plated. Thus, a huge force is generated, which further ensures the binding force between the CPI film 4 and the AF film 7 .

在一种实现方式中,如果中间层多于一层无机硅化物,则如图12所示,无机硅化物11-1作为基础层,可以采用含有不完全酸化硅的材料。无机硅化物11-2-有机硅化物11-3~无机硅化物11-(n+1)为中间层,其中,至少包含一层无机硅化物材料,所述无机硅化物材料可以采用高硬无机硅化物材料。无机硅化物11-(n+2)为表面层,采用二氧化硅。In an implementation manner, if the intermediate layer is more than one layer of inorganic silicide, as shown in FIG. 12 , the inorganic silicide 11-1 is used as the base layer, and a material containing incompletely acidified silicon can be used. Inorganic silicide 11-2-organic silicide 11-3~inorganic silicide 11-(n+1) are intermediate layers, which at least contain one layer of inorganic silicide material, and the inorganic silicide material can be a high-hard inorganic silicide material. Silicide material. The inorganic silicide 11-(n+2) is the surface layer, and silicon dioxide is used.

需要注意的是,基础层不能直接选用硬度较高的无机硅化物材料,例如Si3N4。由于CPI膜4具有可弯曲性,并且在可折叠终端中需要发挥此种性能,如果将硬度较高的无机硅化物材料作为基础层直接与CPI膜4接触,由于此种无机硅化物材料的弯曲性能相对较差,会限制CPI膜4的正常弯曲形变,甚至会由于形变量的差异,令CPI膜4损坏。而含有不完全酸化硅材料的无机硅化物仍然具有较好的弯曲性能,与CPI膜4之间的形变量差异较小,不会过度限制CPI膜4的正常弯曲形变。It should be noted that the base layer cannot be directly selected from inorganic silicide materials with higher hardness, such as Si 3 N 4 . Since the CPI film 4 is flexible and needs to exert this kind of performance in the foldable terminal, if the inorganic silicide material with higher hardness is used as the base layer to directly contact the CPI film 4, due to the bending of the inorganic silicide material The performance is relatively poor, which will limit the normal bending deformation of the CPI film 4, and may even damage the CPI film 4 due to the difference in the deformation amount. On the other hand, the inorganic silicide containing incompletely acidified silicon material still has good bending properties, and the deformation difference between the inorganic silicide and the CPI film 4 is small, and the normal bending deformation of the CPI film 4 is not excessively restricted.

对于有机打底层12,如图14所示,有机打底层12为一层有机硅化物,所述有机打底层12设置于CPI膜4与AF膜7之间。其中,有机硅化物能够提供与CPI膜4及AF 膜7发生化学结合的化学接枝活性官能团,例如硅氧烷,这样有机硅化物能够通过化学接枝活性官能团与CPI膜4中的自由基和活性官能团等发生化学结合,实现有机打底层 12与CPI膜4的牢固结合。As for the organic primer layer 12 , as shown in FIG. 14 , the organic primer layer 12 is a layer of organic silicide, and the organic primer layer 12 is disposed between the CPI film 4 and the AF film 7 . Among them, the organosilicon compound can provide a chemical grafting active functional group, such as siloxane, which is chemically combined with the CPI film 4 and the AF film 7, so that the organosilicon compound can chemically graft the active functional group with the free radicals and radicals in the CPI film 4. The active functional groups and the like are chemically combined to realize the firm combination of the organic primer layer 12 and the CPI film 4 .

有机硅化物能够通过化学接枝活性官能团与AF膜7中的硅氧烷等活化端基发生化学结合,令有机打底层与AF膜7牢固结合。另外,有机硅化物中的(杂)烷烃链锻能够与AF膜7中的氟醚链锻发生分子链的缠绕,从而产生分子间物理结合的机械力,有机硅化物与AF膜7牢固结合,进一步加强AF膜7与CPI膜4之间的结合力,防止AF 膜7脱落。The organosilicon compound can chemically combine with activated end groups such as siloxane in the AF film 7 through chemical grafting of active functional groups, so that the organic primer layer is firmly combined with the AF film 7 . In addition, the (hetero)alkane chain in the organosilicon compound can entangle the molecular chain with the fluoroether chain in the AF film 7, thereby generating a mechanical force of physical bonding between molecules, and the organosilicon compound is firmly bonded to the AF film 7, The bonding force between the AF film 7 and the CPI film 4 is further strengthened to prevent the AF film 7 from falling off.

对于无机-有机复合打底层13,图16展示了一种包含五层打底材料的无机-有机复合打底层的结构示意图。如图16所示,无机-有机复合打底层13包含基础层、中间层和表面层,其中,基础层设置于CPI膜4上,中间层设置于基础层上,表面层设置于中间层与AF膜7之间。For the inorganic-organic composite primer layer 13, FIG. 16 shows a schematic structural diagram of an inorganic-organic composite primer layer comprising five layers of primer materials. As shown in FIG. 16 , the inorganic-organic composite primer 13 includes a base layer, an intermediate layer and a surface layer, wherein the base layer is arranged on the CPI film 4, the intermediate layer is arranged on the base layer, and the surface layer is arranged on the intermediate layer and the AF between membranes 7.

具体地,基础层采用含有不完全酸化硅的无机硅化物材料,例如二氧化硅。由上文可知,不完全酸化硅能够与CPI膜4中的硬化层分子发生化学反应,这样基础层能够与 CPI膜4牢固结合。Specifically, the base layer employs an inorganic silicide material containing incompletely acidified silicon, such as silicon dioxide. It can be seen from the above that the incompletely acidified silicon can chemically react with the hardened layer molecules in the CPI film 4, so that the base layer can be firmly combined with the CPI film 4.

中间层包含三层打底材料,依次为采用有机硅化物材料的第一层打底材料、采用无机硅化物材料的第二层打底材料和采用有机硅化物材料的第三层打底材料。其中,第一层打底材料设置于基础层上,第三层打底材料设置于第二层打底材料与表面层之间。其中,第二层打底材料可以采用高硬无机硅化物材料,由上文可知,高硬无机硅化物材料能够为CPI膜4提供支撑力和固定力。由于无机硅化物材料在镀覆的过程中会产生较大的溅射应力,如果多层无机硅化物材料堆叠在一起,则容易发生弯曲开裂,在无机硅化物之间加入材料为有机硅化物的第一层打底材料和第三层打底材料,能够有效降低这种溅射应力。同时,有机硅化物在弯曲时产生的形变量介于无机硅化物与CPI膜4之间,也介于无机硅化物与AF膜7之间,因此,第一层打底材料与第三层打底材料在弯曲时,能够起到缓冲作用,减小由于无机硅化物与CPI膜4的形变量、以及无机硅化物与AF 膜7的形变量差别较大所产生的撕裂力。The middle layer includes three layers of primer materials, which are the first layer of primer material using organic silicide material, the second layer of primer material using inorganic silicide material, and the third layer of primer material using organic silicide material. Wherein, the first layer of primer material is arranged on the base layer, and the third layer of primer material is arranged between the second layer of primer material and the surface layer. Wherein, the second layer of the primer material can be a high-hard inorganic silicide material. It can be seen from the above that the high-hard inorganic silicide material can provide a supporting force and a fixing force for the CPI film 4 . Due to the large sputtering stress generated by inorganic silicide materials during the plating process, if multiple layers of inorganic silicide materials are stacked together, bending cracks are prone to occur. The first layer of primer material and the third layer of primer material can effectively reduce this sputtering stress. At the same time, the amount of deformation generated by the organic silicide during bending is between the inorganic silicide and the CPI film 4, and also between the inorganic silicide and the AF film 7. Therefore, the first layer of primer material and the third layer of When the bottom material is bent, it can play a buffering role and reduce the tearing force caused by the large difference between the deformation amount of the inorganic silicide and the CPI film 4 and the deformation amount of the inorganic silicide and the AF film 7 .

表面层采用二氧化硅,由上文可知,二氧化硅可以通过与AF膜7之间化学结合,保证无机-有机复合打底层13与AF膜7之间的牢固结合,同时可以增强无机-有机复合打底层13的透射率。The surface layer is made of silicon dioxide. As can be seen from the above, silicon dioxide can chemically bond with the AF film 7 to ensure the firm bond between the inorganic-organic composite primer 13 and the AF film 7, and at the same time, it can enhance the inorganic-organic The transmittance of the composite primer layer 13 .

另外,无机-有机复合打底层13中的各层无机硅化物可以采用磁控溅射的镀覆方式,由上文可知,使用这种镀覆方法,无机硅化物的分子会带有较高的能量,能够嵌入被镀覆材料表面,从而产生巨大的作用力,进一步保证CPI膜4与AF膜7之间的结合力。同时,有机硅化物与无机硅化物之间能够通过各自的化学接枝活化官能团发生化学结合,例如有机硅化物所提供的硅氧烷与无机硅化物所提供的硅醇基之间发生化学结合,这种化学结合也能够保证无机-有机复合打底层13中各层打底材料的牢固结合。In addition, each layer of inorganic silicide in the inorganic-organic composite primer layer 13 can be coated by magnetron sputtering. It can be seen from the above that using this coating method, the molecules of the inorganic silicide will have higher The energy can be embedded in the surface of the material to be plated, thereby generating a huge force, and further ensuring the bonding force between the CPI film 4 and the AF film 7 . At the same time, the organic silicide and the inorganic silicide can be chemically combined by their respective chemical grafting and activated functional groups, for example, the siloxane provided by the organic silicide and the silanol group provided by the inorganic silicide are chemically combined, This chemical combination can also ensure the firm combination of primer materials of each layer in the inorganic-organic composite primer layer 13 .

在一种实现方式中,如果中间层多于三层打底材料,则如图15所示,无机硅化物13-1作为基础层,采用含有不完全酸化硅的材料。之后在无机硅化物13-1上交替镀覆有机硅化物和无机硅化物,得到结构为有机硅化物13-2-无机硅化物13-3-…-有机硅化物13-(2n+2)的中间层,其中,中间层至少包含一层无机硅化物材料,所述无机硅化物材料可以采用高硬无机硅化物材料。无机硅化物13-(2n+3)为表面层,采用二氧化硅。In an implementation manner, if the intermediate layer is more than three layers of base material, as shown in FIG. 15 , the inorganic silicide 13-1 is used as the base layer, and a material containing incompletely acidified silicon is used. Then, organic silicide and inorganic silicide are alternately plated on the inorganic silicide 13-1 to obtain a structure of organic silicide 13-2-inorganic silicide 13-3-...-organic silicide 13-(2n+2) The intermediate layer, wherein the intermediate layer contains at least one layer of inorganic silicide material, and the inorganic silicide material can be a high-hardness inorganic silicide material. The inorganic silicide 13-(2n+3) is the surface layer, and silicon dioxide is used.

同样需要注意的是,基础层不能直接选用硬度较高的无机硅化物材料,理由参见上文,此处不再赘述。It should also be noted that the inorganic silicide material with higher hardness cannot be directly selected for the base layer, for the reasons mentioned above, and will not be repeated here.

对于有机-无机复合打底层14,图18展示了一种包含四层打底材料的有机-无机复合打底层的结构示意图,如图18所示,有机-无机复合打底层14包含基础层、中间层和表面层,其中,基础层设置于CPI膜4上,中间层设置于基础层上,表面层设置于中间层与AF膜7之间。For the organic-inorganic composite primer 14, FIG. 18 shows a schematic structural diagram of an organic-inorganic composite primer containing four layers of primer materials. As shown in FIG. 18, the organic-inorganic composite primer 14 includes a base layer, an intermediate layer layer and surface layer, wherein the base layer is arranged on the CPI film 4 , the intermediate layer is arranged on the base layer, and the surface layer is arranged between the intermediate layer and the AF film 7 .

具体地,基础层采用有机硅化物,由上文可知,有机硅化物可以与CPI膜4发生化学结合,从而牢固结合,此处不再赘述。Specifically, the base layer is made of organic silicide. As can be seen from the above, the organic silicide can be chemically combined with the CPI film 4 so as to be firmly combined, which will not be repeated here.

中间层包含两层打底材料,依次为采用无机硅化物材料的第一层打底材料和采用有机硅化物的第二层打底材料。其中,第一层打底材料设置于基础层上,可以采用高硬无机硅化物材料,第二层打底材料设置于第一层打底材料与表面层之间。由上文可知,高硬无机硅化物材料可以为CPI膜4提供支撑力和固定力,第二层打底材料可以起到降低溅射应力,同时在弯曲过程中缓冲的作用。The intermediate layer includes two layers of primer materials, which are sequentially a first layer of primer material using inorganic silicide material and a second layer of primer material using organic silicide material. The first layer of primer material is arranged on the base layer, and a high-hardness inorganic silicide material can be used, and the second layer of primer material is arranged between the first layer of primer material and the surface layer. It can be seen from the above that the high-hard inorganic silicide material can provide support and fixing force for the CPI film 4, and the second layer of primer material can reduce the sputtering stress and at the same time buffer during the bending process.

表面层采用二氧化硅,由上文可知,二氧化硅可以通过与AF膜7之间化学结合,保证有机-无机复合打底层14与AF膜7之间的牢固结合,同时可以增强有机-无机复合打底层14的透射率。The surface layer is made of silicon dioxide. As can be seen from the above, silicon dioxide can chemically bond with the AF film 7 to ensure the firm bond between the organic-inorganic composite bottom layer 14 and the AF film 7, and at the same time, it can enhance the organic-inorganic The transmittance of the composite primer layer 14 .

另外,有机-无机复合打底层14中的各层无机硅化物可以采用磁控溅射的镀覆方式,由上文可知,使用这种镀覆方法,无机硅化物的分子会带有较高的能量,可以嵌入被镀覆材料的表面,从而产生巨大的作用力,进一步保证CPI膜4与AF膜7之间的结合力。同时,由上文可知,有机硅化物与无机硅化物之间可以通过各自的化学接枝活化官能团发生化学结合,保证有机-无机复合打底层14中各层打底材料的牢固结合。In addition, each layer of inorganic silicide in the organic-inorganic composite primer layer 14 can be coated by magnetron sputtering. It can be seen from the above that using this coating method, the molecules of the inorganic silicide will have higher The energy can be embedded in the surface of the material to be plated, thereby generating a huge force and further ensuring the bonding force between the CPI film 4 and the AF film 7 . At the same time, as can be seen from the above, the organic silicide and the inorganic silicide can be chemically bonded through their respective chemical graft activation functional groups, so as to ensure the firm bonding of the primer materials of each layer in the organic-inorganic composite primer layer 14 .

在一种实现方式中,如果中间层多于两层打底材料,则如图17所示,有机硅化物14-1作为基础层。之后在有机硅化物14-1上交替镀覆无机硅化物和有机硅化物,得到结构为无机硅化物14-2-有机硅化物14-3-…-有机硅化物14-(2n+1)的中间层,其中,中间层至少包含一层无机硅化物材料,所述无机硅化物材料可以采用高硬无机硅化物材料。无机硅化物14-(2n+2)为表面层,采用二氧化硅。In one implementation, if the intermediate layer is more than two layers of base material, as shown in FIG. 17 , the organosilicon compound 14-1 is used as the base layer. Then, the inorganic silicide and the organic silicide are alternately plated on the organic silicide 14-1 to obtain the structure of the inorganic silicide 14-2-organic silicide 14-3-...-organic silicide 14-(2n+1) The intermediate layer, wherein the intermediate layer contains at least one layer of inorganic silicide material, and the inorganic silicide material can be a high-hardness inorganic silicide material. The inorganic silicide 14-(2n+2) is the surface layer, and silicon dioxide is used.

在一种实现方式中,打底层10各层所采用材料的化学式参照如下:In an implementation manner, the chemical formula of the materials used in each layer of the base layer 10 is as follows:

无机打底层11中的无机硅化物为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围为0-2,y的取值范围为0-1.5,z的取值范围为0-0.5。The inorganic silicide in the inorganic base layer 11 is a combination of one or more materials represented by the chemical formula SiO x N y Al z , wherein the value range of x is 0-2, and the value range of y is 0- 1.5, the value range of z is 0-0.5.

例如:二氧化硅,Si3O4,SiO0.73N0.9Al0.05,SiO0.5N0.76Al0.1,SiO0.3N1.26Al0.06等。For example: silicon dioxide, Si 3 O 4 , SiO 0.73 N 0.9 Al 0.05 , SiO 0.5 N 0.76 Al 0.1 , SiO 0.3 N 1.26 Al 0.06 and so on.

有机打底层12中的有机硅化物为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,m与n的和为4。The organosilicon compound in the organic primer layer 12 is a combination of one or more materials represented by the chemical formula Si(OR) m R n , wherein R represents an alkyl group or a heteroalkyl group, and the sum of m and n is 4.

例如:十八烷基三甲氧基硅氧烷(C21H46O3Si)、异丁基三甲氧基硅烷(C7H18O3Si)、十二烷基三甲氧基硅氧(C15H34O3Si)等。For example: octadecyltrimethoxysiloxane (C 21 H 46 O 3 Si), isobutyl trimethoxy silane (C 7 H 18 O 3 Si), dodecyl trimethoxysiloxane (C 15 H 34 O 3 Si) and the like.

无机-有机复合打底层13或者有机-无机复合打底层14中的无机硅化物为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围为0-2,y的取值范围为0-1.5,z的取值范围为0-0.5,所述无机-有机复合打底层13和有机-无机复合打底层 14中的有机硅化物为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,m与n的和为4。The inorganic silicide in the inorganic-organic composite primer layer 13 or the organic-inorganic composite primer layer 14 is a combination of one or more materials represented by the chemical formula SiO x N y Al z , wherein the value range of x is 0 -2, the value range of y is 0-1.5, the value range of z is 0-0.5, the organic silicide in the inorganic-organic composite primer 13 and the organic-inorganic composite primer 14 is the chemical formula Si ( OR) a combination of one or more materials represented by m R n , wherein R represents an alkyl group or a heteroalkyl group, and the sum of m and n is 4.

具体请参见无机硅化物与有机硅化物中的示例,此处不再赘述。For details, please refer to the examples in inorganic silicides and organic silicides, which will not be repeated here.

进一步地,为了保证打底层的镀覆质量及折叠显示屏的使用性能,需要限制打底层 10的总厚度、打底层10中各层打底材料的单层厚度、以及打底层10的硬度。Further, in order to ensure the coating quality of the primer layer and the usability of the folding display screen, it is necessary to limit the total thickness of the primer layer 10, the single-layer thickness of each layer of primer material in the primer layer 10, and the hardness of the primer layer 10.

具体地,对于无机打底层11,如果无机打底层11的总厚度过薄,则可能造成的不耐磨以及覆盖不均匀的问题;如果无机打底层11的总厚度过厚,则可能造成显示屏弯曲时易开裂的问题。为了解决上述问题,在一种实现方式中,本申请实施例无机打底层11的总厚度的取值范围为5nm-1000nm。Specifically, for the inorganic primer layer 11, if the total thickness of the inorganic primer layer 11 is too thin, it may cause problems of wear resistance and uneven coverage; if the total thickness of the inorganic primer layer 11 is too thick, it may cause the display screen The problem of easy cracking when bending. In order to solve the above problem, in an implementation manner, the value range of the total thickness of the inorganic primer layer 11 in the embodiment of the present application is 5 nm-1000 nm.

同时,如果无机打底层11中各层无机硅化物的单层厚度过薄,则可能造成镀覆失败;如果单层厚度过厚,则可能造成单层无机硅化物弯曲时易开裂,同时可能令无机打底层11的镀覆总厚度难以控制,造成镀覆总厚度过厚的问题。为了解决上述问题,在一种实现方式中,本申请技术方案中无机打底层11中每一层无机硅化物的厚度的取值范围可以为0.1nm-500nm。At the same time, if the thickness of each layer of inorganic silicide in the inorganic primer layer 11 is too thin, it may cause plating failure; if the thickness of the single layer is too thick, it may cause the single layer of inorganic silicide to be easily cracked when it is bent, and at the same time, it may cause The total plating thickness of the inorganic primer 11 is difficult to control, resulting in the problem that the total plating thickness is too thick. In order to solve the above problem, in an implementation manner, in the technical solution of the present application, the thickness of each layer of inorganic silicide in the inorganic underlying layer 11 may range from 0.1 nm to 500 nm.

对于有机打底层12,如果有机打底层12的总厚度过薄,则可能造成镀覆失败的问题;如果有机打底层12的总厚度过厚,则可能造成有机打底层12附着力差,以及显示屏整体透光性差的问题。为了解决上述问题,在一种实现方式中,本申请技术方案中有机打底层12的总厚度的取值范围可以为5nm-200nm。For the organic primer layer 12, if the total thickness of the organic primer layer 12 is too thin, it may cause the problem of plating failure; if the total thickness of the organic primer layer 12 is too thick, it may cause poor adhesion of the organic primer layer 12, and display The overall light transmittance of the screen is poor. In order to solve the above problem, in an implementation manner, the value range of the total thickness of the organic primer layer 12 in the technical solution of the present application may be 5 nm-200 nm.

对于复合打底层,如果复合打底层的总厚度过薄,则可能造成镀覆不均匀以及镀覆失败的问题;如果复合打底层的总厚度过厚,则可能造成显示屏使用时弯曲易开裂,以及显示屏整体透光性差的问题。为了解决上述问题,在一种实现方式中,本申请技术方案中无机-有机复合打底层13和有机-无机复合打底层14的总厚度的取值范围可以为 5nm-1000nm。For the composite primer layer, if the total thickness of the composite primer layer is too thin, it may cause problems of uneven coating and coating failure; And the problem of poor overall light transmittance of the display. In order to solve the above problem, in an implementation manner, the value range of the total thickness of the inorganic-organic composite primer layer 13 and the organic-inorganic composite primer layer 14 in the technical solution of the present application may be 5nm-1000nm.

其中,如果复合打底层中各层无机硅化物和有机硅化物的单层厚度过薄,则可能镀覆失败;如果各层无机硅化物和有机硅化物的单层厚度过厚,则可能影响单层打底材料弯曲性能。为了解决上述问题,在一种实现方式中,本申请技术方案中无机-有机复合打底层13以及有机-无机复合打底层14中每一层无机硅化物的厚度的取值范围可以为 0.1nm-500nm,每一层有机硅化物的厚度的取值范围可以为5nm-200nm。Among them, if the single layer thickness of each layer of inorganic silicide and organic silicide in the composite base layer is too thin, the plating may fail; if the single layer thickness of each layer of inorganic silicide and organic silicide is too thick, it may affect the single layer thickness. Bending properties of layer base material. In order to solve the above problem, in an implementation manner, in the technical solution of the present application, the thickness of each layer of inorganic silicide in the inorganic-organic composite primer layer 13 and the organic-inorganic composite primer layer 14 may range from 0.1 nm to 500nm, the thickness of each layer of organic silicide can range from 5nm to 200nm.

另外,由上文可知,无机打底层11、无机-有机复合打底层13以及有机-无机复合打底层14中的无机硅化物能够通过较高的硬度,为CPI膜4提供支撑力和固定力。但是,如果总体硬度过低,则可能会失去对CPI膜4的支撑作用和固定作用;如果总体硬度过高,则可能令显示屏的整体弯曲效果降低。为了解决上述问题,在一种实现方式中,本申请技术方案中的无机打底层11、无机-有机复合打底层13、有机-无机复合打底层14 中每一层无机硅化物的莫氏硬度的取值范围可以为4级-8级。In addition, it can be seen from the above that the inorganic silicides in the inorganic primer layer 11 , the inorganic-organic composite primer layer 13 and the organic-inorganic composite primer layer 14 can provide support and fixation force for the CPI film 4 through higher hardness. However, if the overall hardness is too low, the supporting effect and fixing effect on the CPI film 4 may be lost; if the overall hardness is too high, the overall bending effect of the display screen may be reduced. In order to solve the above problems, in an implementation manner, the Mohs hardness of each layer of inorganic silicide in the inorganic primer layer 11 , the inorganic-organic composite primer layer 13 , and the organic-inorganic composite primer layer 14 in the technical solution of the present application is equal to The value range can be from level 4 to level 8.

本申请还实施例提供了一种显示屏的制作方法,该方法用于制作上述实施例示出的显示屏。An embodiment of the present application also provides a method for manufacturing a display screen, and the method is used for manufacturing the display screen shown in the above embodiments.

图19展示了一种显示屏的制作方法的流程图。FIG. 19 shows a flow chart of a method for fabricating a display screen.

如图19所示,该方法包括以下步骤:As shown in Figure 19, the method includes the following steps:

步骤A,利用胶接层5连接柔性光学模组层6与CPI膜4。Step A, using the adhesive layer 5 to connect the flexible optical module layer 6 and the CPI film 4 .

首先,根据实际需要,制定显示屏的尺寸和外形轮廓,该显示屏可以为全部区域可视的全面屏,俗称全面屏,也可以为部分区域可视的非全面屏,例如显示屏长度方向存在边框。所述显示屏的尺寸为显示屏最外边缘的尺寸。显示屏的外形轮廓可以为曲面屏或平面屏,当然也可以为其他外形轮廓。根据显示屏的尺寸和外形轮廓,选取相应厚度的CPI膜片,并将该CPI膜片切割为相应尺寸的CPI膜4。First of all, according to the actual needs, the size and outline of the display screen are formulated. The display screen can be a full screen visible in all areas, commonly known as a full screen, or it can be a non-full screen visible in some areas. frame. The size of the display screen is the size of the outermost edge of the display screen. The outline of the display screen may be a curved screen or a flat screen, and of course other outlines may also be used. According to the size and outline of the display screen, a CPI film with a corresponding thickness is selected, and the CPI film is cut into a CPI film 4 of a corresponding size.

然后,通过油墨印刷,例如丝印工艺,在CPI膜4的背面印刷触点电路。Then, a contact circuit is printed on the back side of the CPI film 4 by ink printing, such as a silk-screen process.

最后,利用胶接层5将柔性光学模组层6与印刷后的CPI膜4连接起来。其中,胶接层5可以采用OCA(Optically Clear Adhesive)光学胶。其中,OCA光学胶具有双面黏性,无色透明,具有良好的透光率,在连接柔性光学模组层6与CPI膜4的同时,不会影响折叠显示屏的显示质量。Finally, the flexible optical module layer 6 is connected with the printed CPI film 4 by the adhesive layer 5 . Wherein, the adhesive layer 5 may use OCA (Optically Clear Adhesive) optical adhesive. Among them, the OCA optical adhesive has double-sided adhesiveness, is colorless and transparent, and has good light transmittance. While connecting the flexible optical module layer 6 and the CPI film 4, the display quality of the folding display screen will not be affected.

另外,柔性光学模组层6可以采用OLED(Organic Light-Emitting Diode,有机发光二极管)制成。OLED具有自发光、广视角、高对比度、低耗电、极高的反应速度等优点,能够为折叠显示屏提供优异的显示及操作功能。In addition, the flexible optical module layer 6 can be made of OLED (Organic Light-Emitting Diode, organic light emitting diode). OLED has the advantages of self-illumination, wide viewing angle, high contrast, low power consumption, extremely high response speed, etc., and can provide excellent display and operation functions for folding display screens.

柔性光学模组层6与CPI膜4为显示屏可折叠提供物理基础。The flexible optical module layer 6 and the CPI film 4 provide a physical basis for the display screen to be foldable.

步骤B,在所述CPI膜4表面设置与所述柔性CPI膜4物理嵌合和/或化学结合的硅化物打底层10。In step B, a silicide primer layer 10 that is physically embedded and/or chemically combined with the flexible CPI film 4 is provided on the surface of the CPI film 4 .

如图8所示,首先,在CPI膜4表面设置能够与CPI膜4发生物理嵌合和/或化学结合的硅化物打底层10,这样打底层10与CPI膜4可以牢固结合。As shown in FIG. 8 , first, a silicide primer layer 10 that can physically fit and/or chemically bond with the CPI film 4 is disposed on the surface of the CPI film 4 , so that the primer layer 10 and the CPI film 4 can be firmly combined.

步骤C,在所述硅化物打底层10上设置与所述硅化物打底层10化学结合和/或分子间物理结合的AF膜7。In step C, the AF film 7 chemically combined with the silicide primer 10 and/or physically combined with the molecules is arranged on the silicide primer layer 10 .

将AF膜7设置于打底层10上,通过打底层10与AF膜7之间的化学结合和/或分子间物理结合,可以实现AF膜7与打底层10的牢固结合。The AF film 7 is arranged on the primer layer 10 , and the AF film 7 and the primer layer 10 can be firmly combined by chemical bonding and/or intermolecular physical bonding between the primer layer 10 and the AF film 7 .

通过打底层10,可以实现CPI膜4与AF膜7之间的连接,从而可以有效防止AF 膜7从CPI膜4上脱落,保证显示屏的防指纹、脏污的效果。By laying the bottom layer 10, the connection between the CPI film 4 and the AF film 7 can be realized, so that the AF film 7 can be effectively prevented from falling off from the CPI film 4, and the anti-fingerprint and dirt-proof effect of the display screen can be ensured.

在一种实现方式中,在步骤B之前,首先将CPI膜4放置于真空腔内,对其进行清洗。并根据工艺要求的不同,选择不同的清洗参数,例如抽真空压强、气体氛围、清洗时间等。对CPI膜4的表面进行清洗的方式有很多,例如,使用等离子体清洗方式或者辉光放电清洗方式等。In an implementation manner, before step B, the CPI film 4 is first placed in a vacuum chamber to be cleaned. And according to different process requirements, choose different cleaning parameters, such as vacuum pressure, gas atmosphere, cleaning time, etc. There are many ways to clean the surface of the CPI film 4, for example, a plasma cleaning method or a glow discharge cleaning method is used.

进一步地,如图12-18所示,在所述CPI膜4表面设置包含至少三层无机硅化物的无机打底层,或者设置包含一层有机硅化物的有机打底层,或者设置以无机硅化物连接 CPI膜4的无机-有机复合打底层,或者设置以有机硅化物连接CPI膜4的有机-无机复合打底层。Further, as shown in FIGS. 12-18 , an inorganic primer layer containing at least three layers of inorganic silicide is provided on the surface of the CPI film 4, or an organic primer layer containing one layer of organic silicide is provided, or an inorganic silicide layer is provided. The inorganic-organic composite primer layer is connected to the CPI film 4, or the organic-inorganic composite primer layer is provided to connect the CPI film 4 with an organic silicide.

其中,无机打底层可以通过与CPI膜4发生化学结合和物理嵌合,实现与CPI膜4 之间的牢固结合;通过与AF膜7发生化学结合,实现与AF膜7之间的结合,进而实现 CPI膜4与AF膜7之间的连接。Among them, the inorganic primer layer can be chemically combined and physically embedded with the CPI film 4 to achieve a firm combination with the CPI film 4; by chemically combined with the AF film 7, the combination with the AF film 7 can be achieved, and then The connection between the CPI film 4 and the AF film 7 is achieved.

有机打底层可以通过与CPI膜4发生化学结合,实现与CPI膜4之间的结合;通过与AF膜7发生化学结合和分子间物理结合,实现与AF膜7之间的结合,进而实现CPI 膜4与AF膜7之间的连接。The organic bottom layer can realize the combination with the CPI film 4 through chemical combination with the CPI film 4; through the chemical combination and intermolecular physical combination with the AF film 7, the combination with the AF film 7 can be realized, and then the CPI can be realized Connection between membrane 4 and AF membrane 7.

无机-有机复合打底层通过无机硅化物与CPI膜之间发生化学结合及物理嵌合,实现与CPI膜之间的牢固结合;通过无机硅化物与AF膜之间发生化学结合,实现与AF膜之间的牢固结合,进而实现CPI膜与AF膜之间的牢固连接。The inorganic-organic composite bottom layer realizes a firm bond with the CPI film through chemical bonding and physical chimera between the inorganic silicide and the CPI film; through the chemical bonding between the inorganic silicide and the AF film, the AF film is realized by chemical bonding. A firm bond between the CPI film and the AF film is achieved.

有机-无机复合打底层通过有机硅化物与CPI膜之间发生化学结合,实现与CPI膜之间的牢固结合;通过无机硅化物与AF膜之间发生化学结合,实现与AF膜之间的牢固结合,进而实现CPI膜与AF膜之间的牢固连接。The organic-inorganic composite bottom layer is chemically bonded between the organic silicide and the CPI film to achieve a firm bond with the CPI film; through the chemical bond between the inorganic silicide and the AF film, a firm bond with the AF film is achieved Combination, and then achieve a firm connection between the CPI film and the AF film.

在一种实现方式中,可以通过硅靶、铝靶或者硅铝复合靶,在O2、N2或O2与N2的混合气氛下,在所述CPI膜4上磁控溅射所述无机打底层、所述无机-有机复合打底层或者所述有机-无机复合打底层中的各层无机硅化物,其中所述硅铝复合靶中硅元素与铝元素的质量比例在99:1与40:60之间。In an implementation manner, the CPI film 4 can be magnetron sputtered on the CPI film 4 through a silicon target, an aluminum target or a silicon-aluminum composite target in a mixed atmosphere of O 2 , N 2 or O 2 and N 2 . Each layer of inorganic silicide in the inorganic primer layer, the inorganic-organic composite primer layer or the organic-inorganic composite primer layer, wherein the mass ratio of silicon element and aluminum element in the silicon-aluminum composite target is 99:1 and 99:1. Between 40:60.

可以采用CVD(Chemical Vapor Deposition,化学气相沉积)、热蒸发、磁控溅射等方法来镀覆无机硅化物,但是,相比于其他镀覆方法,采用磁控溅射方法所形成的无机硅化物的清晰度更高、且溅射参数调节更加精准简单,易于控制镀覆的单层厚度及总体厚度,能够有效保证打底层质量。在一种实现方式中,可以采用低功率磁控溅射方法,此种方法的镀覆质量更高,不会损伤CPI膜4。Inorganic silicides can be plated by CVD (Chemical Vapor Deposition), thermal evaporation, magnetron sputtering, etc. However, compared with other plating methods, inorganic silicides formed by magnetron sputtering The clarity of the material is higher, and the sputtering parameter adjustment is more accurate and simple, and it is easy to control the thickness of the single layer and the overall thickness of the coating, which can effectively ensure the quality of the bottom layer. In an implementation manner, a low-power magnetron sputtering method can be used, which has higher plating quality and will not damage the CPI film 4 .

其中,O2和/或N2、硅靶、铝靶或者硅铝复合靶可以为各种无机硅化物的形成提供物质基础,其中,铝元素可以降低无机硅化物在溅射时所产生的溅射应力。Among them, O 2 and/or N 2 , silicon target, aluminum target or silicon-aluminum composite target can provide a material basis for the formation of various inorganic silicides, wherein aluminum element can reduce the sputtering of inorganic silicides during sputtering. shot stress.

可以采用热蒸发有机硅化物膜料的方式在所述CPI膜4上沉积所述有机打底层、所述无机-有机复合打底层或者所述有机-无机复合打底层中的各层有机硅化物。The organic primer layer, the inorganic-organic composite primer layer, or each layer of organic silicide in the organic-inorganic composite primer layer can be deposited on the CPI film 4 by thermally evaporating an organic silicide film material.

可以采用CVD和热蒸发等方法来镀覆有机硅化物,但是,相比于其他镀覆方法,热蒸发方法可以更加充分地利用有机硅化物的物化性质,获得更好的镀覆质量。同时,热蒸发方法的成本更低,适合于大批量加工生产。Organosilicon compounds can be coated by methods such as CVD and thermal evaporation. However, compared with other plating methods, thermal evaporation methods can fully utilize the physicochemical properties of organosilicon compounds and obtain better coating quality. At the same time, the thermal evaporation method has lower cost and is suitable for mass production.

进一步地,对于无机打底层11,如图12所示,在CPI膜4表面设置包含至少三层无机硅化物的无机打底层11,具体包括:在所述CPI膜4表面设置材质为含有不完全酸化硅材料的基础层,在所述基础层上设置包含至少一层无机硅化物材料的中间层,在所述中间层与所述AF膜之间设置材质为二氧化硅的表面层。Further, for the inorganic primer layer 11 , as shown in FIG. 12 , the inorganic primer layer 11 containing at least three layers of inorganic silicides is arranged on the surface of the CPI film 4 , which specifically includes: setting the material on the surface of the CPI film 4 to contain incomplete A base layer of acidified silicon material, an intermediate layer containing at least one layer of inorganic silicide material is disposed on the base layer, and a surface layer made of silicon dioxide is disposed between the intermediate layer and the AF film.

其中,至少一层无机硅化物可以为高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级-8级,例如取无机硅化物材料的莫氏硬度为6级或7级。Wherein, at least one layer of inorganic silicide may be a high-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material may range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7.

其中,含有不完全酸化硅材料的基础层与CPI膜4的结合力更强,同时包含高硬无机硅化物材料的中间层可以为CPI膜4提供支撑力和固定力,而材质为二氧化硅的表面层可以在与AF膜7紧密结合的基础上,增强折叠显示屏的透光率。Among them, the base layer containing the incompletely acidified silicon material has stronger bonding force with the CPI film 4, and the intermediate layer containing the high-hard inorganic silicide material can provide support and fixing force for the CPI film 4, and the material is silicon dioxide The surface layer can enhance the light transmittance of the folding display screen on the basis of being closely combined with the AF film 7.

对于无机-有机复合打底层13,如图15所示,在所述CPI膜4的表面设置以无机硅化物连接所述CPI膜4的无机-有机复合打底层13,所述无机-有机复合打底层13包含至少五层交替堆叠的无机硅化物与有机硅化物,具体包括:设置于所述CPI膜4表面的基础层,所述基础层的材质为含有不完全酸化硅材料。设置于所述基础层上的中间层,所述中间层包含交替堆叠的有机硅化物与无机硅化物,所述中间层包含至少一层无机硅化物材料,其中,至少一层无机硅化物可以为高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级 -8级,例如取无机硅化物材料的莫氏硬度为6级或7级。设置于所述中间层上的表面层,所述表面层的材质为二氧化硅。For the inorganic-organic composite primer layer 13, as shown in FIG. 15, an inorganic-organic composite primer layer 13 connected to the CPI film 4 by an inorganic silicide is arranged on the surface of the CPI film 4, and the inorganic-organic composite primer layer 13 is provided. The bottom layer 13 includes at least five layers of alternately stacked inorganic silicides and organic silicides, and specifically includes: a base layer disposed on the surface of the CPI film 4 , and the base layer is made of incompletely acidified silicon material. An intermediate layer disposed on the base layer, the intermediate layer comprising alternately stacked organic silicides and inorganic silicides, the intermediate layer comprising at least one layer of inorganic silicide materials, wherein the at least one layer of inorganic silicide can be High-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material can range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7. The surface layer disposed on the intermediate layer is made of silicon dioxide.

或者,对于有机-无机复合打底层14,如图17所示,在所述CPI膜4的表面设置以有机硅化物连接所述CPI膜4的有机-无机复合打底层14,所述有机-无机复合打底层14 包含至少四层交替堆叠的无机硅化物与有机硅化物,具体包括:设置于所述CPI膜4表面的基础层,所述基础层的材质为有机硅化物。设置于所述基础层上的中间层,所述中间层包含交替堆叠的无机硅化物与有机硅化物,所述中间层包含至少一层无机硅化物材料,其中,至少一层无机硅化物可以为高硬无机硅化物材料,其中,高硬无机硅化物材料中的高硬是指莫氏硬度。高硬无机硅化物材料的莫氏硬度的取值范围可以为4级-8级,例如取无机硅化物材料的莫氏硬度为6级或7级。设置于所述中间层上的表面层,所述表面层的材质为二氧化硅。Or, for the organic-inorganic composite primer layer 14, as shown in FIG. 17, an organic-inorganic composite primer layer 14 connected to the CPI film 4 with an organic silicide is arranged on the surface of the CPI film 4, and the organic-inorganic composite primer layer 14 is arranged on the surface of the CPI film 4. The composite primer layer 14 includes at least four layers of alternately stacked inorganic silicides and organic silicides, and specifically includes: a base layer disposed on the surface of the CPI film 4 , and the base layer is made of organic silicides. An intermediate layer disposed on the base layer, the intermediate layer comprising alternately stacked inorganic silicides and organic silicides, the intermediate layer comprising at least one layer of inorganic silicide materials, wherein the at least one layer of inorganic silicide can be High-hardness inorganic silicide material, wherein the high hardness in the high-hardness inorganic silicide material refers to Mohs hardness. The Mohs hardness of the high-hard inorganic silicide material may range from 4 to 8, for example, the Mohs hardness of the inorganic silicide material is 6 or 7. The surface layer disposed on the intermediate layer is made of silicon dioxide.

以上两类复合打底层分别通过无机硅化物和有机硅化物实现复合打底层与CPI膜4 之间的牢固结合。然后通过交替堆叠的各层无机硅化物为CPI膜4提供支撑力和固定力,同时通过各层有机硅化物缓解多层无机硅化物材料形成的溅射应力。最后通过二氧化硅材料实现复合打底层与AF膜7之间的结合,进而实现CPI膜4与AF膜7之间的牢固结合。另外,通过二氧化硅材料改善经过复合打底层折射后的光,增强折叠显示屏的透光率,提高折叠显示屏的显示效果。The above two types of composite primer layers respectively realize a firm combination between the composite primer layer and the CPI film 4 through inorganic silicides and organic silicides. Then, the CPI film 4 is provided with a supporting force and a fixing force through the alternately stacked layers of inorganic silicide, while the sputtering stress formed by the multilayered inorganic silicide material is relieved by the layers of the organic silicide. Finally, the combination between the composite primer layer and the AF film 7 is realized by the silicon dioxide material, thereby realizing the firm combination between the CPI film 4 and the AF film 7 . In addition, the light refracted by the composite bottom layer is improved by the silica material, the light transmittance of the folding display screen is enhanced, and the display effect of the folding display screen is improved.

在一种实现方式中,打底层10的材料可以用化学式来概括,所述无机硅化物可以为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围可以为0-2, y的取值范围可以为0-1.5,z的取值范围可以为0-0.5;所述有机硅化物可以为以化学式 Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,m与n的和为4;所述无机-有机复合打底层和所述有机-无机复合打底层中的无机硅化物可以为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围可以为0-2,y的取值范围可以为0-1.5,z的取值范围可以为0-0.5,所述无机-有机复合打底层和所述有机-无机复合打底层中的有机硅化物可以为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,m与n的和为4。In an implementation manner, the material of the underlying layer 10 can be summarized by a chemical formula, and the inorganic silicide can be a combination of one or more of the materials represented by the chemical formula SiO x N y Al z , where x is taken as The value range can be 0-2, the value range of y can be 0-1.5, the value range of z can be 0-0.5; the organic silicide can be in the material represented by the chemical formula Si(OR) m R n The combination of one or more, wherein R represents an alkyl group or a heteroalkyl group, and the sum of m and n is 4; the inorganic silicide in the inorganic-organic composite bottom layer and the organic-inorganic composite bottom layer can be It is a combination of one or more materials represented by the chemical formula SiO x N y Al z , where the value range of x can be 0-2, the value range of y can be 0-1.5, and the value range of z It can be 0-0.5, and the organic silicide in the inorganic-organic composite primer and the organic-inorganic composite primer can be one or more of the materials represented by the chemical formula Si(OR) m R n . A combination where R represents alkyl or heteroalkyl and the sum of m and n is 4.

进一步地,为了保证打底层10的镀覆质量,以及使用质量,在镀覆打底层10时,优选以下镀覆参数。Further, in order to ensure the coating quality of the primer layer 10 and the quality of use, when the primer layer 10 is coated, the following plating parameters are preferred.

所述无机打底层的总厚度的取值范围可以为5nm-1000nm,其中所述无机打底层中每一层无机硅化物的厚度的取值范围可以为0.1nm-500nm;所述有机打底层的总厚度的取值范围可以为5nm-200nm;所述复合打底层的总厚度的取值范围可以为5nm-1000nm,其中所述无机-有机复合打底层和所述有机-无机复合打底层中每一层无机硅化物的厚度的取值范围可以为0.1nm-500nm,所述无机-有机复合打底层和所述有机-无机复合打底层中每一层有机硅化物的厚度的取值范围可以为5nm-200nm。The value range of the total thickness of the inorganic primer layer can be 5nm-1000nm, wherein the value range of the thickness of each layer of inorganic silicide in the inorganic primer layer can be 0.1nm-500nm; The value range of the total thickness can be 5nm-200nm; the value range of the total thickness of the composite primer layer can be 5nm-1000nm, wherein each of the inorganic-organic composite primer layer and the organic-inorganic composite primer layer. The value range of the thickness of one layer of inorganic silicide can be 0.1nm-500nm, and the value range of the thickness of each layer of organic silicide in the inorganic-organic composite primer layer and the organic-inorganic composite primer layer can be 5nm-200nm.

所述无机打底层中每一层无机硅化物,以及所述无机-有机复合打底层、所述有机- 无机复合打底层中每一层无机硅化物的莫氏硬度的取值范围可以为4级-8级。The value range of the Mohs hardness of each layer of inorganic silicide in the inorganic primer layer, as well as the inorganic-organic composite primer layer and each layer of inorganic silicide in the organic-inorganic composite primer layer can be 4 grades -8 level.

针对本申请实施例所提供的技术方案,提供以下六种实施例,但是,以下实施例只作为示例出现,并不构成对本申请的限定。Regarding the technical solutions provided by the embodiments of the present application, the following six embodiments are provided. However, the following embodiments are only presented as examples and do not constitute a limitation to the present application.

实施例1:Example 1:

本实施例中的显示屏通过以下方法得到:The display screen in this embodiment is obtained by the following methods:

根据显示屏的尺寸与外形轮廓,切割得到相应尺寸的柔性CPI膜,并在该柔性CPI膜的背面油墨印刷触点电路。According to the size and outline of the display screen, a flexible CPI film of corresponding size is obtained by cutting, and a contact circuit is printed on the back of the flexible CPI film.

将上述柔性CPI膜放入真空腔内,并抽真空到5.0×10-2Pa,在600sccmO2气氛下采用 RF射频离子源进行120s等离子清洗处理,得到清洗后的柔性CPI膜。The above flexible CPI film was put into a vacuum chamber, evacuated to 5.0×10 -2 Pa, and subjected to a 120s plasma cleaning treatment with an RF radio frequency ion source in a 600sccmO 2 atmosphere to obtain a cleaned flexible CPI film.

将真空腔的真空度稳定在3.0×10-2Pa,通过硅靶(纯度:91wt%),在O2气氛下在清洗后的柔性CPI膜上磁控溅射二氧化硅膜,此时的镀覆参数选用镀膜温度为-25℃,镀膜沉积速率为0.1nm/s,且镀膜厚度为3nm,得到二氧化硅膜。The vacuum degree of the vacuum chamber was stabilized at 3.0 × 10 -2 Pa, and a silicon dioxide film was magnetron sputtered on the cleaned flexible CPI film through a silicon target (purity: 91 wt% ) under an O atmosphere. The coating parameters were selected as the coating temperature of -25°C, the deposition rate of the coating as 0.1 nm/s, and the thickness of the coating as 3 nm to obtain a silicon dioxide film.

将真空腔的真空度稳定在2.0×10-2Pa,通过硅靶(纯度:91wt%)与铝靶(纯度:92wt%) 在O2和N2气氛下在二氧化硅膜上磁控溅射SiO0.73N0.9Al0.05膜,此时的镀覆参数选用镀膜温度为25℃,镀膜沉积速率为2nm/s,且镀膜厚度为8nm,得到SiO0.73N0.9Al0.05膜。The vacuum degree of the vacuum chamber was stabilized at 2.0×10 -2 Pa, and the silicon target (purity: 91wt%) and aluminum target (purity: 92wt%) were magnetron sputtered on the silicon dioxide film under O2 and N2 atmosphere A SiO 0.73 N 0.9 Al 0.05 film was shot, and the coating parameters at this time were selected as the coating temperature of 25 °C, the coating deposition rate of 2 nm/s, and the coating thickness of 8 nm, to obtain a SiO 0.73 N 0.9 Al 0.05 film.

将真空腔的真空度稳定在2.0×10-2Pa,通过硅靶(纯度:91wt%)在O2气氛下在SiO0.73N0.9Al0.05膜上磁控溅射二氧化硅膜,此时的镀覆参数选用镀膜温度为25℃,镀膜沉积速率为0.2nm/s,且镀膜厚度为60nm,得到二氧化硅膜,最后形成二氧化硅-SiO0.73N0.9Al0.05-二氧化硅无机打底层。The vacuum degree of the vacuum chamber was stabilized at 2.0 × 10 -2 Pa, and a silicon dioxide film was magnetron sputtered on a SiO 0.73 N 0.9 Al 0.05 film through a silicon target (purity: 91 wt% ) under an O atmosphere. At this time, the The coating parameters are selected as the coating temperature of 25 ℃, the deposition rate of the coating is 0.2 nm/s, and the thickness of the coating is 60 nm to obtain a silicon dioxide film, and finally a silicon dioxide-SiO 0.73 N 0.9 Al 0.05 -silica inorganic base layer is formed. .

将真空腔的真空度稳定在9.0×10-3Pa,加热AF膜层材料,在无机打底层上蒸镀AF膜7,镀覆参数选用镀膜温度25℃,镀膜沉积速率为0.2nm/s,且镀膜厚度为35nm。The vacuum degree of the vacuum chamber was stabilized at 9.0×10 -3 Pa, the AF film material was heated, and the AF film 7 was evaporated on the inorganic base layer. And the coating thickness is 35nm.

将镀膜完毕后的柔性CPI膜从真空腔中取出。The flexible CPI film after coating is taken out from the vacuum chamber.

将镀膜完毕后的柔性CPI膜与柔性光学模组采用现有贴合工艺贴合,形成防指纹可折叠的显示屏,最后,通过整机组装工艺形成防指纹可折叠终端设备。The coated flexible CPI film and the flexible optical module are pasted using the existing bonding process to form a fingerprint-proof foldable display screen. Finally, an anti-fingerprint foldable terminal device is formed through the whole machine assembly process.

为了检测上述得到的显示屏的镀膜质量,对显示屏的AF膜及整体弯折性能分别进行水滴角测试和动态弯折测试。具体地,初始水滴角为110°-115°,在500g载荷橡皮摩擦2500圈之后的水滴角为103°-109°;动摩擦系数为0.024-0.042;动态弯折100000次后无裂纹。上述测试结果均超过在柔性CPI膜上直接镀覆AF膜的平均测试结果,且达到在普通无机玻璃上镀覆AF膜的平均测试结果。In order to test the coating quality of the display screen obtained above, the water drop angle test and the dynamic bending test were respectively performed on the AF film and the overall bending performance of the display screen. Specifically, the initial water drop angle is 110°-115°, and the water drop angle after rubbing with a 500g load rubber for 2500 turns is 103°-109°; the dynamic friction coefficient is 0.024-0.042; there is no crack after 100,000 dynamic bending times. The above test results all exceed the average test results of directly coating AF films on flexible CPI films, and reach the average test results of coating AF films on ordinary inorganic glass.

实施例2:Example 2:

本实施例中的显示屏通过以下方法得到:The display screen in this embodiment is obtained by the following methods:

根据显示屏的尺寸与外形轮廓,切割得到相应尺寸的柔性CPI膜,并在该柔性CPI膜的背面油墨印刷触点电路。According to the size and outline of the display screen, a flexible CPI film of corresponding size is obtained by cutting, and a contact circuit is printed on the back of the flexible CPI film.

将上述柔性CPI膜放入真空腔内,并抽真空到3.0×10-2Pa,在500sccmO2气氛下采用霍尔离子源进行60s等离子清洗处理,得到清洗后的柔性CPI膜。The above flexible CPI film was put into a vacuum chamber, evacuated to 3.0×10 -2 Pa, and subjected to plasma cleaning treatment with a Hall ion source for 60s in a 500sccmO 2 atmosphere to obtain a cleaned flexible CPI film.

将真空腔的真空度稳定在2.0×10-2Pa,通过硅铝复合靶(硅含量:92wt%、铝含量:8wt%),在O2与N2气氛下在清洗后的柔性CPI膜上磁控溅射SiO0.5N0.76Al0.1膜,此时的镀覆参数选用镀膜温度为-24℃,镀膜沉积速率为0.15nm/s,且镀膜厚度为3nm,得到SiO0.5N0.76Al0.1膜。The vacuum degree of the vacuum chamber was stabilized at 2.0 × 10 -2 Pa, through a silicon-aluminum composite target (silicon content: 92 wt%, aluminum content: 8 wt%), on the cleaned flexible CPI film under O2 and N2 atmosphere The SiO 0.5 N 0.76 Al 0.1 film was magnetron sputtered, the coating parameters at this time were -24°C, the coating temperature was -24°C, the coating deposition rate was 0.15 nm/s, and the coating thickness was 3 nm to obtain a SiO 0.5 N 0.76 Al 0.1 film.

将真空腔的真空度稳定在1.5×10-2Pa,通过硅靶(纯度:92wt%)在N2气氛下在SiO0.5N0.76Al0.1膜上磁控溅射Si3N4膜,此时的镀覆参数选用镀膜温度为24℃,镀膜沉积速率为0.02nm/s,且镀膜厚度为8nm,得到Si3N4膜。The vacuum degree of the vacuum chamber was stabilized at 1.5× 10 −2 Pa, and the Si3N4 film was magnetron sputtered on the SiO0.5N0.76Al0.1 film through a silicon target (purity: 92wt % ) under N2 atmosphere, at this time As the coating parameters, the coating temperature is 24°C, the deposition rate of the coating is 0.02 nm/s, and the thickness of the coating is 8 nm to obtain a Si 3 N 4 film.

将真空腔的真空度稳定在1.3×10-2Pa,通过硅靶(纯度:91wt%)在O2气氛下在Si3N4膜上磁控溅射二氧化硅膜,此时的镀覆参数选用镀膜温度为24℃,镀膜沉积速率为0.1nm/s,且镀膜厚度为120nm,得到二氧化硅膜,最后形成SiO0.5N0.76Al0.1-Si3N4-二氧化硅无机打底层。The vacuum degree of the vacuum chamber was stabilized at 1.3 × 10 -2 Pa, and the silicon dioxide film was magnetron sputtered on the Si 3 N 4 film through a silicon target (purity: 91 wt%) in an O 2 atmosphere, and the plating at this time As parameters, the coating temperature is 24℃, the coating deposition rate is 0.1nm/s, and the coating thickness is 120nm to obtain a silicon dioxide film, and finally a SiO 0.5 N 0.76 Al 0.1 -Si 3 N 4 -silica inorganic bottom layer is formed.

将真空腔的真空度稳定在8.0×10-3Pa,加热AF膜层材料,在无机打底层上蒸镀AF膜7,镀覆参数选用镀膜温度25℃,镀膜沉积速率为0.2nm/s,且镀膜厚度为25nm。The vacuum degree of the vacuum chamber was stabilized at 8.0×10 -3 Pa, the AF film material was heated, and the AF film 7 was evaporated on the inorganic base layer. And the coating thickness is 25nm.

将镀膜完毕后的柔性CPI膜从真空腔中取出。The flexible CPI film after coating is taken out from the vacuum chamber.

将镀膜完毕后的柔性CPI膜与柔性光学模组采用现有贴合工艺贴合,形成防指纹可折叠的显示屏,最后,通过整机组装工艺形成防指纹可折叠终端设备。The coated flexible CPI film and the flexible optical module are pasted using the existing bonding process to form a fingerprint-proof foldable display screen. Finally, an anti-fingerprint foldable terminal device is formed through the whole machine assembly process.

为了检测上述得到的显示屏的镀膜质量,对显示屏的AF膜及整体弯折性能分别进行水滴角测试和动态弯折测试。具体地,初始水滴角为112°-115°,在500g载荷橡皮摩擦2500圈之后的水滴角为106°-108°;动摩擦系数为0.021-0.035;动态弯折100000次后无裂纹。上述测试结果均超过在柔性CPI膜上直接镀覆AF膜的平均测试结果,且达到在普通无机玻璃上镀覆AF膜的平均测试结果。In order to test the coating quality of the display screen obtained above, the water drop angle test and the dynamic bending test were respectively performed on the AF film and the overall bending performance of the display screen. Specifically, the initial water drop angle is 112°-115°, and the water drop angle after rubbing with a 500g load rubber for 2,500 turns is 106°-108°; the dynamic friction coefficient is 0.021-0.035; there is no crack after 100,000 dynamic bending times. The above test results all exceed the average test results of directly coating AF films on flexible CPI films, and reach the average test results of coating AF films on ordinary inorganic glass.

实施例3:Example 3:

本实施例中的显示屏通过以下方法得到:The display screen in this embodiment is obtained by the following methods:

根据显示屏的尺寸与外形轮廓,切割得到相应尺寸的柔性CPI膜,并在该柔性CPI膜的背面油墨印刷触点电路。According to the size and outline of the display screen, a flexible CPI film of corresponding size is obtained by cutting, and a contact circuit is printed on the back of the flexible CPI film.

将上述柔性CPI膜放入真空腔内,并抽真空到2.0×10-2Pa,在300sccmO2气氛下采用辉光放电离子源进行100s等离子清洗处理,得到清洗后的柔性CPI膜。The above flexible CPI film was put into a vacuum chamber, evacuated to 2.0×10 -2 Pa, and subjected to plasma cleaning treatment with a glow discharge ion source for 100s in a 300sccmO 2 atmosphere to obtain a cleaned flexible CPI film.

将真空腔的真空度稳定在1.0×10-2Pa,通过硅铝复合靶(硅含量:94wt%、铝含量:6wt%),在O2与N2气氛下在清洗后的柔性CPI膜上磁控溅射SiO0.3N1.26Al0.06膜,此时的镀覆参数选用镀膜温度为23℃,镀膜沉积速率为0.1nm/s,且镀膜厚度为10nm,得到SiO0.3N1.26Al0.06膜。The vacuum degree of the vacuum chamber was stabilized at 1.0 × 10 -2 Pa, passed through a silicon-aluminum composite target (silicon content: 94wt%, aluminum content: 6wt%) on the cleaned flexible CPI film under O2 and N2 atmosphere The SiO 0.3 N 1.26 Al 0.06 film was magnetron sputtered, and the coating parameters at this time were the coating temperature of 23°C, the coating deposition rate of 0.1 nm/s, and the coating thickness of 10 nm, to obtain a SiO 0.3 N 1.26 Al 0.06 film.

再按照上述步骤,得到第二层SiO0.3N1.26Al0.06膜。According to the above steps again, a second layer of SiO 0.3 N 1.26 Al 0.06 film is obtained.

将真空腔的真空度稳定在1.0×10-2Pa,通过硅靶(纯度:91wt%)在O2气氛下在SiO0.3N1.26Al0.06膜上磁控溅射二氧化硅膜,此时的镀覆参数选用镀膜温度为23℃,镀膜沉积速率为0.09nm/s,且镀膜厚度为100nm,得到二氧化硅膜,最后形成SiO0.3N1.26Al0.06-SiO0.3N1.26Al0.06-二氧化硅无机打底层。The vacuum degree of the vacuum chamber was stabilized at 1.0 × 10 -2 Pa, and a silicon dioxide film was magnetron sputtered on the SiO 0.3 N 1.26 Al 0.06 film through a silicon target (purity: 91 wt%) under an O 2 atmosphere. At this time, the The coating parameters are selected as the coating temperature of 23 °C, the deposition rate of the coating is 0.09 nm/s, and the thickness of the coating is 100 nm to obtain a silicon dioxide film, and finally SiO 0.3 N 1.26 Al 0.06 -SiO 0.3 N 1.26 Al 0.06 -silicon dioxide is formed No bottom layer.

将真空腔的真空度稳定在7.0×10-3Pa,加热AF膜层材料,在无机打底层上蒸镀AF膜,镀覆参数选用镀膜温度23℃,镀膜沉积速率为0.07nm/s,且镀膜厚度为20nm。The vacuum degree of the vacuum chamber was stabilized at 7.0×10 -3 Pa, the AF film material was heated, and the AF film was evaporated on the inorganic base layer. The coating thickness is 20nm.

将镀膜完毕后的柔性CPI膜从真空腔中取出。The flexible CPI film after coating is taken out from the vacuum chamber.

将镀膜完毕后的柔性CPI膜与柔性光学模组采用现有贴合工艺贴合,形成防指纹可折叠的显示屏,最后,通过整机组装工艺形成防指纹可折叠终端设备。The coated flexible CPI film and the flexible optical module are pasted using the existing bonding process to form a fingerprint-proof foldable display screen. Finally, an anti-fingerprint foldable terminal device is formed through the whole machine assembly process.

为了检测上述得到的显示屏的镀膜质量,对显示屏的AF膜及整体弯折性能分别进行水滴角测试和动态弯折测试。具体地,初始水滴角为111°-114°,在1000g载荷橡皮摩擦2500圈之后的水滴角为104°-108°;动摩擦系数为0.025-0.034;动态弯折100000次后无裂纹。上述测试结果均超过在柔性CPI膜上直接镀覆AF膜的平均测试结果,且达到在普通无机玻璃上镀覆AF膜的平均测试结果。In order to test the coating quality of the display screen obtained above, the water drop angle test and the dynamic bending test were respectively performed on the AF film and the overall bending performance of the display screen. Specifically, the initial water drop angle is 111°-114°, the water drop angle after 2500 laps of rubber friction with a 1000g load is 104°-108°; the dynamic friction coefficient is 0.025-0.034; there is no crack after 100,000 dynamic bending times. The above test results all exceed the average test results of directly coating AF films on flexible CPI films, and reach the average test results of coating AF films on ordinary inorganic glass.

实施例4:Example 4:

本实施例中的显示屏通过以下方法得到:The display screen in this embodiment is obtained by the following methods:

根据显示屏的尺寸与外形轮廓,切割得到相应尺寸的柔性CPI膜,并在该柔性CPI膜的背面油墨印刷触点电路。According to the size and outline of the display screen, a flexible CPI film of corresponding size is obtained by cutting, and a contact circuit is printed on the back of the flexible CPI film.

将上述柔性CPI膜放入真空腔内,并抽真空到5.0×10-2Pa,在600sccmO2气氛下采用 RF射频离子源进行90s等离子清洗处理,得到清洗后的柔性CPI膜。The above flexible CPI film was put into a vacuum chamber, evacuated to 5.0×10 -2 Pa, and subjected to plasma cleaning for 90s using an RF radio frequency ion source in a 600sccmO 2 atmosphere to obtain a cleaned flexible CPI film.

将真空腔的真空度稳定在3.0×10-2Pa,加热十八烷基三甲氧基硅氧烷有机膜料,在清洗后的柔性CPI膜上沉积有机打底层,此时的镀覆参数选用镀膜温度为25℃,镀膜沉积速率为0.1nm/s,且镀膜厚度为10nm,得到十八烷基三甲氧基硅氧烷膜。Stabilize the vacuum degree of the vacuum chamber at 3.0×10 -2 Pa, heat the octadecyltrimethoxysiloxane organic film material, and deposit an organic primer layer on the cleaned flexible CPI film. The coating parameters at this time are selected. The coating temperature is 25° C., the deposition rate of the coating is 0.1 nm/s, and the thickness of the coating is 10 nm to obtain an octadecyltrimethoxysiloxane film.

将真空腔的真空度稳定在9.0×10-3Pa,加热AF膜层材料,在有机打底层上蒸镀AF膜,镀覆参数选用镀膜温度25℃,镀膜沉积速率为0.2nm/s,且镀膜厚度为25nm。The vacuum degree of the vacuum chamber was stabilized at 9.0×10 -3 Pa, the AF film material was heated, and the AF film was evaporated on the organic base layer. The coating thickness is 25nm.

将镀膜完毕后的柔性CPI膜从真空腔中取出。The flexible CPI film after coating is taken out from the vacuum chamber.

将镀膜完毕后的柔性CPI膜与柔性光学模组采用现有贴合工艺贴合,形成防指纹可折叠的显示屏,最后,通过整机组装工艺形成防指纹可折叠终端设备。The coated flexible CPI film and the flexible optical module are pasted using the existing bonding process to form a fingerprint-proof foldable display screen. Finally, an anti-fingerprint foldable terminal device is formed through the whole machine assembly process.

为了检测上述得到的显示屏的镀膜质量,对显示屏的AF膜及整体弯折性能分别进行水滴角测试和动态弯折测试。具体地,初始水滴角为110°-113°,在500g载荷橡皮摩擦2500圈之后的水滴角为78°-92°;动摩擦系数为0.02-0.04;动态弯折100000次后无裂纹。上述测试结果均超过在柔性CPI膜上直接镀覆AF膜的平均测试结果,且达到在普通无机玻璃上镀覆AF膜的平均测试结果。In order to test the coating quality of the display screen obtained above, the water drop angle test and the dynamic bending test were respectively performed on the AF film and the overall bending performance of the display screen. Specifically, the initial water drop angle was 110°-113°, and the water drop angle after rubbing with a 500g load rubber for 2,500 cycles was 78°-92°; the coefficient of kinetic friction was 0.02-0.04; there was no crack after 100,000 dynamic bending times. The above test results all exceed the average test results of directly coating AF films on flexible CPI films, and reach the average test results of coating AF films on ordinary inorganic glass.

实施例5:Example 5:

本实施例中的显示屏通过以下方法得到:The display screen in this embodiment is obtained by the following methods:

根据显示屏的尺寸与外形轮廓,切割得到相应尺寸的柔性CPI膜,并在该柔性CPI膜的背面油墨印刷触点电路。According to the size and outline of the display screen, a flexible CPI film of corresponding size is obtained by cutting, and a contact circuit is printed on the back of the flexible CPI film.

将上述柔性CPI膜放入真空腔内,并抽真空到3.0×10-2Pa,在500sccmO2气氛下采用霍尔离子源进行50s等离子清洗处理,得到清洗后的柔性CPI膜。The above flexible CPI film was put into a vacuum chamber, evacuated to 3.0×10 -2 Pa, and subjected to plasma cleaning treatment with a Hall ion source for 50s in a 500sccmO 2 atmosphere to obtain a cleaned flexible CPI film.

将真空腔的真空度稳定在2.0×10-2Pa,加热异丁基三甲氧基硅烷有机膜料,在清洗后的柔性CPI膜上沉积有机硅化物,此时的镀覆参数选用镀膜温度为25℃,镀膜沉积速率为0.2nm/s,且镀膜厚度为20nm,得到异丁基三甲氧基硅烷膜。The vacuum degree of the vacuum chamber was stabilized at 2.0×10 -2 Pa, the isobutyltrimethoxysilane organic film material was heated, and the organic silicide was deposited on the cleaned flexible CPI film. The coating parameters at this time were selected as the coating temperature. At 25° C., the deposition rate of the coating film is 0.2 nm/s, and the thickness of the coating film is 20 nm to obtain an isobutyltrimethoxysilane film.

将真空腔的真空度稳定在2.0×10-2Pa,通过硅铝复合靶(硅含量:92wt%、铝含量:8wt%)在O2和N2气氛下在异丁基三甲氧基硅烷膜上磁控溅射SiO0.5N0.76Al0.1膜,此时的镀覆参数选用镀膜温度为24℃,镀膜沉积速率为0.15nm/s,且镀膜厚度为8nm,得到SiO0.5N0.76Al0.1膜。The vacuum degree of the vacuum chamber was stabilized at 2.0 × 10 -2 Pa, through a silicon-aluminum composite target (silicon content: 92 wt%, aluminum content: 8 wt%) under an O2 and N2 atmosphere in an isobutyltrimethoxysilane film A SiO 0.5 N 0.76 Al 0.1 film was magnetron sputtered, and the coating parameters at this time were the coating temperature of 24° C., the coating deposition rate of 0.15 nm/s, and the coating thickness of 8 nm, to obtain a SiO 0.5 N 0.76 Al 0.1 film.

将真空腔的真空度稳定在1.5×10-2Pa,加热异丁基三甲氧基硅烷有机膜料,在SiO0.5N0.76Al0.1膜上沉积有机硅化物,此时的镀覆参数选用镀膜温度为25℃,镀膜沉积速率为0.2nm/s,且镀膜厚度为18nm,得到异丁基三甲氧基硅烷膜。The vacuum degree of the vacuum chamber was stabilized at 1.5×10 -2 Pa, the isobutyltrimethoxysilane organic film material was heated, and the organic silicide was deposited on the SiO 0.5 N 0.76 Al 0.1 film. The coating parameters at this time were the coating temperature. is 25° C., the deposition rate of the coating film is 0.2 nm/s, and the thickness of the coating film is 18 nm to obtain an isobutyltrimethoxysilane film.

将真空腔的真空度稳定在1.5×10-2Pa,通过硅靶(纯度:92wt%)在O2气氛下在异丁基三甲氧基硅烷膜上磁控溅射二氧化硅膜,此时的镀覆参数选用镀膜温度为24℃,镀膜沉积速率为0.3nm/s,且镀膜厚度为90nm,得到二氧化硅膜,最后形成异丁基三甲氧基硅烷-SiO0.5N0.76Al0.1-异丁基三甲氧基硅烷-二氧化硅复合打底层。The vacuum degree of the vacuum chamber was stabilized at 1.5 × 10 -2 Pa, and a silicon dioxide film was magnetron sputtered on the isobutyltrimethoxysilane film through a silicon target (purity: 92 wt% ) under an O atmosphere, at this time The coating parameters are selected as the coating temperature of 24 ° C, the deposition rate of the coating is 0.3 nm/s, and the thickness of the coating is 90 nm to obtain a silicon dioxide film, and finally the formation of isobutyltrimethoxysilane-SiO 0.5 N 0.76 Al 0.1 -isobutyl trimethoxysilane Butyltrimethoxysilane-silica composite primer.

将真空腔的真空度稳定在8.0×10-3Pa,加热AF膜层材料,在无机打底层上蒸镀AF膜,镀覆参数选用镀膜温度24℃,镀膜沉积速率为0.1nm/s,且镀膜厚度为25nm。The vacuum degree of the vacuum chamber was stabilized at 8.0×10 -3 Pa, the AF film material was heated, and the AF film was evaporated on the inorganic base layer. The coating thickness is 25nm.

将镀膜完毕后的柔性CPI膜从真空腔中取出。The flexible CPI film after coating is taken out from the vacuum chamber.

将镀膜完毕后的柔性CPI膜与柔性光学模组采用现有贴合工艺贴合,形成防指纹可折叠的显示屏,最后,通过整机组装工艺形成防指纹可折叠终端设备。The coated flexible CPI film and the flexible optical module are pasted using the existing bonding process to form a fingerprint-proof foldable display screen. Finally, an anti-fingerprint foldable terminal device is formed through the whole machine assembly process.

为了检测上述得到的显示屏的镀膜质量,对显示屏的AF膜及整体弯折性能分别进行水滴角测试和动态弯折测试。具体地,初始水滴角为110°-114°,在500g载荷橡皮摩擦2500圈之后的水滴角为96°-103°;动摩擦系数为0.02-0.03;动态弯折100000次后无裂纹。上述测试结果均超过在柔性CPI膜上直接镀覆AF膜的平均测试结果,且达到在普通无机玻璃上镀覆AF膜的平均测试结果。In order to test the coating quality of the display screen obtained above, the water drop angle test and the dynamic bending test were respectively performed on the AF film and the overall bending performance of the display screen. Specifically, the initial water drop angle is 110°-114°, the water drop angle after rubbing with a 500g load rubber for 2,500 cycles is 96°-103°; the dynamic friction coefficient is 0.02-0.03; there is no crack after 100,000 dynamic bending times. The above test results all exceed the average test results of directly coating AF films on flexible CPI films, and reach the average test results of coating AF films on ordinary inorganic glass.

实施例6:Example 6:

本实施例中的显示屏通过以下方法得到:The display screen in this embodiment is obtained by the following methods:

根据显示屏的尺寸与外形轮廓,切割得到相应尺寸的柔性CPI膜,并在该柔性CPI膜的背面油墨印刷触点电路。According to the size and outline of the display screen, a flexible CPI film of corresponding size is obtained by cutting, and a contact circuit is printed on the back of the flexible CPI film.

将上述柔性CPI膜放入真空腔内,并抽真空到2.0×10-2Pa,在300sccmO2气氛下采用辉光放电离子源进行70s等离子清洗处理,得到清洗后的柔性CPI膜。The above flexible CPI film was put into a vacuum chamber, evacuated to 2.0×10 -2 Pa, and subjected to plasma cleaning with a glow discharge ion source for 70s in a 300sccmO 2 atmosphere to obtain a cleaned flexible CPI film.

将真空腔的真空度稳定在1.0×10-2Pa,通过硅铝复合靶(硅含量:94wt%、铝含量:6wt%)在O2和N2气氛下在清洗后的柔性CPI膜上磁控溅射SiO0.6N1.26Al0.06膜,此时的镀覆参数选用镀膜温度为23℃,镀膜沉积速率为0.1nm/s,且镀膜厚度为5nm,得到 SiO0.6N1.26Al0.06膜。The vacuum degree of the vacuum chamber was stabilized at 1.0 × 10 -2 Pa, and the cleaned flexible CPI film was magnetized through a silicon-aluminum composite target (silicon content: 94 wt%, aluminum content: 6 wt% ) under O and N atmospheres. Controlled sputtering of SiO 0.6 N 1.26 Al 0.06 film, the coating parameters at this time were selected as the coating temperature of 23° C., the coating deposition rate of 0.1 nm/s, and the coating thickness of 5 nm, to obtain a SiO 0.6 N 1.26 Al 0.06 film.

将真空腔的真空度稳定在1.0×10-2Pa,加热十二烷基三甲氧基硅氧有机膜料,在SiO0.6N1.26Al0.06膜上沉积有机硅化物,此时的镀覆参数选用镀膜温度为25℃,镀膜沉积速率为0.2nm/s,且镀膜厚度为18nm,得到十二烷基三甲氧基硅氧膜。The vacuum degree of the vacuum chamber was stabilized at 1.0×10 -2 Pa, the dodecyltrimethoxysiloxane organic film material was heated, and the organic silicide was deposited on the SiO 0.6 N 1.26 Al 0.06 film. The coating parameters at this time were selected The coating temperature is 25° C., the coating deposition rate is 0.2 nm/s, and the coating thickness is 18 nm to obtain a dodecyltrimethoxysiloxane film.

将真空腔的真空度稳定在1.0×10-2Pa,通过硅靶(纯度:91wt%)在O2气氛下在十二烷基三甲氧基硅氧膜上磁控溅射二氧化硅膜,此时的镀覆参数选用镀膜温度为23℃,镀膜沉积速率为0.09nm/s,且镀膜厚度为125nm,得到二氧化硅膜,最后形成 SiO0.6N1.26Al0.06-十二烷基三甲氧基硅氧-二氧化硅复合打底层。The vacuum degree of the vacuum chamber was stabilized at 1.0 × 10 -2 Pa, and a silicon dioxide film was magnetron sputtered on a dodecyltrimethoxysilicon oxide film through a silicon target (purity: 91 wt% ) under an O atmosphere, At this time, the coating parameters are selected as the coating temperature of 23 ° C, the deposition rate of the coating is 0.09 nm/s, and the thickness of the coating is 125 nm to obtain a silicon dioxide film, and finally SiO 0.6 N 1.26 Al 0.06 -dodecyltrimethoxy is formed. Silica-silica composite primer.

将真空腔的真空度稳定在7.0×10-3Pa,加热AF膜层材料,在无机打底层上蒸镀AF膜7,镀覆参数选用镀膜温度23℃,镀膜沉积速率为0.07nm/s,且镀膜厚度为20nm。The vacuum degree of the vacuum chamber was stabilized at 7.0×10 -3 Pa, the AF film material was heated, and the AF film 7 was evaporated on the inorganic base layer. And the coating thickness is 20nm.

将镀膜完毕后的柔性CPI膜从真空腔中取出。The flexible CPI film after coating is taken out from the vacuum chamber.

将镀膜完毕后的柔性CPI膜与柔性光学模组采用现有贴合工艺贴合,形成防指纹可折叠的显示屏,最后,通过整机组装工艺形成防指纹可折叠终端设备。The coated flexible CPI film and the flexible optical module are pasted using the existing bonding process to form a fingerprint-proof foldable display screen. Finally, an anti-fingerprint foldable terminal device is formed through the whole machine assembly process.

为了检测上述得到的显示屏的镀膜质量,对显示屏的AF膜及整体弯折性能分别进行水滴角测试和动态弯折测试。具体地,初始水滴角为111°-114°,在500g载荷橡皮摩擦2500圈之后的水滴角为94°-101°;动摩擦系数为0.02-0.03;动态弯折100000次后无裂纹。上述测试结果均超过在柔性CPI膜上直接镀覆AF膜的平均测试结果,且达到在普通无机玻璃上镀覆AF膜的平均测试结果。In order to test the coating quality of the display screen obtained above, the water drop angle test and the dynamic bending test were respectively performed on the AF film and the overall bending performance of the display screen. Specifically, the initial water drop angle is 111°-114°, and the water drop angle after rubbing with a 500g load rubber for 2,500 cycles is 94°-101°; the coefficient of kinetic friction is 0.02-0.03; there is no crack after 100,000 dynamic bending times. The above test results all exceed the average test results of directly coating AF films on flexible CPI films, and reach the average test results of coating AF films on ordinary inorganic glass.

由以上实施例可知,采用本申请所提供的技术方案得到的显示屏,表面能低,因此,可以大幅降低指纹、脏污等在显示屏表面粘附,同时能够保证显示屏的折叠要求。It can be seen from the above embodiments that the display screen obtained by using the technical solution provided by the present application has low surface energy, therefore, the adhesion of fingerprints, dirt, etc. on the display screen surface can be greatly reduced, and the folding requirements of the display screen can be guaranteed at the same time.

本申请还提供了一种终端设备。The present application also provides a terminal device.

其中,该终端设备具体可以是手机、平板电脑等可折叠显示屏的设备。The terminal device may specifically be a device with a foldable display screen such as a mobile phone and a tablet computer.

由以上技术方案可知,本申请实施例提供的终端设备,由于可折叠显示屏具有牢固结合的AF膜,因此能够更好的保证AF膜不脱落,进而保证显示屏的防指纹及脏污的效果,提升用户体验。It can be seen from the above technical solutions that, in the terminal device provided by the embodiments of the present application, since the foldable display screen has a firmly bonded AF film, it can better ensure that the AF film does not fall off, thereby ensuring the anti-fingerprint and contamination effect of the display screen. , to improve the user experience.

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus.

本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围由下面的权利要求指出。Other embodiments of the present application will readily occur to those skilled in the art upon consideration of the specification and practice of the application disclosed herein. This application is intended to cover any variations, uses or adaptations of this application that follow the general principles of this application and include common knowledge or conventional techniques in the technical field not disclosed in this application . The specification and examples are to be regarded as exemplary only, with the true scope of the application being indicated by the following claims.

应当理解的是,本申请并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。It should be understood that the present application is not limited to the structures that have been described above and shown in the accompanying drawings and that various modifications and changes may be made without departing from the scope thereof. The scope of the application is limited only by the appended claims.

Claims (15)

