CN112159821B - Application of corn elicitor peptide gene ZmPep1 in improving verticillium wilt resistance of plants - Google Patents
Application of corn elicitor peptide gene ZmPep1 in improving verticillium wilt resistance of plants Download PDFInfo
- Publication number
- CN112159821B CN112159821B CN202011073419.1A CN202011073419A CN112159821B CN 112159821 B CN112159821 B CN 112159821B CN 202011073419 A CN202011073419 A CN 202011073419A CN 112159821 B CN112159821 B CN 112159821B
- Authority
- CN
- China
- Prior art keywords
- zmpep1
- plant
- gene
- plants
- maize
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241000196324 Embryophyta Species 0.000 title claims abstract description 132
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 93
- 241000082085 Verticillium <Phyllachorales> Species 0.000 title claims abstract description 65
- 240000008042 Zea mays Species 0.000 title claims abstract description 44
- 235000002017 Zea mays subsp mays Nutrition 0.000 title claims abstract description 43
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 39
- 239000005712 elicitor Substances 0.000 title claims abstract description 36
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 title description 3
- 235000005822 corn Nutrition 0.000 title description 3
- 230000009261 transgenic effect Effects 0.000 claims abstract description 73
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims abstract description 40
- 235000009973 maize Nutrition 0.000 claims abstract description 40
- 244000299507 Gossypium hirsutum Species 0.000 claims abstract description 39
- 229920000742 Cotton Polymers 0.000 claims abstract description 38
- 244000061176 Nicotiana tabacum Species 0.000 claims abstract description 36
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims abstract description 36
- 239000013604 expression vector Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 30
- 230000014509 gene expression Effects 0.000 claims abstract description 27
- 241000219195 Arabidopsis thaliana Species 0.000 claims abstract description 8
- 241000219194 Arabidopsis Species 0.000 claims description 31
- 239000002773 nucleotide Substances 0.000 claims description 10
- 125000003729 nucleotide group Chemical group 0.000 claims description 10
- 238000002360 preparation method Methods 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000001404 mediated effect Effects 0.000 claims description 3
- 230000029087 digestion Effects 0.000 claims description 2
- 241000193830 Bacillus <bacterium> Species 0.000 claims 1
- 208000035240 Disease Resistance Diseases 0.000 abstract description 17
- 238000010353 genetic engineering Methods 0.000 abstract description 9
- 238000010367 cloning Methods 0.000 abstract description 4
- 238000013518 transcription Methods 0.000 abstract description 3
- 230000035897 transcription Effects 0.000 abstract description 3
- 201000010099 disease Diseases 0.000 description 72
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 72
- 239000002609 medium Substances 0.000 description 29
- 239000000243 solution Substances 0.000 description 20
- 230000001580 bacterial effect Effects 0.000 description 18
- 230000009466 transformation Effects 0.000 description 17
- 239000002299 complementary DNA Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- 206010020649 Hyperkeratosis Diseases 0.000 description 14
- 238000011081 inoculation Methods 0.000 description 14
- 230000002068 genetic effect Effects 0.000 description 13
- 230000006698 induction Effects 0.000 description 12
- 241000894006 Bacteria Species 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 11
- 230000003321 amplification Effects 0.000 description 11
- 238000011144 upstream manufacturing Methods 0.000 description 11
- 230000007123 defense Effects 0.000 description 10
- 238000003199 nucleic acid amplification method Methods 0.000 description 10
- 238000003753 real-time PCR Methods 0.000 description 10
- 239000012634 fragment Substances 0.000 description 9
- 241000589158 Agrobacterium Species 0.000 description 8
- 230000000408 embryogenic effect Effects 0.000 description 8
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 230000019491 signal transduction Effects 0.000 description 8
- 229920002148 Gellan gum Polymers 0.000 description 7
- 108010076504 Protein Sorting Signals Proteins 0.000 description 7
- 244000052616 bacterial pathogen Species 0.000 description 7
- 230000000392 somatic effect Effects 0.000 description 7
- 230000002103 transcriptional effect Effects 0.000 description 7
- 239000013598 vector Substances 0.000 description 7
- 229920001817 Agar Polymers 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 239000008272 agar Substances 0.000 description 6
- 239000008103 glucose Substances 0.000 description 6
- 229910017053 inorganic salt Inorganic materials 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 244000052769 pathogen Species 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 239000002689 soil Substances 0.000 description 6
- 230000001744 histochemical effect Effects 0.000 description 5
- 229930027917 kanamycin Natural products 0.000 description 5
- 229960000318 kanamycin Drugs 0.000 description 5
- 229930182823 kanamycin A Natural products 0.000 description 5
- 210000001161 mammalian embryo Anatomy 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 240000002024 Gossypium herbaceum Species 0.000 description 4
- 235000004341 Gossypium herbaceum Nutrition 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 239000003617 indole-3-acetic acid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229930186147 Cephalosporin Natural products 0.000 description 3
- 102000016911 Deoxyribonucleases Human genes 0.000 description 3
- 108010053770 Deoxyribonucleases Proteins 0.000 description 3
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 240000008415 Lactuca sativa Species 0.000 description 3
- 235000003228 Lactuca sativa Nutrition 0.000 description 3
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 3
- 235000007164 Oryza sativa Nutrition 0.000 description 3
- 240000003768 Solanum lycopersicum Species 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 229940124587 cephalosporin Drugs 0.000 description 3
- 150000001780 cephalosporins Chemical class 0.000 description 3
- 239000012869 germination medium Substances 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 239000006194 liquid suspension Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 235000009566 rice Nutrition 0.000 description 3
- 230000007226 seed germination Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 239000012192 staining solution Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 101150009006 HIS3 gene Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 241001123668 Verticillium dahliae Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 238000010804 cDNA synthesis Methods 0.000 description 2
- 239000012881 co-culture medium Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000004665 defense response Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000003978 infusion fluid Substances 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 108700012359 toxins Proteins 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 208000019553 vascular disease Diseases 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WEEMDRWIKYCTQM-UHFFFAOYSA-N 2,6-dimethoxybenzenecarbothioamide Chemical compound COC1=CC=CC(OC)=C1C(N)=S WEEMDRWIKYCTQM-UHFFFAOYSA-N 0.000 description 1
- XRIBIDPMFSLGFS-UHFFFAOYSA-N 2-(dimethylamino)-2-methylpropan-1-ol Chemical compound CN(C)C(C)(C)CO XRIBIDPMFSLGFS-UHFFFAOYSA-N 0.000 description 1
- JXCKZXHCJOVIAV-UHFFFAOYSA-N 6-[(5-bromo-4-chloro-1h-indol-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid;cyclohexanamine Chemical compound [NH3+]C1CCCCC1.O1C(C([O-])=O)C(O)C(O)C(O)C1OC1=CNC2=CC=C(Br)C(Cl)=C12 JXCKZXHCJOVIAV-UHFFFAOYSA-N 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 108010022172 Chitinases Proteins 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 108010002069 Defensins Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 235000009429 Gossypium barbadense Nutrition 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000003785 decidua Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000003375 plant hormone Substances 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 239000012487 rinsing solution Substances 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229960002385 streptomycin sulfate Drugs 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 235000018322 upland cotton Nutrition 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
本发明公开了玉米诱导子肽基因ZmPep1在提高植物对黄萎病抗性中的应用,通过玉米中克隆诱导子肽基因ZmPep1,采用分子生物学的方法,构建ZmPep1组成性表达的植物表达载体,然后再利用基因工程方法,将ZmPep1基因导入植物,获得了正常转录表达的转基因拟南芥、烟草和棉花株系;获得的转基因植株病情指数都显著低于野生型对照,对黄萎病的抗性显著提高,表明ZmPep1基因能够用于提高植物对黄萎病的抗性,对植物抗病基因工程具有重要意义。
The invention discloses the application of the maize elicitor peptide gene ZmPep1 in improving the resistance of plants to Verticillium wilt. By cloning the elicitor peptide gene ZmPep1 in maize, a molecular biology method is used to construct a plant expression vector for constitutive expression of ZmPep1, Then, using genetic engineering method, ZmPep1 gene was introduced into plants, and transgenic Arabidopsis thaliana, tobacco and cotton lines with normal transcription and expression were obtained; The ZmPep1 gene can be used to improve the resistance of plants to Verticillium wilt, which is of great significance for plant disease resistance genetic engineering.
Description
技术领域technical field
本发明涉及基因工程领域,具体涉及玉米诱导子肽基因ZmPep1在提高植物对黄萎病抗性中的应用,还涉及利用组成型表达玉米诱导子肽ZmPep1基因来提高植物对黄萎病抗性的方法。The invention relates to the field of genetic engineering, in particular to the application of the maize elicitor peptide gene ZmPep1 in improving the resistance of plants to Verticillium wilt, and also relates to the use of constitutively expressing the maize elicitor peptide ZmPep1 gene to improve the resistance of plants to Verticillium wilt. method.
背景技术Background technique
植物病害是长期危害农业生产的自然灾害之一,全球因病害年损失10%以上(冯占山等,2013)。植物病害不仅引起农作物减产,而且严重威胁到农产品的质量安全和国际贸易,严重时还会引起食物短缺和一系列社会问题(Punja,2004)。病原菌危害不仅造成直接的经济损失,同时病原菌能产生毒素,带来严重的食品安全问题。因此,提高作物的抗病性不仅是解决粮食问题的关键,同时也是提高食品安全的一项重要措施。Plant diseases are one of the long-term natural disasters that endanger agricultural production, with an annual loss of more than 10% globally due to diseases (Feng Zhanshan et al., 2013). Plant diseases not only cause crop yield reduction, but also seriously threaten the quality and safety of agricultural products and international trade, and even cause food shortages and a series of social problems in severe cases (Punja, 2004). The harm of pathogenic bacteria not only causes direct economic losses, but also produces toxins, which brings serious food safety problems. Therefore, improving the disease resistance of crops is not only the key to solving the food problem, but also an important measure to improve food safety.
黄萎病是世界性的病害,从温带、亚热带到热带地区均有黄萎病发病的报道(PeggGF,2002)。黄萎病菌是一种土传维管束病原菌,具兼性营养特性(Steven J.Klosterman等,2009)。病原菌变异频率快,生理小种多,在土壤中可以存活20年之久,能感染200多种植物品种,除单子叶植物以外的所有植物,包括各种蔬菜、果树、农作物、林木、花草等等都是黄萎病菌的寄主,每年因黄萎病引起的作物产量损失就达数十亿美元,其中,马铃薯感染黄萎病菌其损失可以达到50%以上,生菜非常容易达到100%,棉花在黄萎病发病严重的年份也容易造成颗粒无收,在所有维管束病害中,黄萎病菌引起的病害损失是最严重的(Pegg GF,2002;Steven J.Klosterman等,2009;Agrios G,2005)。目前,克隆获得的抗黄萎病基因只有来自番茄的Ve1,该基因在生菜中也存在,但是几年之后抗性也丧失,更为重要的是,绝大多数作物缺乏抗黄萎病的抗原,并且难以获得具有抗性的抗原(Steven J.Klosterman等,2009)。Verticillium wilt is a worldwide disease, and the incidence of Verticillium wilt has been reported in temperate, subtropical and tropical regions (PeggGF, 2002). Verticillium wilt is a soil-borne vascular pathogen with facultative nutritional properties (Steven J. Klosterman et al., 2009). Pathogens mutate rapidly, with many physiological races, can survive in soil for 20 years, and can infect more than 200 plant species, all plants except monocotyledonous plants, including various vegetables, fruit trees, crops, forest trees, flowers and plants, etc. All are hosts of Verticillium wilt, and the annual crop yield loss caused by Verticillium wilt reaches billions of dollars. Among them, the loss of potatoes infected with Verticillium wilt can reach more than 50%, lettuce can easily reach 100%, and cotton is in Years with severe incidence of Verticillium wilt are also likely to cause no harvest. Among all vascular diseases, the disease loss caused by Verticillium wilt is the most serious (Pegg GF, 2002; Steven J. Klosterman et al., 2009; Agrios G, 2005 ). At present, the only cloned gene for resistance to verticillium wilt is Ve1 from tomato. This gene also exists in lettuce, but the resistance is also lost after a few years. More importantly, most crops lack the antigen against verticillium wilt. , and it is difficult to obtain resistant antigens (Steven J. Klosterman et al., 2009).
面对病原菌的快速变异和生理小种的特异性,创制具有广谱抗性的材料才是解决问题的根本。基因工程可以克服许多传统育种的不足,可使用的基因更多,来源更广。此外,基因工程还可以针对更大范围的病原菌获得更广谱的抗病性,对土壤有益微生物的影响也最小(Owen Wally等,2010)。但是,与已在世界各地广泛种植超过10年的抗除草剂和抗虫转基因植物相比,提高对真菌和细菌病害抗性的转基因植物取得的成功非常有限。提高转基因作物对某种病害抗性的成功报道也较多,比如,在胡萝卜中超量表达来自木霉的几丁酶基因CHIT36提高了转基因植株对真菌病害的抗性(Baranski R等,2008)。在番茄和水稻中分别超量表达不同来源的防御素基因RsAFP2和DmAMP提高了它们的抗病性(Jha S等,2009),在水稻中表达峰毒素基因提高了水稻对白叶枯病的抗性(Wei Shi,2016)等等。这些外源基因提高植物抗病性虽然获得了较大的成功,但尚无应用于生产的报道,主要问题在于获得的抗性只是对某一病原菌或某一个生理小种(或菌株)具有较强的抗性,难以持久且不具广谱抗性(Yan-Jun Chen,2012)。Faced with the rapid mutation of pathogenic bacteria and the specificity of physiological races, the creation of materials with broad-spectrum resistance is the fundamental solution to the problem. Genetic engineering can overcome many of the deficiencies of traditional breeding, and more genes can be used and the sources are wider. In addition, genetic engineering can also achieve a broader spectrum of disease resistance against a wider range of pathogenic bacteria, with minimal impact on soil beneficial microorganisms (Owen Wally et al., 2010). However, transgenic plants with improved resistance to fungal and bacterial diseases have had very limited success compared to herbicide-resistant and insect-resistant transgenic plants that have been widely cultivated around the world for more than 10 years. There are also many successful reports of improving the resistance of transgenic crops to certain diseases. For example, overexpression of the chitinase gene CHIT36 from Trichoderma in carrots improved the resistance of transgenic plants to fungal diseases (Baranski R et al., 2008). Overexpression of defensin genes RsAFP2 and DmAMP of different origins in tomato and rice, respectively, improved their disease resistance (Jha S et al., 2009), and expression of the peak toxin gene in rice improved the resistance of rice to bacterial blight (Wei Shi, 2016) et al. Although these exogenous genes have achieved great success in improving plant disease resistance, there is no report on their application in production. The main problem is that the obtained resistance is only a certain pathogenic bacteria or a certain physiological race (or strain). Strong resistance, difficult to last and not broad-spectrum resistance (Yan-Jun Chen, 2012).
提高植物自身防御能力是提高植物广谱和持久抗性的重要手段。植物激素在植物防御反应中具有重要作用,调节植物抗病的SA、JA和ET信号途径也一直是研究的热点,随着研究的深入和扩展,近年来一类新的能激活植物对病原菌和昆虫产生抗性的防御信号肽引起了研究者们的关注,特别是来自植物的防御信号肽在调控植物对昆虫和病原菌免疫中的作用起来越受到重视(Yube Yamaguchi等,2011)。Improving plant self-defense is an important means to improve plant broad-spectrum and durable resistance. Plant hormones play an important role in plant defense responses, and the SA, JA and ET signaling pathways that regulate plant disease resistance have always been research hotspots. The defense signal peptides of insect resistance have attracted the attention of researchers, especially the role of defense signal peptides from plants in regulating plant immunity to insects and pathogens has been paid more and more attention (Yube Yamaguchi et al., 2011).
植物防御信号肽是肽激素中的一大类,其中一类是来源于无N-末端分泌信号的前体蛋白肽。来自于玉米的诱导子肽Pep(Plant elicitor peptide)是其中的一种,Pep肽家族广泛存在于植物中,能调控病原菌的抗性反应(Huffaker A等,2006)。但是,已有报道显示,这种病原菌的抗性反应基本都是对死体病营养型病原菌的抗性。有研究表明,玉米的ZmPep1,能调节玉米对小斑病和茎腐病的抗病性(Huffaker A等,2011)。但是,ZmPep1能否提高其他植物的抗病性,特别是针对提高黄萎病这类兼性营养型病原菌的抗性尚无相关报道。Plant defense signal peptides are a large class of peptide hormones, one of which is derived from precursor protein peptides without N-terminal secretion signals. Plant elicitor peptide Pep (Plant elicitor peptide) from maize is one of them. The Pep peptide family is widely present in plants and can regulate the resistance response of pathogenic bacteria (Huffaker A et al., 2006). However, it has been reported that the resistance responses of this pathogen are basically resistance to necrotrophic pathogens. Studies have shown that ZmPep1 of maize can regulate the resistance of maize to small leaf spot and stalk rot (Huffaker A et al., 2011). However, there is no relevant report on whether ZmPep1 can improve the disease resistance of other plants, especially to improve the resistance of facultative vegetative pathogens such as Verticillium wilt.
植物防御信号肽有着一个重要的特点,他们的前体蛋白或成熟肽在维管组织中积累,并在维管束内放大防御信号,同时还能激活JA信号途径(Yube Yamaguchi等,2013)。黄萎病菌是一种典型的维管束病害,进入植物体内后都在维管组织内继续侵染和扩展,JA信号途径在黄萎病的防御反应中具有重要作用(Wei Gao等,2013)。结合防御信号肽的累积与黄萎病菌的侵染在空间上的重叠,防御信号肽激活的信号途径与黄萎病菌的防御在信号途径上的重叠这两个特点,获得能够抗黄萎病菌的防御信号肽对提高植物黄萎病抗性具有重要意义。An important feature of plant defense signal peptides is that their precursor proteins or mature peptides accumulate in vascular tissues and amplify defense signals within vascular bundles, while also activating the JA signaling pathway (Yube Yamaguchi et al., 2013). Verticillium wilt is a typical vascular disease. After entering plants, it continues to infect and expand in vascular tissues. The JA signaling pathway plays an important role in the defense response of Verticillium wilt (Wei Gao et al., 2013). Combining the two characteristics of the accumulation of defense signal peptides and the spatial overlap of Verticillium wilt infection, the signal pathway activated by defense signal peptides and the overlapping of the defense signal pathways of Verticillium dahliae, the anti-Verticillium wilt bacteria were obtained. Defense signal peptides are of great significance for improving plant verticillium wilt resistance.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的之一在于提供一种玉米诱导子肽基因ZmPep1在提高植物对黄萎病抗性中的应用,结合ZmPep1的累积和信号传导与黄萎病菌的侵染在空间上的重叠,ZmPep1激活的信号途径与黄萎病菌的防御在信号途径上的重叠这两个特点,提出本发明的策略。In view of this, one of the objects of the present invention is to provide an application of a maize elicitor peptide gene ZmPep1 in improving plant resistance to Verticillium wilt, combining the accumulation and signal transduction of ZmPep1 with the infection of Verticillium wilt in space. The two features of the overlapping of the signaling pathway activated by ZmPep1 and the defense of Verticillium dahliae in the signaling pathway, propose the strategy of the present invention.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
玉米诱导子肽基因ZmPep1在提高植物对黄萎病抗性中的应用,其特征在于:所述玉米诱导子肽基因ZmPep1的核苷酸序列如SEQ ID NO.1所示,或SEQ ID NO.1所示核苷酸经过一个或几个碱基的取代和/或缺失和/或添加且具有相同功能的核苷酸序列。The application of the maize elicitor peptide gene ZmPep1 in improving plant resistance to Verticillium wilt, characterized in that: the nucleotide sequence of the maize elicitor peptide gene ZmPep1 is as shown in SEQ ID NO.1, or SEQ ID NO. The nucleotides shown in 1 are nucleotide sequences with the same function after substitution and/or deletion and/or addition of one or several bases.
本发明中,所述植物可以为其他可以感染黄萎病的植物,优选的,所述植物为拟南芥、烟草或棉花。In the present invention, the plant can be other plants that can be infected with Verticillium wilt, preferably, the plant is Arabidopsis, tobacco or cotton.
本发明的目的之二在于提供利用玉米诱导子肽基因ZmPep1提高植物对黄萎病抗性的方法,通过将玉米诱导子肽基因ZmPep1(SEQ ID NO.1),将其与组成型启动子可操作地连接,构建组成型表达玉米诱导子肽ZmPep1基因的植物表达载体,然后通过转化体将玉米诱导子肽基因ZmPep1转入植物,获得转基因植物。Another object of the present invention is to provide a method for improving plant resistance to Verticillium wilt by utilizing the maize elicitor peptide gene ZmPep1, by combining the maize elicitor peptide gene ZmPep1 (SEQ ID NO. 1) with a constitutive promoter. It is operatively linked to construct a plant expression vector constitutively expressing the maize elicitor peptide ZmPep1 gene, and then the maize elicitor peptide gene ZmPep1 is transformed into the plant through the transformant to obtain a transgenic plant.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
利用玉米诱导子肽基因ZmPep1提高植物对黄萎病抗性的方法,将玉米诱导子肽基因ZmPep1在植物中组成型表达,获得对黄萎病抗性的植物;Using the maize elicitor peptide gene ZmPep1 to improve the resistance of plants to verticillium wilt, the maize elicitor peptide gene ZmPep1 is constitutively expressed in plants to obtain plants resistant to verticillium wilt;
所述玉米诱导子肽基因ZmPep1的核苷酸序列如SEQ ID NO.1所示,或SEQ ID NO.1所示核苷酸经过一个或几个碱基的取代和/或缺失和/或添加且具有相同功能的核苷酸序列。The nucleotide sequence of the maize elicitor peptide gene ZmPep1 is shown in SEQ ID NO.1, or the nucleotide shown in SEQ ID NO.1 is substituted and/or deleted and/or added by one or several bases and nucleotide sequences with the same function.
本发明中,所述玉米诱导子肽基因ZmPep1在植物中组成型表达的方法是构建含有玉米诱导子肽基因ZmPep1的组成型植物表达载体,然后通过农杆菌介导获得转基因植物。In the present invention, the method for constitutively expressing the maize elicitor peptide gene ZmPep1 in plants is to construct a constitutive plant expression vector containing the maize elicitor peptide gene ZmPep1, and then obtain a transgenic plant mediated by Agrobacterium.
优选的,所述组成型植物表达载体含有由组成型启动子调控玉米诱导子肽基因ZmPep1表达的表达框。Preferably, the constitutive plant expression vector contains an expression cassette in which the expression of the maize elicitor peptide gene ZmPep1 is regulated by a constitutive promoter.
优选的,所述组成型启动子CaMV35S启动子。Preferably, the constitutive promoter is the CaMV35S promoter.
优选的,所述组成型植物表达载体为将SEQ ID NO.1所示序列通过BamHI和KpnI植物表达载体pLGN中(CN105671076A),获得植物表达载体pLGN-35S-ZmPep1。Preferably, the constitutive plant expression vector is obtained by passing the sequence shown in SEQ ID NO.1 into the BamHI and KpnI plant expression vector pLGN (CN105671076A) to obtain the plant expression vector pLGN-35S-ZmPep1.
本发明中,所述植物可以为其他可以感染黄萎病的植物,如茄子、番茄、辣椒、生菜等蔬菜类,油菜、油橄榄等油料植物;所述植物为拟南芥、烟草或棉花。In the present invention, the plant can be other plants that can be infected with Verticillium wilt, such as vegetables such as eggplant, tomato, pepper, lettuce, oil plants such as rapeseed and olive oil; the plant is Arabidopsis, tobacco or cotton.
本发明中,所述的基因ZmPep1的获得,以及启动子与基因ZmPep1融合构建组成型表达ZmPep1基因的表达载体方法为本领域的常规方法,使用的载体是植物基因工程领域所用的常规载体。In the present invention, the method for obtaining the gene ZmPep1 and the fusion of the promoter and the gene ZmPep1 to construct an expression vector for constitutively expressing the ZmPep1 gene are conventional methods in the art, and the vector used is a conventional vector used in the field of plant genetic engineering.
将转化体转入植株所使用的方法为根癌农杆菌介导法,为常用的植物转基因方法。The method used for transforming the transformant into the plant is the Agrobacterium tumefaciens-mediated method, which is a commonly used method for plant transgenesis.
本发明的目的之三在于提供具有提高植物对黄萎病抗性的植物表达载体。The third object of the present invention is to provide a plant expression vector with improved plant resistance to Verticillium wilt.
为实现上述发明目的,本发明提供如下技术方案:To achieve the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
一种具有提高植物对黄萎病抗性的植物表达载体,所述植物表达载体含有组成型启动子调控玉米诱导子肽基因ZmPep1表达的表达框,所述玉米诱导子肽基因ZmPep1的核苷酸序列如SEQ ID NO.1所示,或SEQ ID NO.1所示核苷酸经过一个或几个碱基的取代和/或缺失和/或添加且具有相同功能的核苷酸序列。A plant expression vector capable of improving plant resistance to Verticillium wilt, the plant expression vector comprising an expression cassette for regulating the expression of a maize elicitor peptide gene ZmPep1 by a constitutive promoter, the nucleotides of the maize elicitor peptide gene ZmPep1 The sequence is shown in SEQ ID NO. 1, or the nucleotide sequence shown in SEQ ID NO. 1 is substituted and/or deleted and/or added by one or several bases and has the same function.
本发明优选的,应用基因工程技术将基因ZmPep1序列(SEQ ID NO.1)与组成型启动子CaMV35S可操作地连接,构建植物表达载体,转化植株后,在组成型启动子的作用下表达玉米诱导子肽基因ZmPep1。优选的植物表达载体具有如图1所示的载体结构。其中,玉米诱导子肽基因ZmPep1正向连接在CaMV35S启动子后,形成组成型表达该基因的植物表达载体pLGN-35S-ZmPep1。Preferably in the present invention, the gene ZmPep1 sequence (SEQ ID NO. 1) is operably linked with the constitutive promoter CaMV35S by using genetic engineering technology to construct a plant expression vector, and after the plants are transformed, maize is expressed under the action of the constitutive promoter The elicitor peptide gene ZmPep1. Preferred plant expression vectors have the vector structure shown in Figure 1 . Among them, the maize elicitor peptide gene ZmPep1 was positively connected to the CaMV35S promoter to form a plant expression vector pLGN-35S-ZmPep1 constitutively expressing the gene.
本发明的目的之四在于提供植物表达载体的应用。The fourth object of the present invention is to provide the application of plant expression vector.
为实现上述发明目的,本发明提供如下技术方案:To achieve the above-mentioned purpose of the invention, the present invention provides the following technical solutions:
所述植物表达载体在制备具有黄萎病抗性的转基因植物中的应用。The application of the plant expression vector in the preparation of transgenic plants with Verticillium wilt resistance.
本发明的有益效果在于:本发明通过从玉米中克隆诱导子肽ZmPep1前休蛋白基因ZmPep1,采用分子生物学的方法,构建ZmPep1组成性表达的植物表达载体,然后再利用基因工程方法,将ZmPep1基因整合入拟南芥、烟草和棉花中,获得了正常转录表达的转基因拟南芥、烟草和棉花株系。野生型拟南芥的病情指数为50.69时,转基因拟南芥的病情指数只有15.40。野生型烟草的病情指数为57.93时,转基因烟草的病情指数只有15.39;野生型棉花的病情指数为53.43时,转基因棉花的病情指数只有7.92。表明ZmPep1可提高植物对黄萎病的抗性,该发明对于促进ZmPep1基因在植物抗病基因工程中的应用具有重要意义。The beneficial effects of the present invention are as follows: the present invention uses the method of molecular biology to construct a plant expression vector for constitutive expression of ZmPep1 by cloning the elicitor peptide ZmPep1 presuppressin gene ZmPep1 from maize, and then using the genetic engineering method to transform the ZmPep1 The genes were integrated into Arabidopsis, tobacco and cotton, and transgenic Arabidopsis, tobacco and cotton lines with normal transcriptional expression were obtained. When the disease index of wild-type Arabidopsis was 50.69, the disease index of transgenic Arabidopsis was only 15.40. When the disease index of wild-type tobacco was 57.93, the disease index of transgenic tobacco was only 15.39; when the disease index of wild-type cotton was 53.43, the disease index of transgenic cotton was only 7.92. It is shown that ZmPep1 can improve the resistance of plants to Verticillium wilt, and the invention is of great significance for promoting the application of ZmPep1 gene in plant disease resistance genetic engineering.
附图说明Description of drawings
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical solutions and beneficial effects of the present invention clearer, the present invention provides the following drawings for description:
图1为植物表达载体pLGN-35S-ZmPep1图谱Figure 1 shows the map of the plant expression vector pLGN-35S-ZmPep1
图2为转基因拟南芥中ZmPep1基因转录表达水平(ZmPep1-5、ZmPep1-8和ZmPep1-10:转基因拟南芥独立转化子;WT:哥伦比亚生态型野生型拟南芥。数值为三个技术重复的平均值,误差棒为标准误SD)。Figure 2 shows the transcription and expression levels of ZmPep1 gene in transgenic Arabidopsis (ZmPep1-5, ZmPep1-8 and ZmPep1-10: independent transformants of transgenic Arabidopsis; WT: Colombia ecotype wild-type Arabidopsis. Values are for three techniques Mean of replicates, error bars are standard error (SD).
图3为ZmPep1基因提高拟南芥对黄萎病的抗性(A:接种黄萎病菌14天,拟南芥株系的病情指数;B:接种黄萎病菌14天,拟南芥植株的病症。转基因拟南芥的抗病性用病情指数进行评价。数据为三次重复试验的平均值,误差棒为标准误SD。ZmPep1-5、ZmPep1-8和ZmPep1-10:ZmPep1转基因拟南芥独立转化子。WT:哥伦比亚生态型野生型拟南芥。**:与野生型拟南芥相比,病情指数差异水平达到极显著性(p<0.01))。Figure 3 shows that ZmPep1 gene improves the resistance of Arabidopsis thaliana to Verticillium wilt (A: inoculated with Verticillium wilt for 14 days, the disease index of Arabidopsis strains; B: inoculated with Verticillium wilt for 14 days, the disease of Arabidopsis plants Disease resistance of transgenic Arabidopsis was evaluated by disease index. Data are the mean of three replicate experiments, and error bars are SD. ZmPep1-5, ZmPep1-8 and ZmPep1-10: ZmPep1 transgenic Arabidopsis independently transformed Sub.WT: Colombia ecotype wild type Arabidopsis thaliana.**: Compared with wild type Arabidopsis thaliana, the difference level of disease index reached extremely significant (p<0.01)).
图4为转基因烟草中ZmPep1基因转录表达水平(ZmPep1-1、ZmPep1-5和ZmPep1-11:转基因烟草独立转化子。WT:野生型烟草。数值为三个技术重复的平均值,误差棒为三个重复的标准误SD)。Fig. 4 is the transcriptional expression level of ZmPep1 gene in transgenic tobacco (ZmPep1-1, ZmPep1-5 and ZmPep1-11: transgenic tobacco independent transformants. WT: wild-type tobacco. Values are the mean values of three technical replicates, and error bars are three standard error SD).
图5为ZmPep1基因提高烟草对黄萎病的抗性(A:接种黄萎病菌7天,烟草株系的病情指数;B:接种黄萎病菌7天,烟草叶片的病症。转基因烟草的抗病性用病情指数进行评价,数值为三次重复的平均值,误差棒为标准误SD。ZmPep1-1、ZmPep1-5和ZmPep1-11:ZmPep1转基因烟草独立转化子。WT:野生型烟草。**:与野生型烟草相比,病情指数差异水平达到极显著性(p<0.01))。Fig. 5 is that ZmPep1 gene improves the resistance of tobacco to verticillium wilt (A: inoculated with verticillium wilt for 7 days, the disease index of tobacco strain; B: inoculated with verticillium wilt for 7 days, the disease of tobacco leaves. The disease resistance of transgenic tobacco Sex was assessed by disease index, values are the mean of three replicates, and error bars are SD. ZmPep1-1, ZmPep1-5 and ZmPep1-11: ZmPep1 transgenic tobacco independent transformants. WT: wild type tobacco.**: Compared with wild-type tobacco, the difference level of disease index reached extremely significant (p<0.01)).
图6为转基因棉花中ZmPep1基因的转录表达水平(ZmPep1-4、ZmPep1-5和ZmPep1-7:转基因棉花独立转化子。WT:野生型棉花。数值为三个技术重复的平均值,误差棒为三次重复的标准误)。Fig. 6 is the transcriptional expression level of ZmPep1 gene in transgenic cotton (ZmPep1-4, ZmPep1-5 and ZmPep1-7: transgenic cotton independent transformants. WT: wild-type cotton. Values are the mean values of three technical replicates, and error bars are standard error of three replicates).
图7为ZmPep1转基因棉花提高对黄萎病的抗性(A:转基因棉花叶片接种黄萎病菌5天的病情指数;B:接种黄萎病菌5天,棉花叶片的病症。转基因棉花的抗病性用病情指数进行评价。数值为三次重复试验的平均值,误差棒为标准误SD。ZmPep1-4、ZmPep1-5和ZmPep1-7:ZmPep1转基因棉花独立转化子。WT:野生型棉花。**:与野生型棉花相比,病情指数差异水平达到极显著性(p<0.01))。Fig. 7 is that ZmPep1 transgenic cotton improves the resistance to Verticillium wilt (A: disease index of transgenic cotton leaves inoculated with Verticillium wilt for 5 days; B: inoculated with Verticillium wilt for 5 days, disease of cotton leaves. Disease resistance of transgenic cotton Disease index was used for evaluation. Values are the mean of three replicate experiments, and error bars are SD. ZmPep1-4, ZmPep1-5 and ZmPep1-7: ZmPep1 transgenic cotton independent transformants. WT: wild-type cotton.**: Compared with wild-type cotton, the difference level of disease index reached extremely significant (p<0.01)).
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention is further described below with reference to the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the embodiments are not intended to limit the present invention.
实施例1、玉米ZmPep1基因的克隆Example 1. Cloning of maize ZmPep1 gene
1、玉米基因组总RNA的提取及cDNA的合成1. Extraction of total RNA from maize genome and synthesis of cDNA
取生长14天的玉米幼苗,用镊子轻轻夹伤叶柄基部,诱导ZmPep1基因的表达。6小时后,剪取受损的叶片立即液氮速冻,并研磨成粉,然后用Promoga的植物快速RNA提取试剂盒提取叶片的总RNA,再利用TaKaRa的一链cDNA合成试剂盒合成cDNA。RNA提取和cDNA的合成均按试剂盒说明书进行。详细操作流程如下:The 14-day-old maize seedlings were taken, and the base of the petiole was lightly clipped with tweezers to induce the expression of ZmPep1 gene. After 6 hours, the damaged leaves were snap-frozen in liquid nitrogen immediately, and ground into powder, then the total RNA of the leaves was extracted with Promoga's plant rapid RNA extraction kit, and cDNA was synthesized by TaKaRa's one-strand cDNA synthesis kit. RNA extraction and cDNA synthesis were carried out according to the kit instructions. The detailed operation process is as follows:
取新鲜的玉米叶片用液氮速冻并研磨成粉,取约100mg粉末盛装入无核酸酶的1.5mL离心管,立即加入RNA裂解液500μL,用移液枪反复吹打直到裂解物中无明显块状组织,然后加入300μL稀释液,颠倒离心管3-4次混匀,室温放置3-5min。12000rpm,离心5min后取上清液500μL于一新的1.5mL无核酸酶的离心管中,加入250μL无水乙醇,立即用移液器吹打混匀,然后将混和液转移入RNA吸附柱,10000rpm,离心1min,弃滤液,吸附柱内加入600μL漂洗液,重复漂洗2次后,将吸附柱转移到洗脱管上,在吸附柱内加入100μL无RNA酶和无DNA酶的水,放置约3min后,10000rpm,离心1min,收集洗脱的RNA溶液并保存于-80℃。Take fresh corn leaves and freeze them in liquid nitrogen and grind them into powder. Take about 100 mg of the powder and put it into a 1.5 mL centrifuge tube without nuclease. Immediately add 500 μL of RNA lysis solution. Tissue, then add 300 μL of diluent, invert the centrifuge tube 3-4 times to mix, and leave at room temperature for 3-5 min. 12,000 rpm, centrifuge for 5 min, take 500 μL of the supernatant into a new 1.5 mL nuclease-free centrifuge tube, add 250 μL of absolute ethanol, immediately mix with a pipette, then transfer the mixture into an RNA adsorption column, 10,000 rpm , centrifuge for 1 min, discard the filtrate, add 600 μL of rinsing solution to the adsorption column, repeat the rinsing for 2 times, transfer the adsorption column to the elution tube, add 100 μL of RNase-free and DNase-free water to the adsorption column, and leave it for about 3min Then, centrifuge at 10,000 rpm for 1 min, collect the eluted RNA solution and store it at -80°C.
取7μL上述提取的RNA溶液中加入1μL无RNA酶的DNA酶,2μL无RNA酶的DNA酶缓冲液,混匀后PCR仪内42℃反应2min,然后加入4μL反转录酶缓冲液,1μL反转录酶,1μL反转录引物混和物,4μL无RNA酶无DNA酶的双蒸水,混匀后37℃反应15min合成cDNA,85℃反应5s,终止反应。合成的cDNA保存于-20℃。Take 7 μL of the above extracted RNA solution, add 1 μL RNase-free DNase, 2 μL RNase-free DNase buffer, mix well, react at 42°C for 2 min in the PCR machine, then add 4 μL reverse transcriptase buffer, 1 μL reverse transcriptase buffer. Transcriptase, 1 μL reverse transcription primer mix, 4 μL double-distilled water without RNase and DNase, after mixing, react at 37 °C for 15 min to synthesize cDNA, and then react at 85 °C for 5 s to terminate the reaction. The synthesized cDNA was stored at -20°C.
2、玉米ZmPep1基因的克隆2. Cloning of maize ZmPep1 gene
NCBI网站查找ZmPep1序列(见SEQ ID NO.1),根据SEQ ID NO.1所示的核苷酸序列,设计并合成完整编码框的上游引物和下游引物,具体如下:Find the ZmPep1 sequence (see SEQ ID NO.1) on the NCBI website, and design and synthesize the upstream and downstream primers of the complete coding frame according to the nucleotide sequence shown in SEQ ID NO.1, as follows:
上游引物F-ZmPep1:5'-CGCGGATCCGCG ATGGATGAGCGCGGGGAGAA-3'(SEQ IDNO.2);Upstream primer F-ZmPep1: 5'-CGCGGATCCGCG ATGGATGAGCGCGGGGAGAA-3' (SEQ ID NO. 2);
下游引物R-ZmPep1:5'-CGGGGTACCCCG CTAGTGGTGGTTCCCTCCAT-3'(SEQ IDNO.3);Downstream primer R-ZmPep1: 5'-CGGGGTACCCCG CTAGTGGTGGTTCCCTCCAT-3' (SEQ ID NO. 3);
以上述合成的cDNA作为模板,SEQ ID NO.2和SEQ ID NO.3为引物对,利用PrimesSTAR MAX DNA Polymerase进行PCR扩增。扩增程序:98℃3min;98℃10S,57℃10S,72℃20S,扩增30个循环。Using the cDNA synthesized above as a template and SEQ ID NO. 2 and SEQ ID NO. 3 as a primer pair, PCR amplification was performed using PrimesSTAR MAX DNA Polymerase. Amplification program: 98°C for 3 min; 30 cycles of amplification at 98°C for 10S, 57°C for 10S, and 72°C for 20S.
扩增获得的ZmPep1片段5μL,加入3μL pTOPO载体质粒,1μL DNA连接酶,1μL缓冲液,混匀后室温放置15min,反应产物与大肠杆菌DH5α感受态细胞混匀,然后42℃热激1min30s转入大肠杆菌DH5α,转化的工程菌加入500μL LB培养基,37℃200rpm培养1h,然后涂布于含卡那霉素LB平板,37℃培养过夜,挑取单菌落接种入盛装约3mL LB培养基的试管内,37℃200rpm振荡培养过夜,取适量菌液送测序公司测序,含有目的片段的阳性克隆工程菌保存于-80℃。5 μL of amplified ZmPep1 fragment was added, 3 μL of pTOPO vector plasmid, 1 μL of DNA ligase, and 1 μL of buffer solution were added. After mixing, place at room temperature for 15 min. The reaction product was mixed with E. coli DH5α competent cells, and then transferred into 42 °C heat shock for 1 min 30 s. Escherichia coli DH5α, the transformed engineering bacteria were added to 500 μL of LB medium, cultured at 37°C at 200 rpm for 1 h, then spread on LB plates containing kanamycin, cultured at 37°C overnight, and a single colony was picked and inoculated into about 3 mL of LB medium. In the test tube, shake and culture at 200 rpm at 37 °C overnight, take an appropriate amount of bacterial liquid and send it to a sequencing company for sequencing, and store the positive cloned engineered bacteria containing the target fragment at -80 °C.
实施例2、组成型表达ZmPep1基因的植物表达载体的构建及工程菌的获得Example 2. Construction of plant expression vector constitutively expressing ZmPep1 gene and acquisition of engineered bacteria
提取上述经测序验证正确的克隆载体工程菌质粒,用BamHI和KpnI进行双酶切,酶切后的产物进行琼脂糖凝胶电泳,回收目的片段ZmPep1。同时用BamHI和KpnI双酶切植物表达载体pLGN,酶切完成后进行琼脂糖凝胶电泳,回收大片段。回收的基因和载体片段利用T4DNA连接酶连接,连接产物利用热激法转入大肠杆菌DH5α。提取大肠杆菌工程菌的质粒,然后用BamHI和KpnI进行双酶切验证,获得目的基因ZmPep1酶切片段的转化菌即为植物表达载体pLGN-35S-ZmPep1工程菌,保存于-80℃,载体图谱见图1。The above-mentioned cloned vector engineering bacterial plasmids verified to be correct by sequencing were extracted, double-enzyme digested with BamHI and KpnI, and the digested product was subjected to agarose gel electrophoresis to recover the target fragment ZmPep1. At the same time, the plant expression vector pLGN was digested with BamHI and KpnI. After the digestion was completed, agarose gel electrophoresis was performed to recover large fragments. The recovered gene and vector fragment were ligated by T4 DNA ligase, and the ligated product was transferred into E. coli DH5α by heat shock method. The plasmid of the E. coli engineering bacteria was extracted, and then double-enzyme digestion was performed with BamHI and KpnI for verification. The transformed bacteria that obtained the ZmPep1 restriction fragment of the target gene was the plant expression vector pLGN-35S-ZmPep1 engineering bacteria, which was stored at -80 ℃. The vector map see picture 1.
提取大肠杆菌工程菌的质粒,再利用电转化法分别转化农杆菌LBA4404和GV3101,转化的菌分别在附加Km(卡那霉素)和Sm(硫酸链霉素),Km和Rif(利福平)的YEB平板进行筛选培养,抗性单菌落用附加Km和Sm,Km和Rif(利福平)的YEB液体培养基内,收集菌体并提取农杆菌质粒,然后再用BamHI和KpnI进行双酶切验证,正确的工程菌保存于-80℃。The plasmids of E. coli engineering bacteria were extracted, and then Agrobacterium LBA4404 and GV3101 were transformed by electroporation. The transformed bacteria were added with Km (kanamycin) and Sm (streptomycin sulfate), Km and Rif (rifampicin). ) YEB plates were screened and cultured, and the resistant single colonies were added to the YEB liquid medium with Km and Sm, Km and Rif (rifampicin), and the cells were collected and the Agrobacterium plasmid was extracted, and then doubled with BamHI and KpnI. Enzyme digestion verified that the correct engineered bacteria were stored at -80°C.
实施例3、拟南芥的遗传转化、转基因拟南芥的筛选及转录表达水平分析Example 3. Genetic transformation of Arabidopsis, screening of transgenic Arabidopsis and analysis of transcriptional expression levels
1、拟南芥的遗传转化1. Genetic transformation of Arabidopsis
参照Steven J.Clough and Andrew F.Bent(1998)的浸花转化法,以哥仑比亚野生型拟南芥为材料进行遗传转化,种子成熟后收获农杆菌浸后的种子。Referring to Steven J.Clough and Andrew F.Bent's (1998) method of flower soaking transformation, the wild-type Arabidopsis thaliana was used as material for genetic transformation, and the seeds after Agrobacterium soaking were harvested after the seeds were mature.
2、转基因拟南芥植株的筛选2. Screening of transgenic Arabidopsis plants
浸花转化法进行遗传转化后收获的种子用75%的酒精灭菌15min,然后均接种于附加100mg/L Km的筛选平板上萌芽,若长成的幼苗为绿色即为转基因植株,待植物2叶以上时移栽入培养拟南芥的专用土壤中(草碳土:蛭石:珍珠岩为3:1:1),成苗收获种子。每一株植株即为一个转化子。The seeds harvested after genetic transformation by the flower dip transformation method were sterilized with 75% alcohol for 15 minutes, and then all inoculated on a screening plate with an additional 100 mg/L Km for germination. If the grown seedlings were green, they were transgenic plants. When the leaves are above, transplanted into the special soil for culturing Arabidopsis (grass carbon soil: vermiculite: perlite is 3: 1: 1), and the seedlings are harvested. Each plant is a transformant.
拟南芥筛选培养基:MS无机+MS有机+Km 100mg/L+2.5g/L Gelrite(因化剂),pH6.0Arabidopsis screening medium: MS inorganic+MS organic+Km 100mg/L+2.5g/L Gelrite (factor), pH6.0
3、转基因拟南芥植株RNA的提取及cDNA的合成3. RNA extraction and cDNA synthesis from transgenic Arabidopsis plants
以转基因植株幼嫩叶片为材料,按照实施例1的方法进行转基因拟南芥RNA的提取和cDNA的合成。The transgenic Arabidopsis RNA was extracted and cDNA was synthesized according to the method of Example 1 using the young leaves of the transgenic plants as materials.
4、转基因拟南芥中ZmPep1基因转录表达水平分析4. Analysis of ZmPep1 gene transcription and expression level in transgenic Arabidopsis
利用Real-time PCR方法检测转基因拟南芥中ZmPep1基因的转录表达水平。The transcriptional expression level of ZmPep1 gene in transgenic Arabidopsis was detected by Real-time PCR method.
以cDNA为模板扩增ZmPep1基因的特异片段。ZmPep1基因的上下游引物分别为ZmPep1UP:5’-TTCTGCGGCTCCTGCTC-3’(SEQ ID NO.4)和ZmPep1 DN:5’-GTGGTTCCCTCCATTGC-3’(SEQ ID NO.5)。以拟南芥AtACT2基因为内标。AtACT2基因的上下游引物分别AtACT2 UP:5’-TATCGCTGACCGTATGAG-3’(SEQ ID NO.6)和AtACT2DN:5’-CTGAGGGAAGCAAGAATG-3’(SEQ ID NO.7)。A specific fragment of ZmPep1 gene was amplified using cDNA as template. The upstream and downstream primers of the ZmPep1 gene were ZmPep1UP: 5'-TTCTGCGGCTCCTGCTC-3' (SEQ ID NO. 4) and ZmPep1 DN: 5'-GTGGTTCCCTCCATTGC-3' (SEQ ID NO. 5). The Arabidopsis AtACT2 gene was used as the internal standard. The upstream and downstream primers of the AtACT2 gene were AtACT2 UP: 5'-TATCGCTGACCGTATGAG-3' (SEQ ID NO.6) and AtACT2DN: 5'-CTGAGGGAAGCAAGAATG-3' (SEQ ID NO.7).
20μL Real-time PCR反应体系包括:cDNA模板1μL,目的基因上下游引物各1μL,2×iQ SYBR Green Supermix 10μL,ddH2O 7μL。The 20 μL Real-time PCR reaction system includes: 1 μL cDNA template, 1 μL upstream and downstream primers of the target gene, 10
Real-time PCR扩增条件:95℃3min;94℃10s,57℃30s,72℃30s,共扩增40个循环。扩增完成后利用Gene Study软件分析ZmPep1基因相对表达量。Real-time PCR amplification conditions: 95°C for 3 min; 94°C for 10s, 57°C for 30s, and 72°C for 30s, a total of 40 cycles of amplification. After amplification, the relative expression of ZmPep1 gene was analyzed by Gene Study software.
Real-time PCR结果表明(图2),转基因拟南芥植株内ZmPep1基因都能有效进行转录表达,获得的植株为ZmPep1转基因植株。Real-time PCR results showed (Figure 2) that the ZmPep1 gene could be effectively transcribed and expressed in the transgenic Arabidopsis plants, and the obtained plants were ZmPep1 transgenic plants.
实施例4、转基因拟南芥对黄萎病的抗性Example 4. Resistance of transgenic Arabidopsis to Verticillium wilt
1、转基因拟南芥抗病鉴定接种用黄萎病菌的制备1. Preparation of Verticillium wilt for inoculation of transgenic Arabidopsis
挑取少许固体PD培养基(马铃薯培养基)保存的落叶型黄萎病菌V991菌株接种入液体PD培养基,180rpm,26℃振荡培养7d,再按10%(菌液/PD培养基)的比例接种入液体PD培养基,180rpm,26℃振荡培养10d,用四层无菌纱布过滤去除菌液中的菌丝及杂质,去离子水调整孢子浓度达到108个/ml作为接种菌液。Pick a small amount of Verticillium decidua V991 strain preserved in solid PD medium (potato medium) and inoculate it into liquid PD medium, 180rpm, 26 ℃ shaking culture for 7d, and then press the ratio of 10% (bacteria liquid/PD medium) Inoculated into liquid PD medium, 180rpm, 26 ℃ shaking culture for 10d, filtered with four layers of sterile gauze to remove mycelium and impurities in the bacterial liquid, deionized water adjusted the spore concentration to 10 8 /ml as the inoculated bacterial liquid.
2、转基因拟南芥抗病鉴定接种方法2. Inoculation method for disease resistance identification of transgenic Arabidopsis
培养一周的拟南芥幼苗连根拔起,然后带土整齐的摆放入150mm培养皿内,倒入混匀的接种菌液,接种剂量为10mL/株,室温浸泡接种24小时后,再移栽入湿润的土壤中,16小时光照,8小时暗培养,20℃(暗培养)-24℃(光照培养),湿度70%的光照培养箱内培养。接种2周后,按0-4级的标准统计植株病级并计算病情指数。以转化受体材料的野生型植株为对照。Arabidopsis thaliana seedlings that have been cultivated for one week are uprooted, then placed neatly in a 150mm petri dish with soil, poured into the mixed inoculum solution, the inoculation dose is 10mL/plant, soaked at room temperature for 24 hours, and then transplanted into In moist soil, 16 hours of light, 8 hours of dark culture, 20°C (dark culture)-24°C (light culture), and cultured in a light incubator with a humidity of 70%. Two weeks after inoculation, the disease grades of the plants were counted according to the standard of grade 0-4 and the disease index was calculated. Wild-type plants transformed with recipient material were used as controls.
病级分级标准:0级:植株叶片无病症;1级:0-25%叶片出现病症;2级:25%-50%叶片出现病症;3级:50%-75%叶片出现病症;4级:75%以上的叶片出现病症。病情指数的计算公式:Disease grade grading standard: grade 0: no disease in plant leaves; grade 1: disease in 0-25% of leaves; grade 2: disease in 25%-50% of leaves; grade 3: disease in 50%-75% of leaves; grade 4 : More than 75% of the leaves showed disease. The formula for calculating the disease index:
病情指数=(∑〖病级数×植株数〗)/(4×接种植株总数)×100Disease index=(∑〖disease grade×number of plants〗)/(4×total number of inoculated plants)×100
3、ZmPep1基因提高拟南芥对黄萎病的抗性3. The ZmPep1 gene improves the resistance of Arabidopsis to Verticillium wilt
拟南芥植株接种黄萎病菌14天,野生型植株的病情指数达到50.69,转基因株系ZmPep1-5、ZmPep1-8和ZmPep1-10的病情指数分别为20.62、15.40和21.36。T检测结果显示,与野生型对照的病情指数相比,转基因株系的病情指数极显著的下降(图3中A)。植株病症显示,接种黄萎病菌14天,野生型植株叶片基本出现了病症,而转基因植株只是基部个别叶片出现了病症(图3中B)。结果表明,ZmPep1基因可有效提高拟南芥对黄萎病的抗性。Arabidopsis thaliana plants were inoculated with Verticillium wilt for 14 days, the disease index of wild-type plants reached 50.69, and the disease indexes of transgenic lines ZmPep1-5, ZmPep1-8 and ZmPep1-10 were 20.62, 15.40 and 21.36, respectively. The T test results showed that the disease index of the transgenic line was significantly decreased compared with the disease index of the wild-type control (A in Figure 3). Plant disease showed that after 14 days of inoculation with Verticillium wilt, the leaves of the wild-type plants basically developed disease, while the transgenic plants only developed disease at the base of individual leaves (B in Figure 3). The results showed that ZmPep1 gene could effectively improve the resistance of Arabidopsis to Verticillium wilt.
实施例5、烟草的遗传转化及转基因烟草的获得Embodiment 5, the genetic transformation of tobacco and the acquisition of transgenic tobacco
1、烟草遗传转化用组织培养培养基1. Tissue culture medium for tobacco genetic transformation
种子萌发培养基:MSB(MS无机盐+B5有机)+1.0%琼脂粉,自来水配制,自然pH。Seed germination medium: MSB (MS inorganic salt + B5 organic) + 1.0% agar powder, prepared with tap water, natural pH.
遗传转化共培养培养基:MSB(MS无机盐+B5有机)+2mg/L NAA+0.5mg/L 6-BA+200μmol/L AS,pH5.6,固体培养基添加1.0%琼脂粉进行固化。Genetic transformation co-culture medium: MSB (MS inorganic salt+B5 organic)+2mg/L NAA+0.5mg/L 6-BA+200μmol/L AS, pH5.6, solid medium with 1.0% agar powder for solidification.
愈伤诱导培养基:MSB(MS无机盐+B5有机)+2mg/L NAA+0.5mg/L 6-BA+1.0%琼脂粉,pH5.8。Callus induction medium: MSB (MS inorganic salt+B5 organic)+2mg/L NAA+0.5mg/L 6-BA+1.0% agar powder, pH5.8.
幼芽诱导培养基:MSB(MS无机盐+B5有机)+2mg/L 6-BA+1.0%琼脂粉,pH5.8。Sprout induction medium: MSB (MS inorganic salt + B5 organic) + 2 mg/L 6-BA + 1.0% agar powder, pH 5.8.
生根培养基:MSB(MS无机盐+B5有机)+1.0%琼脂粉,pH6.0。Rooting medium: MSB (MS inorganic salt + B5 organic) + 1.0% agar powder, pH 6.0.
2、烟草的遗传转化2. Genetic transformation of tobacco
将含pLGN-35S-ZmPep1植物表达载体的重组农杆菌接种入液体YEB培养基,28℃、200rpm振荡培养过夜至OD600 1.0~1.2。菌液离心后收集菌体,并用等体积MSB液体培养基重悬菌体,重悬液即为转化用浸染液。The recombinant Agrobacterium containing the pLGN-35S-ZmPep1 plant expression vector was inoculated into liquid YEB medium, and cultured overnight at 28°C with shaking at 200 rpm to an OD600 of 1.0-1.2. After the bacterial solution was centrifuged, the bacterial cells were collected, and the bacterial cells were resuspended in an equal volume of MSB liquid medium, and the resuspended solution was the infusion solution for transformation.
培养20d的烟草无菌苗叶片,切成3-5mm介方的叶盘,于浸染液内浸染1hr,去除菌液,然后将叶盘接种于共培养培养基,24℃暗培养2天。共培养完成后,外植体继代入附加100mg/L卡那霉素和200mg/L头孢霉素的愈伤诱导培养基,25℃、16hr光照/8hr暗培养的光周期培养,20天后继代入幼芽诱导培养基,之后20天继代一次,至叶盘边缘产生幼芽,将幼芽切下继代入生根培养基生根成苗,幼苗生长至3-4叶移栽入花盆做进一步的分析。The leaves of tobacco aseptic seedlings cultivated for 20 days were cut into leaf discs of 3-5 mm, infiltrated for 1 hr in the infusion solution, and the bacterial solution was removed. After the co-cultivation was completed, the explants were substituted into the callus induction medium supplemented with 100 mg/L kanamycin and 200 mg/L cephalosporin, and cultured in a photoperiod of 25 °C, 16 hr light/8 hr dark culture, and subcultured after 20 days. The seedling induction medium is subcultured once after 20 days, and the young shoots are produced at the edge of the leaf disc. analyze.
3、ZmPep1转基因烟草的获得和分子鉴定3. Acquisition and molecular identification of ZmPep1 transgenic tobacco
转基因植株的GUS组织化学染色GUS histochemical staining of transgenic plants
GUS染色液:500mg/L X-Gluc,0.1mol/L K3Fe(CN)6,0.1mol/L K4Fe(CN)6,1%Triton X-100(V/V),0.01mol/L Na2EDTA,0.1mol/L磷酸缓冲液(pH7.0)。pLGN-35S-ZmPep1植物表达载体含有35S启动子控制的GUS基因,因此,转基因植株首先可以利用GUS组织化学染色法进行快速鉴定。参照Jefferson(1987)的方法剪取Km抗性幼苗的叶片组织少许,加入GUS组织化学染色液中,37℃染色5h,然后95%乙醇脱色,至绿色去净。最后出现蓝色的为转基因植株,否则为非转基因植株。GUS staining solution: 500mg/L X-Gluc, 0.1mol/LK 3 Fe(CN) 6 , 0.1mol/LK 4 Fe(CN) 6 , 1% Triton X-100(V/V), 0.01mol/L Na 2 EDTA, 0.1 mol/L phosphate buffer (pH 7.0). The pLGN-35S-ZmPep1 plant expression vector contains the GUS gene controlled by the 35S promoter. Therefore, the transgenic plants can be rapidly identified by GUS histochemical staining. Referring to the method of Jefferson (1987), a little leaf tissue of Km-resistant seedlings was cut, added to GUS histochemical staining solution, stained at 37°C for 5h, and then decolorized with 95% ethanol until the green color was cleared. The last blue color is the transgenic plant, otherwise it is the non-transgenic plant.
4、ZmPep1转录表达水平分析4. Analysis of ZmPep1 transcriptional expression level
ZmPep1转基因烟草植株分别以幼嫩叶片为材料,分别提取GUS阳性和野生型植物叶片的RNA,按cDNA一链合成试剂盒说明书合成各样品RNA的一链cDNA,然后以cDNA为模板扩增ZmPep1基因的特异片段。ZmPep1基因的上下游引物分别为ZmPep1 UP:5’-TTCTGCGGCTCCTGCTC-3’(SEQ ID NO.4)和ZmPep1 DN:5’-GTGGTTCCCTCCATTGC-3’(SEQ IDNO.5)。以烟草18S基因为内标,18S基因的上下游引物分别18S UP:5’-AGGAATTGACGGAAGGGCA-3’(SEQ ID NO.8)和18S DN:5’-GTGCGGCCCAGAACATCTAAG-3’(SEQID NO.9)。ZmPep1 transgenic tobacco plants used young leaves as materials, respectively extracted RNA from the leaves of GUS-positive and wild-type plants, and synthesized one-strand cDNA of each sample RNA according to the instructions of the cDNA one-strand synthesis kit, and then amplified the ZmPep1 gene using the cDNA as a template specific fragment. The upstream and downstream primers of the ZmPep1 gene were ZmPep1 UP: 5'-TTCTGCGGCTCCTGCTC-3' (SEQ ID NO. 4) and ZmPep1 DN: 5'-GTGGTTCCCTCCATTGC-3' (SEQ ID NO. 5). Using tobacco 18S gene as internal standard, the upstream and downstream primers of 18S gene were 18S UP: 5'-AGGAATTGACGGAAGGGCA-3' (SEQ ID NO. 8) and 18S DN: 5'-GTGCGGCCCAGAACATCTAAG-3' (SEQ ID NO. 9).
20μL Real-time PCR反应体系包括:cDNA模板1μL,目的基因上下游引物各1μL,2×iQ SYBR Green Supermix 10μL,ddH2O 7μL。The 20 μL Real-time PCR reaction system includes: 1 μL cDNA template, 1 μL upstream and downstream primers of the target gene, 10
Real-time PCR扩增条件:95℃3min;94℃10s,57℃30s,72℃30s,共扩增40个循环。扩增完成后利用Gene Study软件分析ZmPep1基因相对表达量。Real-time PCR amplification conditions: 95°C for 3 min; 94°C for 10s, 57°C for 30s, and 72°C for 30s, a total of 40 cycles of amplification. After amplification, the relative expression of ZmPep1 gene was analyzed by Gene Study software.
Real-time PCR结果表明(图4),转基因棉花植株内ZmPep1基因都能有效进行转录表达,而野生型植株叶片内都没有检测到该基因的表达。The Real-time PCR results showed (Fig. 4) that the ZmPep1 gene could be effectively transcribed and expressed in the transgenic cotton plants, while the expression of this gene was not detected in the leaves of the wild-type plants.
实施例6、转基因烟草对黄萎病的抗性Example 6. Resistance of transgenic tobacco to Verticillium wilt
1、转基因烟草抗病鉴定接种用黄萎病菌的制备1. Preparation of Verticillium wilt for inoculation of transgenic tobacco for disease resistance identification
转基因烟草抗病鉴定接种用黄萎病菌的制备方法与实施实例4一致,孢子浓度调整为1010个孢子/mL。The preparation method of Verticillium wilt for inoculation of transgenic tobacco for disease resistance identification is the same as that in Example 4, and the spore concentration is adjusted to 10 10 spores/mL.
2、转基因烟草抗病鉴定接种方法2. Identification and inoculation method of transgenic tobacco for disease resistance
7-8片真叶的烟草植株,剪取从顶端至底部的第三至第五叶,用湿润的吸水纸包裹叶柄后均匀整齐摆放在接种盒内,用移液器吸头轻轻挤压叶片主叶脉和次生叶脉交界处,达到人为损伤的目的,损伤后立即在损伤处接种黄萎病菌接种液10μL。然后覆盖薄膜保湿,并置16小时光照/8小时暗培养,20℃(暗培养)/26℃光照的培养箱内培养,接种7天,按0-4级的5级标准统计叶片的病级并计算病情指数。以转化受体材料的野生型植株为对照。Tobacco plants with 7-8 true leaves, cut the third to fifth leaves from the top to the bottom, wrap the petioles with moist absorbent paper, and place them in the inoculation box evenly and neatly, and gently squeeze with a pipette tip Press the junction of the main vein and the secondary vein of the leaf to achieve the purpose of artificial injury. Immediately after the injury, inoculate 10 μL of Verticillium wilt inoculum at the injury. Then cover the film to keep moisture, and place 16 hours light/8 hours dark culture, incubator at 20°C (dark culture)/26°C light, inoculate for 7 days, and count the disease grade of leaves according to the 5-level standard of 0-4. And calculate the disease index. Wild-type plants transformed with recipient material were used as controls.
病级分级标准:0级:叶片无病症;1级:0-25%叶片面积出现病症;2级:25%-50%叶片面积出现病症;3级:50%-75%叶片面积出现病症;4级:75%以上的叶片面积出现病症。病情指数的计算公式:Disease grade grading standard: grade 0: no disease in leaves; grade 1: disease in 0-25% of the leaf area; grade 2: disease in 25%-50% of the leaf area; grade 3: disease in 50%-75% of the leaf area; Grade 4: Disease on more than 75% of the leaf area. The formula for calculating the disease index:
病情指数=(∑〖病级数×植株数〗)/(4×接种植株总数)×100。Disease index=(∑〖disease grade×number of plants〗)/(4×total number of inoculated plants)×100.
3、ZmPep1基因提高烟草对黄萎病的抗性3. ZmPep1 gene improves the resistance of tobacco to Verticillium wilt
烟草叶片接种黄萎病菌7天,野生型植株的病情指数达到57.93,转基因株系ZmPep1-1、ZmPep1-5和ZmPep1-11的病情指数分别为16.29、24.64和15.39。T检测结果显示,与野生型对照的病情指数相比,转基因株系的病情指数极显著的下降(图5中A)。接种黄萎病菌7天,野生型叶片病症面积超过了50%,而转基因烟草叶片病症面积不到10%(图5中B)。结果表明,ZmPep1基因可有效提高烟草对黄萎病的抗性。Tobacco leaves were inoculated with Verticillium wilt for 7 days, the disease index of wild-type plants reached 57.93, and the disease index of transgenic lines ZmPep1-1, ZmPep1-5 and ZmPep1-11 were 16.29, 24.64 and 15.39, respectively. The T test results showed that the disease index of the transgenic line was significantly decreased compared with the disease index of the wild-type control (A in Figure 5). After 7 days of inoculation with Verticillium wilt, the diseased area of wild-type leaves exceeded 50%, while the diseased area of transgenic tobacco leaves was less than 10% (Fig. 5, B). The results showed that ZmPep1 gene could effectively improve the resistance of tobacco to Verticillium wilt.
实施例7、棉花的遗传转化Example 7. Genetic transformation of cotton
1、棉花遗传转化常用培养基1. Common media for cotton genetic transformation
基本培养基:MSB(MS无机盐+B5有机)(T.Murashige,1962;O.L.Gamborg,1968);种子萌发培养基:1/2MSB+20g/L蔗糖+6g/L琼脂,自来水配制,自然pH;Basic medium: MSB (MS inorganic salt + B5 organic) (T.Murashige, 1962; O.L. Gamborg, 1968); Seed germination medium: 1/2MSB+20g/L sucrose+6g/L agar, prepared in tap water, natural pH ;
共培养培养基:MSB+0.5mg/L IAA(吲哚乙酸)+0.1mg/L KT(6-糠氨基嘌呤)+30g/L葡萄糖+100μmol/L乙酰丁香酮+2.0g/L Gelrite(Sigma),pH5.4;Co-culture medium: MSB+0.5mg/L IAA (indoleacetic acid)+0.1mg/L KT (6-furfuraminopurine)+30g/L glucose+100μmol/L acetosyringone+2.0g/L Gelrite (Sigma ), pH 5.4;
筛选脱菌培养基:MSB+0.5mg/L IAA+0.1mg/L KT+75mg/L Km(卡那霉素)+500mg/Lcef(头孢霉素)+30g/L葡萄糖+2.0g/L Gelrite,pH5.8;Screening sterilization medium: MSB+0.5mg/L IAA+0.1mg/L KT+75mg/L Km (Kanamycin)+500mg/Lcef (cephalosporin)+30g/L glucose+2.0g/L Gelrite , pH5.8;
愈伤诱导培养基:MSB+0.5mg/L IAA+0.1mg/L KT+75mg/L Km+200mg/L cef+30g/L葡萄糖+2.0g/L Gelrite,pH5.8;Callus induction medium: MSB+0.5mg/L IAA+0.1mg/L KT+75mg/L Km+200mg/L cef+30g/L glucose+2.0g/L Gelrite, pH5.8;
胚性愈伤诱导培养基:MSB+0.1mg/L KT+30g/L葡萄糖+2.0g/L Gelrite,pH5.8;Embryogenic callus induction medium: MSB+0.1mg/L KT+30g/L glucose+2.0g/L Gelrite, pH5.8;
液体悬浮培养基:MSB+0.1mg/L KT+30g/L葡萄糖,pH5.8;Liquid suspension medium: MSB+0.1mg/L KT+30g/L glucose, pH5.8;
体胚成熟培养基:MSB+15g/L蔗糖+15g/L葡萄糖+0.1mg/L KT+2.5g/L Gelrite,pH6.0;Somatic embryo maturation medium: MSB+15g/L sucrose+15g/L glucose+0.1mg/L KT+2.5g/L Gelrite, pH6.0;
成苗培养基:SH+0.4g/L活性碳+20g/L蔗糖,pH6.0(Schenk&Hildebrandt,1972)。Seedling medium: SH+0.4g/L activated carbon+20g/L sucrose, pH 6.0 (Schenk & Hildebrandt, 1972).
2、棉花遗传转化的方法2. Methods of cotton genetic transformation
(1)转化外植体的获得(1) Obtaining transformed explants
陆地棉栽培种冀棉14号种子去壳,籽仁3%双氧水灭菌60min,无菌自来水漂洗5-6次后,接种于种子萌发培养基,28℃暗培养5d。无菌下胚轴切成3-5mm长的切段,作为转化外植体。The seeds of the upland cotton cultivar Jimian No. 14 were shelled, the kernels were sterilized with 3% hydrogen peroxide for 60 min, rinsed with sterile tap water for 5-6 times, inoculated into the seed germination medium, and cultivated in the dark at 28°C for 5 days. Sterile hypocotyls were cut into 3-5 mm long segments and used as transformed explants.
(2)转化用农杆菌浸染液的制备(2) Preparation of Agrobacterium dipping solution for transformation
利用划线法获得整合植物表达载体pLGN-35S-ZmPep1的农杆菌单菌落,然后挑取单菌落接种入附加50mg/L Km和125mg/L Sm(链霉素)10mL液体YEB(5g/L蔗糖,1g/L细菌用酵母抽提物,10g/L细菌用胰化蛋白胨,0.5g/L MgSO4·7H2O,pH7.0),28℃、200rpm培养过夜,然后按5%的比例将菌液接种入20mL不含抗生素的液体YEB,28℃、200rpm培养至OD600约为0.5。取5mL菌液6000rpm离心5min收集菌体,再用5mL不添加Gelrite共培养液体培养基重悬菌体,重悬菌液即为浸染外植体的农杆菌浸染液。A single colony of Agrobacterium that integrates the plant expression vector pLGN-35S-ZmPep1 was obtained by the streaking method, and then a single colony was picked and inoculated into 10 mL liquid YEB (5 g/L sucrose) supplemented with 50 mg/L Km and 125 mg/L Sm (streptomycin) , 1 g/L bacterial yeast extract, 10 g/L bacterial tryptone, 0.5 g/L MgSO 4 ·7H 2 O, pH 7.0), cultured overnight at 28°C, 200 rpm, and then at a rate of 5% The bacterial liquid was inoculated into 20 mL of liquid YEB without antibiotics, and cultured at 28 °C and 200 rpm to an OD600 of about 0.5. Take 5 mL of the bacterial solution and centrifuge at 6000 rpm for 5 min to collect the bacterial cells, and then resuspend the bacterial cells in 5 mL of the non-Gelrite co-cultivation liquid medium.
(3)下胚轴的遗传转化和胚性愈伤的诱导(3) Genetic transformation of hypocotyl and induction of embryogenic callus
外植体用农杆菌浸染液浸染20min,倾去菌液,再用无菌滤纸吸去外植体表面多余的菌液,浸染后的下胚轴切段接种于共培养培养基,26℃暗培养2d,将下胚轴接种至筛选脱菌培养基,20d后继代入附加卡那霉素(Km)和头孢霉素(cef)的愈伤诱导培养基进行愈伤的诱导,间隔20d继代一次,60d后继代入胚性愈伤诱导培养基,获得胚性愈伤后进行液体悬浮培养,以获得大量生长一致的胚性愈伤。The explants were dipped with Agrobacterium dipping solution for 20 min, the bacterial solution was poured out, and the excess bacterial solution on the surface of the explants was removed with sterile filter paper. Cultured for 2 days, the hypocotyls were inoculated into the screening de-bacteria medium, and after 20 days were subcultured into the callus induction medium supplemented with kanamycin (Km) and cephalosporin (cef) for callus induction, and subcultured once every 20 days. , 60 days later, it was subcultured into embryogenic callus induction medium, and after obtaining embryogenic callus, liquid suspension culture was carried out to obtain a large number of embryogenic callus with consistent growth.
(4)体胚的诱导和成苗培养(4) Somatic embryo induction and seedling culture
液体悬浮培养的胚性愈伤,30目不锈钢筛网过滤,筛下的胚性愈伤均匀分散地接种入体胚成熟培养基,约15d产生大量的体胚,将其继代入SH培养基,促进体胚进一步成苗。3-4叶的再生苗移栽入温室进行繁殖。The embryogenic callus cultured in liquid suspension was filtered through a 30-mesh stainless steel mesh, and the embryogenic callus under the sieve was inoculated into the somatic embryo maturation medium evenly and dispersedly, and a large number of somatic embryos were produced in about 15 days, which were substituted into the SH medium, Promote the further growth of somatic embryos. The regenerated seedlings with 3-4 leaves were transplanted into the greenhouse for propagation.
实施实例8ZmPep1转基因棉花的获得和分子验证Example 8 Acquisition and molecular verification of ZmPep1 transgenic cotton
按照实施实例7的棉花遗传转化和再生方法,将ZmPep1基因转入棉花基因组。历经Km抗性愈伤、胚性愈伤和体胚的诱导,体胚成苗,然后获得ZmPep1转基因棉花植株。According to the cotton genetic transformation and regeneration method of Example 7, the ZmPep1 gene was transferred into the cotton genome. After induction of Km-resistant callus, embryogenic callus and somatic embryo, the somatic embryo became seedling, and then ZmPep1 transgenic cotton plants were obtained.
1、转基因植株的GUS组织化学染色1. GUS histochemical staining of transgenic plants
GUS染色液的配方同实施实例5.2。The formula of GUS dyeing solution is the same as that in Example 5.2.
剪取Km抗性幼苗的叶柄和叶片组织少许,分别加入GUS组织化学染色液中,37℃染色2h,然后95%乙醇脱色,至绿色去净。最后出现蓝色的为转基因植株,否则为非转基因植株。Cut a little petiole and leaf tissue of Km-resistant seedlings, add them to GUS histochemical staining solution respectively, stain at 37°C for 2 hours, and then decolorize with 95% ethanol until the green color is cleared. The last blue color is the transgenic plant, otherwise it is the non-transgenic plant.
2、ZmPep1基因的转录表达水平分析2. Analysis of the transcriptional expression level of ZmPep1 gene
ZmPep1转基因棉花植株分别以幼嫩叶片为材料,分别提取GUS阳性和野生型植物叶片的RNA,按cDNA一链合成试剂盒说明书合成各样品RNA的一链cDNA,然后以cDNA为模板扩增ZmPep1基因的特异片段。ZmPep1基因的上下游引物分别为ZmPep1 UP:5’-TTCTGCGGCTCCTGCTC-3’(SEQ ID NO.4)和ZmPep1 DN:5’-GTGGTTCCCTCCATTGC-3’(SEQ IDNO.5)。以棉花组蛋白HIS3基因为内标。HIS3基因的上下游引物分别GhHIS3 UP:5’-GAAGCCTCATCGATACCGTC-3’(SEQ ID NO.10)和GhHIS3 DN:5’-CTACCACTACCATCATGGC-3’(SEQ ID NO.11)(Zhu YQ等,2003)。ZmPep1 transgenic cotton plants used young leaves as materials, respectively extracted RNA from the leaves of GUS-positive and wild-type plants, and synthesized one-strand cDNA of each sample RNA according to the instructions of the cDNA one-strand synthesis kit, and then amplified the ZmPep1 gene using the cDNA as a template specific fragment. The upstream and downstream primers of the ZmPep1 gene were ZmPep1 UP: 5'-TTCTGCGGCTCCTGCTC-3' (SEQ ID NO. 4) and ZmPep1 DN: 5'-GTGGTTCCCTCCATTGC-3' (SEQ ID NO. 5). The cotton histone HIS3 gene was used as the internal standard. The upstream and downstream primers of the HIS3 gene were GhHIS3 UP: 5'-GAAGCCTCATCGATACGTC-3' (SEQ ID NO. 10) and GhHIS3 DN: 5'-CTACCACTACCATCATGGC-3' (SEQ ID NO. 11) (Zhu YQ et al., 2003).
20μL Real-time PCR反应体系包括:cDNA模板1μL,目的基因上下游引物各1μL,2×iQ SYBR Green Supermix 10μL,ddH2O 7μL。The 20 μL Real-time PCR reaction system includes: 1 μL cDNA template, 1 μL upstream and downstream primers of the target gene, 10
Real-time PCR扩增条件:95℃3min;94℃10s,57℃30s,72℃30s,共扩增40个循环。扩增完成后利用Gene Study软件分析ZmPep1基因相对表达量。Real-time PCR amplification conditions: 95°C for 3 min; 94°C for 10s, 57°C for 30s, and 72°C for 30s, a total of 40 cycles of amplification. After amplification, the relative expression of ZmPep1 gene was analyzed by Gene Study software.
Real-time PCR结果表明(图6),转基因棉花植株内ZmPep1基因都能有效进行转录表达,而野生型植株内没有检测到该基因的表达。The Real-time PCR results showed (Fig. 6) that the ZmPep1 gene could be effectively transcribed and expressed in the transgenic cotton plants, while the expression of this gene was not detected in the wild-type plants.
实施实例9ZmPep1转基因棉花对黄萎病的抗性Example 9 Resistance of ZmPep1 transgenic cotton to Verticillium wilt
1、抗病鉴定接种用病原菌的制备1. Preparation of pathogenic bacteria for inoculation for disease resistance identification
转基因棉花抗病鉴定病原菌的制备方法同实施实例4。The preparation method of transgenic cotton for identifying pathogenic bacteria for disease resistance is the same as that in Example 4.
2、离体叶片接种方法2. In vitro leaf inoculation method
剪取转基因棉花幼嫩植株叶片,将叶柄整理对齐后插入盛装接种菌液的培养瓶内,菌液内培养24h(即接种24h),倾弃菌液,培养瓶内注入适量无菌水,将盛装叶片的培养瓶放入16h光照,8小时暗培养的光周期,20℃(暗培养)和26℃(光照)的温度变化周期,70%湿度条件下继续保湿培养,间隔两天统计一次叶片的病级,并计算病情指数。以转化受体材料的野生型植株为对照。病级分级标准:0级:棉花叶片无病症;1级:25%以下叶面积出现病症;2级:25%-50%叶面积出现病症;3级:50%-75%叶面积出现病症;4级:75%以上的叶面积出现病症。病情指数的计算公式:Cut the leaves of transgenic cotton young plants, arrange and align the petioles and insert them into the culture bottle containing the inoculated bacterial solution. The culture bottle containing the leaves was placed in a photoperiod of 16 hours of light, 8 hours of dark culture, a temperature change cycle of 20°C (dark culture) and 26°C (light), and continued moisturizing culture under 70% humidity conditions, and leaves were counted every two days. disease grade, and calculate the disease index. Wild-type plants transformed with recipient material were used as controls. Disease grade classification standard: grade 0: no disease in cotton leaves; grade 1: disease in less than 25% of the leaf area; grade 2: disease in 25%-50% of the leaf area; grade 3: disease in 50%-75% of the leaf area; Grade 4: Disease on more than 75% of the leaf area. The formula for calculating the disease index:
病情指数=(∑〖病级数×植株数〗)/(4×接种植株总数)×100。Disease index=(∑〖disease grade×number of plants〗)/(4×total number of inoculated plants)×100.
3、ZmPep1基因提高棉花对黄萎病的抗性3. The ZmPep1 gene improves the resistance of cotton to Verticillium wilt
按照上述方法对所有转基因植株进行黄萎病抗性鉴定,结果显示:接种5d,野生型棉花的病情指数为53.43,转基因株系ZmPep1-4、ZmPep1-5和ZmPep1-7的病情指数分别为23.61、7.92和14.96。T检验结果显示,转基因棉花株系的病情指数极显著低于野生型棉花(图7中A)。接种5天,野生型棉花叶片出现严重的病症,而转基因棉花株系叶片只出现子少许病斑(图7中B)。结果表明:ZmPep1能显著提高棉花对黄萎病的抗性。Verticillium wilt resistance identification was carried out on all transgenic plants according to the above method. The results showed that the disease index of wild-type cotton was 53.43 after inoculation for 5 days, and the disease index of transgenic lines ZmPep1-4, ZmPep1-5 and ZmPep1-7 were 23.61 respectively. , 7.92 and 14.96. The T-test results showed that the disease index of the transgenic cotton line was significantly lower than that of the wild-type cotton (A in Figure 7). 5 days after inoculation, the leaves of wild-type cotton showed severe disease, while the leaves of the transgenic cotton line showed only a few lesions (B in Figure 7). The results showed that ZmPep1 could significantly improve the resistance of cotton to Verticillium wilt.
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention is subject to the claims.
序列表sequence listing
<110> 西南大学<110> Southwest University
<120> 玉米诱导子肽基因ZmPep1在提高植物对黄萎病抗性中的应用<120> Application of maize elicitor peptide gene ZmPep1 in improving plant resistance to Verticillium wilt
<160> 11<160> 11
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 417<211> 417
<212> DNA<212> DNA
<213> 玉米 (Zea mays L.)<213> Corn (Zea mays L.)
<400> 1<400> 1
atggatgagc gcggggagaa ggaggaggag cacggagtag tggaggagga gacggcggcg 60atggatgagc gcggggagaa ggaggaggag cacggagtag tggaggagga gacggcggcg 60
gttgtgctta aggaggtgga ggtggagatg gtcggcggct ctgaggaagc ctcggcggcg 120gttgtgctta aggaggtgga ggtggagatg gtcggcggct ctgaggaagc ctcggcggcg 120
ccgctcctcc tcgcgcaccc gtgctcgctt ctgcggctcc tgctccgcgc ctgcgccggc 180ccgctcctcc tcgcgcaccc gtgctcgctt ctgcggctcc tgctccgcgc ctgcgccggc 180
tgcctggtgc gcctgctgca cggctactgc agcgacggcg acgacgacga cccaaaggct 240tgcctggtgc gcctgctgca cggctactgc agcgacggcg acgacgacga cccaaaggct 240
gctgccgacg acgacgacga cgctgcgcct gaagctgctg cggcggcggc ggccgatggc 300gctgccgacg acgacgacga cgctgcgcct gaagctgctg cggcggcggc ggccgatggc 300
ggcgacaagg cagccaccta cttgtacatg caggaggtgt gggcagtgag gaggaggccg 360ggcgacaagg cagccaccta cttgtacatg caggaggtgt gggcagtgag gaggaggccg 360
acgacgcccg gccgtccgag agaaggttcc ggtggcaatg gagggaacca ccactag 417acgacgcccg gccgtccgag agaaggttcc ggtggcaatg gagggaacca ccactag 417
<210> 2<210> 2
<211> 32<211> 32
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
cgcggatccg cgatggatga gcgcggggag aa 32cgcggatccg cgatggatga gcgcggggag aa 32
<210> 3<210> 3
<211> 32<211> 32
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
cggggtaccc cgctagtggt ggttccctcc at 32cggggtaccc cgctagtggt ggttccctcc at 32
<210> 4<210> 4
<211> 17<211> 17
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
ttctgcggct cctgctc 17ttctgcggct cctgctc 17
<210> 5<210> 5
<211> 17<211> 17
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
gtggttccct ccattgc 17gtggttccct ccattgc 17
<210> 6<210> 6
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
tatcgctgac cgtatgag 18tatcgctgac cgtatgag 18
<210> 7<210> 7
<211> 18<211> 18
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
ctgagggaag caagaatg 18ctgagggaag caagaatg 18
<210> 8<210> 8
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
aggaattgac ggaagggca 19aggaattgac ggaagggca 19
<210> 9<210> 9
<211> 21<211> 21
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
gtgcggccca gaacatctaa g 21gtgcggccca gaacatctaa g 21
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
gaagcctcat cgataccgtc 20gaagcctcat cgataccgtc 20
<210> 11<210> 11
<211> 19<211> 19
<212> DNA<212> DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
ctaccactac catcatggc 19ctaccactac catcatggc 19
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011073419.1A CN112159821B (en) | 2020-10-09 | 2020-10-09 | Application of corn elicitor peptide gene ZmPep1 in improving verticillium wilt resistance of plants |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011073419.1A CN112159821B (en) | 2020-10-09 | 2020-10-09 | Application of corn elicitor peptide gene ZmPep1 in improving verticillium wilt resistance of plants |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112159821A CN112159821A (en) | 2021-01-01 |
| CN112159821B true CN112159821B (en) | 2022-08-05 |
Family
ID=73866497
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011073419.1A Expired - Fee Related CN112159821B (en) | 2020-10-09 | 2020-10-09 | Application of corn elicitor peptide gene ZmPep1 in improving verticillium wilt resistance of plants |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112159821B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112159816B (en) * | 2020-10-09 | 2022-08-26 | 西南大学 | Application of tomato hydroxyproline-rich systemic precursor protein gene SlHypSys in improvement of verticillium wilt resistance of plants |
| CN114317554B (en) * | 2021-12-29 | 2023-03-21 | 浙江大学 | Application of rape gene BnPEP5 in sclerotinia sclerotiorum prevention and control |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105602948A (en) * | 2015-11-17 | 2016-05-25 | 河北省农林科学院棉花研究所 | Genes and method for identifying gossypium hirsutum linn. variety verticillium wilt resistance by fluorescence quantitative PCR technique |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AUPO427596A0 (en) * | 1996-12-20 | 1997-01-23 | Cooperative Research Centre For Tropical Plant Pathology | Anti-microbial protein |
| AU2788600A (en) * | 1999-03-12 | 2000-10-04 | Her Majesty The Queen In Right Of Canada As Represented By The Department Of Agriculture And Agri-Food Canada | Ve protein and nucleic acid sequences, compositions, and methods for plant pathogen resistance |
| US7750207B2 (en) * | 2004-09-01 | 2010-07-06 | Monsanto Technology Llc | Zea mays ribulose bisphosphate carboxylase activase promoter |
| WO2008080014A2 (en) * | 2006-12-22 | 2008-07-03 | Donald Danforth Plant Science Center | Antifungal plant proteins and methods of their use |
| BRPI0921683B1 (en) * | 2008-11-03 | 2023-12-19 | Two Blades Foundation | METHOD FOR INTENSIFYING THE RESISTANCE OF A PLANT TO A BACTERIAL PATHOGEN, EXPRESSION CASSETTE, AND TRANSFORMED MICROORGANISM |
| CN101818170B (en) * | 2009-07-17 | 2014-07-16 | 西南大学 | Plant expression vector for vascular peculiar promoter to control antimicrobial protein gene and method for cultivating greensickness-resistant cotton |
| CN102174570B (en) * | 2011-03-17 | 2013-03-13 | 西南大学 | Plant expression vector for controlling artificially synthesized antimicrobial peptide gene by using specific vascular promoter and method for culturing anti-verticillium wilt cotton by using same |
| CN102174571B (en) * | 2011-03-17 | 2012-09-05 | 西南大学 | Method for culturing anti-greensickness cotton by using artificially synthesized antimicrobial peptide gene |
| US9181309B1 (en) * | 2011-09-30 | 2015-11-10 | The United States Of America, As Represented By The Secretary Of Agriculture | Peptide regulation of maize defense responses |
| TWI610942B (en) * | 2014-10-27 | 2018-01-11 | 中央研究院 | Plant defense signaling peptides and applications thereof |
| CN105543268B (en) * | 2015-11-03 | 2019-09-06 | 西南大学 | Method for improving plant resistance to verticillium wilt by using VdP4-ATPase gene of Verticillium wilt |
| WO2018209209A1 (en) * | 2017-05-12 | 2018-11-15 | Two Blades Foundation | Methods for screening proteins for pattern recognition receptor function in plant protoplasts |
-
2020
- 2020-10-09 CN CN202011073419.1A patent/CN112159821B/en not_active Expired - Fee Related
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105602948A (en) * | 2015-11-17 | 2016-05-25 | 河北省农林科学院棉花研究所 | Genes and method for identifying gossypium hirsutum linn. variety verticillium wilt resistance by fluorescence quantitative PCR technique |
Non-Patent Citations (3)
| Title |
|---|
| 黄萎病菌毒素诱导棉花愈伤组织中POD,SOD活性和PR蛋白的变化;李颖章等;《中国农业大学学报》;20000630(第03期);全文 * |
| 黄萎病菌致病及植物抗黄萎病分子机制研究进展;王孝坤等;《河南农业科学》;20130730(第01期);全文 * |
| 黄萎病菌诱导下陆地棉抗病品种SSH文库的EST分析;张纯颖等;《棉花学报》;20100115(第01期);全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112159821A (en) | 2021-01-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112159816B (en) | Application of tomato hydroxyproline-rich systemic precursor protein gene SlHypSys in improvement of verticillium wilt resistance of plants | |
| Schestibratov et al. | Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea | |
| CN110283824B (en) | Method for improving canker resistance of citrus by using CsXTH04 gene silencing | |
| CN105861517B (en) | A kind of Radix Notoginseng antibacterial peptide gene PnSN1 and its application | |
| CN102010466A (en) | Plant resistance associated protein MYB, as well as coding gene and application thereof | |
| CN110819607A (en) | Application of CsLYK gene and its encoded protein in improving citrus canker resistance | |
| Naseri et al. | In planta transformation of rice (Oryza sativa) using thaumatin-like protein gene for enhancing resistance to sheath blight | |
| WO2017076306A1 (en) | Method for improving plant resistance to verticillium wilt using verticillium-wilt bacteria vdp4-atpase gene | |
| CN112159821B (en) | Application of corn elicitor peptide gene ZmPep1 in improving verticillium wilt resistance of plants | |
| CN106337059A (en) | Method for improving citrus huanglongbing resistance | |
| Chen et al. | Overexpression of glucanase gene and defensin gene in transgenic tomato enhances resistance to Ralstonia solanacearum | |
| Sun et al. | High-efficiency and stable genetic transformation of pear (Pyrus communis L.) leaf segments and regeneration of transgenic plants | |
| CN108192920A (en) | A kind of method that disease resistance of plant is improved using NDR1 genes | |
| CN111690049B (en) | Gene G20E03, protein coded by same and application of gene in improving soybean cyst nematode resistance of tobacco plants | |
| CN102174570B (en) | Plant expression vector for controlling artificially synthesized antimicrobial peptide gene by using specific vascular promoter and method for culturing anti-verticillium wilt cotton by using same | |
| CN116064467B (en) | Application of BnWAK1 gene in regulating resistance to Sclerotinia sclerotiorum in Brassica napus | |
| CN113265385B (en) | Broussonetia papyrifera antibacterial protein BpChiI, recombinant expression vector thereof and application of Broussonetia papyrifera antibacterial protein BpChiI in improving verticillium wilt resistance of plants | |
| Kant et al. | Agrobacterium-mediated high frequency transformation in dwarf recalcitrant rice cultivars | |
| CN101818170B (en) | Plant expression vector for vascular peculiar promoter to control antimicrobial protein gene and method for cultivating greensickness-resistant cotton | |
| CN102174571A (en) | Method for culturing anti-greensickness cotton by using artificially synthesized antimicrobial peptide gene | |
| US20170283813A1 (en) | Systems, compositions, and methods for reducing levels of candidatus liberibacter solanacearum in potato | |
| Viswakarma et al. | Insect resistance of transgenic broccoli (‘Pusa Broccoli KTS-1’) expressing a synthetic cryIA (b) gene | |
| CN102533819A (en) | Method for improving beauveria bassiana chitinase gene disease resistance and culturing disease resistance plants adopting method | |
| CN101463393A (en) | Method for screening transgenic plate with safety marker gene | |
| KR101108971B1 (en) | Transformants of Chinese Cabbage with Increased Resistance to Soft Beetle Disease and Methods of Manufacturing the Same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220805 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |