CN112114480A - Laser projection device - Google Patents
Laser projection device Download PDFInfo
- Publication number
- CN112114480A CN112114480A CN201910538755.XA CN201910538755A CN112114480A CN 112114480 A CN112114480 A CN 112114480A CN 201910538755 A CN201910538755 A CN 201910538755A CN 112114480 A CN112114480 A CN 112114480A
- Authority
- CN
- China
- Prior art keywords
- light
- laser
- green
- blue
- light source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2013—Plural light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/208—Homogenising, shaping of the illumination light
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3158—Modulator illumination systems for controlling the spectrum
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3161—Modulator illumination systems using laser light sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
- H04N9/315—Modulator illumination systems
- H04N9/3164—Modulator illumination systems using multiple light sources
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及激光投影显示技术领域,尤其涉及一种激光投影设备。The present invention relates to the technical field of laser projection display, in particular to a laser projection device.
背景技术Background technique
激光光源具有单色性好,亮度高,寿命长等优点,是较为理想的光源。随着激光器器件功率的提升,满足工业化应用的要求,激光器也逐渐被作为光源照明使用。比如近年来,投影设备中使用激光器作为投影光源,逐渐取代了汞灯照明,并且相比于LED光源,激光器也具有光学扩展量小,亮度高的优点。The laser light source has the advantages of good monochromaticity, high brightness and long life, and is an ideal light source. As the power of laser devices increases to meet the requirements of industrial applications, lasers are gradually used as light sources for illumination. For example, in recent years, lasers have been used as projection light sources in projection equipment, gradually replacing mercury lamp illumination. Compared with LED light sources, lasers also have the advantages of small etendue and high brightness.
激光器按照发光种类,分为蓝色激光器,红色激光器和绿色激光器,分别发出蓝色激光,红色激光和绿色激光。其中,由于发光机理的不同,如图22所示,红色激光器发光芯片具有两个发光点,但一颗发光芯片对应一颗准直透镜,因此,一颗准直透镜对两个发光点进行准直的效果要差于一个准直透镜对一个发光点准直的效果,这使得红色激光从激光器组件的发光面出射后发散的角度要大于另外两种颜色激光,但是实际应用中,光路系统对三色激光是共用的,在光束传输过程中,所经历的光学镜片通常具有自己的收光范围或者在一定角度范围内的光处理效率较高,而对于红色激光来说,由于发散程度较快,使得大角度范围的光束容易损失掉,从而红色激光的光损通常要大,而这种损失率很难估算,难以用功率补偿的方法来解决。Lasers are divided into blue lasers, red lasers and green lasers according to the type of light emission, which emit blue lasers, red lasers and green lasers respectively. Among them, due to the different light-emitting mechanisms, as shown in Figure 22, the red laser light-emitting chip has two light-emitting points, but one light-emitting chip corresponds to one collimating lens. Therefore, one collimating lens collimates the two light-emitting points. The straightening effect is worse than the collimating effect of a collimating lens on a light-emitting point, which makes the divergence angle of the red laser light from the light-emitting surface of the laser component larger than that of the other two color lasers. The three-color laser is shared. In the process of beam transmission, the optical lens experienced usually has its own light-receiving range or has a high light processing efficiency within a certain angle range. For red laser, due to the faster divergence degree , so that the beam with a large angle range is easily lost, so the light loss of the red laser is usually large, and this loss rate is difficult to estimate, and it is difficult to solve it by the method of power compensation.
需要提出一种解决方案来解决三色激光应用中红色激光光损较大而导致系统色彩配比失衡,投影画面质量差的问题。It is necessary to propose a solution to solve the problem of the large light loss of the red laser in the application of the three-color laser, which leads to the imbalance of the color ratio of the system and the poor quality of the projected image.
发明内容SUMMARY OF THE INVENTION
本发明提供一种激光投影设备,包括三色激光光源,可以呈现高亮度、色彩佳的投影画面。The invention provides a laser projection device, which includes a three-color laser light source, and can present a projection screen with high brightness and good color.
本发明提供了一种激光投影设备:整机壳体、光源、光机和镜头;The invention provides a laser projection device: a complete machine casing, a light source, an optical machine and a lens;
光源包括并列安装的红色激光器组件和绿色激光器组件,以及与红色、绿色激光器组件垂直的蓝色激光器组件;在蓝色激光和绿色激光的交汇处设置有第一合光镜,第一合光镜透射蓝色激光,反射绿色激光,以及,合光后的蓝色激光、绿色激光与红色激光交汇处设置有第二合光镜,第二合光镜反射红色激光并透射蓝色、绿色激光,将三色激光输出至光源光出口;The light source includes a red laser component and a green laser component installed in parallel, and a blue laser component perpendicular to the red and green laser components; a first light combining mirror is arranged at the intersection of the blue laser and the green laser, and the first light combining mirror The blue laser is transmitted, the green laser is reflected, and a second light combining mirror is arranged at the intersection of the combined blue laser, green laser and red laser, and the second light combining mirror reflects the red laser and transmits the blue and green lasers, Output the three-color laser to the light outlet of the light source;
进一步地,第一合光镜,第二合光镜的光反射率均大于其光透射率;Further, the light reflectivity of the first light combining mirror and the second light combining mirror are both greater than their light transmittances;
进一步地,绿色激光器组件的发光功率均小于红色激光器组件、蓝色激光器组件的发光功率;Further, the luminous power of the green laser component is smaller than the luminous power of the red laser component and the blue laser component;
进一步地,红色激光到达第二合光镜的光斑尺寸均大于蓝色激光和绿色激光的光斑尺寸;Further, the spot size of the red laser light reaching the second light combining mirror is larger than that of the blue laser and the green laser;
进一步地,在第二合光镜至光源光出口处的光路径中还依次设置有匀化元件和会聚镜组;Further, in the light path from the second light combining mirror to the light outlet of the light source, a homogenizing element and a condensing lens group are also arranged in sequence;
进一步地,在第一合光镜至第二合光镜的光路径中还设置有扩散片,用于扩散透射绿色激光和蓝色激光;Further, a diffusing sheet is also provided in the light path from the first light combining mirror to the second light combining mirror, for diffusing and transmitting the green laser and the blue laser;
进一步地,匀化元件为具有规律排布微结构的扩散片,或者,匀化元件为二维衍射元件;Further, the homogenizing element is a diffuser with regularly arranged microstructures, or the homogenizing element is a two-dimensional diffractive element;
进一步地,三色光源光束从光源出光口出射后经扩散轮进入收光部件;Further, the light beam of the three-color light source enters the light-receiving part through the diffusing wheel after exiting from the light-source light outlet;
进一步地,在第一合光镜至第二合光镜的光路径中还设置有半波片;Further, a half-wave plate is also provided in the light path from the first light combining mirror to the second light combining mirror;
半波片与绿色激光的波长对应设置,或者,半波片与绿色激光和蓝色激光之间的波长对应设置。The half-wave plate is set corresponding to the wavelength of the green laser, or the half-wave plate is set corresponding to the wavelength between the green laser and the blue laser.
进一步地,蓝色激光组件和绿色激光器组件的发光面至第一合光镜之间的光路径中还分别设置有半波片,半波片分别对应蓝色激光波长、绿色激光波长对应设置;Further, half-wave plates are respectively provided in the light paths between the light-emitting surfaces of the blue laser components and the green laser components to the first light combining mirror, and the half-wave plates are respectively arranged corresponding to the wavelength of the blue laser and the wavelength of the green laser;
进一步地,蓝色激光和绿色激光的偏振方向相同,红色激光与上述两种颜色激光的偏振方向不同;Further, the polarization directions of the blue laser and the green laser are the same, and the polarization directions of the red laser and the above-mentioned two color lasers are different;
进一步地,红色激光器组件的发光功率为24W~56W,蓝色激光器组件的发光功率为48W~115W,绿色激光器组件的发光功率为12W~28W。Further, the luminous power of the red laser component is 24W~56W, the luminous power of the blue laser component is 48W~115W, and the luminous power of the green laser component is 12W~28W.
上述一个或多个实施例的激光投影设备,应用三色激光光源,红色激光经一次反射后从光源出光口输出,蓝色激光经过两次透射,以及绿色激光经过一次透射和一次反射后再从光源出光口输出,红色激光的光损较小,利于维持三色激光光束的功率配比或色彩配比,上述激光投影设备可以呈现高亮度、色彩佳的投影画面。The laser projection device of one or more of the above embodiments uses a three-color laser light source, the red laser is output from the light source light outlet after one reflection, the blue laser is transmitted twice, and the green laser is transmitted once and reflected once and then output from the light source. The output of the light source light outlet, the light loss of the red laser is small, which is conducive to maintaining the power ratio or color ratio of the three-color laser beam. The above-mentioned laser projection equipment can present a projection image with high brightness and good color.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例中一种激光投影设备的整机结构示意图;FIG. 1 is a schematic diagram of the overall structure of a laser projection device in an embodiment of the present invention;
图2为本发明实施例中一种DLP投影架构示意图;2 is a schematic diagram of a DLP projection architecture according to an embodiment of the present invention;
图3为本发明实施例中一种超短焦投影成像光路示意图;3 is a schematic diagram of an ultra-short-focus projection imaging optical path in an embodiment of the present invention;
图4为本发明实施中一种超短焦投影系统示意图;4 is a schematic diagram of an ultra-short-focus projection system in the implementation of the present invention;
图5为本发明实施例中一种超短焦投影屏幕结构图;5 is a structural diagram of an ultra-short-focus projection screen in an embodiment of the present invention;
图6为图5中投影屏幕对投影光束的反射率变化图;Fig. 6 is the reflectivity change diagram of projection screen to projection beam among Fig. 5;
图7为本发明实施例图1中一种激光投影设备的光源结构示意图;FIG. 7 is a schematic structural diagram of a light source of a laser projection device in FIG. 1 according to an embodiment of the present invention;
图8为图7的结构分解示意图;FIG. 8 is a schematic exploded view of the structure of FIG. 7;
图9为本发明实施例中一种激光器组件组装示意图;FIG. 9 is a schematic diagram of the assembly of a laser assembly in an embodiment of the present invention;
图10为发明实施例中另一种激光器组组装示意图;10 is a schematic diagram of another laser group assembly in the embodiment of the invention;
图11为发明实施例中一种激光器组件的分解结构示意图;11 is a schematic diagram of an exploded structure of a laser assembly in an embodiment of the invention;
图12为发明实施例中另一种激光器组件的分解结构示意图;12 is a schematic diagram of an exploded structure of another laser assembly in an embodiment of the invention;
图13为发明实施例中又一种激光器组件的分解结构示意图;13 is a schematic diagram of an exploded structure of another laser assembly in an embodiment of the invention;
图14为一种MCL激光器的结构示意图;14 is a schematic structural diagram of an MCL laser;
图15为图14中激光器电路封装结构示意图;FIG. 15 is a schematic diagram of the packaging structure of the laser circuit in FIG. 14;
图16为本发明实施例中光源光路原理示意图;16 is a schematic diagram of the principle of the light path of a light source in an embodiment of the present invention;
图17为本发明实施例中另一光源光路原理示意图;17 is a schematic diagram of the optical path principle of another light source in an embodiment of the present invention;
图18为本发明实施例中另一角度光源结构示意图;18 is a schematic structural diagram of another angle light source in an embodiment of the present invention;
图19为本发明实施例中红色激光器组件散热系统示意图;19 is a schematic diagram of a heat dissipation system of a red laser component in an embodiment of the present invention;
图20为本发明实施例中蓝色或绿色激光器组件散热系统组装示意图;FIG. 20 is a schematic diagram of the assembly of the heat dissipation system of the blue or green laser component in the embodiment of the present invention;
图21为本发明实施例中蓝色或绿色激光器组件散热系统分解示意图;FIG. 21 is an exploded schematic diagram of a heat dissipation system of a blue or green laser component in an embodiment of the present invention;
图22为红色激光器芯片结构示意图;Figure 22 is a schematic diagram of the structure of a red laser chip;
图23为本发明实施例一种激光投影系统光路原理示意图;23 is a schematic diagram of the optical path principle of a laser projection system according to an embodiment of the present invention;
图24为本发明实施例又一种激光投影系统光路原理示意图;24 is a schematic diagram of the optical path principle of another laser projection system according to an embodiment of the present invention;
图25为本发明实施例一种扩散片结构示意图;25 is a schematic structural diagram of a diffuser sheet according to an embodiment of the present invention;
图26为本发明实施例激光光束经过图25所示的扩散片后的能量分布示意图;26 is a schematic diagram of the energy distribution of the laser beam after passing through the diffuser shown in FIG. 25 according to an embodiment of the present invention;
图27为本发明实施例中光路径中一种光斑示意图;27 is a schematic diagram of a light spot in an optical path according to an embodiment of the present invention;
图28为一种波片光轴示意图;Figure 28 is a schematic diagram of the optical axis of a wave plate;
图29为线偏振光发生90度改变的原理示意图;Figure 29 is a schematic diagram of the principle of a 90-degree change in linearly polarized light;
图30为P光和S光偏振方向示意图;30 is a schematic diagram of the polarization directions of P light and S light;
图31为波片旋转设置示意图;Figure 31 is a schematic diagram of wave plate rotation setting;
图32为本发明实施例中一种光路原理示意图;32 is a schematic diagram of an optical path principle in an embodiment of the present invention;
图33为本发明实施例中另一种光路原理示意图;33 is a schematic diagram of another optical path principle in an embodiment of the present invention;
图34为本发明实施例中又一种光路原理示意图;34 is a schematic diagram of another optical path principle in an embodiment of the present invention;
附图标记说明:Description of reference numbers:
10-激光投影设备,101-外壳;10-laser projection equipment, 101-housing;
100-光源,102-光源壳体,1021-窗口,1022-气压平衡装置,1023-调节结构安装位,103-第一光出口,104-固定支架,1041-透光窗口,1042-第三密封件;105-密封玻璃,1051-第一密封件,1052-第二密封件,106-第一合光镜,107-第二合光镜,108-扩散片,109-匀化元件,110-蓝色激光器组件,111-会聚镜组, 120-绿色激光器组件,130-红色激光器组件,121,131,141,151,140-半波片;100-light source, 102-light source housing, 1021-window, 1022-air pressure balance device, 1023-adjustment structure installation position, 103-first light outlet, 104-fixing bracket, 1041-light transmission window, 1042-third seal Pieces; 105-sealing glass, 1051-first sealing piece, 1052-second sealing piece, 106-first light combining mirror, 107-second light combining mirror, 108-diffusion sheet, 109-homogenization element, 110- Blue laser assembly, 111-converging lens group, 120-green laser assembly, 130-red laser assembly, 121, 131, 141, 151, 140-half-wave plate;
1101-准直透镜组,1102-金属基板,1103-激光器引脚,1104a,1104b-PCB板;1101-collimating lens group, 1102-metal substrate, 1103-laser pin, 1104a, 1104b-PCB board;
200-光机,201-第二光入口,202-第三光出口,210-照明光路,220-DMD数字微镜阵列,230-振镜, 250-收光部件,260-扩散轮;200-optical machine, 201-second light entrance, 202-third light exit, 210-illumination light path, 220-DMD digital micromirror array, 230-galvanometer, 250-light receiving part, 260-diffusion wheel;
300-镜头,310-折射透镜组,320-反射镜组;300-lens, 310-refractive lens group, 320-reflector group;
400-投影屏幕,401-基材层,402-扩散层,403-均匀介质层,404-菲涅尔透镜层,405-反射层;400-projection screen, 401-substrate layer, 402-diffusion layer, 403-uniform medium layer, 404-Fresnel lens layer, 405-reflection layer;
500-电路板;500 - circuit board;
601-散热翅片,602-热管,603-导热块,604-第一风扇,605-第二风扇,606-第三风扇,607-第四风扇,610-冷头,冷排-611,补液器-612,613-导热块。601- cooling fin, 602- heat pipe, 603- heat conduction block, 604- first fan, 605- second fan, 606- third fan, 607- fourth fan, 610- cold head, cold row-611, liquid replenishment Device - 612, 613 - Thermal Block.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
首先根据图1所示的激光投影设备,对本实施例的激光投影设备结构和工作过程进行说明。First, according to the laser projection device shown in FIG. 1 , the structure and working process of the laser projection device of this embodiment will be described.
图1示出了一种激光投影设备的结构示意图,激光投影设备10包括整机壳体101,按照光学功能部分,还包括光源100,光机200,镜头300,这些光学部分具有对应的壳体进行包裹,并达到一定的密封或气密要求,比如,光源100为气密性密封,可以较好的防止光源100的光衰问题。光源100,光机200,镜头300安装于整机壳体101中。其中,光机200和镜头300连接且沿着整机壳体102第一方向设置,如图1所示,第一方向可以为整机的宽度方向,或者按照使用方式,第一方向与用户观看的方向相对。在光机200,镜头300和一部分整机壳体101围合的空间内设置有光源100。光源100为纯三色激光光源,发出红色激光,蓝色激光和绿色激光。FIG. 1 shows a schematic structural diagram of a laser projection device. The
参见图1和图8,光源100具有第一光出口103,光机200具有第二光入口201和第三光出口202,根据光机内部照明光路的设计,第二入光口201和第三出光口202位于光机呈垂直关系的不同侧面上,此处的垂直是空间位置关系上的垂直,不同的侧面可能是长方体光机壳体的不同侧面,也可以是不规则立体结构的不同侧面。光源100的第一光出口102连接光机200的第二光入口201,光源100的光束进入光机200内部,经过光机200内部的照明光路到达光调制器件,并由光调制器件将照明光束输出至镜头300。Referring to FIG. 1 and FIG. 8 , the
具体地,光机200中含有光调制器件,为系统的核心部件。光调制器件(也称光阀)可分为液晶光阀LCD,硅基液晶LCOS,以及DMD数字微镜芯片。其中DMD芯片应用于DLP投影架构。Specifically, the
图2A示出了一种DLP(Digital Light Processing)投影架构,其中DMD(DigitalMicromirror Device)数字微镜阵列是整个投影架构的核心器件。以下以单片DMD应用为例进行说明。DMD220为反射式光阀器件,从光源部输出的照明光束通常还需要经过DMD220前端的照明光路210,通过照明光路210后,照明光束符合DMD220所要求的照明尺寸和入射角度。DMD220表面包括成千上万个微小反射镜,每个小反射镜可单独受驱动进行偏转,比如TI提供的DMD芯片中,可进行正负12度或者正负17度的偏转。其中,正的偏转角度反射出的光,称之为ON光,负的偏转角度反射出的光,称之为OFF光,OFF光为无效光,通常打到壳体上或者设置吸光设备吸收掉。ON光是DMD光阀表面的微小反射镜接收照明光束照射,并通过正的偏转角度射入镜头部300的有效光束,用于投影成像。Figure 2A shows a DLP (Digital Light Processing) projection architecture, in which a DMD (Digital Micromirror Device) digital micromirror array is the core device of the entire projection architecture. The following takes a single-chip DMD application as an example for description. DMD220 is a reflective light valve device. The illumination beam output from the light source usually needs to pass through the illumination
在本示例中,光机200应用DLP投影架构,并且使用DMD反射式光阀作为光调制器件。In this example, the optomechanical 200 applies a DLP projection architecture, and uses a DMD reflective light valve as the light modulation device.
参见图1,镜头300通过第三出光口202与光机200实现连接,具体连接可以是通过各自壳体的端面通过螺钉锁固,其中,镜头300的部分镜片组还伸入光机200的第三光出口202。Referring to FIG. 1 , the
镜头部300包括多片透镜组合,通常按照群组进行划分,分为前群,中群,后群三段式,或者前群,后群两段式,前群是靠近投影设备出光侧的镜片群组,后群是靠近光调制器件出光侧的镜片群组。根据上述多种镜片组组合,镜头部300也可以是变焦镜头,或者为定焦可调焦镜头,或者为定焦镜头。The
本示例的激光投影设备为超短焦投影设备,因此镜头部300为超短焦投影镜头,其投射比通常小于0.3,比如0.24。超短焦投影镜头可如图3所示例的一种,包括折射透镜组310和反射镜组320,反射镜组320可以为曲面反射镜,如图4所示,投影光束经镜头部300后呈斜向上出射到投影屏幕400上成像,这有别于传统的长焦投影中投影光束光轴位于投影画面中垂线的出光方式,超短焦投影镜头相对于投影画面通常具有120%~150%的偏移量。The laser projection device in this example is an ultra-short-throw projection device, so the
由于DMD芯片的尺寸很小,比如目前TI提供的DMD芯片尺寸有0.66英寸,0.65英寸,以及0.47英寸,而投影画面尺寸通常在70寸以上,比如在80寸和150寸之间,因此对于镜头部300来说,既要实现上百倍的放大,还要校正像差,具有良好的解析度,从而呈现高清晰度的投影画面,超短焦投影镜头的设计难度要远大于长焦投影镜头。Due to the small size of the DMD chip, for example, the size of the DMD chip currently provided by TI is 0.66 inches, 0.65 inches, and 0.47 inches, and the projection screen size is usually above 70 inches, such as between 80 inches and 150 inches, so for the lens For the
在超短焦投影设备中,DMD光阀出光面的中心垂线通常与镜头的光轴平行,但不重合,即DMD偏置于镜头部300,从DMD出光面出射的光束呈一定角度斜入射至镜头部300中,经过多片镜片的部分区域的透射,以及反射,最终投影光束斜向上从镜头部300中出射。In the ultra-short-throw projection equipment, the center vertical line of the light-emitting surface of the DMD light valve is usually parallel to the optical axis of the lens, but not coincident, that is, the DMD is offset to the
DMD作为光调制器件,是受电信号驱动对光进行调制,使得光束携带有图像信息,最终经镜头部放大形成投影图像。As a light modulation device, the DMD is driven by an electrical signal to modulate the light, so that the light beam carries image information, and is finally enlarged by the lens to form a projection image.
在DMD本身相对固定分辨率的基础上,为了实现更高清晰度和分辨率的图像画面,如图3所示,还可在DMD出射光路到达镜头光路径中设置振镜230,振镜230为一个透射型平片结构。通过一维振动,振镜将相继透射通过的图像光束进行角度位移,从而相邻的两幅图像会进行错位叠加后成像在投影屏幕上,利用人眼视觉暂留效果,两幅图像的信息叠加成为一幅图像信息,人眼感知到的图像细节增加,图像的分辨率也得以提升。On the basis of the relatively fixed resolution of the DMD itself, in order to achieve a higher definition and resolution image, as shown in FIG. 3, a
振镜还可以做二维运动,比如在上下左右四个位置进行移动,从而可以将四幅图像错位叠加在一起,利用上述信息量叠加的原理,实现人眼感知到的分辨率提升效果。上述无论是两幅图像叠加,还是四幅图像叠加,这两幅子图像或四幅子图像都需要事先通过一幅高分辨率的图像进行分解得到,且分解的方式需要与振镜的运动方式相配合,才能正确叠加而不发生图像的混乱。The galvanometer can also perform two-dimensional motion, such as moving in four positions, up, down, left, and right, so that the four images can be dislocated and superimposed together, and the above-mentioned principle of information superposition can be used to achieve the effect of improving the resolution perceived by the human eye. Whether the above two images are superimposed or four images are superimposed, the two sub-images or the four sub-images need to be decomposed by a high-resolution image in advance, and the decomposition method needs to be matched with the movement mode of the galvanometer. , in order to overlay correctly without cluttering the image.
振镜通常设置于DMD光阀和镜头之间,DMD和镜头之间传递的光束可近似看做平行光束,平行光束在经过平片折射后仍能保持较好的平行度,但是如果发散角度较大的光束在通过平片折射后,折射后的角度变化较大,可能导致相继通过振镜的两幅图像光束叠加时出现亮度或色度的不均匀。The galvanometer is usually set between the DMD light valve and the lens. The beam transmitted between the DMD and the lens can be approximately regarded as a parallel beam. The parallel beam can still maintain good parallelism after being refracted by the flat plate, but if the divergence angle is relatively After a large beam is refracted through a flat plate, the angle of refraction changes greatly, which may cause uneven brightness or chromaticity when the two image beams passing through the galvanometer successively are superimposed.
参见图1,光机200、镜头300和另一部分整机壳体101围合的空间内设置有多个电路板500,多个电路板500包括电源板,TV板,控制板,显示板等,多个电路板500通常层叠设置,或者多个电路板500也可以一部分沿着整机壳体101的底面放置,一部分沿整机壳体的侧面设置。Referring to FIG. 1 , a space enclosed by the
以及,在激光投影设备10中,沿整机壳体101内侧,还设置有音响,风扇,散热装置等结构。In addition, in the
上述实施例提供的激光投影设备,光机200和镜头300沿着设备整机壳体101第一方向设置,将整机隔成两个部分,一部分可容纳光源,另一部可容纳电路板,这两个部分分别如图1所示的左右两部分。这样的划分可视为将光学部分和电学部分分开。需要说明的是,光学部分中也通常设置有驱动电路,但是由于相比于显示板,信号板,电源板等电路部分体积较小,复杂度也较低,因此可以认为左半部分主体为光学部分,右半部分主体为电路部分。这样将不同的主体分开设置,既便于整机的组装和调试,同时也便于光学部分和电学部分各自的设计需求,比如散热,走线,电磁测试等。In the laser projection equipment provided by the above-mentioned embodiments, the
以及,在本示例提供的激光投影设备中,光机200和镜头300同向设置,镜头300的部分镜片组伸入光机200内部,利于减小光机和镜头这两部分组装后的体积。以及按照反射式光阀的出光特点,虽然受制于不同照明光路架构,光源100光束可能会经过多次转折最终入射镜头300,但从光源100的第一光出口103出射的光束方向,以及与镜头300的入光面的光束方向相比,可认为光源100光束的光轴方向与镜头300的光轴方向在空间位置上具有垂直关系。光源100,光机200,镜头300连接组装后呈现L型,为光束光轴的转折提供了结构上的基础,不仅降低了光机200入射镜头300光路的设计难度。上述激光投影设备整机布局较为紧凑,光路架构也更为简洁。And, in the laser projection device provided in this example, the
因此,在本示例中,光源100用于为光机200提供光源照明,具体地,光源100通过时序性地、同步输出三基色照明光束为光机200提供照明光束。Therefore, in this example, the
光源100也可以为非时序性输出,存在不同基色的叠加输出时段,比如红色和绿色存在叠加输出时段,增加光束周期中黄色的比例,有利于提升图像亮度,或者红色,绿色,蓝色同时在一部分时段点亮,三色叠加形成白色,可以提升白场亮度。The
以及,当应用其他类型的光调制部件时,为配合三片式LCD液晶光阀,光源部中的三色基色光可同时点亮输出混合白光。而在本示例中,光源部100虽然时序性的输出三色基色光,根据三色混光原理,人眼是分辨不到某一时刻光的颜色的,感知到的仍然是混合的白光。因此光源部100的输出通常也称之为混合白光。And, when other types of light modulation components are used, in order to cooperate with the three-piece LCD liquid crystal light valve, the three-color primary light in the light source part can simultaneously light up and output mixed white light. In this example, although the
其中,图7为图1中光源100的局部结构示意图,图8为图7的分解结构示意图。下面将结合附图对三色激光光源示例进行说明。7 is a schematic diagram of a partial structure of the
如图7所示,光源100光源包括光源壳体102,以及安装于光源壳体102不同侧面上的蓝色激光器组件110、绿色激光器组件120和红色激光器组件130,分别发出蓝色激光、绿色激光和红色激光。其中,绿色激光器组件120和红色激光器组件130并列安装于同一个侧面上,并均与蓝色激光器组件110在空间位置上垂直,也即,绿色激光器组件120和红色激光器组件130所在的光源壳体侧面,与蓝色激光器组件110所在的光源壳体侧面垂直,且这两个侧面均垂直于光源壳体102的底面或者整机壳体101的底面。As shown in FIG. 7 , the light source of the
参见图16为光源100的一种光路原理示意图,如图16所示,绿色激光器组件120和红色激光器组件130并列排列,蓝色激光器组件110的出光面面向光源的出光口。蓝色激光器组件110发出的光束经过透射输出至光源100出光口,不需要进行光路转折。16 is a schematic diagram of an optical path of the
红色激光器组件发出的光束经过一次反射从出光口出射,绿色激光器组件发出的光束经过一次反射和一次透射从出光口出射。可见,上述光路原理示意图中,红色激光经过的光路径最短,经过的反射次数最少。The light beam from the red laser component exits from the light outlet after one reflection, and the light beam from the green laser component exits from the light exit after one reflection and one transmission. It can be seen that in the above schematic diagram of the optical path, the red laser has the shortest optical path and the least number of reflections.
参见图7、5B,上述任一颜色的激光器组件均输出矩形光斑,上述任一颜色激光器组件均沿着各自矩形光斑的长边方向、竖直地安装于光源壳体102的侧面上。这样,三色激光器组件输出的激光光斑在合光时不会形成“十”字型光斑,利于合光光斑尺寸的减小和较高的匀化度。Referring to FIGS. 7 and 5B , the laser components of any color above output a rectangular light spot, and the laser components of any color are vertically installed on the side surface of the
如图8所示,光源壳体102包括多个侧面,底面和顶盖,光源100中的多个光学镜片都设置在光源壳体102的底面上。为了增加散热面积,光源壳体102的顶盖为翅片状。在光源壳体102的侧面上开设有多个窗口1021,以便安装上述多个激光器组件,上述任一颜色的激光器组件发出的光束从对应的安装窗口中入射至光源100内部腔体,通过多个光学镜片形成光传输路径。As shown in FIG. 8 , the
在本示例中,光源壳体102的顶盖上还安装有一些控制电路板(未示出),以及,如图18所示的从光源壳体底面角度的结构示意图,在底面上还预留有光学镜片的调节结构安装位1023。In this example, some control circuit boards (not shown) are also installed on the top cover of the
以及,如图18在光源壳体102的底面或顶盖上还设置有气压平衡装置1022。气压平衡装置1022可以为过滤阀,可用于连通光源内腔体与外部,实现气流的交换,当光源内腔体温度升高时,内部气流向外流出,当温度恢复冷却后,外部气流也可进入光源内腔体,由于过滤阀可以设置为气密防水过滤膜,能够对外界一定直径范围内的颗粒灰尘粉尘等过滤,阻挡在外,保持光源内腔体的洁净度。或者,气压平衡装置为可伸缩气囊,气囊可以由弹性橡胶制成,用于光源内腔体气压增大时体积增大以缓解光源内腔体气压。上述气压平衡装置都可以用作泄压装置,当光源内腔体温升过高时,通过连通向外泄压或者通过形成气体容纳结构增大光源内腔体密封空间的体积,均可以对光源内腔体的气压进行平衡,提高光源内腔体各光学器件工作的可靠性。And, as shown in FIG. 18 , an air
由于三色激光器组件与光源壳体的组装结构基本相同,为了简便说明激光器组件与光源壳体的连接关系,下面将以其中任一种颜色激光器组件的组装结构为例进行说明。Since the assembly structure of the three-color laser assembly and the light source housing is basically the same, in order to simplify the connection between the laser assembly and the light source housing, the following will take the assembly structure of any one of the color laser assemblies as an example for description.
上述三色激光器组件均为MCL型激光器组件,即将多颗发光芯片封装在一块基板上,形成面光源输出。如图14,图15所示的一种MCL型激光器,包括金属基板1102,金属基板1102上封装有多颗呈发光芯片(图中未示出),多颗发光芯片可以串联,也可以按照行或者列并联进行驱动。多颗发光芯片可以按照4X6阵列排列,也可以是其他阵列排列方式,比如3X5阵列,或者2X7阵列,或者2X6阵列,或者4X5阵列,不同阵列数目的激光器的整体发光功率不同。金属基板1102的两侧伸出引脚1103,通过将这些引脚进行电信号连接,可以驱动发光芯片发光。覆盖于MCL激光器的发光面,还设置有准直透镜组1101,准直透镜组1101通常通过胶粘固定。准直透镜组1101包括多颗准直透镜,通常会一一对应发光芯片的发光位置,对激光光束进行对应的准直。The above three-color laser components are all MCL-type laser components, that is, a plurality of light-emitting chips are packaged on a substrate to form a surface light source output. As shown in FIG. 14 and FIG. 15, an MCL type laser includes a
如图15所示,MCL型激光器组件还包括设置在MCL激光器外周侧的PCB板1104a,1104b,PCB板1104a,1104b与激光器的出光面平行或者位于同一平面内,以驱动激光器引脚1103,为激光器提供驱动信号。如图所示,电路板为平板结构,激光器的两侧具有引脚1103,引脚1103分别焊接或者插接在与激光器所在平面几乎平行的该侧电路板1104a和1104b上,其中,1104a和1104b可以一体成型,围绕在激光器组件基板1102的外侧,或者1104a和1104b也可以为两个独立的电路板,两者将激光器组件围合起来,这样封装后的激光器组件也基本呈一平板结构,便于安装,且节省空间,也利于光源设备实现小型化。As shown in FIG. 15 , the MCL laser assembly also includes
图9和图11分别为任一颜色激光器组件与固定支架的组装结构示意图,以及分解结构示意图。FIG. 9 and FIG. 11 are respectively a schematic diagram of the assembly structure of any color laser assembly and a fixing bracket, and a schematic diagram of an exploded structure.
如图8所示,任一颜色激光器组件通过固定支架104安装于对应的光源壳体的窗口1021处,固定支架104与光源壳体102通过螺钉锁固,从而将激光器组件固定在窗口1021位置处。任一颜色激光器组件包括MCL型激光器组件和固定支架。As shown in FIG. 8 , the laser components of any color are installed at the
而任一颜色激光器组件则通过螺钉锁固在固定支架上,具体地,MCL型激光器的金属基板上设置有装配孔,可以与固定支架进行锁固。The laser components of any color are locked on the fixing bracket by screws. Specifically, the metal substrate of the MCL laser is provided with an assembly hole, which can be locked with the fixing bracket.
如图11所示,固定支架104为具有透光窗口10211的钣金件,固定支架104透光窗口1401的正面靠近光源壳体102的窗口1021安装,而任一颜色的激光器组件则安装在固定支架透光窗口10211的背面的安装位上。并且,为了提高安装结构的密封性,在该固定支架透光窗口10211的背面安装位处设置有第三密封件1042,第三密封件1042具有折边的框型橡胶件,可以套设在MCL型激光器的正面,再将MCL型激光器组件固定于安装位处。第三密封件1042还能够起到缓冲作用,防止MCL型激光器表面的准直透镜组由于与钣金件的硬接触而损伤。As shown in FIG. 11 , the fixing
MCL型激光器组件由MCL激光器和对应的PCB板1104组成,MCL型激光器组件固定至固定支架104上后成为一个组装单位,一起安装到光源壳体102对应的窗口1021位置处。具体地,窗口1021周围具有螺柱,通过螺丝穿过固定支架的螺柱打进窗口周围的螺柱上。The MCL laser assembly is composed of the MCL laser and the
由于光源100内部设置有多个光学镜片,为精密部件,且光束传输过程中的能量密度非常高,如果内部环境洁净度不高,粉尘灰尘颗粒会在精密镜片表面聚积,造成光处理效率下降,进而造成光路的光衰,整个激光投影设备的整机亮度也会随之下降。在本示例中对光源内部进行防尘可以减轻上述光衰问题,具体地,如图12所示,在窗口1021处还设置有密封玻璃105,密封玻璃105将光源内腔体与窗口1021处安装的激光器组件进行隔离,可以使外部灰尘等不会从窗口开口处进入光源内腔体。密封玻璃105可以设置在光源内腔体表面上,比如通过粘接,也可以设置在光源壳体靠近激光器组件的一侧,比如通过在光源壳体的外表面设置开设安装位,依次将激光器组件,密封玻璃均安装在光源壳体窗口的外侧。Since the
如图12所示的分解结构,为了上述密封玻璃安装的便利性,本示例中,密封玻璃105安装在窗口1021靠近激光器组件一侧。在固定支架104正面还具有第一容纳槽,用于容纳第一密封件1051,光源壳体的窗口1021处具有第二容纳槽,用于容纳第二密封件1052。密封玻璃105位于第一密封件1051和第二密封件1052之间,具体地,将第二密封件1052放置于窗口1021处的第二容纳槽中,第二密封件1052中设置有与密封玻璃105的相配合固定槽位,将密封玻璃105放置于该固定槽位中,以及将第一密封件1051通过过盈配合安装到固定支架透光窗口10211的第一容纳槽中,再将固定支架和MCL激光器组件组成的任一颜色激光器组件安装至光源壳体的窗口1021处,第一密封件1051与密封玻璃105产生挤压接触,伴随着激光器组件的固定完成,密封玻璃105也被夹在第一密封件1051和第二密封件1052之间进行固定。As shown in the exploded structure shown in FIG. 12 , in order to facilitate the installation of the sealing glass, in this example, the sealing
以及,上述多个示例中,任一颜色的MCL型激光器组件通过轴肩螺钉固定到固定支架上,且轴肩螺钉和固定支架之间还设置有减震件,可以降低激光器在以较高频率驱动过程中产生的噪音传递。And, in the above examples, the MCL laser assembly of any color is fixed to the fixing bracket by the shoulder screw, and a shock absorber is also arranged between the shoulder screw and the fixing bracket, which can reduce the laser at higher frequencies. Noise transmission generated during driving.
以上对激光器组件与光源壳体的组装结构进行了说明。上述激光器组件安装到了光源壳体上,在驱动信号控制下发出激光光束,在内部形成光路输出,配合光机,镜头来进行投影成像。The assembly structure of the laser assembly and the light source housing has been described above. The above-mentioned laser assembly is mounted on the light source housing, emits a laser beam under the control of a driving signal, forms an optical path output inside, and cooperates with an optical machine and a lens to perform projection imaging.
在激光投影设备中,光源是主要的发热源,激光器的高密度能量光束照射到光学镜片表面也会产生热量。DMD芯片为零点几个英寸的面积,但是却需要承受整个投影图像所需的光束能量,其发热量也非常高。一方面,激光器具有设定的工作温度,来形成稳定的光输出,兼顾使用寿命和性能,同时,设备内部包含多个精密光学镜片,尤其是超短焦镜头包含多个镜片,如果整个设备内部温度过高,热量聚集,会造成镜头内镜片发生“温飘”现象,成像质量会严重下降。以及,电路板器件等部件受电信号驱动,也会产生一定的热量,并且各个电子器件也具有设定的工作温度。因此,良好的散热和温度控制对于激光投影设备正常工作是非常重要的保证。In laser projection equipment, the light source is the main heat source, and the high-density energy beam of the laser irradiates the surface of the optical lens to generate heat. The DMD chip has an area of tenths of an inch, but needs to withstand the beam energy required for the entire projected image, and its heat generation is also very high. On the one hand, the laser has a set working temperature to form a stable light output, taking into account the service life and performance. At the same time, the device contains multiple precision optical lenses, especially the ultra-short focal lens contains multiple lenses. If the temperature is too high, the heat will accumulate, which will cause the "warm drift" of the lens in the lens, and the image quality will be seriously degraded. In addition, components such as circuit board devices are driven by electrical signals and generate a certain amount of heat, and each electronic device also has a set operating temperature. Therefore, good heat dissipation and temperature control are very important guarantees for the normal operation of laser projection equipment.
具体地,如图20所示和图21,导热块603与绿色或蓝色激光器组件的热沉接触导热,热管602的外表面与导热块接触实现热传递,热管602与导热块603接触的一端为热端,另一端与散热鳍片接触,为冷端,热管为一个内部具有液体的封闭系统,通过液体气液变化来实现热量的传导。热管冷端接触的散热翅片通常通过风冷降温,使得热管冷端也被降温,气体液化回流至热管热端。Specifically, as shown in FIG. 20 and FIG. 21 , the
以及,如图19所示,红色激光器组件与冷头610连接,通过液冷方式进行散热。在液冷循环系统中,冷头将热源部件的热量带走回流至冷排,冷排被冷却,冷却后的冷却液,比如,常用的为水,再次流回至冷头,依次循环对热源进行热量的传导。在液冷循环系统中,还包括泵,用于驱动液冷循环系统中的冷却液保持流动,在本示例中,将泵与冷头一体化设置,利于减少部件体积,下文提到的冷头可以是指冷头和泵的一体化结构。以及,在本示例的激光投影设备的液冷循环系统中,还包括补液器,用于对液冷循环系统补液,使得整个液冷循环系统内的液体压力大于系统外界压力,这样外部气体不会因为冷却液的挥发或管道接头密封性不好而进入循环系统内部,造成循环系统内部噪音,甚至产生气蚀现象对器件造成损坏。And, as shown in FIG. 19 , the red laser assembly is connected to the
液冷循环系统相比于风冷散热系统较为灵活的是,冷头和冷排的体积相对于传统散热翅片的体积较小,在自身形状和结构位置的选择上更为多样。由于冷头和冷排通过管道连通,始终为一个循环系统,因此冷排可以靠近冷头设置,也可以有其他相对位置关系,这由激光投影设备的空间决定。Compared with the air-cooled heat dissipation system, the liquid-cooled circulation system is more flexible in that the volume of the cold head and the cold row is smaller than that of the traditional heat dissipation fin, and the choice of its own shape and structure position is more diverse. Since the cold head and the cold exhaust are connected through pipes, it is always a circulation system, so the cold exhaust can be set close to the cold head, or there can be other relative positions, which is determined by the space of the laser projection equipment.
光机、镜头与另一部分整机壳体围合的空间内还设置有多个电路板500和第二风扇,第二风扇靠近整机壳体设置,第二风扇可以为多个。A plurality of
在激光投影设备中,光源100为激光光源,所包括的不同颜色的激光器组件具有不同的工作温度要求。其中,红色激光器组件的工作温度小于50℃,蓝色激光器组件和绿色激光器组件的工作温度小于65℃。光机中DMD芯片的工作温度通常控制在70℃左右,镜头部分的温度通常控制在85℃以下。而对于电路板部分,不同的电子器件的温控不同,通常在80℃~120℃之间。可见,由于设备中光学部件和电路部分对于温度的耐受值不同,光学部分的工作温度耐受值普遍低于电路部分,因此气流从光学部分吹向电路部分,可以使两部分都达到散热目的且维持自身的正常工作。In the laser projection apparatus, the
需要说明的是,由于红色激光器组件的工作温度小于50℃,比如当控制为45℃以下时,使用液冷散热方式,冷排的表面温度和冷头的表面温度差控制在1~2℃范围内,即若冷头的表面温度为45℃,则冷排的表面温度为43℃~44℃,其中,冷头的表面温度是指冷头与激光器组件热沉的接触面的温度。具体地,第一风扇将环境温度的风吸进来,环境温度通常在20~25℃,对冷排进行风冷散热,将冷排的表面温度降至43℃。而蓝色激光器组件和绿色激光器组件的工作温度在65℃以下,散热翅片的温度则需要在62℃~63℃,散热翅片的温度与激光器组件热沉的温度差在2~3℃范围内。可见,冷排的温度低于散热翅片的温度,因此,冷排设置于散热路径的前端,在散热路径中也位于散热翅片之前。风扇转动形成的气流对冷排进行散热后再次吹向散热翅片,仍然可以对散热翅片进行散热。It should be noted that since the operating temperature of the red laser component is less than 50°C, for example, when the temperature is controlled below 45°C, the liquid cooling method is used, and the surface temperature of the cold row and the surface temperature of the cold head are controlled within the range of 1~2°C. In other words, if the surface temperature of the cold head is 45°C, the surface temperature of the cold row is 43°C to 44°C, where the surface temperature of the cold head refers to the temperature of the contact surface between the cold head and the heat sink of the laser assembly. Specifically, the first fan sucks in the wind at ambient temperature, which is usually 20-25°C, and performs air cooling and heat dissipation on the cold row, reducing the surface temperature of the cold row to 43°C. While the operating temperature of the blue laser component and the green laser component is below 65℃, the temperature of the heat dissipation fin needs to be between 62℃~63℃, and the temperature difference between the temperature of the heat dissipation fin and the heat sink of the laser assembly is in the range of 2~3℃ Inside. It can be seen that the temperature of the cold row is lower than the temperature of the heat dissipation fins, therefore, the cold row is arranged at the front end of the heat dissipation path, and also before the heat dissipation fins in the heat dissipation path. The airflow formed by the rotation of the fan dissipates heat from the cold radiator and then blows it to the heat dissipation fins again, so that the heat dissipation fins can still be dissipated.
同理,由于镜头的工作温度控制在85℃,散热翅片的温度在63℃,仍然低于镜头的工作温度,因此流经散热翅片后的第二气流相对于镜头而言仍然是冷风气流,可以利用散热。而电路板的工作温度普遍高于镜头的工作控制温度,因此,对镜头进行散热后的气流相对于大部分电路板而言也仍然是冷风气流,仍然可以继续流经多个电路板进行散热。In the same way, since the working temperature of the lens is controlled at 85°C and the temperature of the cooling fins is 63°C, which is still lower than the working temperature of the lens, the second airflow after passing through the cooling fins is still cold air compared to the lens. , can use heat dissipation. The operating temperature of the circuit board is generally higher than the operating temperature of the lens. Therefore, the airflow after cooling the lens is still cold air compared to most circuit boards, and can continue to flow through multiple circuit boards for heat dissipation.
在本示例中,冷排,散热翅片,镜头,电路板具有逐渐升高的工作温度阈值,上述结构布局方式也利于设计散热路径,散热气流可以从工作温度阈值较低的部件流向工作温度阈值较高的部件,在一个散热路径中可以依次为多个热源部件散热,既能满足多个热源部件的工作散热需求,同时整机散热效率高。In this example, the cold radiator, heat dissipation fins, lenses, and circuit boards have gradually increasing operating temperature thresholds. The above structural layout is also conducive to the design of heat dissipation paths, and the heat dissipation airflow can flow from components with lower operating temperature thresholds to the operating temperature threshold. The higher components can dissipate heat for multiple heat source components in turn in one heat dissipation path, which can not only meet the working heat dissipation requirements of multiple heat source components, but also has high heat dissipation efficiency of the whole machine.
在另一具体实施中,散热翅片为了增强传热系数,可以通过在翅片表面进行结构改进,增大散热面积,或者增大风的流速,以此来增加散热能力。In another specific implementation, in order to enhance the heat transfer coefficient of the heat dissipation fins, the surface of the fins can be structurally improved to increase the heat dissipation area, or to increase the flow velocity of the wind, thereby increasing the heat dissipation capacity.
在上述实施例提供的激光投影设备中,红色激光器组件的发光功率范围可以为24W~56W,蓝色激光器组件的发光功率范围可以为48W~115W,绿色激光器组件的发光功率范围可以为12W~28W。优选地,红色激光器组件的发光功率为48W,蓝色激光器组件的发光功率为82W,绿色激光器组件的发光功率为24W。上述三色的激光器均采用MCL型激光器组件,与BANK型激光器相比,在输出相同的发光功率下,体积大大减小。In the laser projection device provided by the above embodiment, the luminous power range of the red laser component can be 24W~56W, the luminous power range of the blue laser component can be 48W~115W, and the luminous power range of the green laser component can be 12W~28W . Preferably, the luminous power of the red laser component is 48W, the luminous power of the blue laser component is 82W, and the luminous power of the green laser component is 24W. The above three-color lasers all use MCL type laser components. Compared with BANK type lasers, the volume is greatly reduced under the same luminous power output.
通过上述说明,在激光投影设备中,光源100的散热要求最为严格,是整个设备中工作温度控制相对较低的部分。具体地,红色激光器组件的工作温度要低于蓝色激光器组件和绿色激光器组件的工作温度,这是由于红色激光的发光原理决定的。蓝色激光和绿色激光是利用砷化镓发光材料产生的,红色激光是利用氮化镓发光材料产生的。红色激光的发光效率低,且发热量较高。红色激光发光材料对温度的要求也更为严苛。因此,在对由三色激光器组成的光源部件进行散热时,还需要根据不同激光器组件的温度要求设置不同的散热结构,可以保证每种颜色的激光器工作在较佳的状态,提高激光器组件的使用寿命,其发光效率也更加稳定。From the above description, in the laser projection equipment, the heat dissipation requirement of the
风冷散热方式可以将热源热端和冷端的温差控制在3℃左右,而液冷散热的温差控制可以更为精确和范围更小,比如在1~2℃。对于工作温度阈值更低的红色激光器组件采用液冷散热的方式,而对工作温度阈值相对较高的蓝色激光器组件和红色激光器组件采用风冷散热的方式,可以在满足红色激光器工作温度需求下,以较低的散热成本对其进行散热,满足较小的温差控制即可,这样对风扇的转速要求可以降低。但液冷散热方式的部件成本相比于风冷散热更高。The air-cooled heat dissipation method can control the temperature difference between the hot end and the cold end of the heat source at about 3°C, while the temperature difference control of the liquid-cooled heat dissipation can be more precise and smaller, such as 1~2°C. For red laser components with a lower operating temperature threshold, liquid cooling is used, while for blue and red laser components with relatively high operating temperature thresholds, air cooling is used, which can meet the operating temperature requirements of the red laser. , it can dissipate heat at a lower heat dissipation cost, and it is enough to satisfy a small temperature difference control, so that the speed requirement of the fan can be reduced. However, the component cost of liquid cooling is higher than that of air cooling.
因此,在本示例中的激光投影设备中,对光源散热采用液冷和风冷混合散热的方式,能够满足不同激光器组件工作温度控制的同时,经济合理。Therefore, in the laser projection device in this example, a mixed heat dissipation method of liquid cooling and air cooling is adopted for the heat dissipation of the light source, which can satisfy the working temperature control of different laser components and is economical and reasonable.
具体地,参见图19,红色激光器组件110背面的金属基板与冷头通过第一导热块613连接,第一导热块613的面积大于冷头导热面的面积,第一导热块的面积也大于红色激光器组件110背面热沉导热面的面积。这样利于将激光器组件热沉的热量快速的集中起来传递给冷头,提高热传导效率。Specifically, referring to FIG. 19 , the metal substrate on the back of the
在图19所示的散热系统结构中,冷头610的出口通过管道连接冷排611的进口,冷排611的出口通过管道连接冷头610的进口。在冷头610和冷排611以及管道构成的液冷循环系统中,还设置有补液器612,如前所述,补液器612用于为系统循环补充冷却液,因此补液器可以设置整个循环系统的多个位置,根据系统结构空间等因素,补液器可以为一个或多个,可以与泵连接在一起,也可以靠近冷排设置。In the heat dissipation system structure shown in FIG. 19 , the outlet of the
在本示例中,蓝色激光器组件和绿色激光器组件的工作温度控制相同,共用一个散热翅片结构。具体地,如图20和6C所示,蓝色激光器组件120,绿色激光器组件130背面的热沉通过导热块603与热管602接触,热管602伸入散热翅片601内部。对应不同颜色的激光器组件,比如,对应蓝色激光器组件,为便于区分,导热块603为第二导热块,对应绿色激光器组件,导热块603为第三导热块。第二导热块和第三导热块可以为独立的两个部件,分别为不同的激光器组件进行热传导,也可以为一整个结构,这样便于安装,且两种颜色的激光器组件散热需求相同时,也便于控制温度。In this example, the blue laser assembly and the green laser assembly have the same operating temperature control and share a heat sink fin structure. Specifically, as shown in FIGS. 20 and 6C , the heat sinks on the back of the
其中,上述热管为多根热管,优选地,对应蓝色和绿色激光器组件的热管数量相同。在本示例中,热管为直型热管,热管为多根,散热翅片内部开设多个通孔,用于插入多根热管。散热翅片601靠近蓝色和绿色激光器组件设置,多根热管可以不进行弯折,直接插入散热翅片中,直型热管利于热管内部气液变化中传输阻力的降低,利于提高热传导效率。Wherein, the above-mentioned heat pipes are a plurality of heat pipes, and preferably, the number of heat pipes corresponding to the blue and green laser components is the same. In this example, the heat pipe is a straight heat pipe, there are a plurality of heat pipes, and a plurality of through holes are formed in the heat dissipation fin for inserting the plurality of heat pipes. The
通过上述组合散热结构,对光源部件可以进行散热,从而保证三色激光光源部件的正常工作。光源发出三色激光,提供高质量的照明光束,投射形成亮度高,色彩佳的投影图像。由于三色激光器组件排布在不同的空间位置上,在光源内腔体还需要多个光学镜片来对不同方向的激光光束进行合光,以及匀化等光处理。Through the above-mentioned combined heat dissipation structure, the light source components can be dissipated, thereby ensuring the normal operation of the three-color laser light source components. The light source emits three-color lasers, providing high-quality illumination beams, and projecting a projection image with high brightness and good color. Since the three-color laser components are arranged in different spatial positions, multiple optical mirrors are also required in the cavity of the light source to combine the laser beams in different directions, and perform light processing such as homogenization.
在本实施例提供的激光投影设备中,如图16所示的光源光路原理示意图中,蓝色激光和绿色激光的交汇处设置有第一合光镜106,第一合光镜透射蓝色激光,反射绿色激光,以及,合光后的蓝色激光、绿色激光与红色激光交汇处设置有第二合光镜,第二合光镜反射红色激光并透射蓝色、绿色激光,将三色激光输出至光源光出口。In the laser projection device provided in this embodiment, in the schematic diagram of the optical path of the light source shown in FIG. 16 , a first
具体地,蓝色激光组件110的发光面面向光源的出光口设置。绿色激光器组件120发出的绿色激光由第一合光镜106反射后入射至第二合光镜107,蓝色激光器组件110发出的蓝色激光透射通过第一合光镜106,通过第一合光镜107可以将蓝色激光和绿色激光进行合路输出。Specifically, the light emitting surface of the
经第一合光镜106合路输出的蓝色激光和绿色激光的输出方向与红色激光器组件130发出的红色激光的输出方向垂直,且具有交汇,在三束光束的交汇处设置有第二合光镜107,第二合光镜107反射红色激光,透射绿色激光和蓝色激光。三色激光光束完成合束,形成一路光束入射至匀化元件109,并经会聚镜组111缩小光斑后从光源出光口出射。The output direction of the blue laser and the green laser outputted by the first
如图8所示的光源结构图示中,绿色激光器组件120和红色激光器组件130并列安装在光源壳体的一个侧面上,蓝色激光器组件110光源壳体102的另一个侧面上,这两个光源壳体的侧面呈垂直关系。三色激光器组件均输出矩形光斑,且均沿着各自矩形光斑的长边方向,竖直的安装于光源壳体的侧面上。且红色激光器组件130靠近光源的出光口设置。In the light source structure diagram shown in FIG. 8 , the
在光源100的内腔体中,还设置有多片合光镜,以及会聚镜组。具体地,第一合光镜106位于蓝色激光器组件110和绿色激光器组件120之间,在两者的交汇处。第二合光镜107朝向红色激光器组件130的发光面倾斜设置,反射红色激光,并透射蓝色激光和绿色激光。上述第一合光镜106,第二合光镜107大致呈平行排列,与对应激光器组件发光面呈45度设置。其中第一合光镜106,第二合光镜107通过基座加持固定在光源壳体102的底面上,并且考虑到组装公差的原因,第一合光镜,第二合光镜的角度还可以微调,比如在正负3度以内。In the inner cavity of the
第二合光镜107靠近会聚镜组111设置,将三色激光合束输出至会聚镜组111。The second
其中,第一合光镜为反射镜,第二合光镜均为二向色片。Wherein, the first light combining mirror is a reflecting mirror, and the second light combining mirror is a dichroic plate.
以及,第一合光镜和第二合光镜的光反射率均大于其光透射率,比如,两合光镜的光反射率可达到99%,透射率通常在95%~97%。In addition, the light reflectivity of the first light combining mirror and the second light combining mirror are both greater than their light transmittances. For example, the light reflectivity of the two light combining mirrors can reach 99%, and the transmittance is usually 95%-97%.
在本示例提供的三色激光器组件均为MCL型激光器,如图14所示,MCL激光器包括封装于一块金属基板上的多颗发光芯片,由于发光原理的不同,不同颜色的发光芯片的发光功率也不同,比如绿色芯片的发光功率在每颗芯片1W左右,而蓝色芯片的发光功率在每颗4W以上。当上述三色激光器采用同样颗数的芯片排布时,比如均使用4X6排列的封装类型,在整体发光功率上也不同,比如,绿色激光器组件的发光功率小于红色激光器组件的发光功率,也小于蓝色激光器组件的发光功率,红色激光器组件的发光功率小于蓝色激光器组件的发光功率。The three-color laser components provided in this example are all MCL-type lasers. As shown in Figure 14, the MCL laser includes multiple light-emitting chips packaged on a metal substrate. Due to different light-emitting principles, the light-emitting power of light-emitting chips of different colors It is also different. For example, the luminous power of green chips is about 1W per chip, while the luminous power of blue chips is more than 4W per chip. When the above three-color lasers are arranged with the same number of chips, for example, they all use the 4X6 package type, the overall luminous power is also different. The luminous power of the blue laser component, the luminous power of the red laser component is less than the luminous power of the blue laser component.
同时,在上述实施例中,红色激光器组件和蓝色激光器组件以及绿色激光器组件的采用相同阵列的发光芯片封装,比如均为4X6阵列。但是由于红色激光发光原理的不同,如图22所示,在一个发光芯片处会存在两个发光点,这使得红色激光在快轴方向和慢轴方向的发散角度相比于蓝色激光和绿色激光的要大,在光路传输过程中,对于经过相同的光学镜片,红色激光由于发散角度大,光学镜片具有一定的收光范围或者在一定角度范围具有较佳的光处理性能,从而红色激光经过的光路径或光程越长,其发散程度更严重,导致后面光学镜片对红色激光的光处理效率就会越低。虽然红色激光器组件的发光功率大于绿色激光器的发光功率,但是在经过相同长度的光路径后,红色激光的光损率要大于绿色激光和蓝色激光的光损率。Meanwhile, in the above embodiment, the red laser component, the blue laser component and the green laser component are packaged in the same array of light-emitting chips, for example, a 4×6 array. However, due to the difference in the light-emitting principle of the red laser, as shown in Figure 22, there will be two light-emitting points at one light-emitting chip, which makes the divergence angles of the red laser in the fast-axis and slow-axis directions compared with those of the blue laser and the green laser. In the process of optical path transmission, for the same optical lens, the red laser has a certain light-receiving range or better light processing performance in a certain angle range due to the large divergence angle of the red laser, so that the red laser passes through. The longer the optical path or optical path, the more serious the degree of divergence, and the lower the light processing efficiency of the rear optical lens for the red laser. Although the luminous power of the red laser component is greater than that of the green laser, the optical loss rate of the red laser is greater than that of the green and blue lasers after passing through the same length of the optical path.
如图8所示的光源结构中,蓝色激光器组件110的发光面面向光源的第一出光口103,蓝色激光沿蓝色激光器组件发光面输出后,经过两次透射,并经过匀化元件109和会聚镜组111后从第一出光口103出射。而对于绿色激光,会先经过一次反射,再经过一次透射后入射匀化元件109和会聚镜组111并从第一出光口103出射。而红色激光则经过了一次反射后入射匀化元件109和会聚镜组111并从第一出光口103出射。可见,在从光源第一出光口输出之前,红色激光的光路径均短于蓝色激光和绿色激光的光路径,这样,红色激光在光路径传输过程中产生的光损可以减小。以及,在不考虑光路径对光损影响下,红色激光经过第二合光镜的反射后,光能约可达到99%*1=99%,需要说明的是,此处对于红色激光的光能效率的计算是不考虑红色激光发散角度大,存在大角度光损的情况下的,仅单纯考虑光学镜片透反率的影响。In the light source structure shown in FIG. 8 , the light-emitting surface of the
而蓝色激光经过两次透射,在仅考虑透反率对光损影响时,绿色激光从第二合光镜输出的光能约可达到97%*97%=94%,绿色激光经过一次透射和一次反射,从第二合光镜输出的光能约可达到99%*97*=96%。而在实际应用中,蓝色激光器的发光功率可以更高,以及,人眼对蓝色的视觉函数相对较低。因此,红色激光路径最短,经过镜片的透反率损失也最小,但红色激光在传输光路中的发散角度最大,易于损耗。基于上述的激光器光源布局,在各色激光器不同的光学特性下,可以较好的平衡各色激光光束在传输过程中的损耗,使得三色激光的功率配比接近预设值,不会发生明显的失衡,也有利于实现符合理论设计的颜色配比和期望的白平衡。而当三色激光从第三合光镜合束输出后,三者所经历的光路径相同,则容易达到一致的光损。While the blue laser is transmitted twice, when only considering the effect of transmittance on light loss, the light energy output by the green laser from the second light combiner can reach about 97%*97%=94%, and the green laser is transmitted once With one reflection, the light energy output from the second combiner mirror can reach about 99%*97*=96%. In practical applications, the luminous power of the blue laser can be higher, and the visual function of the human eye for blue is relatively low. Therefore, the red laser has the shortest path, and the loss of transmittance through the lens is also the smallest, but the red laser has the largest divergence angle in the transmission optical path, which is easy to lose. Based on the above-mentioned laser light source layout, under the different optical characteristics of each color laser, the loss of each color laser beam in the transmission process can be well balanced, so that the power ratio of the three color lasers is close to the preset value, and there will be no obvious imbalance. , it is also beneficial to achieve the color ratio and desired white balance in line with the theoretical design. However, when the three-color laser beams are combined and output from the third beam combining mirror, the light paths experienced by the three are the same, and it is easy to achieve the same light loss.
上述激光器排列呈扁平长条形,比较规整,利于结构设计,可以为壳体预留出规整的空间,便于设置散热器件。The above-mentioned lasers are arranged in a flat and elongated shape, which is relatively regular, which is beneficial to the structural design, and can reserve a regular space for the casing, which is convenient for arranging the heat sink.
上述激光器组件均采用MCL型激光器组件,相比于传统的BANK型激光器组件,MCL型激光器组件的体积明显较小,因此本实施例中,如图1和图8所示的激光投影设备的光源,其结构体积比传统使用BANK型激光器组件时要明显减小,使得光源附近可以预留出较多的空间,为散热设计提供了便利,比如散热器,风扇的摆放在位置选择上将更为灵活,以及,还可能设置电路板等结构,也有利于减小整机结构在某一方向的长度,或者整机的体积。The above-mentioned laser components all use MCL-type laser components. Compared with the traditional BANK-type laser components, the volume of the MCL-type laser components is significantly smaller. Therefore, in this embodiment, the light source of the laser projection equipment shown in FIG. 1 and FIG. 8 is used. , its structural volume is significantly smaller than the traditional use of BANK laser components, so that more space can be reserved near the light source, which provides convenience for heat dissipation design, such as the radiator, the placement of the fan will be more convenient. In order to be flexible, and it is also possible to provide structures such as circuit boards, it is also beneficial to reduce the length of the whole machine structure in a certain direction, or the volume of the whole machine.
作为图16的变型,与图16所示的光路同的是,上述蓝色激光器组件和绿色激光器组件的位置也可以进行调换,比如图17所示,绿色激光器组件120透射通过第一合光镜106,蓝色激光器组件110则被第一合光镜106反射,这样,根据上述的透反率计算,绿色激光的光能损耗为1-97%*97%=6%,蓝色激光器组件的光能损耗则为1-99%*97%=4%,而通过在整个发光周期中提高绿色基色的duty占比,也可以不降低绿色基色光的亮度。从而整体上两者的光损率几乎可视为一致。As a modification of FIG. 16 , the same as the optical path shown in FIG. 16 , the positions of the blue laser assembly and the green laser assembly can also be exchanged. For example, as shown in FIG. 17 , the
在上述多个实施例中,通过将红色激光器组件靠近光源的出光口设置,而蓝色和绿色激光分别经过转折光路后与红色激光汇合,红色激光的光路径最短,可以减轻红色激光的光路径传输光损,且红色激光仅经过一次光学元件的反射,蓝色激光和绿色激光分别经过多次透反处理,具体地,蓝色激光经过两次透射,以及绿色激光经过一次透射和一次反射后再从光源出光口输出。从而红色激光在光学元件透过率方面的损耗也相应最低,因此,可以保证红色激光在合束之前的光损尽量的减轻,利于维持三色光源光束功率和颜色的配比,使得系统白平衡接近理论设定值,实现较高的投影画面质量。In the above-mentioned embodiments, by arranging the red laser component close to the light outlet of the light source, the blue and green lasers respectively pass through the turning optical paths and then merge with the red laser, and the red laser has the shortest optical path, which can reduce the light path of the red laser. The transmission light loss, and the red laser is only reflected by the optical element once, the blue laser and the green laser are respectively subjected to multiple transmission and reflection treatments, specifically, the blue laser is transmitted twice, and the green laser is transmitted once and reflected once. Then output from the light outlet of the light source. Therefore, the loss of the red laser in the transmittance of optical components is correspondingly the lowest. Therefore, it can ensure that the light loss of the red laser before the beam is reduced as much as possible, which is conducive to maintaining the ratio of the beam power and color of the three-color light source, and making the system white balance. Close to the theoretical setting value to achieve higher projected picture quality.
参见图8和图16,图17,上述激光投影设备应用实施例中的光源,三色激光通过合光镜组合光后还要经过匀化元件和会聚镜组,对光束进行匀化和缩束处理,以便后面光机中收光元件的光收集效率和匀化效率的提高。Referring to Fig. 8, Fig. 16, Fig. 17, the light source in the application embodiment of the above-mentioned laser projection equipment, after the three-color laser is combined by the light combining mirror, it also passes through the homogenizing element and the condensing lens group to homogenize and condense the beam. processing, so as to improve the light collection efficiency and homogenization efficiency of the light-receiving element in the subsequent optical engine.
具体地,如图8和图16,图17所示,光源100还包括匀化元件109和会聚镜组111。匀化元件109设置于第二合光镜107与会聚镜组111之间。具体地,匀化元件可以为具有规则排布微结构的扩散片,如图25所示。目前常用的扩散片的微结构是随机无规律的,其本光源架构中使用的匀化扩散片的利用规律排布的微结构,类似复眼透镜对光束匀化的原理,可以将激光光束的能量分布从高斯型,变为图26所示的形状,由图26所示,激光中心光轴附近的能量被大大消弱,变得平缓,激光光束的发散角度也增加,从而能量被匀化的效果大大优于常用的无规律排布微结构的扩散片。Specifically, as shown in FIG. 8 , FIG. 16 , and FIG. 17 , the
上述匀化扩散片可以在单面设置规律排布的微结构,也可以双面设置。The above-mentioned homogenizing diffusion sheet can be provided with microstructures arranged regularly on one side, or can be provided on both sides.
通过上述匀化扩散片的匀化后,激光光束再经过会聚镜组进行光斑尺寸的缩小。一方面,对高能的激光光束先进行匀化,可以减轻对后端元件的能量分布不均带来的冲击,另一方面,先进行匀化,在进行缩束,也可以降低缩束后光斑再次匀化的难度。After being homogenized by the above-mentioned homogenizing and diffusing sheet, the laser beam passes through the condensing lens group to reduce the spot size. On the one hand, homogenizing the high-energy laser beam first can reduce the impact on the uneven energy distribution of the rear components; The difficulty of homogenizing again.
以及,上述匀化元件109也可以是二维衍射元件,也可以达到较佳的匀化效果。In addition, the above-mentioned
本示例中,会聚镜组包括两片凸透镜,比如一片双凸透镜和一片凸凹透镜组合,上述两个透镜均为球面透镜,当然也可以都采用非球面透镜,但球面透镜在成型和精度控制上都比非球面透镜要更加容易,成本上也可以降低。在本示例中,会聚镜组用于对光束进行会聚,会聚镜组的焦点设置于后端收光元件的收光口处,即会聚镜组的焦平面位于收光元件的入光面处,提高收光元件的收光效率。In this example, the converging lens group includes two convex lenses, such as a combination of a biconvex lens and a convex-concave lens. The above two lenses are spherical lenses. Of course, aspherical lenses can also be used, but spherical lenses are both in molding and precision control. It is easier and cheaper than aspherical lenses. In this example, the condensing lens group is used to condense the light beam, and the focal point of the condensing lens group is set at the light-receiving port of the rear light-receiving element, that is, the focal plane of the converging lens group is located at the light-incident surface of the light-receiving element, The light-receiving efficiency of the light-receiving element is improved.
如图8所示,会聚镜组位于光源壳体的第一出光口103处,具体的,会聚镜组中的后端透镜或者整个透镜组都可以安装至第一出光口103处,且会聚镜组111与第一出光口103周围的壳体填充密封件,比如密封橡胶圈。这样在会聚镜组固定的同时,还可以保持光源内腔体的气密密封,防止从第一出光口,作为透光窗口与外界气流交换时带进来的灰尘颗粒等。并且将会聚镜组直接固定于第一出光口位置还有利于缩短光路路径,以及光源壳体体积的减小。As shown in FIG. 8 , the condenser lens group is located at the
从光源第一出光口输出的呈会聚状态的光束,最终要被光机照明光路的收光部件收集。如图23所示的光路原理示意图,在本示例中,收光部件250为光导管。光导管具有矩形的入光面和出光面。光导管既作为收光部件同时也作为匀光部件。光导管的入光面为会聚镜组111的焦平面,会聚镜组111将会聚后的光束输入光导管250,光束在光导管内部经过多次反射,并从出光面出射。由于前端光路中设置了匀化扩散片,此处再经过光导管的匀化,可以达到较佳的三色混合匀化效果,提高了照明光束的质量。The light beam in the convergent state output from the first light outlet of the light source is finally collected by the light receiving part of the light path of the optomechanical illumination. As shown in FIG. 23 , a schematic diagram of the principle of the optical path, in this example, the
由于光源为纯三色激光光源,散斑是激光特有的现象,为了获得较高投影画面显示质量,需要对三色激光进行消散斑处理。在示例中,会聚镜组111和收光部件250之间还设置有扩散轮260,即旋转的扩散片。扩散轮260位于会聚镜组111的会聚光路中,扩散轮260轮面距离收光部件250-光导管的入光面约为1.5~3mm之间。扩散轮可以对呈会聚状态的光束进行扩散,增加光束的发散角度,增加随机相位。以及,由于人眼对不同颜色激光的散斑敏感度不同,可以对扩散轮进行分区,比如第一分区和第二分区,第一分区用于透射红色激光,第二分区用于透射蓝色激光和绿色激光,第一分区的发散角度稍大于第二分区。或者,分为三个分区,分别对应红色激光,绿色激光,蓝色激光,其中,上述三个分区中,红色激光分区的发散角度大小关系为,红色激光分区发散角度最大,蓝色激光分区发散角度最小。当扩散轮具有对应的分区时,扩散轮的旋转周期可以和光源的周期一致。通常扩散轮为一片扩散片时,其旋转周期并不特殊限定。Since the light source is a pure three-color laser light source, speckle is a unique phenomenon of the laser. In order to obtain a higher display quality of the projected image, the three-color laser needs to be dissipated. In an example, a
光导管具有一定的收光角度范围,比如正负23度范围内的光束可以进入光导管,并被后端照明光路利用,而其他大角度的光束则成为杂散光被挡在外,形成光损。扩散轮出光面靠近光导管入光面设置,可以提高扩散后激光光束被收入光导管内的光量,提高光利用率。The light pipe has a certain light-receiving angle range. For example, the light beam within the range of plus or minus 23 degrees can enter the light pipe and be used by the rear lighting light path, while other large-angle light beams become stray light and are blocked out, resulting in light loss. The light-emitting surface of the diffusing wheel is arranged close to the light-entering surface of the light guide, which can increase the light quantity of the diffused laser beam collected into the light guide, and improve the light utilization rate.
需要说明的是,上述收光部件也可以是复眼透镜部件。In addition, the said light receiving member may be a fly-eye lens member.
以及,如前所述,由于在前端光路中设置了匀化扩散片109,光源光束经过匀化后,被会聚镜组111会聚,并入射至扩散轮260。激光光束先经过了一片静止的扩散片,再经过一片运动的扩散片,这样,在静止的扩散片对光束匀化的基础上,再次对激光光束进行扩散匀化,可以增强激光光束的匀化效果,降低激光光束光轴附近光束的能量占比,从而降低激光光束的相干程度,投影画面呈现的散斑现象也就可以大大改善。And, as mentioned above, since the homogenizing and diffusing
上述实施例提供的光源中,光源光束入射至光导管进行收光再次匀化,申请人在光导管入光面测得光斑分布会呈现较为明显的内外圈颜色分界现象。比如会聚的光斑呈现圆形,最外圈呈现红色,依次向内为紫,蓝等不同同心圆的光圈。如图27所示。通过研究发现,如前面提到的,红色激光器组件由于发光原理的不同,其快慢轴的发散角度要大于蓝色激光器和绿色激光器的发散角度。虽然在本示例中,三色激光器组件使用相同数量芯片的阵列排布,在体积外观上尺寸一致,但由于红色激光本身的特点,这使得红色激光光束在传输过程中的光斑尺寸要大于蓝色激光和绿色激光的光斑尺寸。这种现在在进行三色合光时就已经存在,并且随着光路径传输距离的增大,其发散角度增大的速度大于另外另种颜色的激光,使得虽然三色合光会会进行匀化,缩束,以及还可能经过旋转扩散片的再次扩散匀化,但始终会存在红色激光的光斑尺寸要大一些。在光导管入光面的测试光斑也呈现了这个现象。In the light source provided by the above embodiment, the light source beam is incident on the light pipe to receive light and homogenize again, and the applicant measures the light spot distribution on the light entrance surface of the light pipe to show a relatively obvious color boundary phenomenon between the inner and outer circles. For example, the converging light spot is circular, the outermost circle is red, and inwards are purple, blue and other concentric apertures. As shown in Figure 27. Through research, it is found that, as mentioned above, the divergence angle of the fast and slow axes of the red laser component is larger than that of the blue laser and the green laser due to the different light-emitting principles. Although in this example, the three-color laser components are arranged in an array with the same number of chips, and the dimensions are the same in volume appearance, but due to the characteristics of the red laser itself, the spot size of the red laser beam during transmission is larger than that of the blue laser beam. Spot size of laser and green laser. This kind of light already exists when the three-color combined light is performed, and with the increase of the transmission distance of the optical path, its divergence angle increases faster than that of another color laser, so that although the three-color combined light will be homogenized, Condensation, and possibly re-diffusion and homogenization through a rotating diffuser, but there is always a red laser with a larger spot size. The test spot on the light entrance surface of the light pipe also showed this phenomenon.
为了提高三色激光光斑的重合度,可以增长光导管的长度,来提高混光匀化效果,但是这会给增加光路长度,增大结构体积。In order to improve the coincidence of the three-color laser spots, the length of the light guide can be increased to improve the mixing and homogenization effect, but this will increase the length of the optical path and increase the volume of the structure.
在本示例中提出了一种解决方案,具体地,在前述图16和图17提供的光路原理图基础上,如图24所示,在蓝色激光和绿色激光的合光光路中设置一片扩散片108,对蓝色激光和绿色激光先进行发散后再与红色激光光束合光。其中扩散片108设置与第一合光镜106入射第二合光镜107之间的光路中。当然也可以分别针对蓝色激光和绿色激光设置静止的扩散片,比如分别设置在两种颜色激光器组件发光面与对应的合光镜之间的光路径中。In this example, a solution is proposed. Specifically, on the basis of the optical path schematic diagrams provided in the aforementioned Figures 16 and 17, as shown in Figure 24, a diffuser is set in the combined optical path of the blue laser and the green laser. In the
通过在蓝色激光和绿色激光的光路径中设置一片扩散片,可以对蓝色激光和绿色激光进行扩束,比如设置为1度~3度的扩散角度,经过该扩散片后,经过扩束的蓝色激光和绿色激光再与红色激光进行合光,此时三色激光的光斑大小相当,光斑重合度提高。重合度较高的三色光斑也利于后续光路的匀化和消散斑,提高光束质量。By arranging a diffuser in the light path of the blue laser and green laser, the blue laser and green laser can be expanded, for example, a diffusion angle of 1 degree to 3 degrees is set. After passing through the diffuser, the beam expands The blue and green lasers are then combined with the red laser. At this time, the spot sizes of the three-color lasers are the same, and the spot overlap is improved. The three-color light spot with a high degree of coincidence is also conducive to the homogenization and dissipation of the subsequent light path, and the beam quality is improved.
激光器发出的激光为线偏振光,其中,红色激光与蓝色激光、绿色激光发光过程中,谐振腔振荡的方向不同,导致红色激光线偏振光与蓝色激光线偏振光、绿色激光线偏振光的偏振方向呈90度,红色激光为P光线偏振光,蓝色激光和绿色激光为S光线偏振光。The laser emitted by the laser is linearly polarized light. In the process of emitting red laser, blue laser and green laser, the resonator oscillation direction is different, resulting in linearly polarized red laser light, blue laser linearly polarized light, and green laser linearly polarized light. The polarization direction is 90 degrees, the red laser is P-ray polarized light, and the blue and green lasers are S-ray polarized light.
在上述实施例方案中,如图1,图8所示的光源中,采用红色激光器组件与蓝色激光器组件,绿色激光器组件的偏振方向呈90度,其中,红色激光是P光,蓝色和绿色激光是S光。激光投影设备投射成像的三色光束存在偏振方向不同。In the above embodiments, in the light sources shown in Fig. 1 and Fig. 8, a red laser component and a blue laser component are used, and the polarization direction of the green laser component is 90 degrees, wherein the red laser is P light, the blue and Green laser is S light. The three-color beams projected by the laser projection equipment have different polarization directions.
而在实际应用中,激光投影设备为了更好还原色彩和对比度,通常还要配合具有较高增益和对比度的投影屏幕,比如光学屏幕,能够较好的还原高亮度和高对比度的投影画面。In practical applications, in order to better restore color and contrast, laser projection equipment is usually equipped with a projection screen with high gain and contrast, such as an optical screen, which can better restore high-brightness and high-contrast projection images.
一种超短焦投影屏幕如图5所示,为菲涅尔光学屏幕。沿投影光束入射方向,包括基材层401,扩散层402,均匀介质层403,菲涅尔透镜层404以及反射层405。菲涅尔光学屏的厚度通常在1~2mm之间,其中基材层401占据的厚度比例最大。基材层同时也作为整个屏幕的支撑层结构,具有一定的透光率以及硬度。投影光束首先透射通过基材层401,然后进入扩散层402,进行扩散,再进入均匀介质层403,均匀介质层为均匀透光介质,比如与基材层401材质相同。光束透射通过均匀介质层403,入射菲涅尔透镜层404,菲涅尔透镜层404将光束进行会聚准直,准直后的光束被反射层反射后折返再次通过菲涅尔透镜404,均匀介质层403,扩散层402,以及基材层,401并入射至用户眼中。An ultra-short-focus projection screen is shown in Figure 5, which is a Fresnel optical screen. Along the incident direction of the projection beam, it includes a
申请人在研发过程中发现,应用上述三色激光光源的超短焦投影画面会出现局部偏色,而造成“色斑”、“色块”等色度不均匀的现象。造成这种现象的原因一方面是由于在目前应用的三色激光器中,不同颜色的激光光束的偏振方向不同,在光学系统中通常设置有多片光学镜片,比如透镜,棱镜,而光学镜片本身对于P光偏振光和S光偏振光的透反率存在差异,比如光学镜片对于P光的透过率相对于大于对S的透过率,而另一方面,因为屏幕材质结构的原因,随着超短焦投影光束入射角度的变化,超短焦投影屏幕本身会对不同偏振方向的光束的透过率和反射率呈现明显的变化,如图6所示,对于红色投影光束,当投射角度为60度左右时,经试验,投影屏幕对P光类型的红色投影光束的反射率和对S光类型的红色投影光束的反射率相差10个百分点以上,也就是超短焦投影屏幕对P光的反射率大于对S光的反射率,这样会使得较多的P光被屏幕反射进入人眼,而被屏幕反射进入人眼的S光则相对减少,这种对同种颜色不同偏振方向光的透反差异现象,对投影光束为其他颜色时也同样存在,而当三基色光为不同的偏振态时,经过上述投影光学系统和投影屏幕后,尤其是投影屏幕相对明显的透反差异,会造成不同颜色的光被屏幕反射进入人眼的光通量发生失衡,最终导致在投影画面上局部区域的偏色现象,这在呈现彩色画面时尤其明显。During the research and development process, the applicant found that the ultra-short-focus projection image using the above-mentioned three-color laser light source will have partial color cast, resulting in uneven chromaticity such as "color spots" and "color blocks". One of the reasons for this phenomenon is that in the currently used three-color laser, the polarization directions of the laser beams of different colors are different, and there are usually multiple optical lenses in the optical system, such as lenses, prisms, and the optical lenses themselves. There is a difference between the transmittance and reflectivity of P polarized light and S polarized light. For example, the transmittance of optical lenses for P light is greater than that for S light. On the other hand, because of the screen material structure, with the With the change of the incident angle of the ultra-short-focus projection beam, the ultra-short-focus projection screen itself will show obvious changes in the transmittance and reflectivity of the beam with different polarization directions, as shown in Figure 6, for the red projection beam, when the projection angle When it is about 60 degrees, after testing, the reflectivity of the projection screen to the red projection beam of the P light type and the reflectivity of the red projection beam of the S light type differs by more than 10 percentage points, that is, the ultra-short focus projection screen is sensitive to P light. The reflectivity is greater than the reflectivity of the S light, so that more P light will be reflected by the screen into the human eye, while the S light reflected by the screen into the human eye will be relatively reduced. This kind of light of the same color with different polarization directions The difference in transmission and reflection also exists when the projection beam is of other colors, and when the three primary colors of light are in different polarization states, after passing through the above-mentioned projection optical system and projection screen, especially the projection screen has relatively obvious difference in transmission and reflection, It will cause the luminous flux of different colors of light reflected by the screen to enter the human eye to be unbalanced, which will eventually lead to a color cast in a local area on the projection screen, which is especially obvious when displaying color images.
为了解决上述问题现象,在上述实施例提供的光源基础上进行了改进,提出另一种光源结构实施例。In order to solve the above problems and phenomena, improvements are made on the basis of the light sources provided in the above embodiments, and another light source structure embodiment is proposed.
在本实施例中,蓝色激光器组件和绿色激光器组件相邻设置,在蓝色激光和绿色激光的输出路径中且入射至第三合光镜之前设置相位延迟片,改变蓝色激光和绿色激光的偏振方向,使其与红色激光的偏振方向相同,解决因偏振方向不同而最终导致投影画面的偏色现象。In this embodiment, the blue laser component and the green laser component are arranged adjacent to each other, and a phase retarder is arranged in the output paths of the blue laser and green laser and before the third light combining mirror is incident to change the blue laser and the green laser. The polarization direction of the laser is the same as that of the red laser, which solves the color cast phenomenon of the projection screen caused by different polarization directions.
首先介绍一下相位延迟片的工作原理。相位延迟片是对应某种颜色的波长,通过晶体生长的厚度影响透过光束的相位改变程度,在本示例中,相位延迟片为半波片,也称λ½波片,可以将对应颜色波长的光束的相位改变π,即180度,偏振方向旋转90度,比如将P光变为S光,或者把S光变为P光。如图28所示,波片为晶体,晶体具有自身的光轴W,位于波片所在平面内,波片设置于光路中,垂直于光源的光轴O,因此波片的光轴W与光源的光轴O互相垂直。First, let's introduce the working principle of the phase retarder. The phase retarder is a wavelength corresponding to a certain color. The thickness of the crystal growth affects the degree of phase change of the transmitted beam. In this example, the phase retarder is a half-wave plate, also known as a λ½ wave plate, which can convert the wavelength corresponding to the color wavelength. The phase of the light beam is changed by π, that is, 180 degrees, and the polarization direction is rotated by 90 degrees, such as changing P light into S light, or changing S light into P light. As shown in Figure 28, the wave plate is a crystal, the crystal has its own optical axis W, located in the plane where the wave plate is located, and the wave plate is arranged in the optical path, perpendicular to the optical axis O of the light source, so the optical axis W of the wave plate and the light source are The optical axes O are perpendicular to each other.
如图29所示,以波片的光轴W建立坐标系,P偏振光沿光轴W和与光轴W垂直方向构成的坐标系具有分量Ex,Ey,其中,Ex,Ey均可利用光波公式来表示。P光可视为分量Ex,Ey两个维度波的空间合成。As shown in Figure 29, a coordinate system is established with the optical axis W of the wave plate, and the coordinate system formed by the P-polarized light along the optical axis W and the direction perpendicular to the optical axis W has components Ex, Ey, where Ex, Ey can both utilize light waves formula to represent. The P light can be regarded as the spatial synthesis of the two-dimensional waves of the components Ex and Ey.
当P光经过波片后,相位改变π,即180度,在Ex,Ey的相位常量均具有π的改变量,对于原偏振方向的某一时刻的光波,b0,c0,a0进行了180度相位改变后,两个方向分量的光波进行叠加后,在空间位置偏振位置发生变化,形成了b1,c1,a1,从而成为S偏振方向的光。上述b0,c0,a0和b1,c1,a1的空间位置变化仅是举例说明。When the P light passes through the wave plate, the phase changes by π, that is, 180 degrees. The phase constants of Ex and Ey both have a change of π. For the light wave at a certain moment in the original polarization direction, b0, c0, and a0 are carried out by 180 degrees. After the phase is changed, after the light waves of the two direction components are superimposed, the polarization position of the spatial position changes, forming b1, c1, a1, thus becoming the light in the S polarization direction. The above-mentioned spatial position changes of b0, c0, a0 and b1, c1, a1 are only for illustration.
经过半波片后,原先为P偏振方向的光变为S偏振方向的光,如图30所示,两个偏振方向互相垂直。After passing through the half-wave plate, the light in the original P-polarization direction becomes the light in the S-polarization direction. As shown in Figure 30, the two polarization directions are perpendicular to each other.
基于上述说明,如图32所示的光路原理示意图,分别在蓝色激光器组件和绿色激光器组件的出光路径中设置对应波长的相位延迟片,相位延迟片具体地为半波片。在本示例中,蓝色激光的中心波长在465nm左右,绿色激光的中心波长在525nm左右,当如图32所示的光路原理图中,半波片121位于蓝色激光的出光路径中,其对应蓝色激光的中心波长设置,半波片131位于绿色激光的出光路径中,其对应绿色激光的中心波长设置,这样可以将绿色激光和蓝色激光的偏振方向均改变90度,从S光变为P光。Based on the above description, as shown in the schematic diagram of the optical path shown in FIG. 32 , phase retarders of corresponding wavelengths are respectively arranged in the light exit paths of the blue laser component and the green laser component, and the phase retarder is specifically a half-wave plate. In this example, the central wavelength of the blue laser is about 465 nm, and the central wavelength of the green laser is about 525 nm. When the schematic diagram of the optical path shown in FIG. 32 is shown, the half-
基于上述光路原理,在一种具体实施中,上述半波片可以设置在光源内腔体中,位于光源壳体内侧与激光器组件对应的合光镜之间,通过在光源壳体底面设置镜片底座,对半波片进行固定。Based on the above-mentioned optical path principle, in a specific implementation, the above-mentioned half-wave plate can be arranged in the inner cavity of the light source, between the inner side of the light source housing and the light combining mirror corresponding to the laser assembly, by arranging a lens base on the bottom surface of the light source housing , to fix the half-wave plate.
或者,半波片可以设置于光源壳体上为激光器组件开设的窗口内侧,比如通过胶粘或者固定支架的方式固定在窗口内侧。Alternatively, the half-wave plate may be disposed inside the window provided for the laser assembly on the light source housing, for example, fixed inside the window by gluing or fixing a bracket.
或者,半波片可以设置在激光器组件与光源壳体窗口的外侧之间,比如,半波片贴装或者固定在窗口外侧,激光器组件(包括固定支架)再通过固定支架安装在窗口外侧的安装位上。Alternatively, the half-wave plate can be arranged between the laser component and the outside of the light source housing window. For example, the half-wave plate is mounted or fixed on the outside of the window, and the laser component (including the fixing bracket) is then installed on the outside of the window through the fixing bracket. position.
或者,当窗口玻璃处设置密封玻璃时,半波片可以位于密封玻璃和激光器组件发光面之间。如图13所示的激光器组件结构分解图,在激光器组件的固定支架透光窗口10211正面还具有承靠台(图中未示出),半波片140可以通过胶粘固定在承靠台上,承靠台四周还具有容纳槽,用于容纳第一密封件1051。图10示出了半波片安装在固定支架正面的示意图,其中半波片140安装在固定支架透光窗口10211位置处,并通过四周的点胶槽点胶固定。其中,半波片140的长宽范围分别为25~30mm,21~28mm;固定支架透光窗口的长宽范围分别为20~24mm,18~20mm,比如在一种实施例中,半波片选取30mm*28mm,透光窗口的大小则为24mm*20mm。Alternatively, when sealing glass is provided at the window glass, the half-wave plate may be located between the sealing glass and the light-emitting surface of the laser assembly. As shown in the exploded view of the structure of the laser assembly shown in FIG. 13 , there is a support table (not shown in the figure) on the front of the light-transmitting window 10211 of the fixing bracket of the laser assembly, and the half-wave plate 140 can be fixed on the support table by gluing , there is also an accommodating groove around the bearing platform for accommodating the
半波片140固定到固定支架104上之后,与安装在固定支架上的MCL型激光器组件,连同固定支架104一并安装至光源壳体102的窗口1021的安装位上,如前所述,光源壳体的窗口1021的安装位上还设置有第二容纳槽,用于容纳第二密封件1052,密封玻璃105被激光器组件上的第一密封件1051和第二密封1052夹在中间。基于上述结构,激光器组件的光束从发光芯片发出后,依次经半波片140,密封玻璃105透射后从光源壳体的窗口1021进入光源内腔体。After the half-wave plate 140 is fixed on the fixed
在上述光源结构中,在蓝色激光器组件和绿色激光器组件的固定支架上均安装有对应颜色的半波片,从而经过对应的半波片后,光束偏振极性发生90度变化。绿色激光入射至第一合光镜时已经为P光,蓝色激光入射至第一合光镜时也已经为P光,从而经过第一合光镜将蓝色激光和绿色激光合束后输出的光束均为P光偏振光,这与红色激光的偏振方向相同,第二合光镜将偏振方向一致的三色光束合光输出,再经过匀化、缩束等处理,进入光机照明光路,经DMD反射进入镜头,由镜头投射到屏幕上成像,由于三色偏振方向一致,投影画面的“色斑”、“色块”等色度不均匀的现象可以消除或大大缓解。In the above light source structure, half-wave plates of corresponding colors are installed on the fixing brackets of the blue laser component and the green laser component, so that after passing through the corresponding half-wave plates, the polarization polarity of the beam changes by 90 degrees. When the green laser is incident on the first light combining mirror, it is already P light, and when the blue laser is incident on the first light combining mirror, it is already P light, so the blue laser and the green laser are combined by the first light combining mirror and output. The light beams are all P-polarized light, which is the same as the polarization direction of the red laser. The second light combining mirror combines the three-color beams with the same polarization directions and outputs them, and then goes through the homogenization, beam reduction and other processing, and enters the light path of the optical machine. , reflected by DMD into the lens, and projected onto the screen by the lens for imaging. Due to the consistent polarization directions of the three colors, the phenomenon of uneven chromaticity such as "color spots" and "color blocks" in the projected image can be eliminated or greatly alleviated.
作为上述实施例的一种变型,本实例中蓝色激光和绿色激光先进行合束后再与红色激光进行合束,此时半波片还可以设置在蓝色激光和绿色激光合束之后且与红色激光合束之前的光路中。具体地,如图33所示,提供了另一种光源光路原理示意图,半波片141可以设置在第一合光镜106和第二合光镜107之间,透射从第一合光镜106出射的蓝色激光和绿色激光的合光光束。基于上述光路原理,绿色激光、蓝色激光分别输出S偏振光,绿色S光入射至第一合光镜106并被反射,蓝色S光入射至第一合光镜106,并被透射,第一合光镜106将均为S光的蓝色激光和绿色激光合束后经过半波片141,半波片141对绿色激光和蓝色激光的偏振方向改变,再入射至第二合光镜107。As a modification of the above-mentioned embodiment, in this example, the blue laser and the green laser are combined first and then combined with the red laser. At this time, the half-wave plate can also be arranged after the blue laser and the green laser are combined. In the light path before combining with the red laser. Specifically, as shown in FIG. 33 , which provides another schematic diagram of the optical path of the light source, the half-
具体地,半波片141可以针对其中一种颜色的波长设置,比如针对绿色激光的波长设置,绿色激光透过半波片后偏振方向旋转了90度,从原来的S光变为P光。蓝色激光透过半波片后,由于该半波片的波长不对应蓝色波长设置,因此蓝色激光偏振方向偏转不是90度,但接近P偏振方向,由于人眼对于蓝色的视觉函数较低,对于蓝色的敏感度较低,在出现偏色时视觉不适感比如对红色和绿色更为明显。或者,半波片141也可以针对蓝色和绿色中心波长的中间数值进行设置,这样对于绿色激光和蓝色激光的偏振方向改变都不是90度,但是均接近90度,虽然蓝色激光和绿色激光均没有从S光偏转为P光,但是也均不是原来的S光偏振态,也可以提高整个系统对红、绿、蓝三基色的光处理过程一致性,可以改善投影画面上局部区域呈现的“色斑”“色块”等色度不均匀的技术问题,其原理不再赘述。Specifically, the half-
在上述示例中,半波片141可以通过设置在光源壳体底面上的固定基座进行固定。In the above example, the half-
在光学系统中,对不同波长而言,同一光学镜片对不同波长的P光、S光的透过率相当,对P光和S光的反射率也相当。这里的光学镜片包括整个激光投影设备中的各种光学镜片,比如会聚镜组,光机部中的照明光路中的透镜组,以及镜头部中的折射透镜组。因此,当激光光源发出的光束经过整个投影光学系统后,这种透反差异是整个系统叠加的结果,会更为明显。In an optical system, for different wavelengths, the same optical lens has the same transmittance to P light and S light of different wavelengths, and the same reflectivity to P light and S light. The optical lenses here include various optical lenses in the entire laser projection device, such as the condensing lens group, the lens group in the illumination light path in the optomechanical section, and the refractive lens group in the lens section. Therefore, when the light beam emitted by the laser light source passes through the entire projection optical system, this difference in transmission and reflection is the result of the superposition of the entire system, which will be more obvious.
也未加半波片之前,尤其当基色光为P光和S光线偏振光时,无论是光学系统的光学镜片,还是投影屏幕,他们对P光和S光的选择性透过较明显。比如在随着投影光束入射角度的不同,投影屏幕对于P光(红光)的透反率要明显大于对于S光(绿光和蓝光光)的透反率,这就造成了投影画面的局部色度不均匀问题,即画面上出现的“色斑”、“色块”现象。Before adding a half-wave plate, especially when the primary color light is P light and S light polarized light, whether it is the optical lens of the optical system or the projection screen, their selective transmission of P light and S light is more obvious. For example, with the different incident angles of the projection beam, the transmittance of the projection screen for P light (red light) is significantly greater than that for S light (green light and blue light), which results in a partial projection of the screen. The problem of uneven chromaticity, that is, the phenomenon of "color spots" and "color blocks" appearing on the screen.
在上述提供的多个实施例中,通过在蓝色激光和绿色激光的出光路径中设置半波片,在分别针对蓝色激光和绿色激光设置对应波长的半波片时,能针对性的蓝色激光和绿色激光的偏振方向都可以发生90度的改变,在本示例中从S光偏振方向变为P光偏振方向,与红色激光的偏振方向一致,从而在经过同一套光学成像系统并经投影屏幕反射入人眼的过程时,变为P偏振光的蓝色激光和绿色激光在光学镜片中的透过率与为P光的红色激光的透过率相当,光处理过程的一致性接近,以及投影屏幕对三色激光的反射率差异也减小,整个投影系统对三色基色光的光处理过程一致性提高,从根本上能够消除投影画面上局部区域呈现的“色斑”“色块”的偏色现象,提高投影画面显示质量。In the multiple embodiments provided above, by setting half-wave plates in the light exit paths of blue laser and green laser, when half-wave plates with corresponding wavelengths are respectively set for blue laser and green laser, the targeted blue laser The polarization directions of both the color laser and the green laser can be changed by 90 degrees. In this example, the polarization direction of the S light is changed to the polarization direction of the P light, which is consistent with the polarization direction of the red laser. When the projection screen is reflected into the human eye, the transmittance of the blue laser and green laser that become P-polarized light in the optical lens is equivalent to the transmittance of the red laser that is P light, and the consistency of the light processing process is close to , and the difference in the reflectivity of the projection screen to the three-color laser is also reduced, and the consistency of the light processing process of the entire projection system for the three-color primary light is improved, which can fundamentally eliminate the "color spots" and "color spots" that appear in local areas on the projection screen. The color cast phenomenon of "block" improves the display quality of the projected picture.
以及,当在蓝色激光和绿色激光的合光光路中设置一片半波片,可以对绿色激光或蓝色激光中的一种的偏振方向改变90度,或者对两种颜色的激光的偏振方向都改变不为90度,但均接近为90度。也同样可以减轻与红色激光P光的偏振差异性,基于上述原理,同样也可以提高整个系统对红、绿、蓝三基色的光处理过程一致性,可以改善投影画面上局部区域呈现的“色斑”“色块”等色度不均匀的技术问题。And, when a half-wave plate is set in the combined light path of the blue laser and the green laser, the polarization direction of one of the green laser or the blue laser can be changed by 90 degrees, or the polarization direction of the two colors of lasers can be changed. Both are not changed to 90 degrees, but both are close to 90 degrees. It can also reduce the polarization difference with the red laser P light. Based on the above principle, it can also improve the consistency of the light processing process of the entire system for the three primary colors of red, green and blue, and can improve the "color" presented in the local area on the projection screen. Technical problems such as uneven chromaticity such as spots” and “color blocks”.
以及,由于在光学系统中光学镜片对P偏振光的透过率通常大于对S偏振光的透过率,以及本实例中应用的投影屏幕对于P偏振光的反射率也大于对S偏振光的反射率,因此,通过将S偏振光的蓝色激光和绿色激光转换为P偏振光,这样红,绿,蓝三色激光均为P光,还能够提高整个系统中投影光束的光传递效率,能够提高整个投影画面的亮度,提高投影画面质量。And, since the transmittance of the optical lens to P-polarized light in the optical system is usually greater than that of S-polarized light, and the projection screen applied in this example also has a greater reflectance to P-polarized light than to S-polarized light. Therefore, by converting the S-polarized blue laser and green laser into P-polarized light, so that the red, green, and blue lasers are all P light, the light transmission efficiency of the projection beam in the entire system can also be improved, The brightness of the entire projection picture can be improved, and the quality of the projection picture can be improved.
作为解决上述投影画面上呈现的“色斑”“色块”等色度不均匀的技术问题,本实施例提供了一种激光投影设备,应用如图34所示的光源部。在本示例中,在红色激光光束与蓝色、绿色激光光束合束之前设置有对应红色波长的半波片。比如,半波片151,设置于红色激光器组件110和第二合光镜107之间。In order to solve the technical problems of uneven chromaticity such as "color spots" and "color blocks" appearing on the above-mentioned projection screen, this embodiment provides a laser projection device, which applies the light source part as shown in FIG. 34 . In this example, a half-wave plate corresponding to the red wavelength is provided before the red laser beam is combined with the blue and green laser beams. For example, the half-
半波片的设置方案可参见上一实施例中对蓝色激光和绿色激光分别设置半波片的方案。For the setting scheme of the half-wave plate, please refer to the scheme of setting the half-wave plate for the blue laser and the green laser respectively in the previous embodiment.
比如,半波片可以设置在光源内腔体中,位于光源壳体内侧与第三合光镜之间的光路径中,通过在光源壳体底面设置镜片底座,对半波片进行固定。For example, the half-wave plate can be arranged in the inner cavity of the light source, in the light path between the inner side of the light source housing and the third light combining mirror, and the half-wave plate can be fixed by arranging a lens base on the bottom surface of the light source housing.
或者,半波片可以设置于光源壳体上为红色激光器组件开设的窗口内侧,比如通过胶粘或者固定支架的方式固定在窗口内侧。Alternatively, the half-wave plate may be arranged inside the window provided for the red laser component on the light source housing, for example, fixed inside the window by gluing or fixing a bracket.
或者,半波片可以设置在红色激光器组件与光源壳体窗口的外侧之间,比如,半波片贴装或者固定在窗口外侧,激光器组件(包括固定支架)再通过固定支架安装在窗口外侧的安装位上。Alternatively, the half-wave plate can be arranged between the red laser component and the outside of the light source housing window. For example, the half-wave plate is mounted or fixed on the outside of the window, and the laser component (including the fixing bracket) is then installed on the outside of the window through the fixing bracket. on the installation position.
或者,当窗口玻璃处设置密封玻璃时,半波片可以位于密封玻璃和激光器组件发光面之间。具体地安装方式也同样可以参照图13的介绍,此处不再赘述。Alternatively, when sealing glass is provided at the window glass, the half-wave plate may be located between the sealing glass and the light-emitting surface of the laser assembly. The specific installation method can also refer to the introduction in FIG. 13 , which will not be repeated here.
半波片151对应红色激光的波长设置,同理,经过半波片可以将红色激光偏振方向旋转90度,红色激光由P偏振光变为S偏振光。The half-
需要说明的是,对上述红色激光设置半波片的方案也同样适用本发明图16,图17,图23,图24所示的光路原理图中,其原理同上不再赘述。It should be noted that the above-mentioned solution of setting a half-wave plate for the red laser is also applicable to the optical path schematic diagrams shown in FIG. 16 , FIG. 17 , FIG. 23 , and FIG. 24 of the present invention.
上述示例中,通过在红色激光输出光路径中设置半波片,将原先为P偏振光的红色激光转换为S偏振光,与蓝色激光和绿色激光的偏振方向一致,这样系统的三色光的偏振方向相同,参照前述实施例原理描述,投影光学系统对同为S偏振光的红色激光和蓝色激光、绿色激光的透过率相比于为不同偏振方向偏振光时的差异缩小,超短焦投影屏幕对同为S偏振光的三色光的反射率也基本一致,从而对各基色的光处理一致性提高,可以消除或改善投影画面呈现的“色斑”“色块”等色度不均匀的现象。In the above example, by setting a half-wave plate in the output light path of the red laser, the red laser that was originally P-polarized light is converted into S-polarized light, which is consistent with the polarization directions of the blue laser and green laser, so that the three-color light of the system is The polarization directions are the same. Referring to the principle description of the previous embodiment, the transmittance of the projection optical system to the red laser, blue laser and green laser that are both S-polarized light is smaller than that of the polarized light with different polarization directions. The reflectivity of the focal projection screen to the three-color light that is also S-polarized light is basically the same, so that the light processing consistency of each primary color is improved, which can eliminate or improve the "color spots" and "color blocks" displayed on the projection screen. uniform phenomenon.
以及,在上述多个实施例中,激光器发光面为矩形,对应地,相位延迟片对应设置在一种颜色或两种颜色的光输出路径中,其形状也为矩形,其中激光矩形发光区域的长边和短边分别与相位延迟片矩形受光区域的长边和短边平行。And, in the above-mentioned embodiments, the laser light-emitting surface is rectangular, correspondingly, the phase retarder is correspondingly arranged in the light output path of one color or two colors, and its shape is also a rectangle, wherein the laser rectangular light-emitting area is The long side and the short side are respectively parallel to the long side and the short side of the rectangular light-receiving area of the retarder.
由于激光光束含有较高的能量,光学镜片,比如透镜,棱镜在工作过程中会伴随温度变化,光学镜片在制作工艺过程中形成内应力,这种内应力随着温度变化释放,会形成应力双折射,而这种应力双折射会造成对于不同波长的光束具有不同的相位延迟,可视为二次相位延迟。因此在实际光路中,光束的相位改变是基于半波片和光学镜片的应力双折射作用叠加后的效果,而这种光学镜片固有造成的延迟量会根据系统设计而不同。上述本申请中多个实施例的技术方案在应用时,优选地可以对实际系统造成的二次相位延迟进行校正,以接近或达到光束偏振方向改变90度的理论值。Due to the high energy of the laser beam, optical lenses, such as lenses and prisms, will be accompanied by temperature changes during the working process, and the optical lenses will form internal stress during the manufacturing process. Refraction, and this stress birefringence will cause light beams with different wavelengths to have different phase delays, which can be regarded as secondary phase delays. Therefore, in the actual optical path, the phase change of the beam is based on the superimposed effect of the stress birefringence of the half-wave plate and the optical lens, and the inherent retardation caused by the optical lens will vary according to the system design. When the technical solutions of the above-mentioned embodiments of the present application are applied, it is preferable to correct the secondary phase delay caused by the actual system, so as to approach or reach the theoretical value of changing the polarization direction of the beam by 90 degrees.
半波片在其平片所在平面内具有光轴,如图28所示,半波片的光轴W与系统光轴O呈空间垂直关系,半波片的光轴平行于半波片的长边或短边。在具体应用上述实施例方案时,如图31所示,将半波片设置为:沿矩形半波片长边或者短边方向,将半波片按照预设角度,比如C度进行旋转,如图中虚线所示。经过上述角度的偏转,半波片的光轴也发生了正负C度左右的偏转,从而对光束相位的改变为180度±2C度左右,再与系统光学镜片的的二次相位延迟相叠加,最终使得光束的偏振方向改变在90度左右,接近理论设计值。在本申请上述多个实施例中,C可取值10。The half-wave plate has an optical axis in the plane where the flat plate is located. As shown in Figure 28, the optical axis W of the half-wave plate is spatially perpendicular to the optical axis O of the system, and the optical axis of the half-wave plate is parallel to the length of the half-wave plate. side or short side. When the solution of the above embodiment is specifically applied, as shown in FIG. 31 , the half-wave plate is set as follows: along the long side or short side of the rectangular half-wave plate, the half-wave plate is rotated according to a preset angle, such as C degrees, such as Shown in dashed line in the figure. After the above angle deflection, the optical axis of the half-wave plate is also deflected by about positive and negative C degrees, so that the change of the beam phase is about 180 degrees ± 2 C degrees, and then superimposed with the secondary phase delay of the system optical lens , and finally the polarization direction of the beam is changed at about 90 degrees, which is close to the theoretical design value. In the foregoing multiple embodiments of the present application, C can take a value of 10.
上述一个或多个实施例中,针对激光投影光源具有不同偏振方向的三基色光,通过在激光投影设备光源中,一种颜色或两种颜色的光输出路径中设置半波片,改变对应透过的一种或两种颜色的光的偏振方向,使与其他颜色的偏振方向一致,激光投影设备输出的三基色光的偏振极性相同,从而该激光投影设备光源发出的激光光束在经过同一套光学成像系统并经投影屏幕反射入人眼的过程时,光学系统对三色激光的透过率接近,投影屏幕对三色激光的反射率差异也减小,整个投影系统对三色基色光的光处理过程一致性提高,从根本上能够消除投影画面上局部区域呈现的“色斑”“色块”此类色度不均匀的现象,提高投影画面显示质量。In one or more of the above embodiments, for the three primary colors of light with different polarization directions of the laser projection light source, by setting half-wave plates in the light output paths of one color or two colors in the light source of the laser projection equipment, changing the corresponding transmittance. The polarization direction of one or two colors of light that has passed through is consistent with the polarization directions of other colors, and the polarization polarities of the three primary colors of light output by the laser projection device are the same, so that the laser beam emitted by the light source of the laser projection device passes through the same direction. When the optical imaging system is set and reflected into the human eye through the projection screen, the transmittance of the optical system to the three-color laser is close, and the difference in the reflectance of the projection screen to the three-color laser is also reduced. The consistency of the light processing process is improved, which can fundamentally eliminate the phenomenon of uneven chromaticity such as "color spots" and "color blocks" in local areas on the projection screen, and improve the display quality of the projection screen.
本领域技术人员能够理解,上述多个实施例在解决由于三基色光偏振方向不同,以及投影屏幕对不同偏振方向的光的透过率的明显差异导致的投影图像显示问题时,以红色激光为P光,蓝色和绿色激光为S光进行举例说明,并不限于这一种P光和S光的组合,本领域技术人员可以根据实际光束的颜色和偏振方向,结合本申请实施例所体现的核心原理进行适应性的改变,上述改变也应在本申请的保护范围之内。Those skilled in the art can understand that when solving the problem of displaying the projected image caused by the different polarization directions of the three primary colors of light and the obvious difference in the transmittance of the light with different polarization directions of the projection screen in the above-mentioned embodiments, the red laser is used as the P light, blue and green lasers are illustrated as S light, and are not limited to this combination of P light and S light. Those skilled in the art can combine the color and polarization direction of the actual light beam with the embodiment of the present application. The core principle of the invention can be adaptively changed, and the above-mentioned changes should also fall within the protection scope of the present application.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: The technical solutions described in the foregoing embodiments can still be modified, or some or all of the technical features thereof can be equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the embodiments of the present invention. scope.
Claims (12)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910538755.XA CN112114480A (en) | 2019-06-20 | 2019-06-20 | Laser projection device |
| CN202311310548.1A CN117806109A (en) | 2019-06-20 | 2019-06-20 | laser projection system |
| PCT/CN2019/103676 WO2020252933A1 (en) | 2019-06-20 | 2019-08-30 | Laser projection apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910538755.XA CN112114480A (en) | 2019-06-20 | 2019-06-20 | Laser projection device |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311310548.1A Division CN117806109A (en) | 2019-06-20 | 2019-06-20 | laser projection system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN112114480A true CN112114480A (en) | 2020-12-22 |
Family
ID=73796040
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910538755.XA Pending CN112114480A (en) | 2019-06-20 | 2019-06-20 | Laser projection device |
| CN202311310548.1A Pending CN117806109A (en) | 2019-06-20 | 2019-06-20 | laser projection system |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202311310548.1A Pending CN117806109A (en) | 2019-06-20 | 2019-06-20 | laser projection system |
Country Status (2)
| Country | Link |
|---|---|
| CN (2) | CN112114480A (en) |
| WO (1) | WO2020252933A1 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113075843A (en) * | 2020-12-23 | 2021-07-06 | 深圳市安华光电技术有限公司 | Projection optical machine and projector |
| CN113359379A (en) * | 2021-06-18 | 2021-09-07 | 青岛海信激光显示股份有限公司 | Light source assembly and projection equipment |
| CN113485065A (en) * | 2021-08-02 | 2021-10-08 | 合肥全色光显科技有限公司 | Projection system |
| CN113568264A (en) * | 2021-08-03 | 2021-10-29 | 青岛海信激光显示股份有限公司 | Light source assembly and projection equipment |
| CN113625523A (en) * | 2021-08-18 | 2021-11-09 | 青岛海信激光显示股份有限公司 | Laser device and laser projection system |
| WO2023020595A1 (en) * | 2021-08-18 | 2023-02-23 | 青岛海信激光显示股份有限公司 | Laser device and laser projection device |
| WO2023029718A1 (en) * | 2021-09-06 | 2023-03-09 | 青岛海信激光显示股份有限公司 | Light source and laser projection apparatus |
| CN116339055A (en) * | 2021-08-02 | 2023-06-27 | 合肥全色光显科技有限公司 | a projection system |
| TWI823539B (en) * | 2022-08-29 | 2023-11-21 | 中強光電股份有限公司 | Projection apparatus |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0987587A2 (en) * | 1998-09-15 | 2000-03-22 | Agfa-Gevaert Aktiengesellschaft | Device and method for dividing or combining a light beam |
| US20060170884A1 (en) * | 2005-02-01 | 2006-08-03 | Chin-Ku Liu | Optical projection apparatus |
| JP2009116163A (en) * | 2007-11-08 | 2009-05-28 | Sony Corp | Liquid crystal display element and projection type liquid crystal display device, and electronic equipment |
| CN101950083A (en) * | 2010-07-30 | 2011-01-19 | 广东威创视讯科技股份有限公司 | Light-emitting diode (LED) illuminating light path for projector |
| CN102879987A (en) * | 2011-07-12 | 2013-01-16 | 索尼公司 | Illumination unit and display |
| CN104808425A (en) * | 2014-01-26 | 2015-07-29 | 中能激光显示技术(上海)有限公司 | Laser light source light beam parameter consistency adjusting device and adjusting method thereof |
| CN105137610A (en) * | 2015-10-22 | 2015-12-09 | 海信集团有限公司 | Laser dissipation spot path, two-color and three-color laser source |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN201780448U (en) * | 2009-09-21 | 2011-03-30 | 红蝶科技(深圳)有限公司 | Projection optics engine with even and clear image |
| CN102466957A (en) * | 2010-11-12 | 2012-05-23 | 广景科技有限公司 | Compact DLP miniature projector module |
| CN205003434U (en) * | 2015-09-21 | 2016-01-27 | 广景视睿科技(深圳)有限公司 | Projection illumination light path and projection module thereof |
-
2019
- 2019-06-20 CN CN201910538755.XA patent/CN112114480A/en active Pending
- 2019-06-20 CN CN202311310548.1A patent/CN117806109A/en active Pending
- 2019-08-30 WO PCT/CN2019/103676 patent/WO2020252933A1/en not_active Ceased
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0987587A2 (en) * | 1998-09-15 | 2000-03-22 | Agfa-Gevaert Aktiengesellschaft | Device and method for dividing or combining a light beam |
| US20060170884A1 (en) * | 2005-02-01 | 2006-08-03 | Chin-Ku Liu | Optical projection apparatus |
| JP2009116163A (en) * | 2007-11-08 | 2009-05-28 | Sony Corp | Liquid crystal display element and projection type liquid crystal display device, and electronic equipment |
| CN101950083A (en) * | 2010-07-30 | 2011-01-19 | 广东威创视讯科技股份有限公司 | Light-emitting diode (LED) illuminating light path for projector |
| CN102879987A (en) * | 2011-07-12 | 2013-01-16 | 索尼公司 | Illumination unit and display |
| CN104808425A (en) * | 2014-01-26 | 2015-07-29 | 中能激光显示技术(上海)有限公司 | Laser light source light beam parameter consistency adjusting device and adjusting method thereof |
| CN105137610A (en) * | 2015-10-22 | 2015-12-09 | 海信集团有限公司 | Laser dissipation spot path, two-color and three-color laser source |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113075843A (en) * | 2020-12-23 | 2021-07-06 | 深圳市安华光电技术有限公司 | Projection optical machine and projector |
| CN113359379A (en) * | 2021-06-18 | 2021-09-07 | 青岛海信激光显示股份有限公司 | Light source assembly and projection equipment |
| CN113359379B (en) * | 2021-06-18 | 2023-11-21 | 青岛海信激光显示股份有限公司 | Light source assembly and projection equipment |
| CN113485065A (en) * | 2021-08-02 | 2021-10-08 | 合肥全色光显科技有限公司 | Projection system |
| CN116339055A (en) * | 2021-08-02 | 2023-06-27 | 合肥全色光显科技有限公司 | a projection system |
| CN113568264A (en) * | 2021-08-03 | 2021-10-29 | 青岛海信激光显示股份有限公司 | Light source assembly and projection equipment |
| CN113625523A (en) * | 2021-08-18 | 2021-11-09 | 青岛海信激光显示股份有限公司 | Laser device and laser projection system |
| CN113625523B (en) * | 2021-08-18 | 2022-11-04 | 青岛海信激光显示股份有限公司 | Laser device and laser projection system |
| WO2023020595A1 (en) * | 2021-08-18 | 2023-02-23 | 青岛海信激光显示股份有限公司 | Laser device and laser projection device |
| WO2023029718A1 (en) * | 2021-09-06 | 2023-03-09 | 青岛海信激光显示股份有限公司 | Light source and laser projection apparatus |
| TWI823539B (en) * | 2022-08-29 | 2023-11-21 | 中強光電股份有限公司 | Projection apparatus |
Also Published As
| Publication number | Publication date |
|---|---|
| CN117806109A (en) | 2024-04-02 |
| WO2020252933A1 (en) | 2020-12-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112114480A (en) | Laser projection device | |
| CN111722464B (en) | Laser projection device | |
| CN112114482B (en) | laser projection equipment | |
| US11079665B2 (en) | Laser projection apparatus | |
| US11237468B2 (en) | Laser projection apparatus | |
| CN111562713B (en) | Laser Projection Equipment | |
| CN112114475B (en) | Laser projection device | |
| US12078814B2 (en) | Laser projector | |
| US6844993B2 (en) | Optical device and projector having the optical device | |
| CN112526806B (en) | Laser projection device | |
| WO2007099781A1 (en) | Light emitting module and image projecting apparatus using same | |
| WO2020253164A1 (en) | Laser projection device | |
| CN112114484B (en) | Laser projection device | |
| CN204287715U (en) | Miniature projection optical module and mobile device | |
| CN112114483B (en) | Laser projection device | |
| US20200142287A1 (en) | Heat dissipation device and projector | |
| US11454871B2 (en) | Laser projection apparatus | |
| WO2020186843A1 (en) | Laser light source and laser projection apparatus | |
| WO2014171135A1 (en) | Projection type image display device | |
| CN116466533A (en) | Laser projection device | |
| WO2020186749A1 (en) | Laser projection device | |
| CN222167399U (en) | Hybrid light source system and projection device | |
| JP2002243941A (en) | Polarized light generator and projector | |
| JP2025120466A (en) | Light source device and projector | |
| JP2010271344A (en) | Electro-optical device and projector |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201222 |
|
| RJ01 | Rejection of invention patent application after publication |