1.一种折叠显示屏,其特征在于,包括:1. A folding display screen, characterized in that, comprising: 柔性光学模组层和无色聚酰亚胺(Colorless Polyimide,CPI)膜;Flexible optical module layer and Colorless Polyimide (CPI) film; 位于所述柔性光学模组层和所述CPI膜之间的胶接层,所述胶接层连接所述柔性光学模组层和所述CPI膜;an adhesive layer between the flexible optical module layer and the CPI film, the adhesive layer connects the flexible optical module layer and the CPI film; 设置于所述CPI膜上的打底层;以及a primer layer disposed on the CPI film; and 设置于所述打底层上的防指纹膜;an anti-fingerprint film arranged on the bottom layer; 其中,所述防指纹膜为氟化物膜层,所述打底层的材料为硅化物,所述打底层与所述CPI膜物理嵌合和/或化学结合,所述打底层与所述防指纹膜化学结合和/或分子间物理结合;Wherein, the anti-fingerprint film is a fluoride film layer, the material of the primer layer is silicide, the primer layer is physically embedded and/or chemically combined with the CPI film, and the primer layer and the anti-fingerprint film are Membrane chemical binding and/or intermolecular physical binding; 所述打底层为无机打底层,所述无机打底层包括:设置在所述CPI膜表面的基础层,所述基础层的材质为含有不完全酸化硅材料;设置在所述基础层上的中间层,所述中间层包含至少一层无机硅化物材料;以及设置在所述中间层与所述防指纹膜之间的表面层,所述表面层的材质为二氧化硅;The primer layer is an inorganic primer layer, and the inorganic primer layer includes: a base layer arranged on the surface of the CPI film, and the material of the base layer is a material containing incompletely acidified silicon; a middle layer arranged on the base layer layer, the intermediate layer includes at least one layer of inorganic silicide material; and a surface layer disposed between the intermediate layer and the anti-fingerprint film, the surface layer is made of silicon dioxide; 或者,所述打底层为无机-有机复合打底层,所述无机-有机复合打底层包括:设置在所述CPI膜表面的基础层,所述基础层的材质为含有不完全酸化硅材料,设置在所述基础层上的中间层,所述中间层包含交替堆叠的有机硅化物与无机硅化物,所述中间层的无机硅化物中包含至少一层无机硅化物,以及设置在所述中间层与所述防指纹膜之间的表面层,所述表面层的材质为二氧化硅。Alternatively, the primer layer is an inorganic-organic composite primer layer, and the inorganic-organic composite primer layer includes: a base layer disposed on the surface of the CPI film, and the material of the base layer is a material containing incompletely acidified silicon, which is set An intermediate layer on the base layer, the intermediate layer includes alternately stacked organic silicides and inorganic silicides, the inorganic silicides of the intermediate layer include at least one layer of inorganic silicides, and the intermediate layer is disposed on the intermediate layer The surface layer between the anti-fingerprint film and the surface layer is made of silicon dioxide. 2.根据权利要求1所述的折叠显示屏,其特征在于,所述有机-无机复合打底层包括:2. The folding display screen according to claim 1, wherein the organic-inorganic composite bottom layer comprises: 设置在所述CPI膜表面的基础层,所述基础层的材质为有机硅化物,The base layer arranged on the surface of the CPI film, the material of the base layer is an organic silicide, 设置在所述基础层上的中间层,所述中间层包含交替堆叠的无机硅化物与有机硅化物,所述中间层的无机硅化物中包含至少一层无机硅化物,an intermediate layer disposed on the base layer, the intermediate layer comprising alternately stacked inorganic silicides and organic silicides, the inorganic silicides of the intermediate layer comprising at least one layer of inorganic silicides, 以及设置在所述中间层与所述防指纹膜之间的表面层,所述表面层的材质为二氧化硅。and a surface layer disposed between the intermediate layer and the anti-fingerprint film, and the material of the surface layer is silicon dioxide. 3.根据权利要求1所述的折叠显示屏,其特征在于,所述无机打底层中的无机硅化物为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围为0-2,y的取值范围为0-1.5,z的取值范围为0-0.5。3 . The folding display screen according to claim 1 , wherein the inorganic silicide in the inorganic underlying layer is a combination of one or more materials represented by the chemical formula SiO x N y Al z , wherein The value range of x is 0-2, the value range of y is 0-1.5, and the value range of z is 0-0.5. 4.根据权利要求1所述的折叠显示屏,其特征在于,所述有机打底层中的有机硅化物为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,m与n的和为4。4 . The folding display screen according to claim 1 , wherein the organic silicide in the organic bottom layer is a combination of one or more materials represented by the chemical formula Si(OR) m R n , 5 . wherein R represents alkyl or heteroalkyl, and the sum of m and n is 4. 5.根据权利要求1或2所述的折叠显示屏,其特征在于,所述无机-有机复合打底层和所述有机-无机复合打底层中的无机硅化物均为以化学式SiOxNyAlz所表示材质中的一种或多种的组合,其中x的取值范围为0-2,y的取值范围为0-1.5,z的取值范围为0-0.5,所述无机-有机复合打底层和所述有机-无机复合打底层中的有机硅化物均为以化学式Si(OR)mRn所表示材质中的一种或多种的组合,其中R代表烷基或者杂烷基,m与n的和为4。5. The folding display screen according to claim 1 or 2, wherein the inorganic-organic composite primer layer and the inorganic silicide in the organic-inorganic composite primer layer are all with the chemical formula SiOxNyAl The combination of one or more materials represented by z , wherein the value range of x is 0-2, the value range of y is 0-1.5, the value range of z is 0-0.5, the inorganic-organic The composite primer layer and the organosilicon compound in the organic-inorganic composite primer layer are all combinations of one or more of the materials represented by the chemical formula Si(OR) m R n , wherein R represents an alkyl group or a heteroalkyl group , the sum of m and n is 4. 6.根据权利要求1或3所述的折叠显示屏,其特征在于,所述无机打底层的总厚度的取值范围为5nm-1000nm,其中所述无机打底层中每一层无机硅化物的厚度的取值范围为0.1nm-500nm。6 . The folding display screen according to claim 1 or 3 , wherein the total thickness of the inorganic underlying layer ranges from 5 nm to 1000 nm, wherein the thickness of each layer of inorganic silicide in the inorganic underlying layer is 5 nm to 1000 nm. 7 . The thickness ranges from 0.1 nm to 500 nm. 7.根据权利要求1或4所述的折叠显示屏,其特征在于,所述有机打底层的总厚度的取值范围为5nm-200nm。7 . The folding display screen according to claim 1 or 4 , wherein the total thickness of the organic bottom layer ranges from 5 nm to 200 nm. 8 . 8.根据权利要求1或2所述的折叠显示屏,其特征在于,所述无机-有机复合打底层和所述有机-无机复合打底层的总厚度的取值范围均为5nm-1000nm,其中所述无机-有机复合打底层和所述有机-无机复合打底层中每一层无机硅化物的厚度的取值范围为0.1nm-500nm,所述无机-有机复合打底层和所述有机-无机复合打底层中每一层有机硅化物的厚度的取值范围为5nm-200nm。8 . The folding display screen according to claim 1 , wherein the total thickness of the inorganic-organic composite primer layer and the organic-inorganic composite primer layer is in the range of 5 nm to 1000 nm, wherein The thickness of each layer of inorganic silicide in the inorganic-organic composite primer layer and the organic-inorganic composite primer layer ranges from 0.1 nm to 500 nm, and the inorganic-organic composite primer layer and the organic-inorganic composite primer layer The thickness of each layer of organic silicide in the composite primer layer ranges from 5nm to 200nm. 9.根据权利要求1-3中任一所述的折叠显示屏,其特征在于,所述无机打底层中至少一层无机硅化物、所述无机-有机复合打底层以及所述有机-无机复合打底层中至少一层无机硅化物的莫氏硬度的取值范围为4级-8级。9 . The folding display screen according to claim 1 , wherein at least one layer of inorganic silicide, the inorganic-organic composite layer and the organic-inorganic composite layer are included in the inorganic primer layer. 10 . The Mohs hardness of at least one layer of inorganic silicide in the primer layer ranges from 4 to 8. 10.一种折叠显示屏的制作方法,其特征在于,包括:10. A method for manufacturing a folding display screen, comprising: 利用胶接层连接柔性光学模组层与无色聚酰亚胺(Colorless Polyimide,CPI)膜;The flexible optical module layer and the colorless polyimide (CPI) film are connected by an adhesive layer; 在所述CPI膜表面设置与所述CPI膜物理嵌合和/或化学结合的硅化物打底层;A silicide primer layer that is physically embedded and/or chemically combined with the CPI film is provided on the surface of the CPI film; 在所述硅化物打底层上设置与所述硅化物打底层化学结合和/或分子间物理结合的防指纹膜;An anti-fingerprint film chemically combined and/or physically combined with the silicide primer is arranged on the silicide primer; 所述打底层为无机打底层,所述无机打底层包括:设置在所述CPI膜表面的基础层,所述基础层的材质为含有不完全酸化硅材料;设置在所述基础层上的中间层,所述中间层包含至少一层无机硅化物材料;以及设置在所述中间层与所述防指纹膜之间的表面层,所述表面层的材质为二氧化硅;The primer layer is an inorganic primer layer, and the inorganic primer layer includes: a base layer arranged on the surface of the CPI film, and the material of the base layer is a material containing incompletely acidified silicon; a middle layer arranged on the base layer layer, the intermediate layer includes at least one layer of inorganic silicide material; and a surface layer disposed between the intermediate layer and the anti-fingerprint film, the surface layer is made of silicon dioxide; 或者,所述打底层为无机-有机复合打底层,所述无机-有机复合打底层包括:设置在所述CPI膜表面的基础层,所述基础层的材质为含有不完全酸化硅材料,设置在所述基础层上的中间层,所述中间层包含交替堆叠的有机硅化物与无机硅化物,所述中间层的无机硅化物中包含至少一层无机硅化物,以及设置在所述中间层与所述防指纹膜之间的表面层,所述表面层的材质为二氧化硅。Alternatively, the primer layer is an inorganic-organic composite primer layer, and the inorganic-organic composite primer layer includes: a base layer disposed on the surface of the CPI film, and the material of the base layer is a material containing incompletely acidified silicon, which is set An intermediate layer on the base layer, the intermediate layer includes alternately stacked organic silicides and inorganic silicides, the inorganic silicides of the intermediate layer include at least one layer of inorganic silicides, and the intermediate layer is disposed on the intermediate layer The surface layer between the anti-fingerprint film and the surface layer is made of silicon dioxide. 11.根据权利要求10所述的方法,其特征在于,在所述CPI膜表面设置与所述CPI膜物理嵌合或者化学结合的硅化物打底层之前,所述方法还包括:11. The method according to claim 10, characterized in that, before disposing the silicide layering layer that is physically embedded or chemically combined with the CPI film on the surface of the CPI film, the method further comprises: 将所述CPI膜放置于真空腔内;placing the CPI film in a vacuum chamber; 对所述真空腔抽真空后,清洗所述CPI膜。After the vacuum chamber is evacuated, the CPI membrane is cleaned. 12.根据权利要求11所述的方法,其特征在于,所述清洗CPI膜包括:12. The method of claim 11, wherein the cleaning the CPI membrane comprises: 使用等离子体清洗方式或辉光放电清洗方式清洗所述CPI膜。The CPI film is cleaned using a plasma cleaning method or a glow discharge cleaning method. 13.根据权利要求10所述的方法,其特征在于,所述方法还包括:13. The method of claim 10, wherein the method further comprises: 通过硅靶、铝靶或者硅铝复合靶,在O2、N2或O2与N2的混合气氛下,在所述CPI膜上磁控溅射所述无机打底层、所述无机-有机复合打底层或者有机-无机复合打底层中的各层无机硅化物,其中所述硅铝复合靶中硅元素与铝元素的质量比例在99:1与40:60之间。The inorganic primer layer, the inorganic-organic layer are magnetron sputtered on the CPI film through a silicon target, an aluminum target or a silicon-aluminum composite target in a mixed atmosphere of O 2 , N 2 or O 2 and N 2 Each layer of inorganic silicide in a composite primer layer or an organic-inorganic composite primer layer, wherein the mass ratio of silicon element to aluminum element in the silicon-aluminum composite target is between 99:1 and 40:60. 14.根据权利要求10所述的方法,其特征在于,所述方法还包括:14. The method of claim 10, wherein the method further comprises: 采用热蒸发有机硅化物膜料的方式在所述CPI膜上沉积所述有机打底层、所述无机-有机复合打底层或者所述有机-无机复合打底层中的各层有机硅化物。The organic primer layer, the inorganic-organic composite primer layer, or the organic silicide layers in the organic-inorganic composite primer layer are deposited on the CPI film by thermally evaporating an organic silicide film material. 15.一种终端设备,其特征在于,包括权利要求1-9任一所述的折叠显示屏。15. A terminal device, characterized by comprising the folding display screen according to any one of claims 1-9.
CN201910623753.0A 2019-06-03 2019-07-11 Folding display screen, manufacturing method of folding display screen and terminal equipment Active CN112034929B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093578 WO2020244469A1 (en) 2019-06-03 2020-05-30 Folding display screen, manufacture methof for folding display screen and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019104768501 2019-06-03
CN201910476850 2019-06-03

Publications (2)

Publication Number Publication Date
CN112034929A CN112034929A (en) 2020-12-04
CN112034929B true CN112034929B (en) 2022-10-18

Family

ID=73576302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910623753.0A Active CN112034929B (en) 2019-06-03 2019-07-11 Folding display screen, manufacturing method of folding display screen and terminal equipment

Country Status (2)

Country Link
CN (1) CN112034929B (en)
WO (1) WO2020244469A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115448610B (en) * 2022-08-17 2023-08-25 江苏铁锚玻璃股份有限公司 Fingerprint-proof glass and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808148A (en) * 2011-05-30 2012-12-05 比亚迪股份有限公司 Preparation method for touch screen surface anti-fingerprint film
CN103773202A (en) * 2012-10-24 2014-05-07 信越化学工业株式会社 Coating composition, surface treating material containing said composition, and article whose surface is treated with said surface treating material
CN107188429A (en) * 2017-05-27 2017-09-22 苏州东杏表面技术有限公司 It is a kind of that there is antistatic, the touch panel glass of anti-pollution function and its preparation method
US10033015B1 (en) * 2017-04-07 2018-07-24 Motorola Mobility Llc Flexible, optically clear, composite structures for foldable displays in mobile devices
CN108624264A (en) * 2017-03-24 2018-10-09 三星电子株式会社 Adherency composition includes its stacked structure and electronic device
CN109402588A (en) * 2018-12-29 2019-03-01 商丘金振源电子科技有限公司 Anti-fingerprint coated article and anti-fingerprint film plating process based on matte surface
CN109671353A (en) * 2018-12-18 2019-04-23 武汉华星光电半导体显示技术有限公司 Display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101910111B1 (en) * 2012-08-28 2018-10-22 삼성디스플레이 주식회사 Foldable display device
CN208351445U (en) * 2018-07-31 2019-01-08 信利光电股份有限公司 A kind of flexible touch screen
CN109360497A (en) * 2018-11-21 2019-02-19 祺虹电子科技(深圳)有限公司 A flexible transparent display screen and display screen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102808148A (en) * 2011-05-30 2012-12-05 比亚迪股份有限公司 Preparation method for touch screen surface anti-fingerprint film
CN103773202A (en) * 2012-10-24 2014-05-07 信越化学工业株式会社 Coating composition, surface treating material containing said composition, and article whose surface is treated with said surface treating material
CN108624264A (en) * 2017-03-24 2018-10-09 三星电子株式会社 Adherency composition includes its stacked structure and electronic device
US10033015B1 (en) * 2017-04-07 2018-07-24 Motorola Mobility Llc Flexible, optically clear, composite structures for foldable displays in mobile devices
CN107188429A (en) * 2017-05-27 2017-09-22 苏州东杏表面技术有限公司 It is a kind of that there is antistatic, the touch panel glass of anti-pollution function and its preparation method
CN109671353A (en) * 2018-12-18 2019-04-23 武汉华星光电半导体显示技术有限公司 Display device
CN109402588A (en) * 2018-12-29 2019-03-01 商丘金振源电子科技有限公司 Anti-fingerprint coated article and anti-fingerprint film plating process based on matte surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ft = "硅"*"防指纹膜";乔变莉;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》;20180115;B018-17 *

Also Published As

Publication number Publication date
CN112034929A (en) 2020-12-04
WO2020244469A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
US12292635B2 (en) Flexible multi-layered cover lens stacks for foldable displays
JP6474383B2 (en) Anti-fouling optical member and touch panel display
JP6693420B2 (en) Transparent plate, touch pad, and touch panel
JP2009539754A5 (en)
JP2007505810A5 (en)
CN108021284B (en) Integrated flexible touch screen and preparation method thereof, OLED display
JP2008505842A5 (en)
JP2009502566A5 (en)
CN112034929B (en) Folding display screen, manufacturing method of folding display screen and terminal equipment
CN105336870B (en) Flexible base board and its manufacture method
CN105867695A (en) Integrated touch displayer and manufacturing method thereof
CN110518146A (en) Thin-film packing structure and display panel
TW201934335A (en) Laminate, method for manufacturing laminate, and method for manufacturing electronic device
US20090185276A1 (en) Display device
CN108376041B (en) Touch module, OGS touch screen and electronic equipment
WO2013099709A1 (en) High-resistance laminate and tactile sensor-use front plate
CN103640273B (en) A kind of fingerprint-preventisapphire sapphire material
CN110112315A (en) A kind of flexible back plate, the preparation method of flexible back plate and display panel
JP2006297730A (en) Gas barrier laminate
CN115723395A (en) Explosion-proof ultrathin glass cover plate and manufacturing method thereof
CN203012690U (en) Capacitive capacitance touch screen
KR20180031897A (en) Window member, display apparatus including the same and manufacturing method of the window member
JPWO2018030355A1 (en) Decorative plate
CN223140308U (en) Display panel protection structure, flexible display panel and electronic device
TW202339945A (en) Improved adhesion layer in flexible coverlens

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant