CN112162244A - Event trigger target tracking method under correlated noise and random packet loss environment - Google Patents
Event trigger target tracking method under correlated noise and random packet loss environment Download PDFInfo
- Publication number
- CN112162244A CN112162244A CN202010997121.3A CN202010997121A CN112162244A CN 112162244 A CN112162244 A CN 112162244A CN 202010997121 A CN202010997121 A CN 202010997121A CN 112162244 A CN112162244 A CN 112162244A
- Authority
- CN
- China
- Prior art keywords
- matrix
- noise
- time
- target
- packet loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000002596 correlated effect Effects 0.000 title abstract description 8
- 230000005540 biological transmission Effects 0.000 claims abstract description 32
- 238000005259 measurement Methods 0.000 claims abstract description 21
- 230000001960 triggered effect Effects 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims description 141
- 230000007704 transition Effects 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims description 2
- 235000009508 confectionery Nutrition 0.000 claims 1
- 238000005265 energy consumption Methods 0.000 abstract description 6
- 238000001914 filtration Methods 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000004891 communication Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005094 computer simulation Methods 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/36—Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于信息处理方面雷达目标跟踪技术领域,涉及一种噪声相关和随机丢包环境下事件触发的Kalman滤波估计方法。The invention belongs to the technical field of radar target tracking in the aspect of information processing, and relates to an event-triggered Kalman filter estimation method in a noise correlation and random packet loss environment.
背景技术Background technique
雷达意为“无线电探测和测距”,即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达一般分为雷达前端和雷达终端两个部分,雷达前端包括天线、发射机、接收机和信号预处理机,发射机产生辐射所需强度的脉冲功率被馈送到天线,天线通过集中辐射能量来获得较大的观测距离,接收机把微弱的回波信号放大到足以进行信号处理的电平,然后通过信号处理,计算出观测目标的位置、时间、大小、能量幅度等信息;雷达终端包括操控单元、显示单元和信号处理单元,实现对雷达前端的控制,接收雷达前端发送的雷达图像并显示,接受雷达前端发送的目标点迹信息,对目标进行轨迹跟踪并显示。Radar means "Radio Detection and Ranging", that is, the use of radio methods to find targets and determine their spatial position. Therefore, radar is also called "radiolocation". The radar is generally divided into two parts: the radar front-end and the radar terminal. The radar front-end includes an antenna, a transmitter, a receiver and a signal preprocessor. The transmitter generates the required intensity of radiation pulse power and is fed to the antenna. To obtain a larger observation distance, the receiver amplifies the weak echo signal to a level sufficient for signal processing, and then calculates the position, time, size, energy amplitude and other information of the observation target through signal processing; the radar terminal includes control The unit, the display unit and the signal processing unit realize the control of the front end of the radar, receive and display the radar image sent by the front end of the radar, receive the target trace information sent by the front end of the radar, and track and display the target track.
雷达估计跟踪目标固然精准,但难免会存在一些固有噪声,这些噪声无疑会对接收的信号产生影响,使用时间长的雷达使得噪声越来越多样、复杂,在处理起来越来越困难。同时在信息传输的过程中由于通信链路的不稳定性还可能导致跟踪目标信息的丢失。就目前来看,通常使用的经典滤波估计方法都没有全面的考虑噪声相关和丢包问题对系统的干扰,这会导致跟踪效果变差。Although radar is accurate in estimating and tracking targets, it is inevitable that there will be some inherent noise, which will undoubtedly have an impact on the received signal. Long-term use of radar makes the noise more and more diverse and complex, and it is more and more difficult to process. At the same time, in the process of information transmission, the tracking target information may be lost due to the instability of the communication link. At present, the commonly used classical filtering estimation methods do not fully consider the interference of noise correlation and packet loss to the system, which will lead to poor tracking effect.
雷达前端和终端之间通过无线传感器网络进行双向数据传输,由于无线传感器网络中的网络带宽和传输能力都非常有限,因此高效的带宽和能源利用非常重要。事件触发机制可以在保证目标跟踪精度的前提下减少网络传输带宽占用,节省数据传输能耗。因此受到广泛关注。The two-way data transmission between the radar front end and the terminal is carried out through the wireless sensor network. Since the network bandwidth and transmission capacity in the wireless sensor network are very limited, efficient bandwidth and energy utilization are very important. The event triggering mechanism can reduce network transmission bandwidth occupation and save data transmission energy consumption on the premise of ensuring target tracking accuracy. Therefore, it has received extensive attention.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种用于雷达系统中基于无线传感器数据的目标跟踪定位方法,考虑了传输过程中通信链路的不可靠性,模拟了随机丢包的过程,考虑了传感器测量噪声与上一时刻和当前时刻的系统噪声以及网络带宽和能量的有限性,使用一种相关噪声和随机丢包环境下事件触发的Kalman滤波估计方法来实现传感器目标跟踪。The purpose of the present invention is to provide a target tracking and positioning method based on wireless sensor data in a radar system, which considers the unreliability of the communication link in the transmission process, simulates the process of random packet loss, and considers the sensor measurement noise and The system noise at the previous moment and the current moment, as well as the limited network bandwidth and energy, use an event-triggered Kalman filter estimation method in the environment of correlated noise and random packet loss to achieve sensor target tracking.
本发明提供了一种相关噪声和随机丢包环境下的事件触发目标跟踪方法,用于雷达系统的目标跟踪,将雷达系统中一个传感器对一个目标的观测描述为一个线性离散时间动态系统,然后基于改进的Kalman滤波估计方法进行目标跟踪。本发明方法包括如下步骤:The invention provides an event-triggered target tracking method in the environment of correlated noise and random packet loss, which is used for target tracking of a radar system. The observation of a target by a sensor in the radar system is described as a linear discrete-time dynamic system, and then Target tracking based on improved Kalman filter estimation method. The method of the present invention comprises the following steps:
步骤1,获取被跟踪目标的初始数据,设初始目标状态符合均值为方差为的高斯分布;目标状态包括目标的位置和速度;设传感器观测目标时的系统噪声是均值为零、协方差为Qk的高斯白噪声,Qk的初始值为Q0;设传感器目标状态和系统噪声之间的估计误差协方差矩阵初始值为设传输丢包变量λk服从参数为p的伯努利分布;Step 1: Obtain the initial data of the tracked target, and set the initial target state to conform to the mean value. The variance is The target state includes the position and velocity of the target; it is assumed that the system noise when the sensor observes the target is Gaussian white noise with zero mean and covariance Q k , and the initial value of Q k is Q 0 ; let the sensor target state and The initial value of the estimated error covariance matrix between system noise is Let the transmission packet loss variable λk obey the Bernoulli distribution with parameter p;
步骤2,在k时刻,获取传感器在时间(k-1,k]期间的观测数据zk和观测转移矩阵Ck;k为正整数;
步骤3,在k时刻引入传输丢包变量λk来模拟丢包过程,当λk=1时,观测数据正常到达,当λk=0时,观测数据丢失,分别得到丢包和正常情况下观测噪声的概率分布;Step 3: Introduce the transmission packet loss variable λ k at time k to simulate the packet loss process. When λ k = 1, the observed data arrives normally; when λ k = 0, the observed data is lost, and the packet loss and normal conditions are obtained respectively. probability distribution of observed noise;
步骤4,根据k-1时刻的目标状态估计值,计算当前k时刻的目标状态预测矩阵与状态预测误差协方差矩阵Pk|k-1;Step 4: Calculate the target state prediction matrix at the current k time according to the estimated value of the target state at time k-1 with the state prediction error covariance matrix P k|k-1 ;
步骤5,在k时刻,利用步骤2获取的观测数据zk和步骤4计算的目标状态预测矩阵与状态预测误差协方差矩阵Pk|k-1,计算传感器的事件触发参数γk;当γk=1时,测量数据zk被传输到远程估计器,当γk=0时,测量数据zk不会被传输到远程估计器;Step 5, at time k, use the observation data z k obtained in
步骤6,在k时刻,利用步骤2获取的观测数据zk、步骤3得到的传输丢包变量λk、步骤4计算的目标状态预测矩阵与状态预测误差协方差矩阵Pk|k-1、以及步骤5计算的传感器的事件触发参数γk,计算k时刻的目标状态估计矩阵状态估计误差协方差矩阵Pk|k,系统噪声估计矩阵系统噪声估计误差协方差矩阵以及状态和系统噪声间的估计误差协方差矩阵
步骤7,将k+1赋值给k,重复步骤2至6,输出步骤6计算出的k时刻的目标状态估计矩阵以及状态估计误差协方差矩阵Pk|k,可以得到任意k,k=1,2,…时刻对目标跟踪的结果。
所述的步骤3中,k时刻在观测值传输丢包变量λk下的观测噪声vk概率分布表示为 In the
其中,N(0,Rk)表示标准差为0,方差为Rk的正态分布,Rk表示k时刻的观测误差方差矩阵;N(0,σ2I)表示标准差为0,方差为σ2I的正态分布,参数σ→∞,I表示单位矩阵。Among them, N(0, R k ) represents a normal distribution with a standard deviation of 0 and a variance of R k , and R k represents the observation error variance matrix at time k; N(0, σ 2 I) represents a standard deviation of 0 and a variance of 0. is the normal distribution of σ 2 I, the parameter σ→∞, I represents the identity matrix.
所述步骤4中,在传输时刻k,根据k-1时刻目标状态估计矩阵计算目标状态预测矩阵和状态预测误差协方差矩阵Pk|k-1,如下:In the step 4, at the transmission time k, the target state prediction matrix is calculated according to the target state estimation matrix at time k-1. and the state prediction error covariance matrix P k|k-1 , as follows:
其中,Pk-1|k-1分别表示k-1时刻的目标状态估计矩阵和状态估计误差协方差矩阵,Ak-1表示k-1时刻的系统状态转移矩阵,上角标T表示转置;表示k-1时刻系统噪声的估计值,表示k-1时刻系统噪声的估计误差协方差矩阵, 表示k-1时刻的系统状态和系统噪声之间的估计误差协方差矩阵, in, P k-1|k-1 represents the target state estimation matrix and the state estimation error covariance matrix at time k-1, respectively, A k-1 represents the system state transition matrix at time k-1, and the superscript T represents the transposition; represents the estimated value of the system noise at time k-1, represents the estimated error covariance matrix of the system noise at time k-1, represents the estimated error covariance matrix between the system state and system noise at time k-1,
所述步骤5中,计算传感器的事件触发参数γk的方法是:In the step 5, the method for calculating the event trigger parameter γ k of the sensor is:
首先,计算k时刻测量的观测数据与基于k-1时刻状态对观测数据预测值之间的差值,得到新息新息的协方差矩阵以及增益矩阵分别为:First, calculate the difference between the observed data measured at time k and the predicted value of the observed data based on the state at time k-1 to obtain the innovation innovation covariance matrix and the gain matrix are:
其中,表示上一时刻系统噪声和当前k时刻观测噪声的协方差阵。新息的协方差矩阵是一个半正定矩阵,计算的特征值m是zk的维数,并将其表示为对角阵的形式:in, Represents the covariance matrix of the system noise at the previous moment and the observation noise at the current k moment. innovation covariance matrix is a positive semi-definite matrix, calculate eigenvalues of m is the dimension of z k and represents it in the form of a diagonal matrix:
利用下式计算酉矩阵Uk:Calculate the unitary matrix U k using the following formula:
然后,设矩阵则进一步得到归一化且去相关性的矩阵 Then, let the matrix Then further normalized and de-correlated matrices are obtained
最后,获得传感器的事件触发参数其中,||·||∞表示矩阵的无穷范数,θ为事件触发的阈值,θ≥0。Finally, get the event trigger parameters of the sensor Among them, ||·|| ∞ represents the infinity norm of the matrix, θ is the threshold of event triggering, θ≥0.
