CN112151920A - A solid-state lithium-air battery - Google Patents
A solid-state lithium-air battery Download PDFInfo
- Publication number
- CN112151920A CN112151920A CN201910571201.XA CN201910571201A CN112151920A CN 112151920 A CN112151920 A CN 112151920A CN 201910571201 A CN201910571201 A CN 201910571201A CN 112151920 A CN112151920 A CN 112151920A
- Authority
- CN
- China
- Prior art keywords
- lithium
- electrolyte
- solid
- air
- air battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/08—Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Hybrid Cells (AREA)
Abstract
本发明提供了一种固态锂空气电池,包括锂负极、电解质、空气正极和具有开闭功能的封装外壳,电解质包括具有固化功能的电解液和隔膜,锂负极、隔膜、空气正极和封装外壳组成容纳电解液的容纳腔,空气正极与隔膜连接,隔膜为多孔膜,电解液至少包括聚合单体和锂盐,电解液中锂盐的浓度为0.2‑7mol/L;本发明通过电解液的原位固化可在锂负极表面形成聚合物或者保护层,此保护层既可抑制锂枝晶、实现锂离子在负极的均匀沉积,同时起到气体保护层的作用,隔绝氧气、水、二氧化碳等气体与锂负极的直接反应;另外,电解液原位聚合形成聚合物后,可解决传统锂空气电池液态体系电解液挥发问题,从而延长锂空气电池的使用寿命,进而使锂空气电池的使用安全性提升。
The invention provides a solid-state lithium-air battery, comprising a lithium negative electrode, an electrolyte, an air positive electrode and an encapsulation shell with an opening and closing function. The accommodating cavity for accommodating the electrolyte, the air positive electrode is connected with the diaphragm, the diaphragm is a porous membrane, the electrolyte at least includes a polymerized monomer and a lithium salt, and the concentration of the lithium salt in the electrolyte is 0.2-7mol/L; In situ curing can form a polymer or protective layer on the surface of the lithium negative electrode. This protective layer can not only inhibit lithium dendrites, realize the uniform deposition of lithium ions on the negative electrode, but also play the role of a gas protective layer to isolate oxygen, water, carbon dioxide and other gases Direct reaction with the lithium negative electrode; in addition, after the electrolyte is polymerized in situ to form a polymer, it can solve the problem of electrolyte volatilization in the liquid system of traditional lithium-air batteries, thereby prolonging the service life of lithium-air batteries and making the use of lithium-air batteries safer. promote.
Description
【技术领域】【Technical field】
本发明属于锂空气二次电池相关技术领域,具体涉及一种固态锂空气电池。The invention belongs to the technical field of lithium-air secondary batteries, and in particular relates to a solid-state lithium-air battery.
【背景技术】【Background technique】
锂空气电池具有高出传统锂离子电池10倍的理论能量密度,是锂电池发展的终极目标。锂空气电池通常以金属锂或者含锂材料作为负极,氧气或者空气作为正极,非水的有机电解液、水系电解液、聚合物电解质和固态电解质作为工作电解质,电解质和正负极也可以是流动相。研究最为广泛是非水系有机电解液的锂空气电池,其理论能量密度可以达到3500Wh/kg,远高于现有的任何锂离子电池体系,即使只发挥其理论能量密度的1/4,也是相当可观的水平,并且锂空气电池以氧气或者空气作为工作气体,对环境友好,具有极高的研究价值。Lithium-air battery has a theoretical energy density 10 times higher than that of traditional lithium-ion battery, which is the ultimate goal of lithium battery development. Lithium-air batteries usually use metal lithium or lithium-containing materials as the negative electrode, oxygen or air as the positive electrode, and non-aqueous organic electrolytes, aqueous electrolytes, polymer electrolytes and solid electrolytes as the working electrolyte. The electrolyte and positive and negative electrodes can also be mobile phases. The most widely studied is the non-aqueous organic electrolyte lithium-air battery, its theoretical energy density can reach 3500Wh/kg, much higher than any existing lithium-ion battery system, even if only 1/4 of its theoretical energy density is used, it is quite impressive. The lithium-air battery uses oxygen or air as the working gas, which is environmentally friendly and has extremely high research value.
然而,可充放的二次锂空气电池至今大多只在实验室内进行扣式电池研究,软包~Ah级别研发和制备较少。这是因为锂空气电池尽管理论看起来非常理想,但是存在的问题较多,例如锂空气电池以金属锂为负极,传统金属锂负极存在的枝晶问题、体积膨胀等问题在锂空气电池中同样存在,此外,锂空气电池作为一个开放/半开放的体系,还需要解决金属锂在工作气体下的稳定性;对正极一侧的开放窗口,电解液会随着循环逐渐挥发耗开,电池逐渐失效;此外在循环寿命、功率密度、能量效率等诸多方面锂空气电池的性能都有待于提高。However, most of the rechargeable secondary lithium-air batteries have only been researched on button batteries in the laboratory so far, and the research and development and preparation of soft packs to Ah level are less. This is because although the lithium-air battery looks very ideal in theory, there are many problems. For example, the lithium-air battery uses metal lithium as the negative electrode, and the dendrite problem and volume expansion of the traditional metal lithium negative electrode are the same in the lithium-air battery. In addition, as an open/semi-open system, the lithium-air battery also needs to solve the stability of metal lithium under the working gas; for the open window on the positive side, the electrolyte will gradually volatilize and dissipate with the cycle, and the battery gradually In addition, the performance of lithium-air batteries needs to be improved in many aspects such as cycle life, power density, and energy efficiency.
固态电解质在室温下具有较高的离子电导率、不存在电解液的挥发问题,以及其拥有较高的机械强度,可以抑制锂枝晶的生长,是解决锂空气电池实际应用问题的一个较好的方法。但是锂空气电池正极是以气体通道、锂离子通道和电子通道共同组成的三相界面,以无机陶瓷作为电解质的锂空气电池体系正极的设计过于复杂,很难构建三相界面;并且无机陶瓷的使用会大大降低锂空气电池的能量密度,发挥不出锂空气的优势。The solid electrolyte has high ionic conductivity at room temperature, does not have the problem of volatilization of the electrolyte, and has high mechanical strength, which can inhibit the growth of lithium dendrites, which is a better solution to the practical application of lithium-air batteries. Methods. However, the lithium-air battery cathode is a three-phase interface composed of gas channels, lithium ion channels and electronic channels. The design of the cathode of the lithium-air battery system with inorganic ceramics as the electrolyte is too complicated, and it is difficult to construct a three-phase interface; The use will greatly reduce the energy density of lithium-air batteries, and the advantages of lithium-air cannot be exerted.
【发明内容】[Content of the invention]
针对现有技术中存在的上述技术问题,本发明采用可原位聚合的电解液,在锂负极表面聚合形成固态/半固态聚合物电解质,可抑制负极锂枝晶的生长,解决电解液的易挥发的问题,提高锂空气电池的安全性和循环寿命,为了实现上述目的,本发明的技术方案如下:In view of the above-mentioned technical problems existing in the prior art, the present invention adopts an electrolyte that can be polymerized in-situ to polymerize on the surface of the lithium negative electrode to form a solid/semi-solid polymer electrolyte, which can inhibit the growth of lithium dendrites in the negative electrode, and solve the problem of easy electrolyte solution. The problem of volatilization improves the safety and cycle life of the lithium-air battery, in order to achieve the above purpose, the technical scheme of the present invention is as follows:
一种固态锂空气电池,包括锂负极、电解质、空气正极和具有开闭功能的封装外壳,所述电解质包括隔膜和具有固化功能的电解液,所述锂负极、隔膜、空气电极和封装外壳组成容纳所述电解液的容纳腔,所述空气正极与所述隔膜连接且设于所述隔膜远离所述锂负极的一面,所述隔膜为多孔膜,所述电解液至少包括聚合单体和锂盐,所述电解液中所述锂盐的浓度为0.2-7mol/L。A solid-state lithium-air battery, comprising a lithium negative electrode, an electrolyte, an air positive electrode and an encapsulation shell with an opening and closing function, the electrolyte includes a separator and an electrolyte with a curing function, and the lithium anode, the separator, the air electrode and the encapsulation shell are composed of an accommodating chamber for accommodating the electrolyte, the air positive electrode is connected to the diaphragm and is arranged on the side of the diaphragm away from the lithium negative electrode, the diaphragm is a porous membrane, and the electrolyte at least includes a polymer monomer and lithium Salt, the concentration of the lithium salt in the electrolyte is 0.2-7 mol/L.
进一步地,所述聚合单体为至少含有一个氧原子的烯烃或至少含有一个氧原子的环状烯烃。Further, the polymerized monomer is an olefin containing at least one oxygen atom or a cyclic olefin containing at least one oxygen atom.
进一步地,所述电解液还包括有机溶剂,所述有机溶剂的体积占所述电解液总体积的10-90%;所述聚合单体的体积占所述电解液总体积的10-90%。Further, the electrolyte further includes an organic solvent, and the volume of the organic solvent accounts for 10-90% of the total volume of the electrolyte; the volume of the polymerized monomer accounts for 10-90% of the total volume of the electrolyte .
进一步地,所述隔膜为聚乙烯膜、聚丙烯膜、聚氯乙烯膜、聚偏氟乙烯-六氟丙烯膜、聚酰亚胺膜、聚碳酸酯膜、聚对苯二甲酸乙二醇酯膜、聚对苯二甲酸丁二醇酯膜、聚醚丙酮膜、聚间苯二甲酰间苯二胺膜、纤维素膜中的其中一种或两种以上层叠组合。Further, the diaphragm is polyethylene film, polypropylene film, polyvinyl chloride film, polyvinylidene fluoride-hexafluoropropylene film, polyimide film, polycarbonate film, polyethylene terephthalate A film, polybutylene terephthalate film, polyether acetone film, polymetaphenylene isophthalamide film, and cellulose film are laminated and combined.
进一步地,所述锂盐为三氟甲基磺酸锂、双(三氟甲基磺酸)亚胺锂、双(氟磺酰)亚胺锂、双草酸硼酸锂、二氟草酸硼酸锂、六氟磷酸锂(LiPF6)、四氟硼酸锂、高氯酸锂、溴化锂、碘化锂、二氟磷酸锂、硝酸锂中的任意一种或两种以上的混合物。Further, the lithium salt is lithium trifluoromethanesulfonate, lithium bis(trifluoromethanesulfonate)imide, lithium bis(fluorosulfonyl)imide, lithium bisoxalate borate, lithium difluorooxalate borate, Any one or a mixture of two or more of lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate, lithium perchlorate, lithium bromide, lithium iodide, lithium difluorophosphate, and lithium nitrate.
进一步地,所述有机溶剂包括乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、二甲基亚砜、二甲基甲酰胺、乙腈、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸丙烯酯、碳酸亚乙烯酯、碳酸乙烯亚乙酯、氟代碳酸乙烯酯、离子液体中的任意一种或两种以上的混合物。Further, the organic solvent includes ethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, dimethyl sulfoxide, dimethylformamide, acetonitrile, ethylene carbonate, carbonic acid Any one or a mixture of two or more of dimethyl ester, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, vinylene carbonate, ethylene ethylene carbonate, fluoroethylene carbonate and ionic liquid.
进一步地,所述锂负极为金属锂、锂合金或含有金属锂的复合物。Further, the lithium negative electrode is metal lithium, lithium alloy or a composite containing metal lithium.
进一步地,所述空气正极包括多孔导电材料、催化剂、粘结剂和允许气体通过的导电集流体。Further, the air cathode includes a porous conductive material, a catalyst, a binder and a conductive current collector that allows gas to pass through.
进一步地,所述固态锂空气电池的工作气体包括氧气、二氧化碳、二氧化硫中的其中一种或含氧气的混合气体或含二氧化碳的混合气体或含二氧化硫的混合气体。Further, the working gas of the solid-state lithium-air battery includes one of oxygen, carbon dioxide, and sulfur dioxide, or a mixed gas containing oxygen or a mixed gas containing carbon dioxide or a mixed gas containing sulfur dioxide.
相较于现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本发明通过电解液的原位聚合,一方面,可在锂负极表面形成聚合物或者凝胶保护层,此保护层既可抑制锂枝晶、实现锂离子在负极的均匀沉积,也可以起到气体保护层的作用,隔绝氧气、水、二氧化碳等气体与金属锂负极的直接反应;另一方面,电解液原位聚合形成聚合物后,可解决传统锂空气电池液态体系电解液挥发问题,从而延长锂空气电池的使用寿命,进而使锂空气电池的安全性提升,并且提高了锂空气电池的循环寿命。In the present invention, through the in-situ polymerization of the electrolyte, on the one hand, a polymer or gel protective layer can be formed on the surface of the lithium negative electrode. The protective layer can not only inhibit lithium dendrites, realize the uniform deposition of lithium ions on the negative electrode, but also play The role of the gas protective layer is to isolate the direct reaction of oxygen, water, carbon dioxide and other gases with the metal lithium negative electrode; on the other hand, after the electrolyte is in-situ polymerized to form a polymer, it can solve the problem of electrolyte volatilization in the liquid system of traditional lithium-air batteries, thereby The service life of the lithium-air battery is prolonged, thereby improving the safety of the lithium-air battery and improving the cycle life of the lithium-air battery.
【附图说明】【Description of drawings】
图1为使用对照组电解液锂空气电池在限容1000mAh/g的状态下,第1周和第31周充放电曲线;Figure 1 shows the charge-discharge curves in the 1st week and the 31st week when the lithium-air battery with the electrolyte of the control group is limited to 1000mAh/g;
图2为使用实施例1电解液锂空气电池在限容1000mAh/g的状态下,第1周和第100周充放电曲线;Fig. 2 is the charge-discharge curve of the first week and the 100th week of using the electrolyte lithium-air battery of Example 1 under the state of limited capacity of 1000mAh/g;
图3为实施例1所制备的锂空气电池结构示意图。FIG. 3 is a schematic structural diagram of the lithium-air battery prepared in Example 1. FIG.
【具体实施方式】【Detailed ways】
本发明旨在提供一种固态锂空气电池,包括锂负极、电解质、空气正极和具有开闭功能的封装外壳,所述电解质包括隔膜和具有固化功能的电解液,所述锂负极、隔膜、空气正极和封装外壳组成容纳所述电解液的第一容纳腔,所述空气正极与所述隔膜连接且设于所述隔膜远离所述锂负极的一面,所述隔膜为多孔膜,所述电解液至少包括聚合单体和锂盐,所述电解液中所述锂盐的浓度为0.2-7mol/L;更优选的,电解液中锂盐的浓度为0.8-6.0mol/L;进一步地,所述聚合单体为至少含有一个氧原子的烯烃或至少含有一个氧原子的环状烯烃,包括但不限于1,3-二氧戊环、1,4-二氧己环、三聚甲醛、氧杂环丁烷、四氢呋喃或者被基团取代的1,3-二氧戊环、1,4-二氧己环、环氧乙烷、氧杂环丁烷、四氢呋喃中的一种或两种以上的混合物;其中,所述基团选自烷基、环烷基、羧基、羟基、芳基、氨基、卤素、酰基、醛基、烷氧基、酯基中的其中一种。The present invention aims to provide a solid-state lithium-air battery, comprising a lithium negative electrode, an electrolyte, an air positive electrode and an encapsulation shell with an opening and closing function, the electrolyte includes a separator and an electrolyte with a curing function, the lithium negative electrode, the separator, the air The positive electrode and the packaging shell form a first accommodating cavity for accommodating the electrolyte, the air positive electrode is connected to the diaphragm and is arranged on the side of the diaphragm away from the lithium negative electrode, the diaphragm is a porous membrane, and the electrolyte At least include a polymerized monomer and a lithium salt, and the concentration of the lithium salt in the electrolyte is 0.2-7mol/L; more preferably, the concentration of the lithium salt in the electrolyte is 0.8-6.0mol/L; further, the The polymerized monomer is an olefin containing at least one oxygen atom or a cyclic olefin containing at least one oxygen atom, including but not limited to 1,3-dioxolane, 1,4-dioxane, trioxymethylene, oxygen One or more of tetrahydrofuran, tetrahydrofuran or 1,3-dioxolane, 1,4-dioxane, ethylene oxide, oxetane and tetrahydrofuran substituted by groups A mixture of ; wherein, the group is selected from one of alkyl, cycloalkyl, carboxyl, hydroxyl, aryl, amino, halogen, acyl, aldehyde, alkoxy, and ester groups.
除聚合单体和锂盐之外,电解液还可包括有机溶剂,有机溶剂优选选自乙二醇二甲醚(DME)、三乙二醇二甲醚(G3)、四乙二醇二甲醚(G4)、二甲基亚砜(DMSO)、二甲基甲酰胺(DMF)、乙腈(ACN)、碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、碳酸乙烯亚乙酯(VEC)、氟代碳酸乙烯酯(FEC)、离子液体中的其中一种或两种以上的混合物;含有机溶剂的电解液中,聚合单体的体积占电解液总体积的10-90%,优选为30-80%;有机溶剂的体积占电解液总体积的10-90%,优选为20-70%。In addition to the polymerized monomer and the lithium salt, the electrolyte may also include an organic solvent, and the organic solvent is preferably selected from ethylene glycol dimethyl ether (DME), triethylene glycol dimethyl ether (G3), tetraethylene glycol dimethyl ether Ether (G4), Dimethyl Sulfoxide (DMSO), Dimethyl Formamide (DMF), Acetonitrile (ACN), Ethylene Carbonate (EC), Dimethyl Carbonate (DMC), Diethyl Carbonate (DEC) , one of ethyl methyl carbonate (EMC), propylene carbonate (PC), vinylene carbonate (VC), ethylene ethylene carbonate (VEC), fluoroethylene carbonate (FEC), ionic liquid or A mixture of two or more kinds; in the electrolyte containing organic solvent, the volume of the polymerized monomer accounts for 10-90% of the total volume of the electrolyte, preferably 30-80%; the volume of the organic solvent accounts for 10-90% of the total volume of the electrolyte %, preferably 20-70%.
上述技术方案中,隔膜为聚乙烯膜、聚丙烯膜、聚氯乙烯膜、聚偏氟乙烯-六氟丙烯膜、聚酰亚胺膜、聚碳酸酯膜、聚对苯二甲酸乙二醇酯膜、聚对苯二甲酸丁二醇酯膜、聚醚丙酮膜、聚间苯二甲酰间苯二胺膜、纤维素膜中的其中一种或两种以上层叠组合;优选的,隔膜厚度为0.1-50μm。In the above technical scheme, the diaphragm is a polyethylene film, a polypropylene film, a polyvinyl chloride film, a polyvinylidene fluoride-hexafluoropropylene film, a polyimide film, a polycarbonate film, and a polyethylene terephthalate film. Film, polybutylene terephthalate film, polyether acetone film, polymetaphenylene isophthalamide film, cellulose film, one or two or more laminated combinations; preferably, the thickness of the diaphragm 0.1-50μm.
上述技术方案中,锂盐为三氟甲基磺酸锂(LiCF3SO3)、双(三氟甲基磺酸)亚胺锂(LiTFSI)、双(氟磺酰)亚胺锂(LiFSI)、双草酸硼酸锂(LiBOB)、二氟草酸硼酸锂(LiDFOB)、六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、高氯酸锂(LiClO4)、溴化锂(LiBr)、碘化锂(LiI)、二氟磷酸锂(LiPO2F2)、硝酸锂(LiNO3)中的其中一种或两种以上的混合物;优选的,所述锂盐选自六氟磷酸锂(LiPF6)、双(氟磺酰)亚胺锂(LiFSI)、二氟草酸硼酸锂(LiDFOB)中的任意一种或两种以上的混合物;其中,LiCF3SO3和LiDFOB混合物、LiTFSI和LiDFOB混合物、LiTFSI和LiFSI混合物、LiTFSI和LiBF4混合物、LiTFSI和LiPF6混合物、LiCF3SO3和LiFSI混合物中的其中一种为更优选的锂盐,其中,LiCF3SO3、LiTFSI的摩尔浓度为0.5-3.0mol/L,LiDFOB、LiFSI的摩尔浓度为0.5-6mol/L。In the above technical solution, the lithium salt is lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(trifluoromethanesulfonate)imide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI) , Lithium Bisoxalate Borate (LiBOB), Lithium Difluorooxalate Borate (LiDFOB), Lithium Hexafluorophosphate (LiPF 6 ), Lithium Tetrafluoroborate (LiBF 4 ), Lithium Perchlorate (LiClO 4 ), Lithium Bromide (LiBr), Lithium Iodide One or a mixture of two or more of (LiI), lithium difluorophosphate (LiPO 2 F 2 ), and lithium nitrate (LiNO 3 ); preferably, the lithium salt is selected from lithium hexafluorophosphate (LiPF 6 ), bis( Lithium fluorosulfonyl)imide (LiFSI), lithium difluorooxalate borate (LiDFOB), any one or a mixture of two or more; wherein, LiCF 3 SO 3 and LiDFOB mixture, LiTFSI and LiDFOB mixture, LiTFSI and LiFSI mixture One of LiTFSI and LiBF 4 mixture, LiTFSI and LiPF 6 mixture, LiCF 3 SO 3 and LiFSI mixture is a more preferred lithium salt, wherein the molar concentration of LiCF 3 SO 3 and LiTFSI is 0.5-3.0mol/L , the molar concentration of LiDFOB and LiFSI is 0.5-6mol/L.
上述技术方案中,锂负极为金属锂、锂合金或含金属锂的复合物;其中,锂合金中锂含量不低于30%,锂合金中还包括铝、镁、硼、硅、锡、钙、镓、锗中的任意一种或两种以上;含金属锂的复合物包括金属锂与碳、硅、铝、铜、锡形成的物理混合物以及氮化铜、锂铜氮、锂铁氮、锂锰氮、锂钴氮、Li7MP3(M=Ti、V、Mn)形成的复合物,其中金属锂的含量不低于30%。In the above technical solution, the lithium negative electrode is metal lithium, lithium alloy or a composite containing metal lithium; wherein, the lithium content in the lithium alloy is not less than 30%, and the lithium alloy also includes aluminum, magnesium, boron, silicon, tin, calcium. , any one or two or more of gallium and germanium; the metal lithium-containing composite includes the physical mixture formed by metal lithium and carbon, silicon, aluminum, copper, and tin, as well as copper nitride, lithium copper nitrogen, lithium iron nitrogen, A complex formed by lithium manganese nitrogen, lithium cobalt nitrogen, and Li 7 MP 3 (M=Ti, V, Mn), wherein the content of metal lithium is not less than 30%.
所述空气正极用于吸附工作气体并提供电子传输,其包括多孔导电材料、催化剂、粘结剂和允许气体通过的导电集流体,优选的,多孔导电材料包括碳纳米管、碳纤维、多孔碳、乙炔黑、石墨、石墨烯、氧化石墨烯、氮掺杂碳中的任意一种或两种以上的混合物;催化剂包括过渡金属氧化物、过渡金属氮化物、钌(Ru)、铂(Pt)、钯(Pd)和金(Au)中的任意一种或两种以上的混合物,其中,过渡金属氧化物优选为氧化锰、氧化亚锰、氧化铁、氧化镍、氧化钴、氧化钌、氧化铱、氧化钼和氧化铈;过渡金属氮化物优选为氮化锰、氮化铁、氮化镍、氮化钛和氮化钴,另外,催化剂还可以为LixMaOz,其中,M为Ti、Cu、Mn、Fe、Co、Ni、Zn、Ag、Zr、Nb、Mo或W,x=0~4,a=0.5~3,z=0.5~5;所述粘结剂包括聚四氟乙烯、聚偏氟乙烯、聚酰胺酰亚胺、聚酰亚胺、海藻酸钠和羧甲基纤维素中的其中一种或两种以上的混合物;所述导电集流体包括多孔铝箔、铝网、不锈钢网、泡沫镍、碳纸、碳布中的其中一种或两种以上的混合物。The air cathode is used to adsorb the working gas and provide electron transport, and it includes a porous conductive material, a catalyst, a binder and a conductive current collector that allows the gas to pass through. Preferably, the porous conductive material includes carbon nanotubes, carbon fibers, porous carbon, Any one or a mixture of two or more of acetylene black, graphite, graphene, graphene oxide, and nitrogen-doped carbon; catalysts include transition metal oxides, transition metal nitrides, ruthenium (Ru), platinum (Pt), Any one or a mixture of two or more of palladium (Pd) and gold (Au), wherein the transition metal oxide is preferably manganese oxide, manganese oxide, iron oxide, nickel oxide, cobalt oxide, ruthenium oxide, iridium oxide , molybdenum oxide and cerium oxide; the transition metal nitrides are preferably manganese nitride, iron nitride, nickel nitride, titanium nitride and cobalt nitride, in addition, the catalyst can also be Li x M a O z , wherein M is Ti, Cu, Mn, Fe, Co, Ni, Zn, Ag, Zr, Nb, Mo or W, x=0~4, a=0.5~3, z=0.5~5; the binder includes polytetrafluoroethylene One or more mixtures of vinyl fluoride, polyvinylidene fluoride, polyamideimide, polyimide, sodium alginate and carboxymethyl cellulose; the conductive current collector includes porous aluminum foil, aluminum One or a mixture of two or more of net, stainless steel net, nickel foam, carbon paper, and carbon cloth.
上述技术方案中,具有开闭功能的封装外壳为两层或多层结构,其中,内层为单层透气层,透气层材质包括但不限于聚四氟乙烯(PTFE)、聚偏氟乙烯(PVDF)、聚苯胺(PAN)、聚对苯二甲酸乙二醇酯(PET)、聚四氟乙烯涂覆的玻璃纤维(TCFC)中的一种或其衍生物,透气层厚度优选为10-400μm;外层为可揭开的密封层,包括铝塑膜、聚丙烯类薄膜(PP)、聚对苯二甲酸乙二醇酯(PET)类薄膜中的一种或两种以上组合形成的层叠结构。In the above technical solution, the encapsulation shell with the opening and closing function is a two-layer or multi-layer structure, wherein the inner layer is a single-layer air-permeable layer, and the material of the air-permeable layer includes but is not limited to polytetrafluoroethylene (PTFE), polyvinylidene fluoride ( PVDF), polyaniline (PAN), polyethylene terephthalate (PET), polytetrafluoroethylene-coated glass fiber (TCFC) or its derivatives, the thickness of the breathable layer is preferably 10- 400 μm; the outer layer is a peelable sealing layer, including one or more of aluminum plastic film, polypropylene film (PP), and polyethylene terephthalate (PET) film. layered structure.
上述技术方案中,所述固态锂空气电池的工作气体为氧气、二氧化碳、二氧化硫中的其中一种,或者含氧气的混合气体(如空气或其他含氧气的混合气体)或含二氧化碳的混合气体或含二氧化硫的混合气体。In the above technical scheme, the working gas of the solid-state lithium-air battery is one of oxygen, carbon dioxide, and sulfur dioxide, or an oxygen-containing mixed gas (such as air or other oxygen-containing mixed gas) or a carbon dioxide-containing mixed gas or Mixed gas containing sulfur dioxide.
本发明还提供了固态锂空气电池的制备方法,包括以下步骤:在惰性气氛或干燥气氛下,将锂负极、隔膜、空气正极设于封装外壳的内层中组装电池,其中,锂负极、隔膜、空气正极与封装外壳形成可容纳电解液的容纳腔;空气正极与隔膜连接且设于隔膜远离锂负极的一面,在容纳腔中注入电解液,封装电池,电池封装后不接触空气;静置一段时间,待电解液聚合后,即可得到固态锂空气电池;然后打开空气正极侧的密封窗口或气道口,连接工作空气,该固态锂空气电池即可在开放环境中进行充放电。The present invention also provides a method for preparing a solid-state lithium-air battery, comprising the following steps: in an inert atmosphere or a dry atmosphere, arranging a lithium negative electrode, a separator, and an air positive electrode in the inner layer of an encapsulation shell to assemble the battery, wherein the lithium negative electrode, the separator , The air positive electrode and the packaging shell form an accommodation cavity that can accommodate the electrolyte; the air positive electrode is connected to the diaphragm and is located on the side of the diaphragm away from the lithium negative electrode, and the electrolyte is injected into the accommodation cavity to encapsulate the battery, and the battery does not touch the air after packaging; After a period of time, after the electrolyte is polymerized, a solid-state lithium-air battery can be obtained; then open the sealing window or air port on the positive side of the air, connect the working air, and the solid-state lithium-air battery can be charged and discharged in an open environment.
进一步地,电解液聚合所需时间为1-100h,优选为3-24h;聚合时的反应温度为10-50℃,优选为15-35℃。Further, the time required for the polymerization of the electrolyte solution is 1-100h, preferably 3-24h; the reaction temperature during the polymerization is 10-50°C, preferably 15-35°C.
本发明所提供的固态锂空气电池的工作温度为0-150℃,优选为20-90℃。The working temperature of the solid-state lithium-air battery provided by the present invention is 0-150°C, preferably 20-90°C.
需要说明的是,锂空气电池的组装与结构均属于现有技术,在此不做详细说明。It should be noted that the assembly and structure of the lithium-air battery belong to the prior art and will not be described in detail here.
本发明所提供的固态锂空气电池基于电解液的原位聚合,可在锂负极表面形成聚合物或者凝胶保护层,此保护层既可抑制锂枝晶、实现锂离子在负极的均匀沉积,也可以起到气体保护层的作用,隔绝氧气、水、二氧化碳等气体与金属锂负极的直接反应;另外,电解液原位聚合形成聚合物后,可解决传统锂空气电池液态体系电解液挥发问题,从而延长锂空气电池的使用寿命,进而使锂空气电池的安全性提升,并且提高了锂空气电池的循环寿命。The solid-state lithium-air battery provided by the present invention is based on the in-situ polymerization of the electrolyte, and can form a polymer or gel protective layer on the surface of the lithium negative electrode. The protective layer can suppress lithium dendrites and realize uniform deposition of lithium ions on the negative electrode. It can also play the role of a gas protective layer to isolate the direct reaction of oxygen, water, carbon dioxide and other gases with the metal lithium negative electrode; in addition, after the electrolyte is in-situ polymerized to form a polymer, it can solve the problem of electrolyte volatilization in the liquid system of traditional lithium-air batteries , thereby prolonging the service life of the lithium-air battery, thereby improving the safety of the lithium-air battery, and improving the cycle life of the lithium-air battery.
本发明所提供的固态锂空气电池的制备工艺简单,易于工业化生产。The preparation process of the solid-state lithium-air battery provided by the invention is simple, and the industrial production is easy.
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
实施例1Example 1
一种固态锂空气电池,包括空气正极、电解质、锂负极和具有开闭功能的封装外壳,其制备方法如下:A solid-state lithium-air battery, comprising an air positive electrode, an electrolyte, a lithium negative electrode and an encapsulation shell with an opening and closing function, the preparation method of which is as follows:
S1:空气正极的制备:将碳纳米管(CNT)和聚四氟乙烯(PTFE)粘结剂以质量百分比95:5称取,以去离子水作为分散剂,将其搅拌均匀;再通过喷涂的方法把浆料均匀喷涂至集流体铝网,放至55℃烘箱进行烘干;再转移至110℃真空烘箱中保持12小时,使分散剂完全挥发;S1: Preparation of air cathode: Weigh carbon nanotubes (CNTs) and polytetrafluoroethylene (PTFE) binders at a mass percentage of 95:5, use deionized water as a dispersant, and stir them evenly; The slurry is uniformly sprayed onto the current collector aluminum mesh, and then dried in a 55°C oven; then transferred to a 110°C vacuum oven for 12 hours to completely volatilize the dispersant;
S2:电解液的制备:聚合单体为1,3-二氧戊环(DOL),体积占电解液总体积的50%,有机溶剂为四乙二醇二甲醚(G4),占溶液总体积的50%,锂盐为1mol/L的双(三氟甲基磺酸)亚胺锂(LiTFSI)和3mol/L的双(氟磺酰)亚胺锂(LiFSI);S2: Preparation of electrolyte: the polymerized monomer is 1,3-dioxolane (DOL), which accounts for 50% of the total volume of the electrolyte, and the organic solvent is tetraethylene glycol dimethyl ether (G4), which accounts for 50% of the total volume of the solution. 50% of the volume, the lithium salts are 1mol/L lithium bis(trifluoromethanesulfonic acid)imide (LiTFSI) and 3mol/L lithium bis(fluorosulfonyl)imide (LiFSI);
S3:锂空气电池的组装:将负极1、电解质2(包括隔膜和电解液)、空气正极3、封装外壳(包括透气层4和可揭开封装层5和电池外壳6)在干燥气氛下或者充满氩气的手套箱组装成电池,电池结构如图3所示;S3: Assembly of the lithium-air battery: the
S4:注入S2配制的电解液,等待聚合完成后,连通工作气体7,以氧气作为工作气体,对电池进行放电充电测试。S4: inject the electrolyte prepared in S2, wait for the completion of the polymerization, connect the working
(二)原位聚合的可充放固态锂空气电池电化学性能测试(2) Electrochemical performance test of in-situ polymerized rechargeable and dischargeable solid-state lithium-air batteries
使用购自武汉蓝电电子股份有限公司的型号为CT2001A的充放电仪进行恒流充放电模式测试,测试温度为25℃,测试结果如表1所示。The constant-current charge-discharge mode test was carried out using a charge-discharge meter of model CT2001A purchased from Wuhan Landian Electronics Co., Ltd., and the test temperature was 25°C. The test results are shown in Table 1.
限压放电测试:以100mA/g的电流大小进行充放电测试,电池先放电,充放电电压范围为2.0~4.5V,然后重复这个过程。Voltage-limiting discharge test: The charge and discharge test is carried out with a current of 100mA/g. The battery is discharged first, and the charge and discharge voltage range is 2.0 to 4.5V, and then the process is repeated.
限容循环测试:首先以200mA/g的电流大小放电5小时,在以200mA/g的电流大小充电5小时(限容1000mAh/g),然后依次重复这两个过程,其充放电比容量对电压的曲线如图2所示。可以看出,本实施例提供的电池在放电及充电过程中有两个明显的平台,放电平台中点位于2.7V,充电平台中点位于4.0V,充放电平台差约为1.3V。在前五周的循环中,该电压差没有明显变化,比容量也没有明显降低,说明这种电池能够工作,并具有优异的循环性能。Capacity-limiting cycle test: first, discharge at a current of 200mA/g for 5 hours, and then charge at a current of 200mA/g for 5 hours (limited capacity is 1000mAh/g), and then repeat these two processes in turn. The voltage curve is shown in Figure 2. It can be seen that the battery provided by this embodiment has two obvious plateaus during the discharge and charging process, the midpoint of the discharge plateau is at 2.7V, the midpoint of the charging plateau is at 4.0V, and the difference between the charge and discharge plateaus is about 1.3V. In the first five weeks of cycling, the voltage difference did not change significantly, and the specific capacity did not decrease significantly, indicating that the battery could work and have excellent cycling performance.
循环周次=放电终止电位>2.0V时所循环的周次Cycle times = cycle times when discharge termination potential > 2.0V
对比例Comparative ratio
其他条件与实施例1相同,不同之处在于S2)使用不能原位聚合的普通电解液,具体配方为将1mol/L浓度的LiTFSI溶于G4溶剂中,待完全溶解后,可注液使用。Other conditions are the same as in Example 1, the difference is that S2) uses a common electrolyte that cannot be polymerized in situ, and the specific formula is to dissolve LiTFSI with a concentration of 1 mol/L in G4 solvent, and after it is completely dissolved, it can be injected.
对本对比例所制备的锂空气电池进行电化学性能测试,测试内容及方法与实施例1相同,其充放电比容量对电压的曲线如图1所示;相关性能测试结果如表1所示。The electrochemical performance test of the lithium-air battery prepared in this comparative example is carried out. The test content and method are the same as those in Example 1.
实施例2Example 2
其他条件与实施例1相同,不同之处在于S1)空气正极的制备,实施例2的制备方法为:将科琴碳黑(KB)和聚偏氟乙烯(PVDF)粘结剂以质量百分比92:8称取,以N甲基吡咯烷酮(NMP)作为分散剂,将其搅拌均匀,制成浆料;再通过喷涂的方法把浆料均匀喷涂至集流体碳纸,放至55℃烘箱进行烘干;再转移至110℃真空烘箱中保持12小时,使分散剂完全挥发。Other conditions are the same as in Example 1, the difference is that S1) the preparation of the air cathode, the preparation method of Example 2 is: the Ketjen carbon black (KB) and the polyvinylidene fluoride (PVDF) binder are mixed with a mass percentage of 92%. : 8 take by weighing, take N-methylpyrrolidone (NMP) as dispersant, stir it evenly to make slurry; then spray the slurry evenly to the current collector carbon paper by spraying, put it in a 55 ℃ oven for drying Dry; then transfer to a 110°C vacuum oven for 12 hours to completely volatilize the dispersant.
实施例3Example 3
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中聚合单体所占的体系分数为40%,溶剂所占的体积分数为60%。Other conditions are the same as in Example 1, except that S2) the system fraction occupied by the polymerizable monomer in the in-situ polymerizable electrolyte is 40%, and the volume fraction occupied by the solvent is 60%.
实施例4Example 4
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中聚合单体为1,4-二氧己环。Other conditions are the same as in Example 1, except that S2) the polymerizable monomer in the in-situ polymerizable electrolyte is 1,4-dioxane.
实施例5Example 5
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中聚合单体为四氢呋喃。Other conditions are the same as in Example 1, except that S2) the polymerizable monomer in the in-situ polymerizable electrolyte is tetrahydrofuran.
实施例6Example 6
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中聚合单体为三聚甲醛。Other conditions are the same as in Example 1, except that S2) the polymerizable monomer in the in-situ polymerizable electrolyte is trioxymethylene.
实施例7Example 7
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中聚合单体为环氧丙烷。Other conditions are the same as in Example 1, except that S2) the polymerizable monomer in the in-situ polymerizable electrolyte is propylene oxide.
实施例8Example 8
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中锂盐为1mol/L的LiCF3SO3和2mol/L的LiFSI。Other conditions are the same as in Example 1, except that S2) the lithium salts in the in-situ polymerizable electrolyte are 1 mol/L LiCF3SO3 and 2 mol/L LiFSI.
实施例9Example 9
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中锂盐为1mol/L的LiCF3SO3和3mol/L的LiDFOB。Other conditions are the same as in Example 1, except that S2) the lithium salts in the in-situ polymerizable electrolyte are 1 mol/L LiCF3SO3 and 3 mol/L LiDFOB.
实施例10Example 10
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中锂盐为1mol/L的LiTFSI和3mol/L的LiDFOB。Other conditions are the same as in Example 1, except that S2) the lithium salts in the in-situ polymerizable electrolyte are 1 mol/L LiTFSI and 3 mol/L LiDFOB.
实施例11Example 11
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中锂盐为1mol/L的LiTFSI和1mol/L的LiPF6。Other conditions are the same as in Example 1, except that S2) the lithium salts in the in-situ polymerizable electrolyte are 1 mol/L LiTFSI and 1 mol/L LiPF6.
实施例12Example 12
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中锂盐为1mol/L的LiTFSI和1mol/L的LiBF4。Other conditions are the same as in Example 1, except that S2) the lithium salts in the in-situ polymerizable electrolyte are 1 mol/L LiTFSI and 1 mol/L LiBF4.
实施例13Example 13
其他条件与实施例1相同,不同之处在于S2)可原位聚合的电解液中锂盐为1mol/L的LiTFSI、0.05mol/L LiI和2mol/L的LiFSI。Other conditions are the same as in Example 1, except that S2) the lithium salts in the in-situ polymerizable electrolyte are 1 mol/L LiTFSI, 0.05 mol/L LiI and 2 mol/L LiFSI.
实施例14Example 14
其他条件与实施例1相同,不同之处在于S4)工作气体为空气。Other conditions are the same as in Example 1, except that S4) the working gas is air.
实施例15Example 15
其他条件与实施例1相同,不同之处在于S4)工作气体为氧气和二氧化碳的混合气体,其体积比为1:2。Other conditions are the same as in Example 1, except that S4) the working gas is a mixed gas of oxygen and carbon dioxide, and its volume ratio is 1:2.
实施例16Example 16
其他条件与实施例1相同,不同之处在于S4)工作气体为二氧化碳。Other conditions are the same as in Example 1, except that S4) the working gas is carbon dioxide.
实施例17Example 17
其他条件与实施例1相同,不同之处在于S2)可聚合电解液只包含锂盐和聚合单体,不含有其它溶剂,所使用的锂盐为3mol/L的LiFSI。Other conditions are the same as in Example 1, the difference is that S2) the polymerizable electrolyte only contains lithium salt and polymerizable monomer, and does not contain other solvents, and the lithium salt used is 3 mol/L LiFSI.
将实施例2-17进行电化学性能测试,测试内容及方法与实施例1相同;其中,实施例2-16所制备的锂空气电池测试温度与实施例1相同;实施例17所制备的锂空气电池在60℃下进行测试。The electrochemical performance test of Example 2-17 was carried out, and the test content and method were the same as those of Example 1; wherein, the test temperature of the lithium-air battery prepared in Example 2-16 was the same as that of Example 1; Air cells were tested at 60°C.
表1对照组和实施例1~17所制备的锂空气电池电化学性能的测试结果Table 1 Test results of the electrochemical performance of the lithium-air batteries prepared in the control group and Examples 1-17
从表1中的测试结果可知,使用对照组电解液时,锂空气电池仅能循环30周,且首周的放电容量和充电容量都较低,金属锂负极也有枝晶形成。而本发明设计的可原位聚合的固态锂空气电池则表现出非常高的循环寿命和充放电容量,且负极都没有锂枝晶形成。对比图1对照组和图2实施例1的充放电曲线可知,对照组第31周循环放电电压迅速衰减至2.0V以下,而实施例1的电池循环至第300周,放电平台依然保持在2.5V以上,整个充放电极化大约1.5V,和对照组首周的极化大致相同;实施例14~16说明在不同的工作气体和温度下,本发明提供的锂空气电池也有着较好的性能。From the test results in Table 1, it can be seen that when the control electrolyte is used, the lithium-air battery can only cycle for 30 weeks, and the discharge capacity and charge capacity in the first week are both low, and the metal lithium negative electrode also has dendrite formation. The in-situ polymerizable solid-state lithium-air battery designed in the present invention exhibits very high cycle life and charge-discharge capacity, and no lithium dendrites are formed in the negative electrode. Comparing the charge-discharge curves of the control group in Figure 1 and Example 1 in Figure 2, it can be seen that the cyclic discharge voltage of the control group rapidly decayed to below 2.0V in the 31st week, while the battery of Example 1 was cycled to the 300th week, and the discharge platform remained at 2.5 V. Above V, the entire charge-discharge polarization is about 1.5V, which is roughly the same as the polarization in the first week of the control group; Examples 14 to 16 show that the lithium-air batteries provided by the present invention also have better performance under different working gases and temperatures. performance.
以上内容是结合具体的优选技术方案对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的专业技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred technical solutions, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those skilled in the art to which the present invention pertains, some simple deductions or substitutions can be made without departing from the concept of the present invention, which should be regarded as belonging to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910571201.XA CN112151920A (en) | 2019-06-28 | 2019-06-28 | A solid-state lithium-air battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910571201.XA CN112151920A (en) | 2019-06-28 | 2019-06-28 | A solid-state lithium-air battery |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN112151920A true CN112151920A (en) | 2020-12-29 |
Family
ID=73868996
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910571201.XA Pending CN112151920A (en) | 2019-06-28 | 2019-06-28 | A solid-state lithium-air battery |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112151920A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2763037C1 (en) * | 2021-06-09 | 2021-12-27 | Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) | Solid polymer electrolyte lithium oxygen battery |
| CN114204167A (en) * | 2021-12-10 | 2022-03-18 | 辽宁大学 | Preparation of rechargeable iron or zinc-air batteries based on hydrogel electrolytes |
| CN114512717A (en) * | 2022-01-25 | 2022-05-17 | 五邑大学 | Gel polymer electrolyte for lithium salt in-situ initiated polymerization, and preparation method and application thereof |
| CN114695901A (en) * | 2020-12-31 | 2022-07-01 | 北京卫蓝新能源科技有限公司 | Lithium air battery gel air anode, preparation method and lithium air battery |
| CN117691131A (en) * | 2024-02-01 | 2024-03-12 | 新乡学院 | A MoO2/CeO2 nanosphere composite material for lithium-air batteries and its preparation method |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110014522A1 (en) * | 2004-02-06 | 2011-01-20 | Polyplus Battery Company | Protected active metal electrode and battery cell with ionically conductive preotective architecture |
| CN103570873A (en) * | 2013-10-23 | 2014-02-12 | 深圳新宙邦科技股份有限公司 | Composition for gel polymer electrolyte, gel polymer electrolyte and electrochemical device |
| US20140045078A1 (en) * | 2011-04-26 | 2014-02-13 | Solvay Sa | Lithium air battery cell |
| US20140255800A1 (en) * | 2013-03-08 | 2014-09-11 | Samsung Sdi Co., Ltd. | Positive electrode for lithium air battery, method of preparing same, and lithium air battery including same |
| CN109103517A (en) * | 2017-06-20 | 2018-12-28 | 中国科学院化学研究所 | A kind of method and its application of polymer protection metal secondary batteries cathode |
-
2019
- 2019-06-28 CN CN201910571201.XA patent/CN112151920A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110014522A1 (en) * | 2004-02-06 | 2011-01-20 | Polyplus Battery Company | Protected active metal electrode and battery cell with ionically conductive preotective architecture |
| US20140045078A1 (en) * | 2011-04-26 | 2014-02-13 | Solvay Sa | Lithium air battery cell |
| US20140255800A1 (en) * | 2013-03-08 | 2014-09-11 | Samsung Sdi Co., Ltd. | Positive electrode for lithium air battery, method of preparing same, and lithium air battery including same |
| CN103570873A (en) * | 2013-10-23 | 2014-02-12 | 深圳新宙邦科技股份有限公司 | Composition for gel polymer electrolyte, gel polymer electrolyte and electrochemical device |
| CN109103517A (en) * | 2017-06-20 | 2018-12-28 | 中国科学院化学研究所 | A kind of method and its application of polymer protection metal secondary batteries cathode |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114695901A (en) * | 2020-12-31 | 2022-07-01 | 北京卫蓝新能源科技有限公司 | Lithium air battery gel air anode, preparation method and lithium air battery |
| RU2763037C1 (en) * | 2021-06-09 | 2021-12-27 | Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук (ИФХЭ РАН) | Solid polymer electrolyte lithium oxygen battery |
| CN114204167A (en) * | 2021-12-10 | 2022-03-18 | 辽宁大学 | Preparation of rechargeable iron or zinc-air batteries based on hydrogel electrolytes |
| CN114512717A (en) * | 2022-01-25 | 2022-05-17 | 五邑大学 | Gel polymer electrolyte for lithium salt in-situ initiated polymerization, and preparation method and application thereof |
| CN117691131A (en) * | 2024-02-01 | 2024-03-12 | 新乡学院 | A MoO2/CeO2 nanosphere composite material for lithium-air batteries and its preparation method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101397415B1 (en) | Lithiated metal carbon composite, method for preparing the same, and electrochemical device comprising the same | |
| CN103700820B (en) | A kind of lithium ion selenium battery with long service life | |
| CN102522560B (en) | Lithium ion secondary battery and preparation method thereof | |
| CN112151920A (en) | A solid-state lithium-air battery | |
| CN101621134A (en) | Gel polymer lithium ion battery electrolyte, preparation method and application thereof | |
| JP2020057523A (en) | Method for manufacturing lithium ion battery and lithium ion battery | |
| WO2021004354A1 (en) | Lithium-ion secondary battery and related preparation method therefor, battery module, battery pack, and device | |
| CN107210490A (en) | Electrochemical Cells Containing Lewis Acid:Lewis Base Complex Electrolyte Additives | |
| CN103794800A (en) | Lithium battery current collector, pole piece, lithium battery, preparation method thereof and application of lithium battery | |
| CN110265626B (en) | Positive pole piece, its preparation method and lithium ion secondary battery | |
| CN109786869B (en) | Application of polymer containing hindered amine structure in secondary lithium battery | |
| CN115911291A (en) | Battery positive electrode material and preparation method and application thereof | |
| KR20240070528A (en) | Positive electrode material composition, positive electrode sheet and method for producing the same, battery and electric device | |
| CN115411346A (en) | Lithium ion battery and electrochemical device comprising same | |
| WO2024230010A1 (en) | Cross-linked polymer solid electrolyte, and preparation method therefor and use thereof | |
| Li et al. | Composite solid electrolyte with Li+ conducting 3D porous garnet-type framework for all-solid-state lithium batteries | |
| JP2023550218A (en) | Electrode assemblies, secondary batteries, battery modules, battery packs and power consumption devices | |
| CN105870399A (en) | Preparation method of transition metal oxide@ linear carbon negative electrode with porous mesh structure | |
| CN114175343A (en) | Secondary battery and device containing the same | |
| CN117995989B (en) | Batteries and electrical devices | |
| JP2007042602A (en) | Polymer battery | |
| CN106654270A (en) | A cathode prepared from a hard carbon material, an energy storage apparatus comprising the cathode, uses of the hard carbon and a preparing method of the cathode | |
| CN120072866A (en) | Battery monomer and preparation method thereof, battery, power utilization device, pre-lithiated positive electrode plate and preparation method thereof | |
| CN103972594B (en) | A kind of vehicle mounted dynamic battery module | |
| JP2003203675A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201229 |
|
| RJ01 | Rejection of invention patent application after publication |