所述步骤6中,k时刻的目标状态估计矩阵以及状态估计误差协方差矩阵分别为与Pk|k,计算如下:In the
计算k时刻系统噪声估计矩阵,系统噪声估计误差协方差矩阵,系统噪声的增益矩阵以及状态和系统噪声间的估计误差协方差矩阵:Calculate the system noise estimation matrix at time k, the system noise estimation error covariance matrix, and the gain matrix of the system noise and the estimated error covariance matrix between state and system noise:
其中,γk表示事件触发参数,λk表示传输丢包变量,Sk表示k时刻的系统噪声和观测噪声的协方差阵;Among them, γ k represents the event trigger parameter, λ k represents the transmission packet loss variable, and S k represents the covariance matrix of the system noise and the observation noise at time k;
分布分布 distributed distributed
相对于现有技术,本发明的优点与积极效果在于:Compared with the prior art, the advantages and positive effects of the present invention are:
(1)本发明中采用事件触发传输机制,与传统的时间触发相比,减少了多余的测量传输,在保证目标估计精度的前提下节省了网络带宽和传输能耗,具有运算量小、低能耗等特点,可以将数据在能耗最低的情况下进行更为有效、充分的利用;(1) The present invention adopts an event-triggered transmission mechanism, which reduces redundant measurement transmissions compared with traditional time-triggered transmissions, saves network bandwidth and transmission energy consumption on the premise of ensuring target estimation accuracy, and has the advantages of small computational complexity and low energy consumption. It can make more effective and full use of data with the lowest energy consumption;
(2)本发明方法考虑了相关噪声,克服了上一时刻系统噪声与当前时刻观测噪声相关,当前时刻系统噪声与当前时刻观测噪声相关的复杂环境,提高了目标跟踪估计的精度;(2) The method of the present invention considers the relevant noise, overcomes the complex environment in which the system noise at the previous moment is related to the observation noise at the current moment, and the system noise at the current moment is related to the observation noise at the current moment, and improves the accuracy of target tracking estimation;
(3)本发明考虑了系统在传输过程中,由于通信链路的不可靠性,造成的数据包丢失问题,模拟了随机丢包过程,提高了目标跟踪估计的准确性;(3) The present invention considers the data packet loss problem caused by the unreliability of the communication link during the transmission process of the system, simulates the random packet loss process, and improves the accuracy of target tracking estimation;
(4)本发明方法中所使用的改进的Kalman滤波估计算法在对目标观测误差的最小方差意义下能获得最优解,可以有效实现目标跟踪估计;(4) The improved Kalman filter estimation algorithm used in the method of the present invention can obtain the optimal solution in the sense of the minimum variance of the target observation error, and can effectively realize the target tracking estimation;
(5)本发明方法抗噪抗干扰能力强,能够提高系统跟踪定位精度;(5) The method of the present invention has strong anti-noise and anti-interference ability, and can improve the tracking and positioning accuracy of the system;
(6)本发明方法可直接用于真实目标的跟踪估计,并且方法实施简单,易于推广,在目标跟踪、组合导航、故障检测和控制等许多应用领域都有潜在价值。(6) The method of the present invention can be directly used for tracking estimation of real targets, and the method is simple to implement, easy to popularize, and has potential value in many application fields such as target tracking, integrated navigation, fault detection and control.
附图说明Description of drawings
图1为本发明具有相关噪声和随机丢包环境下事件触发的目标跟踪方法的流程示意图;1 is a schematic flowchart of an event-triggered target tracking method with correlated noise and random packet loss according to the present invention;
图2为仿真的本发明方法中平均传感器通信率和事件触发阈值之间的关系示意图;2 is a schematic diagram of the relationship between the average sensor communication rate and the event trigger threshold in the simulated method of the present invention;
图3为计算机仿真的本发明方法在不同阈值下的位置和速度均方根误差对比图;Fig. 3 is the position and velocity root mean square error comparison diagram of the inventive method of computer simulation under different thresholds;
图4为计算机仿真的本发明方法与考虑丢包但忽略噪声相关的KF算法的位置和速度均方根误差对比图;Fig. 4 is a comparison diagram of the position and velocity root mean square error of the inventive method of computer simulation and the KF algorithm that considers packet loss but ignores noise correlation;
图5为计算机仿真的本发明方法与考虑噪声相关但忽略丢包的KF算法的位置和速度均方根误差对比图。5 is a comparison diagram of the position and velocity root mean square errors of the method of the present invention simulated by the computer and the KF algorithm that considers noise correlation but ignores packet loss.
具体实施方式Detailed ways
下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.
本发明方法在相关噪声和随机丢包环境下,基于一类线性离散时间动态系统,以雷达目标跟踪为背景,以获得高精度的目标信息为目标,研究其事件触发的Kalman滤波状态估计问题。Under the environment of correlated noise and random packet loss, the method of the invention is based on a class of linear discrete-time dynamic systems, with radar target tracking as the background and obtaining high-precision target information as the goal, to study the event-triggered Kalman filter state estimation problem.
本发明实施例中,实现本发明方法的硬件环境和软件配置如下:In the embodiment of the present invention, the hardware environment and software configuration for implementing the method of the present invention are as follows:
硬件环境:计算机;相关器;Hardware environment: computer; correlator;
软件配置:Windows 7/8//9/10;matlab或C语言或C++等任何一种语言环境软件。Software configuration:
传感器对目标进行观测的线性离散时间动态系统可以描述为The linear discrete-time dynamic system in which the sensor observes the target can be described as
xk+1=Akxk+ωk,k=0,1,2,…x k+1 =A k x k +ω k , k=0,1,2,…
zk=Ckxk+vk z k =C k x k +v k
其中,是k时刻的系统状态向量,是一个n维实数向量;R代表实数;sk和分别表示在k时刻时被跟踪目标的位置和速度,系统状态即目标状态;Ak∈Rn×n是k时刻的系统状态转移矩阵,是一个n×n维的实数矩阵;ωk是k时刻的过程噪声,设它是均值为零,协方差为Qk的高斯白噪声,初始Qk=Q0;zk∈Rm是传感器在k时刻的测量值,是一个m维实数向量;Ck∈Rm×n是k时刻的测量转移矩阵,是一个m×n维的实数矩阵。vk是k时刻的观测噪声,设vk是均值为零,协方差为的白噪声,并且 其中δkl是克罗内克函数。测量噪声vk与当前时刻系统噪声ωk和上一时刻系统噪声ωk-1相关。vl表示l时刻的观测噪声,Rk表示k时刻的观测误差方差矩阵,Sk表示当前k时刻系统噪声和观测噪声的协方差阵,表示上一时刻系统噪声和当前时刻观测噪声的协方差阵。in, is the system state vector at time k, which is an n-dimensional real number vector; R represents a real number; s k and respectively represent the position and velocity of the tracked target at time k, and the system state is the target state; A k ∈R n×n is the system state transition matrix at time k, which is an n×n-dimensional real number matrix; ω k is k The process noise at time, let it be Gaussian white noise with zero mean and covariance Q k , initial Q k = Q 0 ; z k ∈ R m is the measurement value of the sensor at time k, which is an m-dimensional real vector; C k ∈R m×n is the measurement transition matrix at time k, which is a real matrix with m×n dimensions. v k is the observation noise at time k, let v k be zero mean, and the covariance is white noise, and where δ kl is the Kronecker function. The measurement noise v k is related to the system noise ω k at the current moment and the system noise ω k -1 at the previous moment. v l represents the observation noise at time l, R k represents the observation error variance matrix at time k, S k represents the covariance matrix of the current system noise and observation noise at time k, Represents the covariance matrix of the system noise at the previous moment and the observation noise at the current moment.
初始状态x0是均值为方差为的高斯分布,并且和ωk、vk相互独立,k为正整数。The initial state x 0 is the mean The variance is The Gaussian distribution of , and ω k , v k are independent of each other, and k is a positive integer.
如图1所示,本发明提供的相关噪声和随机丢包环境下的事件触发目标跟踪方法,分为如下8个步骤来说明。As shown in FIG. 1 , the method for event-triggered target tracking in a correlated noise and random packet loss environment provided by the present invention is divided into the following 8 steps for description.
步骤1、获取传感器观测目标的初始数据,包括获取初始状态向量的均值及方差初始系统噪声方差矩阵Q0以及目标状态和系统噪声间的估计误差协方差矩阵初始值为其中,为n维实向量,是n维矩阵,且是正定矩阵,Q0∈Rn×n是n维矩阵,是n维矩阵,设传输丢包变量λk服从参数为p的伯努利分布。其中,代表目标状态估计误差,代表系统噪声估计误差。
步骤2、对时刻k,k=1,2,…,输入传输丢包变量λk,输入事件触发阈值θ,输入系统状态矩阵Ak和系统噪声方差矩阵Qk;输入(k-1,k]时刻获得的来自传感器的观测数据zk和观测矩阵Ck,观测噪声方差矩阵Rk,上一时刻系统噪声和当前时刻观测噪声的协方差阵以及当前时刻系统噪声和当前时刻观测噪声的协方差阵Sk。
本发明方法中所涉及到的相关参数的设定值和需要满足的条件如下:The setting values of the relevant parameters involved in the method of the present invention and the conditions that need to be satisfied are as follows:
λk:传输丢包变量,用于描述传输是否丢包的一个量,服从参数为p的伯努利分布,0<p<1;λ k : transmission packet loss variable, a quantity used to describe whether the transmission is lost or not, obeys the Bernoulli distribution with parameter p, 0<p<1;
θ:事件触发的阈值,用于描述触发临界值的一个量,θ≥0;θ: Threshold value of event trigger, a quantity used to describe the trigger threshold value, θ≥0;
zk:传感器的观测量,其维数为m,取值范围:m≤n;z k : the observation amount of the sensor, its dimension is m, the value range: m≤n;
Ak:系统状态转移矩阵,用来描述状态间转移量。取值范围:特征值在单位圆内的满秩矩阵,如目标状态的维数为n,则Ak∈Rn×n;A k : The system state transition matrix, which is used to describe the amount of transition between states. Value range: full rank matrix of eigenvalues in the unit circle, if the dimension of the target state is n, then A k ∈ R n×n ;
Ck:观测转移矩阵,用于描述观测数据的维数和观测数据,其维数为m,即Ck∈Rm×n;C k : observation transition matrix, used to describe the dimension of observation data and observation data, its dimension is m, namely C k ∈ R m×n ;
Qk:系统噪声方差矩阵,用于描述系统建模误差,其维数为n×n,一般情况下是一个非负定矩阵;Q k : system noise variance matrix, used to describe the system modeling error, its dimension is n×n, in general, it is a non-negative definite matrix;
Rk:观测误差方差矩阵,用于描述观测误差偏差,其维数为m×m,取值范围为非负定矩阵;R k : the observation error variance matrix, used to describe the observation error deviation, its dimension is m×m, and the value range is a non-negative definite matrix;
上一时刻系统噪声和当前时刻观测噪声的协方差,用于描述上一时刻系统噪声和当前时刻观测噪声相关性,其维数为n×m,取值范围为非负定矩阵; The covariance of the system noise at the previous moment and the observation noise at the current moment is used to describe the correlation between the system noise at the previous moment and the observation noise at the current moment. Its dimension is n×m, and the value range is a non-negative definite matrix;
Sk:当前时刻系统噪声和当前时刻观测噪声的协方差,用于描述当前时刻系统噪声和当前时刻观测噪声相关性,其维数为n×m,取值范围为非负定矩阵;S k : the covariance of the system noise at the current moment and the observation noise at the current moment, used to describe the correlation between the system noise at the current moment and the observation noise at the current moment, its dimension is n×m, and the value range is a non-negative definite matrix;
I:表示单位矩阵;I: represents the identity matrix;
In:表示n维单位矩阵;I n : represents an n-dimensional unit matrix;
p(x|y):表示在条件y下x的发生概率;p(x|y): represents the probability of occurrence of x under the condition y;
N(μ,σ):表示标准差为μ,方差为σ的正态分布。N(μ,σ): represents a normal distribution with a standard deviation of μ and a variance of σ.
步骤3、在测量传输时刻k,k=1,2,…,通过传输丢包变量λk来模拟丢包过程,并得到丢包和正常情况下,观测噪声的概率分布如下:
其中,p(vk|λk)表示k时刻在传输丢包变量λk下的观测噪声vk概率分布,参数σ→∞。当λk=1时,观测值zk能正常到达;当λk=0时,观测值丢失。Among them, p(v k |λ k ) represents the probability distribution of the observation noise v k under the transmission packet loss variable λ k at time k, and the parameter σ→∞. When λ k =1, the observation value z k can arrive normally; when λ k =0, the observation value is lost.
步骤4、在测量传输时刻k,k=1,2,3,...,利用下式计算目标状态预测矩阵和目标状态预测误差协方差矩阵Pk|k-1:Step 4. At the measurement transmission time k, k=1, 2, 3, ..., use the following formula to calculate the target state prediction matrix and the target state prediction error covariance matrix P k|k-1 :
其中,表示基于上一时刻系统状态预测的当前k时刻的目标状态,Pk|k-1表示预测的误差协方差矩阵,和Pk-1|k-1分别表示k-1时刻目标状态估计矩阵和状态估计误差协方差矩阵,当k=1时, 表示k-1时刻系统噪声的估计值,表示k-1时刻系统噪声的估计误差协方差矩阵,表示k-1时刻的系统状态和系统噪声之间的估计误差协方差矩阵,当k=1时, in, represents the target state at the current k moment predicted based on the system state at the previous moment, P k|k-1 represents the predicted error covariance matrix, and P k-1|k-1 represent the target state estimation matrix and the state estimation error covariance matrix at time k-1, respectively. When k=1, represents the estimated value of the system noise at time k-1, represents the estimated error covariance matrix of the system noise at time k-1, Represents the estimated error covariance matrix between the system state and system noise at time k-1, when k=1,
步骤5、在时刻k,k=1,2,…,利用步骤2输入的观测数据zk与相关参数,以及步骤4计算出的和Pk|k-1,利用下式计算传感器的事件触发参数γk:Step 5. At time k, k=1, 2, ..., use the observation data z k and related parameters input in
新息及新息的协方差矩阵与增益矩阵Kk分别为:new interest and the covariance matrix of innovation and the gain matrix K k are:
其中,新息表示k时刻测量的真实观测数据与基于k-1时刻状态预测的观测数据之间的差值。Among them, the new It represents the difference between the real observation data measured at time k and the observation data predicted based on the state at time k-1.
由于是一个半正定矩阵,求得的特征值m是zk的维数,并将其表示为对角阵Λk的形式because is a positive semi-definite matrix, we get eigenvalues of m is the dimension of z k and expresses it in the form of a diagonal matrix Λ k
利用下式计算使等式成立的酉矩阵Uk∈Rm×m:Calculate the unitary matrix U k ∈R m×m that holds the equation using:
定义矩阵Hk∈Rm×m为Define the matrix H k ∈ R m×m as
进一步获得归一化且去相关的矩阵 Further normalized and decorrelated matrices are obtained
则,根据矩阵确定传感器的事件触发参数:Then, according to the matrix Determine the event trigger parameters for the sensor:
其中,||·||∞表示矩阵的无穷范数,当γk=1时,传感器的测量值zk可以被传输到远程估计器,即融合中心;否则,当γk=0时,融合中心不会接收到测量值。where ||·|| ∞ denotes the infinite norm of the matrix, when γk = 1, the measurement value zk of the sensor can be transmitted to the remote estimator, that is, the fusion center; otherwise, when γk = 0, the fusion The center will not receive measurements.
步骤6、在时刻k,k=1,2,…,利用步骤2输入的观测数据zk与相关参数,步骤3计算出随机丢包参数,步骤4计算出的和Pk|k-1以及步骤5计算出的Kalman滤波事件触发条件,利用下式计算状态估计矩阵和相应的估计误差协方差矩阵Pk|k:
计算白噪声估计器为:Calculate the white noise estimator as:
其中,表示k时刻对系统噪声的估计值,表示系统噪声的增益矩阵,表示系统噪声的估计误差协方差矩阵,λk表示k时刻观测值传输丢包变量,上角标T表示转置。γk表示传感器的事件触发参数。in, represents the estimated value of the system noise at time k, is the gain matrix representing the system noise, Represents the estimated error covariance matrix of system noise, λ k represents the transmission packet loss variable of the observation value at time k, and the superscript T represents the transpose. γ k represents the event trigger parameter of the sensor.
系统状态和系统噪声之间的滤波误差协方差矩阵:Filtered error covariance matrix between system state and system noise:
表示k时刻的系统状态与系统噪声之间的滤波误差协方差矩阵,表示k时刻的系统噪声与系统状态之间的滤波误差协方差矩阵。 represents the filter error covariance matrix between the system state at time k and the system noise, Represents the filter error covariance matrix between the system noise and the system state at time k.
其中,β(θ)、Q(θ)的分布如下:Among them, the distribution of β(θ) and Q(θ) is as follows:
步骤7、在时刻k,k=1,2,…,输出xk|k和Pk|k,即得到时刻k所求传感器的状态的估计值和估计误差协方差矩阵。步骤7输出的xk|k、Pk|k即步骤6计算得到的和Pk|k,作为雷达系统在当前k时刻对目标跟踪的结果。Step 7: At time k, k=1, 2, ..., output x k|k and P k|k , that is, obtain the estimated value of the state of the sensor and the estimated error covariance matrix obtained at time k. The x k|k and P k|k output in
步骤8、当到达下一个k+1时刻时,将k+1赋值给k,然后重复步骤2~7,进行下一时刻对目标的Kalman滤波的跟踪,获取目标状态估计值与误差协方差矩阵。Step 8. When the next time k+1 is reached, assign k+1 to k, and then repeat
下面将通过仿真实验测试本发明方法的有效性。The effectiveness of the method of the present invention will be tested by simulation experiments below.
一个单传感器的雷达跟踪系统可用下式描述:A single-sensor radar tracking system can be described by the following equation:
zk=Cxk+vk,k=1,2,…,Lz k =Cx k +v k ,k=1,2,...,L
vk=ηk+β1ξk-1+β2ξk v k =η k +β 1 ξ k-1 +β 2 ξ k
其中T=0.01表示采样周期。L=300是被估计信号x的测量长度。状态向量其中sk是跟踪目标在kT时刻的位置,是kT时刻的速度。假设ξk∈R是零均值,协方差为的高斯白噪声。Γk=[T 1]T是噪声转移矩阵。zk是传感器的量测向量,C=[10]。vk是量测噪声,传感器的量测噪声与上一时刻和当前时刻系统噪声ξk-1和ξk相关。相关性由β1和β2的值决定。ηk是高斯噪声,并且它的均值为零,协方差为并独立于ξk,k=1,2,…。初始值为ω0=[0 0]T, Where T=0.01 represents the sampling period. L=300 is the measured length of the estimated signal x. state vector where sk is the position of the tracking target at time kT, is the velocity at time kT. Assuming that ξ k ∈ R is zero mean, the covariance is Gaussian white noise. Γ k =[T 1] T is the noise transfer matrix. z k is the measurement vector of the sensor, C=[10]. v k is the measurement noise, and the measurement noise of the sensor is related to the system noise ξ k-1 and ξ k at the previous moment and the current moment. The correlation is determined by the values of β1 and β2 . η k is Gaussian noise, and its mean is zero, and the covariance is and independent of ξ k , k=1,2,…. The initial value is ω 0 =[0 0] T ,
系统误差方差阵它是系统噪声ωk=Γkξk对应的协方差矩阵,测量噪声协方差为ωk-1和vk之间的协方差为而是ωk和vk之间的协方差矩阵。systematic error variance matrix It is the covariance matrix corresponding to the system noise ω k =Γ k ξ k , and the measured noise covariance is The covariance between ω k-1 and v k is and is the covariance matrix between ω k and v k .
为了比较事件触发条件下不同阈值对估计性能的影响,随机设置了4个不同的阈值,它们分别为θ=0,θ=0.5,θ=0.8和θ=1.0。其中,当θ=0时,事件触发退化为时间触发,即在每个时刻估计器都能接收到相应传感器的测量值。To compare the effects of different thresholds on the estimation performance under event-triggered conditions, four different thresholds are randomly set, which are θ=0, θ=0.5, θ=0.8 and θ=1.0. Among them, when θ=0, the event trigger degenerates into a time trigger, that is, the estimator can receive the measurement value of the corresponding sensor at each moment.
本发明实验的目的在于传感器对目标进行估计,给出状态xk的状态估计,并比较在相关噪声和随机丢包的情况下,分析忽略相关噪声和丢包对估计结果的影响。The purpose of the experiment of the present invention is to estimate the target by the sensor, give the state estimation of the state x k , and compare the influence of ignoring the correlation noise and the packet loss on the estimation result in the case of correlated noise and random packet loss.
设并且β1=6,β2=6,因此,测量噪声与上一时刻系统噪声和当前时刻系统噪声相关。传输丢包变量的参数p=0.1。本发明进行了1000次蒙特卡洛仿真并观察所提算法的有效性。仿真结果如图2~5所示。Assume And β 1 =6, β 2 =6, therefore, the measurement noise is related to the system noise at the previous moment and the system noise at the current moment. The parameter p=0.1 for the transmission packet loss variable. The present invention conducts 1000 Monte Carlo simulations and observes the effectiveness of the proposed algorithm. The simulation results are shown in Figures 2-5.
本发明所提改进的Kalman滤波算法的传感器的平均通信速率定义如下The average communication rate of the sensor of the improved Kalman filter algorithm proposed in the present invention is defined as follows
图2表示事件触发阈值θ和平均传感器通信率γ之间的关系。可以看出,随着事件触发阈值的增大,传感器的通信速率不断降低。Figure 2 shows the relationship between the event trigger threshold θ and the average sensor communication rate γ. It can be seen that with the increase of the event trigger threshold, the communication rate of the sensor decreases continuously.
图3表示本发明方法(简称KFO)中,在不同触发阈值下的Kalman滤波方法的位置和速度均方根误差(RMSE)统计模拟曲线。从图3可以看出,在较小的触发阈值下,采用本发明方法的状态估计效果总是优于较大触发阈值下的估计效果。图中虚线表示θ=1.0,实线表示θ=0.8,点划线表示θ=0.5,点线表示θ=0。FIG. 3 shows the statistical simulation curves of the position and velocity root mean square error (RMSE) of the Kalman filtering method under different trigger thresholds in the method of the present invention (KFO for short). It can be seen from FIG. 3 that, under a smaller trigger threshold, the state estimation effect of the method of the present invention is always better than that under a larger trigger threshold. The dotted line in the figure represents θ=1.0, the solid line represents θ=0.8, the dotted line represents θ=0.5, and the dotted line represents θ=0.
图4表示考虑噪声相关和丢包的本发明方法(简称KFO)和考虑丢包但不考虑噪声相关的KF算法(简称KFN)的RMSE的统计模拟曲线,包括位置和速度的均方根误差,其中设定事件触发阈值θ=0.5。图中,实线代表本发明方法,虚线表示对比方法,可以看出,在θ=0.5时,同时本发明方法中的KF算法的均方根误差曲线要低于考虑丢包但不考虑噪声相关的KF算法(KFN)的均方根误差曲线,说明考虑噪声相关的KF算法是有效的,而忽略噪声相关会降低状态估计精度。Fig. 4 shows the statistical simulation curve of the RMSE of the method of the present invention considering noise correlation and packet loss (KFO for short) and the KF algorithm considering packet loss but not noise correlation (KFN for short), including the root mean square error of position and velocity, The event trigger threshold θ=0.5 is set. In the figure, the solid line represents the method of the present invention, and the dotted line represents the comparison method. It can be seen that when θ=0.5, the root mean square error curve of the KF algorithm in the method of the present invention is lower than that considering packet loss but not considering noise correlation. The root mean square error curve of the KF algorithm (KFN) shows that the KF algorithm considering the noise correlation is effective, and ignoring the noise correlation will reduce the state estimation accuracy.
图5表示考虑噪声相关和丢包的本发明方法和考虑噪声相关但不考虑丢包的KF算法(简称KFD)的RMSE的统计模拟曲线,包括位置和速度的均方根误差,其中设定事件触发阈值θ=0.5。图中,实线代表本发明方法,虚线表示对比方法,可以看出,在θ=0.5时,同时本发明方法中的KF算法的均方根误差曲线要低于考虑噪声相关但不考虑丢包的KF算法(KFD)的均方根误差曲线,说明考虑丢包的KF算法是有效的,而忽略丢包会降低状态估计精度。Fig. 5 shows the statistical simulation curve of the RMSE of the method of the present invention considering noise correlation and packet loss and the KF algorithm (KFD for short) considering noise correlation but not packet loss, including the root mean square error of position and velocity, wherein the set event Trigger threshold θ=0.5. In the figure, the solid line represents the method of the present invention, and the dashed line represents the comparison method. It can be seen that when θ=0.5, the root mean square error curve of the KF algorithm in the method of the present invention is lower than considering the noise correlation but not considering the packet loss. The root mean square error curve of the KF algorithm (KFD) shows that the KF algorithm considering packet loss is effective, and ignoring packet loss will reduce the accuracy of state estimation.
表1表示在不同触发阈值下的KFO算法、KFN算法和KFD算法的时间平均速度和位置RMSE。Table 1 shows the time-averaged velocity and position RMSE of the KFO, KFN, and KFD algorithms at different trigger thresholds.
表1不同情况在不同阈值θ下的时间平均RMSETable 1 Time-averaged RMSE under different thresholds θ in different situations
可以看出,当θ取相同值时,KFO优于其他两种算法。注意,当θ=0时表示传输所有原始传感器测量,并且系统退化为时间触发系统。因此,本发明方法在θ=0时具有最佳估计性能。随着θ增加,本发明方法的估计精度降低。但无论何种条件下,本发明方法都是最优的。It can be seen that KFO outperforms the other two algorithms when θ takes the same value. Note that when θ=0 it means that all raw sensor measurements are transmitted and the system degenerates to a time-triggered system. Therefore, the method of the present invention has the best estimation performance when θ=0. As θ increases, the estimation accuracy of the method of the present invention decreases. But no matter what conditions, the method of the present invention is optimal.
总之,从上述仿真可以看出,本发明方法具有较好的仿真效果,且所使用的考虑噪声相关和丢包的Kalman滤波算法要优于忽略两者中其中之一的Kalman滤波算法,能够提高目标跟踪定位精度。In a word, it can be seen from the above simulation that the method of the present invention has a good simulation effect, and the Kalman filtering algorithm used considering noise correlation and packet loss is better than the Kalman filtering algorithm that ignores one of the two, and can improve the Target tracking and positioning accuracy.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010997121.3A CN112162244B (en) | 2020-09-21 | 2020-09-21 | Event trigger target tracking method under related noise and random packet loss environment |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010997121.3A CN112162244B (en) | 2020-09-21 | 2020-09-21 | Event trigger target tracking method under related noise and random packet loss environment |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112162244A true CN112162244A (en) | 2021-01-01 |
| CN112162244B CN112162244B (en) | 2023-04-28 |
Family
ID=73862622
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010997121.3A Active CN112162244B (en) | 2020-09-21 | 2020-09-21 | Event trigger target tracking method under related noise and random packet loss environment |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112162244B (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113064893A (en) * | 2021-04-27 | 2021-07-02 | 北京理工大学 | Data processing method and related device |
| CN113115230A (en) * | 2021-03-26 | 2021-07-13 | 北京工业大学 | Vehicle broadcast communication control method based on information physical system |
| CN113660049A (en) * | 2021-08-17 | 2021-11-16 | 电子科技大学 | A Design Method of Event-triggered Control and Wireless Communication Joint System |
| CN114881098A (en) * | 2022-02-28 | 2022-08-09 | 西安电子科技大学 | Label noise estimation method based on manifold regularization transfer matrix |
| CN115576206A (en) * | 2022-11-07 | 2023-01-06 | 中国矿业大学 | Multi-rate dense-medium sorting information physical system |
| CN118408552A (en) * | 2024-07-01 | 2024-07-30 | 山东科技大学 | Multi-sensor positioning method for unmanned ships based on dual-threshold event triggering mechanism |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070096977A1 (en) * | 2005-11-01 | 2007-05-03 | Lillo Walter E | Multitarget tracking antispoofing receiver |
| JP2017150989A (en) * | 2016-02-25 | 2017-08-31 | 三菱電機株式会社 | Target tracking device |
| CN109696669A (en) * | 2018-12-24 | 2019-04-30 | 北京理工大学 | The Multi-sensor Fusion estimation method that event triggers under a kind of correlated noise environment |
| CN110672103A (en) * | 2019-10-21 | 2020-01-10 | 北京航空航天大学 | A multi-sensor target tracking filtering method and system |
-
2020
- 2020-09-21 CN CN202010997121.3A patent/CN112162244B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070096977A1 (en) * | 2005-11-01 | 2007-05-03 | Lillo Walter E | Multitarget tracking antispoofing receiver |
| JP2017150989A (en) * | 2016-02-25 | 2017-08-31 | 三菱電機株式会社 | Target tracking device |
| CN109696669A (en) * | 2018-12-24 | 2019-04-30 | 北京理工大学 | The Multi-sensor Fusion estimation method that event triggers under a kind of correlated noise environment |
| CN110672103A (en) * | 2019-10-21 | 2020-01-10 | 北京航空航天大学 | A multi-sensor target tracking filtering method and system |
Non-Patent Citations (3)
| Title |
|---|
| CUI ZHU等: "Event-triggered state estimation for networked systems with correlated noises and packet losses" * |
| 余永龙等: "带相关噪声和不完全丢包系统的最优线性滤波" * |
| 聂煊赫等: "丢包环境下的鲁棒最优滤波" * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113115230A (en) * | 2021-03-26 | 2021-07-13 | 北京工业大学 | Vehicle broadcast communication control method based on information physical system |
| CN113115230B (en) * | 2021-03-26 | 2023-08-18 | 北京工业大学 | A vehicle broadcast communication control method based on a cyber-physical system |
| CN113064893A (en) * | 2021-04-27 | 2021-07-02 | 北京理工大学 | Data processing method and related device |
| CN113064893B (en) * | 2021-04-27 | 2023-01-10 | 北京理工大学 | Data processing method and related device |
| CN113660049A (en) * | 2021-08-17 | 2021-11-16 | 电子科技大学 | A Design Method of Event-triggered Control and Wireless Communication Joint System |
| CN113660049B (en) * | 2021-08-17 | 2022-04-22 | 电子科技大学 | Design method of event trigger control and wireless communication combined system |
| CN114881098A (en) * | 2022-02-28 | 2022-08-09 | 西安电子科技大学 | Label noise estimation method based on manifold regularization transfer matrix |
| CN115576206A (en) * | 2022-11-07 | 2023-01-06 | 中国矿业大学 | Multi-rate dense-medium sorting information physical system |
| CN118408552A (en) * | 2024-07-01 | 2024-07-30 | 山东科技大学 | Multi-sensor positioning method for unmanned ships based on dual-threshold event triggering mechanism |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112162244B (en) | 2023-04-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112162244A (en) | Event trigger target tracking method under correlated noise and random packet loss environment | |
| CN109696669B (en) | An event-triggered multi-sensor fusion estimation method in correlated noise environment | |
| CN108169708B (en) | Direct positioning method of modular neural network | |
| Du et al. | Secondary radar signal processing based on deep residual separable neural network | |
| CN107390196B (en) | Fast fluctuation target double-threshold constant false alarm detection method based on multi-base radar | |
| CN108919223B (en) | Broadband radar target self-adaptive structured matching filtering method | |
| CN109671100B (en) | Distributed variable diffusion combined coefficient particle filter direct tracking method | |
| CN110187335B (en) | Particle filter detection-before-tracking method for targets with discontinuous characteristics | |
| CN106526584A (en) | Joint processing method of target detection and tracking in multi-radar system | |
| CN111999714A (en) | Self-adaptive fusion detection method based on multi-scattering point estimation and clutter knowledge assistance | |
| CN104155651A (en) | Probability data correlation method for polarizing radar target tracking | |
| CN111999715A (en) | Target knowledge-assisted adaptive fusion detection method under heterogeneous clutter | |
| CN113238211A (en) | Parameterized adaptive array signal detection method and system under interference condition | |
| CN110889862A (en) | Combined measurement method for multi-target tracking in network transmission attack environment | |
| CN114565010A (en) | An adaptive Kalman noise estimation method and system based on data fusion | |
| CN108761384A (en) | A kind of sensor network target localization method of robust | |
| CN104331630B (en) | A kind of multi tate observes the state estimation and data fusion method of data | |
| CN111025280B (en) | A moving target velocity measurement method based on distributed minimum overall error entropy | |
| CN116299287A (en) | Amplitude information-assisted cognitive radar tracking waveform selection method and system | |
| CN116471535A (en) | Positioning method, device, equipment and storage medium | |
| Hu et al. | Coherent TDOA/FDOA estimation method for frequency-hopping signal | |
| CN118277891A (en) | Federal learning method, equipment and system considering Bayesian and busy-court fault tolerance | |
| CN114969642A (en) | Small-extension-angle distribution source general information source number estimation method under uniform linear array | |
| Yu et al. | WiNCDN: A Novel WiFi-Assisted Non-Cooperative Indoor Localization System via Dropout-Based Neural Network | |
| Wu et al. | RangingNet: A convolutional deep neural network based ranging model for wireless sensor networks (WSN) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |