[go: up one dir, main page]

CN112280722A - 用于生产光学纯1,3-丁二醇的重组菌及其应用 - Google Patents

用于生产光学纯1,3-丁二醇的重组菌及其应用 Download PDF

Info

Publication number
CN112280722A
CN112280722A CN201910664906.6A CN201910664906A CN112280722A CN 112280722 A CN112280722 A CN 112280722A CN 201910664906 A CN201910664906 A CN 201910664906A CN 112280722 A CN112280722 A CN 112280722A
Authority
CN
China
Prior art keywords
ala
leu
val
gly
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910664906.6A
Other languages
English (en)
Other versions
CN112280722B (zh
Inventor
陈振
刘德华
刘煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Tsinghua Smart Biotech Co ltd
Tsinghua University
Original Assignee
Guangdong Tsinghua Smart Biotech Co ltd
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Tsinghua Smart Biotech Co ltd, Tsinghua University filed Critical Guangdong Tsinghua Smart Biotech Co ltd
Priority to CN201910664906.6A priority Critical patent/CN112280722B/zh
Publication of CN112280722A publication Critical patent/CN112280722A/zh
Application granted granted Critical
Publication of CN112280722B publication Critical patent/CN112280722B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01001Alcohol dehydrogenase (1.1.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/0113-Oxoacyl-[acyl-carrier-protein] reductase (1.1.1.100)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01057Butanal dehydrogenase (1.2.1.57)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供一种用于生产光学纯1,3‑丁二醇的重组菌及其应用。所述重组菌是将phaA、phaB、bld和yqhD基因通过质粒导入微生物中或通过基因工程手段整合到微生物染色体上而成。利用本发明的大肠杆菌工程菌在微氧的条件下发酵廉价有机碳源如葡萄糖、蔗糖或甘油等,1,3‑丁二醇相对于底物的得率可以达到0.4g/g以上,且R型1,3‑丁二醇纯度达到99%以上,具有重要的工业应用潜力。

Description

用于生产光学纯1,3-丁二醇的重组菌及其应用
技术领域
本发明属于生物化工技术领域,具体地说,涉及一种用于生产光学纯1,3-丁二醇的重组菌及其应用。
背景技术
1,3-丁二醇是一种具有重要工业应用价值的二元醇,其可以被用作化妆品的溶剂,同时可以用作单体来合成聚酯、聚氨酯及生物增塑剂。同时光学纯的1,3-丁二醇可以用作医药中间体来合成许多药物。但是化学法合成的1,3-丁二醇都是外消旋体,无法直接用作医药中间体。因此,利用生物法生产光学纯1,3-丁二醇具有重要应用价值。
CN201610481598.X和CN201080029715.X分别公开了两种1,3-丁二醇的生产方法,其主要是在厌氧条件下表达至少一种编码以足够的量表达的1,3-BDO通路酶的外源性核酸,以生产1,3-丁二醇。但该过程的生产效率低,1,3-丁二醇的最高产量低于2mM,不具有工业可行性。
发明内容
本发明的目的是提供一种用于生产光学纯1,3-丁二醇的重组菌及其应用。
本发明构思如下:提供一种重组大肠杆菌,其是通过上调大肠杆菌的pntAB基因并同时下调sthA基因从而极大提高细胞内的NADPH基因以满足1,3-丁二醇合成途径所需要的还原力NADPH,从而提高1,3-丁二醇的产量。本发明同时通过酶的设计构建了Clostridiumsaccharoperbutylacetonicum的丁醛脱氢酶突变体,其是将丁醛脱氢酶第273位亮氨酸突变为苏氨酸而成,在大肠杆菌中表达该突变体可以极大提高1,3-丁二醇的产量。本发明同时通过敲除adhE基因,ldhA基因,pta基因,ackA基因提高了乙酰-CoA流向1,3-丁二醇合成途径的代谢通量,进一步提高了1,3-丁二醇的产量。
为了实现本发明目的,第一方面,本发明提供一种用于生产光学纯1,3-丁二醇的重组菌,所述重组菌是将phaA、phaB、bld和yqhD基因通过质粒导入微生物中或通过基因工程手段整合到微生物染色体上而成。
其中,所述phaA基因为乙酰CoA酰基转移酶基因,来源于Cupriavidus necator,其为编码如下蛋白质(a)或(b)的基因:
(a)由SEQ ID NO:3所示的氨基酸序列组成的蛋白质;
(b)SEQ ID NO:3所示序列经取代、缺失或添加一个或几个氨基酸且具有同等功能的由(a)衍生的蛋白质。
所述phaB基因为3-氧酰基-(酰基载体蛋白)还原酶基因,来源于Cupriavidusnecator,其为编码如下蛋白质(c)或(d)的基因:
(c)由SEQ ID NO:4所示的氨基酸序列组成的蛋白质;
(d)SEQ ID NO:4所示序列经取代、缺失或添加一个或几个氨基酸且具有同等功能的由(c)衍生的蛋白质。
所述bld基因来源于Clostridium saccharoperbutylacetonicum,其编码蛋白的氨基酸序列如SEQ ID NO:1或2所示。
所述yqhD基因为醇脱氢酶基因,来源于大肠杆菌(Escherichia coli),其为编码如下蛋白质(e)或(f)的基因:
(e)由SEQ ID NO:6所示的氨基酸序列组成的蛋白质;
(f)SEQ ID NO:6所示序列经取代、缺失或添加一个或几个氨基酸且具有同等功能的由(e)衍生的蛋白质。
所述微生物选自埃希氏菌属(Escherichia)、克雷伯氏菌属(Klebsiella)、棒杆菌属(Corynebacterium)、短杆菌属(Brevibacterium)等中的菌种;优选大肠杆菌。
所述重组菌可按如下方法构建得到:phaA、phaB基因经密码子优化后,与bld、yqhD基因一起构建到表达载体上,用重组载体转化大肠杆菌,筛选阳性转化子。
优选地,密码子优化的phaA-phaB操纵子的序列如SEQ ID NO:5所示。
更优选地,所述重组菌的构建如下:将phaAB-bld2-yqhD串联基因表达盒构建到ptrc99a质粒上,用重组质粒转化大肠杆菌(如W3110),筛选阳性转化子。
其中,bld-yqhD-phaAB串联基因表达盒的序列如SEQ ID NO:9和10所示。
第二方面,本发明提供一种用于生产光学纯1,3-丁二醇的重组大肠杆菌,所述重组大肠杆菌是以上述重组菌作为出发菌株,利用基因工程手段对出发菌株进行改造,得到的细胞内NADPH供给增强的工程菌。包括如下方案:
方案I:通过增强出发菌株中与NADPH生物合成途径相关的基因,来提高细胞内NADPH的供给。
优选地,所述与NADPH生物合成途径相关的基因为pntAB基因,核苷酸序列如下:
i)SEQ ID NO:7所示的核苷酸序列;
ii)SEQ ID NO:7所示的核苷酸序列经取代、缺失和/或增加一个或多个核苷酸且表达相同功能蛋白质的核苷酸序列;
iii)在严格条件下与SEQ ID NO:7所示序列杂交且表达相同功能蛋白质的核苷酸序列,所述严格条件为在含0.1%SDS的0.1×SSPE或含0.1%SDS的0.1×SSC溶液中,在65℃下杂交,并用该溶液洗膜;或
iv)与i)、ii)或iii)的核苷酸序列具有90%以上同源性且表达相同功能蛋白质的核苷酸序列。
本发明中,所述增强的途径选自以下1)~6),或任选的组合:
1)通过导入具有所述基因的质粒而增强;
2)通过增加染色体上所述基因的拷贝数而增强;
3)通过改变染色体上所述基因的启动子序列而增强;
4)通过将强启动子与所述基因可操作地连接而增强;
5)通过导入增强子而增强;
6)通过使用具有编码高活性的相应酶或蛋白质的基因或等位基因而增强。
方案II:弱化出发菌株中sthA基因,来提高细胞内NADPH的供给;
sthA基因的核苷酸序列如下:
i)SEQ ID NO:8所示的核苷酸序列;
ii)SEQ ID NO:8所示的核苷酸序列经取代、缺失和/或增加一个或多个核苷酸且表达相同功能蛋白质的核苷酸序列;
iii)在严格条件下与SEQ ID NO:8所示序列杂交且表达相同功能蛋白质的核苷酸序列,所述严格条件为在含0.1%SDS的0.1×SSPE或含0.1%SDS的0.1×SSC溶液中,在65℃下杂交,并用该溶液洗膜;或
iv)与i)、ii)或iii)的核苷酸序列具有90%以上同源性且表达相同功能蛋白质的核苷酸序列。
本发明中,所述弱化包括敲除或降低基因的表达。
方案III:通过增强出发菌株(大肠杆菌)中pntAB基因,并弱化sthA基因,来提高细胞内NADPH的供给。
第三方面,本发明提供一种高产1,3-丁二醇的工程菌,所述工程菌是以上述重组菌,或者上述重组大肠杆菌作为原始菌株,利用基因工程手段对原始菌株做进一步改造,得到的细胞内乙酰CoA流向1,3-丁二醇合成途径的代谢通量增强的工程菌。
优选地,弱化原始菌株中adhE、ldhA、pta、ackA基因中的至少一种基因,来提高细胞内乙酰CoA流向1,3-丁二醇合成途径的代谢通量;所述弱化包括敲除或降低基因的表达。
adhE、ldhA、pta、ackA基因编码蛋白的氨基酸序列分别如SEQ ID NO:11-14所示。
优选地,弱化原始菌株(大肠杆菌)中adhE、ldhA、pta和ackA基因,来提高细胞内乙酰CoA流向1,3-丁二醇合成途径的代谢通量。
第四方面,本发明提供一种丁醛脱氢酶突变体,其是将丁醛脱氢酶(SEQ ID NO:1)第273位亮氨酸突变为苏氨酸而成,所述突变体的氨基酸序列如SEQ ID NO:2所示。
第五方面,本发明提供含有上述丁醛脱氢酶突变体编码基因的生物材料,所述生物材料包括重组DNA、表达盒、转座子、质粒载体、噬菌体载体、病毒载体或工程菌。
第六方面,本发明提供上述生物材料在微生物发酵生产1,3-丁二醇中的应用。
第七方面,本发明提供上述重组菌,或上述重组大肠杆菌,或者上述工程菌在发酵生产1,3-丁二醇中的应用。
第八方面,本发明提供一种生产光学纯1,3-丁二醇的方法,包括在发酵培养基中对上述重组菌,或上述重组大肠杆菌,或者上述工程菌进行培养以生产1,3-丁二醇。
可选地,所述发酵培养基为M9Y:葡萄糖20g/L,Na2HPO4 6g/L,KH2PO4 3g/L,NaCl0.5g/L,NH4Cl 1g/L,MgSO4 0.5g/L,CaCl2 15mg/L,酵母粉2g/L,氨苄青霉素100mg/L,以水配制。
培养条件为:30℃,200rpm,控制溶氧低于10%的饱和溶氧值。
利用本发明的大肠杆菌工程菌在微氧条件下发酵廉价有机碳源如葡萄糖、蔗糖或甘油等,1,3-丁二醇相对于底物的得率可以达到0.4g/g以上,且R型1,3-丁二醇纯度达到99%以上,具有重要的工业应用潜力。
附图说明
图1为本发明质粒ptrc99a-bld2-yqhD-phaAB图谱。
图2为本发明质粒ptrc99a-bld-yqhD-phaAB图谱。
图3为本发明质粒ptrc99a-pduP-yqhD-phaAB图谱。
图4为本发明质粒ptrc99a-eutE-yqhD–phaAB图谱。
图5为本发明质粒ptrc99a-bld(L273T)-yqhD–phaAB图谱。
图6为本发明质粒ptrc99a-bld(L273T)-yqhD–phaAB-pntAB图谱。
具体实施方式
本发明具体的实施方式包括:(1)构建1,3-丁二醇合成质粒;(2)强化NADPH的供给;(3)敲除副产物的合成。
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例均按照常规实验条件,如Sambrook等分子克隆实验手册(Sambrook J&Russell DW,Molecular Cloning:a Laboratory Manual,2001),或按照制造厂商说明书建议的条件。
实施例1在大肠杆菌中构建1,3-丁二醇的生物合成途径
大肠杆菌本身不能直接合成1,3-丁二醇,为了引入1,3-丁二醇的合成途径,本发明对1,3-丁二醇合成过程的关键基因进行了大量的筛选和改造,经过优化后的1,3-丁二醇表达模块,其产量大大提高。
首先构建包含来源于Cupriavidus necator的phaA、phaB基因,来源于Clostridium beijerinckii的醛脱氢酶基因bld2基因(在uniprot的基因编号为Q9X681),来源于大肠杆菌的yqhD基因(SEQ ID NO:6)的质粒ptrc99a–bld2-yqhD-phaAB。以phaA(SEQID NO:3),phaB(SEQ ID NO:4)的氨基酸序列为基础,人工合成了密码子优化的phaA-phaB操纵子(SEQ ID NO:5)。将ptrc99a(购自Addgene公司)用EcoRI/XbaI进行双酶切,利用Gibson组装试剂盒将人工合成的phaA-phaB操纵子、bld2基因、yqhD基因插入到ptrc99a质粒骨架上EcoRI/XbaI双酶切位点之间,获得的质粒命名为ptrc99a-bld2-yqhD-phaAB(质粒图谱如图1所示)。
相应地,将ptrc99a(购自Addgene公司)用EcoRI/XbaI进行双酶切,利用Gibson组装试剂盒将人工合成的phaA-phaB操纵子、来源于Clostridiumsaccharoperbutylacetonicum的醛脱氢酶基因bld基因(编码蛋白的氨基酸序列见SEQ IDNO:1)、yqhD基因插入到ptrc99a质粒骨架上EcoRI/XbaI双酶切位点之间,获得的质粒命名为ptrc99a-bld-yqhD-phaAB(质粒图谱如图2所示)。
相应地,将ptrc99a(购自Addgene公司)用EcoRI/XbaI进行双酶切,利用Gibson组装试剂盒将人工合成的phaA-phaB操纵子、来源于Klebsiella pneumoniae的醛脱氢酶基因pduP基因(在uniprot的基因编号为B5XUS2)、yqhD基因插入到ptrc99a质粒骨架上EcoRI/XbaI双酶切位点之间,获得的质粒命名为ptrc99a-pduP-yqhD-phaAB(质粒图谱如图3所示)。
相应地,将ptrc99a(购自Addgene公司)用EcoRI/XbaI进行双酶切,利用Gibson组装试剂盒将人工合成的phaA-phaB操纵子、来源于Salmonella typhimurium的醛脱氢酶基因eutE基因(在uniprot的基因编号为P41793)、yqhD基因插入到ptrc99a质粒骨架上EcoRI/XbaI双酶切位点之间,获得的质粒命名为ptrc99a-eutE-yqhD-phaAB(质粒图谱如图4所示)。
将上述四个质粒分别转化到大肠杆菌W3110中,获得的重组菌命名为E.coli/ptrc99a-bld2-yqhD-phaAB,E.coli/ptrc99a-bld-yqhD-phaAB,E.coli/ptrc99a-pduP-yqhD-phaAB,E.coli/ptrc99a-eutE-yqhD-phaAB。将这四株菌分别在500mL的不带挡板摇瓶中进行培养,装液量为200ml,培养基为M9Y(葡萄糖20g/L,Na2HPO4 6g/L,KH2PO4 3g/L,NaCl0.5g/L,NH4Cl 1g/L,MgSO4 0.5g/L,CaCl2 15mg/L,酵母粉2g/L,氨苄青霉素100mg/L),培养温度为30℃,转速200rpm,待菌液OD600=0.6时,加入1mM IPTG进行诱导,发酵72h时取样,利用高效液相色谱检测四株菌生产1,3-丁二醇的情况。结果显示,仅有大肠杆菌E.coli/ptrc99a-bld-yqhD-phaAB生产了0.3g/L的1,3-丁二醇,而其他三株菌株并不能产生1,3-丁二醇。说明1,3-丁二醇途径中关键酶的筛选对于1,3-丁二醇的合成至关重要。
进一步地,本发明发现醛脱氢酶是影响1,3-丁二醇合成的关键制约因素。为此,本发明进行了大量的蛋白质工程改造,最终发现以ptrc99a-bld-yqhD-phaAB为模板,利用Biorad的基因突变试剂盒将bld基因的273位氨基酸由亮氨酸突变为苏氨酸(SEQ ID NO:2),获得质粒ptrc99a-bld(L273T)-yqhD-phaAB(质粒图谱如图5所示)。将该质粒转化到大肠杆菌W3110中,获得的重组菌命名为E.coli/ptrc99a-bld(L273T)-yqhD-phaAB。将该菌株在M9Y培养基中进行培养,培养条件同上,72h时取样,利用高效液相色谱检测1,3-丁二醇的产量。结果显示,E.coli/ptrc99a-bld(L273T)-yqhD-phaAB的1,3-丁二醇的产量达到2.2g/L。
因此,本发明发现1,3-丁二醇合成途径酶的选择对1,3-丁二醇的生产至关重要,通过系统的优化1,3-丁二醇的途径,极大提高了1,3-丁二醇的产量。
实施例2通过强化NADPH的合成提高1,3-丁二醇的产量
1,3-丁二醇合成途径需要消耗大量的NADPH,本发明创造性地发现,过表达pntAB基因及敲除大肠杆菌sthA基因可以显著提高细胞的1,3-丁二醇产量。
将ptrc99a-bld(L273T)-yqhD-phaAB用SbfI进行双酶切,利用Gibson组装试剂盒将大肠杆菌的pntAB基因(SEQ ID NO:7)插入到ptrc99a-bld(L273T)-yqhD-phaAB质粒骨架上,获得的质粒命名为ptrc99a-bld(L273T)-yqhD-phaAB-pntAB(质粒图谱如图6所示)。将该质粒转化到大肠杆菌W3110中,获得的重组菌命名为E.coli/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB。将该菌株在M9Y培养基中进行培养,发酵条件同上所述,72h时取样,利用高效液相色谱检测1,3-丁二醇的产量。结果显示,E.coli/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB的1,3-丁二醇的产量达到4.8g/L。检测该菌株胞内的NADPH含量显示,该菌株的NADPH含量较E.coli/ptrc99a-bld(L273T)-yqhD-phaAB提高了1.8倍。
进一步地,通过基因敲除大肠杆菌W3110的sthA基因(SEQ ID NO:8)以强化NADPH的供给并提高1,3-丁二醇的产量。具体方法是以大肠杆菌MG1655ΔsthA::Kan(购自耶鲁大学CGSC大肠杆菌突变库,参见Baba et al.,Construction of Escherichia coli K-12in-frame,single-gene knockout mutants:the Keio collection,Mol Syst Biol.2006,2:2006.0008.)制备P1噬菌体溶菌产物,将溶菌产物与新鲜的大肠杆菌W3110培养物混合30分钟,加入1ml含有0.2M柠檬酸钠的LB培养基在37℃培养1h后涂布在包含50mg/L卡纳霉素抗性的LB平板上,筛选带抗性的重组菌株。进一步将带Flp酶的质粒pCP20(购自耶鲁大学CGSC大肠杆菌突变库,参见Datsenko&Wanner,One-step inactivation of chromosomal genesin Escherichia coli K-12 using PCR products,Proc Natl Acad Sci USA.2000,97(12):6640–6645.)转入该菌株,获得除去卡纳抗性标记的菌株命名为E.coli ΔsthA。将质粒ptrc99a-bld(L273T)-yqhD-phaAB-pntAB转化到大肠杆菌W3110中,获得的重组菌命名为E.coli ΔsthA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB。将该菌株在M9Y培养基中进行培养,发酵条件同上所述,72h时取样,利用高效液相色谱检测1,3-丁二醇的产量。结果显示,E.coli ΔsthA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB的1,3-丁二醇的产量达到5.8g/L。检测该菌株胞内的NADPH含量显示,该菌株的NADPH含量相比E.coli/ptrc99a-bld(L273T)-yqhD-phaAB提高了2.3倍。
因此,本发明发现大肠杆菌中NADPH的含量对1,3-丁二醇合成至关重要,通过系统的强化NADPH的含量,极大提高了1,3-丁二醇的产量。
实施例3强化乙酰辅酶A的供给提高1,3-丁二醇的产量
1,3-丁二醇合成途径的代谢前体是乙酰辅酶A,本发明发现通过减少乙酰辅酶A流向其他代谢支路可以进一步提高1,3-丁二醇的产量。利用P1噬菌体溶菌产物转染的方法,进一步敲除E.coli ΔsthA的乙醇合成基因adhE,乳酸合成基因ldhA,乙酸合成基因pta、ackA。其中,adhE、ldhA、pta、ackA基因编码蛋白的氨基酸序列分别如SEQ ID NO:11-14所示。获得的菌株分别命名为E.coli ΔsthAΔadhE,E.coli ΔsthAΔldhA,E.coli ΔsthAΔpta-ackA。同时利用P1噬菌体溶菌产物转染的方法,构建了同时包含这三个基因突变的菌株,命名为E.coli ΔsthAΔadhEΔldhAΔpta-ackA。将质粒ptrc99a-bld(L273T)-yqhD-phaAB-pntAB分别转化到这四株菌种,获得的菌株分别命名为E.coli ΔsthAΔadhE/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB,E.coli ΔsthAΔldhA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB,E.coli ΔsthAΔpta-ackA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB,E.coli ΔsthAΔadhEΔldhAΔpta-ackA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB。将该菌株在M9Y培养基中进行培养,发酵条件同上所述,72h时取样,利用高效液相色谱检测1,3-丁二醇的产量。结果显示,E.coli ΔsthAΔadhE/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB,E.coli ΔsthAΔldhA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB,E.coli ΔsthAΔpta-ackA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB,E.coli ΔsthAΔadhEΔldhAΔpta-ackA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB的1,3-丁二醇的产量分别达到6.1g/L,6.2g/L,6.8g/L,8.1g/L。
利用光学色谱检测,上述菌株生产的1,3-丁二醇均为R构型,纯度达到99%以上。
因此本发明通过系统地改造,获得1,3-丁二醇的高产菌株,1,3-丁二醇对底物的得率可以达到0.4g/g以上,且R型1,3-丁二醇纯度达到99%以上,具有重要的工业应用潜力。
实施例4重组大肠杆菌利用其它碳源生产1,3-丁二醇
进一步测试了重组菌株E.coli ΔsthAΔadhEΔldhAΔpta-ackA/ptrc99a-bld(L273T)-yqhD-phaAB-pntAB利用其它碳源生产1,3-丁二醇的情况。以甘油为碳源,利用发酵培养基M9Y-G(甘油20g/L,Na2HPO4 6g/L,KH2PO4 3g/L,NaCl 0.5g/L,NH4Cl 1g/L,MgSO40.5g/L,CaCl2 15mg/L,酵母粉2g/L,氨苄青霉素100mg/L)进行培养,培养温度为30℃,转速200rpm,待菌液OD600=0.6时,加入1mM IPTG进行诱导,发酵72h时取样,利用高效液相色谱检测该菌生产1,3-丁二醇的情况,其1,3-丁二醇产量达到8.3g/L,说明本发明构建的重组菌株同样能高效利用甘油高产1,3-丁二醇。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 清华大学 广东清大智兴生物技术有限公司
<120> 用于生产光学纯1,3-丁二醇的重组菌及其应用
<130> KHP191113543.8
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 468
<212> PRT
<213> Clostridium saccharoperbutylacetonicum
<400> 1
Met Ile Lys Asp Thr Leu Val Ser Ile Thr Lys Asp Leu Lys Leu Lys
1 5 10 15
Thr Asn Val Glu Asn Ala Asn Leu Lys Asn Tyr Lys Asp Asp Ser Ser
20 25 30
Cys Phe Gly Val Phe Glu Asn Val Glu Asn Ala Ile Ser Asn Ala Val
35 40 45
His Ala Gln Lys Ile Leu Ser Leu His Tyr Thr Lys Glu Gln Arg Glu
50 55 60
Lys Ile Ile Thr Glu Ile Arg Lys Ala Ala Leu Glu Asn Lys Glu Ile
65 70 75 80
Leu Ala Thr Met Ile Leu Glu Glu Thr His Met Gly Arg Tyr Glu Asp
85 90 95
Lys Ile Leu Lys His Glu Leu Val Ala Lys Tyr Thr Pro Gly Thr Glu
100 105 110
Asp Leu Thr Thr Thr Ala Trp Ser Gly Asp Asn Gly Leu Thr Val Val
115 120 125
Glu Met Ser Pro Tyr Gly Val Ile Gly Ala Ile Thr Pro Ser Thr Asn
130 135 140
Pro Thr Glu Thr Val Ile Cys Asn Ser Ile Gly Met Ile Ala Ala Gly
145 150 155 160
Asn Thr Val Val Phe Asn Gly His Pro Gly Ala Lys Lys Cys Val Ala
165 170 175
Phe Ala Val Glu Met Ile Asn Lys Ala Ile Ile Ser Cys Gly Gly Pro
180 185 190
Glu Asn Leu Val Thr Thr Ile Lys Asn Pro Thr Met Asp Ser Leu Asp
195 200 205
Ala Ile Ile Lys His Pro Ser Ile Lys Leu Leu Cys Gly Thr Gly Gly
210 215 220
Pro Gly Met Val Lys Thr Leu Leu Asn Ser Gly Lys Lys Ala Ile Gly
225 230 235 240
Ala Gly Ala Gly Asn Pro Pro Val Ile Val Asp Asp Thr Ala Asp Ile
245 250 255
Glu Lys Ala Gly Lys Ser Ile Ile Glu Gly Cys Ser Phe Asp Asn Asn
260 265 270
Leu Pro Cys Ile Ala Glu Lys Glu Val Phe Val Phe Glu Asn Val Ala
275 280 285
Asp Asp Leu Ile Ser Asn Met Leu Lys Asn Asn Ala Val Ile Ile Asn
290 295 300
Glu Asp Gln Val Ser Lys Leu Ile Asp Leu Val Leu Gln Lys Asn Asn
305 310 315 320
Glu Thr Gln Glu Tyr Ser Ile Asn Lys Lys Trp Val Gly Lys Asp Ala
325 330 335
Lys Leu Phe Leu Asp Glu Ile Asp Val Glu Ser Pro Ser Ser Val Lys
340 345 350
Cys Ile Ile Cys Glu Val Ser Ala Arg His Pro Phe Val Met Thr Glu
355 360 365
Leu Met Met Pro Ile Leu Pro Ile Val Arg Val Lys Asp Ile Asp Glu
370 375 380
Ala Ile Glu Tyr Ala Lys Ile Ala Glu Gln Asn Arg Lys His Ser Ala
385 390 395 400
Tyr Ile Tyr Ser Lys Asn Ile Asp Asn Leu Asn Arg Phe Glu Arg Glu
405 410 415
Ile Asp Thr Thr Ile Phe Val Lys Asn Ala Lys Ser Phe Ala Gly Val
420 425 430
Gly Tyr Glu Ala Glu Gly Phe Thr Thr Phe Thr Ile Ala Gly Ser Thr
435 440 445
Gly Glu Gly Ile Thr Ser Ala Arg Asn Phe Thr Arg Gln Arg Arg Cys
450 455 460
Val Leu Ala Gly
465
<210> 2
<211> 468
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Ile Lys Asp Thr Leu Val Ser Ile Thr Lys Asp Leu Lys Leu Lys
1 5 10 15
Thr Asn Val Glu Asn Ala Asn Leu Lys Asn Tyr Lys Asp Asp Ser Ser
20 25 30
Cys Phe Gly Val Phe Glu Asn Val Glu Asn Ala Ile Ser Asn Ala Val
35 40 45
His Ala Gln Lys Ile Leu Ser Leu His Tyr Thr Lys Glu Gln Arg Glu
50 55 60
Lys Ile Ile Thr Glu Ile Arg Lys Ala Ala Leu Glu Asn Lys Glu Ile
65 70 75 80
Leu Ala Thr Met Ile Leu Glu Glu Thr His Met Gly Arg Tyr Glu Asp
85 90 95
Lys Ile Leu Lys His Glu Leu Val Ala Lys Tyr Thr Pro Gly Thr Glu
100 105 110
Asp Leu Thr Thr Thr Ala Trp Ser Gly Asp Asn Gly Leu Thr Val Val
115 120 125
Glu Met Ser Pro Tyr Gly Val Ile Gly Ala Ile Thr Pro Ser Thr Asn
130 135 140
Pro Thr Glu Thr Val Ile Cys Asn Ser Ile Gly Met Ile Ala Ala Gly
145 150 155 160
Asn Thr Val Val Phe Asn Gly His Pro Gly Ala Lys Lys Cys Val Ala
165 170 175
Phe Ala Val Glu Met Ile Asn Lys Ala Ile Ile Ser Cys Gly Gly Pro
180 185 190
Glu Asn Leu Val Thr Thr Ile Lys Asn Pro Thr Met Asp Ser Leu Asp
195 200 205
Ala Ile Ile Lys His Pro Ser Ile Lys Leu Leu Cys Gly Thr Gly Gly
210 215 220
Pro Gly Met Val Lys Thr Leu Leu Asn Ser Gly Lys Lys Ala Ile Gly
225 230 235 240
Ala Gly Ala Gly Asn Pro Pro Val Ile Val Asp Asp Thr Ala Asp Ile
245 250 255
Glu Lys Ala Gly Lys Ser Ile Ile Glu Gly Cys Ser Phe Asp Asn Asn
260 265 270
Thr Pro Cys Ile Ala Glu Lys Glu Val Phe Val Phe Glu Asn Val Ala
275 280 285
Asp Asp Leu Ile Ser Asn Met Leu Lys Asn Asn Ala Val Ile Ile Asn
290 295 300
Glu Asp Gln Val Ser Lys Leu Ile Asp Leu Val Leu Gln Lys Asn Asn
305 310 315 320
Glu Thr Gln Glu Tyr Ser Ile Asn Lys Lys Trp Val Gly Lys Asp Ala
325 330 335
Lys Leu Phe Leu Asp Glu Ile Asp Val Glu Ser Pro Ser Ser Val Lys
340 345 350
Cys Ile Ile Cys Glu Val Ser Ala Arg His Pro Phe Val Met Thr Glu
355 360 365
Leu Met Met Pro Ile Leu Pro Ile Val Arg Val Lys Asp Ile Asp Glu
370 375 380
Ala Ile Glu Tyr Ala Lys Ile Ala Glu Gln Asn Arg Lys His Ser Ala
385 390 395 400
Tyr Ile Tyr Ser Lys Asn Ile Asp Asn Leu Asn Arg Phe Glu Arg Glu
405 410 415
Ile Asp Thr Thr Ile Phe Val Lys Asn Ala Lys Ser Phe Ala Gly Val
420 425 430
Gly Tyr Glu Ala Glu Gly Phe Thr Thr Phe Thr Ile Ala Gly Ser Thr
435 440 445
Gly Glu Gly Ile Thr Ser Ala Arg Asn Phe Thr Arg Gln Arg Arg Cys
450 455 460
Val Leu Ala Gly
465
<210> 3
<211> 393
<212> PRT
<213> Cupriavidus necator
<400> 3
Met Thr Asp Val Val Ile Val Ser Ala Ala Arg Thr Ala Val Gly Lys
1 5 10 15
Phe Gly Gly Ser Leu Ala Lys Ile Pro Ala Pro Glu Leu Gly Ala Val
20 25 30
Val Ile Lys Ala Ala Leu Glu Arg Ala Gly Val Lys Pro Glu Gln Val
35 40 45
Ser Glu Val Ile Met Gly Gln Val Leu Thr Ala Gly Ser Gly Gln Asn
50 55 60
Pro Ala Arg Gln Ala Ala Ile Lys Ala Gly Leu Pro Ala Met Val Pro
65 70 75 80
Ala Met Thr Ile Asn Lys Val Cys Gly Ser Gly Leu Lys Ala Val Met
85 90 95
Leu Ala Ala Asn Ala Ile Met Ala Gly Asp Ala Glu Ile Val Val Ala
100 105 110
Gly Gly Gln Glu Asn Met Ser Ala Ala Pro His Val Leu Pro Gly Ser
115 120 125
Arg Asp Gly Phe Arg Met Gly Asp Ala Lys Leu Val Asp Thr Met Ile
130 135 140
Val Asp Gly Leu Trp Asp Val Tyr Asn Gln Tyr His Met Gly Ile Thr
145 150 155 160
Ala Glu Asn Val Ala Lys Glu Tyr Gly Ile Thr Arg Glu Ala Gln Asp
165 170 175
Glu Phe Ala Val Gly Ser Gln Asn Lys Ala Glu Ala Ala Gln Lys Ala
180 185 190
Gly Lys Phe Asp Glu Glu Ile Val Pro Val Leu Ile Pro Gln Arg Lys
195 200 205
Gly Asp Pro Val Ala Phe Lys Thr Asp Glu Phe Val Arg Gln Gly Ala
210 215 220
Thr Leu Asp Ser Met Ser Gly Leu Lys Pro Ala Phe Asp Lys Ala Gly
225 230 235 240
Thr Val Thr Ala Ala Asn Ala Ser Gly Leu Asn Asp Gly Ala Ala Ala
245 250 255
Val Val Val Met Ser Ala Ala Lys Ala Lys Glu Leu Gly Leu Thr Pro
260 265 270
Leu Ala Thr Ile Lys Ser Tyr Ala Asn Ala Gly Val Asp Pro Lys Val
275 280 285
Met Gly Met Gly Pro Val Pro Ala Ser Lys Arg Ala Leu Ser Arg Ala
290 295 300
Glu Trp Thr Pro Gln Asp Leu Asp Leu Met Glu Ile Asn Glu Ala Phe
305 310 315 320
Ala Ala Gln Ala Leu Ala Val His Gln Gln Met Gly Trp Asp Thr Ser
325 330 335
Lys Val Asn Val Asn Gly Gly Ala Ile Ala Ile Gly His Pro Ile Gly
340 345 350
Ala Ser Gly Cys Arg Ile Leu Val Thr Leu Leu His Glu Met Lys Arg
355 360 365
Arg Asp Ala Lys Lys Gly Leu Ala Ser Leu Cys Ile Gly Gly Gly Met
370 375 380
Gly Val Ala Leu Ala Val Glu Arg Lys
385 390
<210> 4
<211> 246
<212> PRT
<213> Cupriavidus necator
<400> 4
Met Thr Gln Arg Ile Ala Tyr Val Thr Gly Gly Met Gly Gly Ile Gly
1 5 10 15
Thr Ala Ile Cys Gln Arg Leu Ala Lys Asp Gly Phe Arg Val Val Ala
20 25 30
Gly Cys Gly Pro Asn Ser Pro Arg Arg Glu Lys Trp Leu Glu Gln Gln
35 40 45
Lys Ala Leu Gly Phe Asp Phe Ile Ala Ser Glu Gly Asn Val Ala Asp
50 55 60
Trp Asp Ser Thr Lys Thr Ala Phe Asp Lys Val Lys Ser Glu Val Gly
65 70 75 80
Glu Val Asp Val Leu Ile Asn Asn Ala Gly Ile Thr Arg Asp Val Val
85 90 95
Phe Arg Lys Met Thr Arg Ala Asp Trp Asp Ala Val Ile Asp Thr Asn
100 105 110
Leu Thr Ser Leu Phe Asn Val Thr Lys Gln Val Ile Asp Gly Met Ala
115 120 125
Asp Arg Gly Trp Gly Arg Ile Val Asn Ile Ser Ser Val Asn Gly Gln
130 135 140
Lys Gly Gln Phe Gly Gln Thr Asn Tyr Ser Thr Ala Lys Ala Gly Leu
145 150 155 160
His Gly Phe Thr Met Ala Leu Ala Gln Glu Val Ala Thr Lys Gly Val
165 170 175
Thr Val Asn Thr Val Ser Pro Gly Tyr Ile Ala Thr Asp Met Val Lys
180 185 190
Ala Ile Arg Gln Asp Val Leu Asp Lys Ile Val Ala Thr Ile Pro Val
195 200 205
Lys Arg Leu Gly Leu Pro Glu Glu Ile Ala Ser Ile Cys Ala Trp Leu
210 215 220
Ser Ser Glu Glu Ser Gly Phe Ser Thr Gly Ala Asp Phe Ser Leu Asn
225 230 235 240
Gly Gly Leu His Met Gly
245
<210> 5
<211> 1974
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
attgaaagga ctacacaatg actgacgttg tcatcgtatc cgccgcccgc accgcggtcg 60
gcaagtttgg cggctcgctg gccaagatcc cggcaccgga actgggtgcc gtggtcatca 120
aggccgcgct ggagcgcgcc ggcgtcaagc cggagcaggt gagcgaagtc atcatgggcc 180
aggtgctgac cgccggttcg ggccagaacc ccgcacgcca ggccgcgatc aaggccggcc 240
tgccggcgat ggtgccggcc atgaccatca acaaggtgtg cggctcgggc ctgaaggccg 300
tgatgctggc cgccaacgcg atcatggcgg gcgacgccga gatcgtggtg gccggcggcc 360
aggaaaacat gagcgccgcc ccgcacgtgc tgccgggctc gcgcgatggt ttccgcatgg 420
gcgatgccaa gctggtcgac accatgatcg tcgacggcct gtgggacgtg tacaaccagt 480
accacatggg catcaccgcc gagaacgtgg ccaaggaata cggcatcaca cgcgaggcgc 540
aggatgagtt cgccgtcggc tcgcagaaca aggccgaagc cgcgcagaag gccggcaagt 600
ttgacgaaga gatcgtcccg gtgctgatcc cgcagcgcaa gggcgacccg gtggccttca 660
agaccgacga gttcgtgcgc cagggcgcca cgctggacag catgtccggc ctcaagcccg 720
ccttcgacaa ggccggcacg gtgaccgcgg ccaacgcctc gggcctgaac gacggcgccg 780
ccgcggtggt ggtgatgtcg gcggccaagg ccaaggaact gggcctgacc ccgctggcca 840
cgatcaagag ctatgccaac gccggtgtcg atcccaaggt gatgggcatg ggcccggtgc 900
cggcctccaa gcgcgccctg tcgcgcgccg agtggacccc gcaagacctg gacctgatgg 960
agatcaacga ggcctttgcc gcgcaggcgc tggcggtgca ccagcagatg ggctgggaca 1020
cctccaaggt caatgtgaac ggcggcgcca tcgccatcgg ccacccgatc ggcgcgtcgg 1080
gctgccgtat cctggtgacg ctgctgcacg agatgaagcg ccgtgacgcg aagaagggcc 1140
tggcctcgct gtgcatcggc ggcggcatgg gcgtggcgct ggcagtcgag cgcaaataac 1200
ggcgacgata acgaagccaa tcaaggagtg gacatgactc agcgcattgc gtatgtgacc 1260
ggcggcatgg gtggtatcgg aaccgccatt tgccagcggc tggccaagga tggctttcgt 1320
gtggtggccg gttgcggccc caactcgccg cgccgcgaaa agtggctgga gcagcagaag 1380
gccctgggct tcgatttcat tgcctcggaa ggcaatgtgg ctgactggga ctcgaccaag 1440
accgcattcg acaaggtcaa gtccgaggtc ggcgaggttg atgtgctgat caacaacgcc 1500
ggtatcaccc gcgacgtggt gttccgcaag atgacccgcg ccgactggga tgcggtgatc 1560
gacaccaacc tgacctcgct gttcaacgtc accaagcagg tgatcgacgg catggccgac 1620
cgtggctggg gccgcatcgt caacatctcg tcggtgaacg ggcagaaggg ccagttcggc 1680
cagaccaact actccaccgc caaggccggc ctgcatggct tcaccatggc actggcgcag 1740
gaagtggcga ccaagggcgt gaccgtcaac acggtctctc cgggctatat cgccaccgac 1800
atggtcaagg cgatccgcca ggacgtgctc gacaagatcg tcgcgacgat cccggtcaag 1860
cgcctgggcc tgccggaaga gatcgcctcg atctgcgcct ggttgtcgtc ggaggagtcc 1920
ggtttctcga ccggcgccga cttctcgctc aacggcggcc tgcatatggg ctga 1974
<210> 6
<211> 387
<212> PRT
<213> 大肠杆菌(Escherichia coli)
<400> 6
Met Asn Asn Phe Asn Leu His Thr Pro Thr Arg Ile Leu Phe Gly Lys
1 5 10 15
Gly Ala Ile Ala Gly Leu Arg Glu Gln Ile Pro His Asp Ala Arg Val
20 25 30
Leu Ile Thr Tyr Gly Gly Gly Ser Val Lys Lys Thr Gly Val Leu Asp
35 40 45
Gln Val Leu Asp Ala Leu Lys Gly Met Asp Val Leu Glu Phe Gly Gly
50 55 60
Ile Glu Pro Asn Pro Ala Tyr Glu Thr Leu Met Asn Ala Val Lys Leu
65 70 75 80
Val Arg Glu Gln Lys Val Thr Phe Leu Leu Ala Val Gly Gly Gly Ser
85 90 95
Val Leu Asp Gly Thr Lys Phe Ile Ala Ala Ala Ala Asn Tyr Pro Glu
100 105 110
Asn Ile Asp Pro Trp His Ile Leu Gln Thr Gly Gly Lys Glu Ile Lys
115 120 125
Ser Ala Ile Pro Met Gly Cys Val Leu Thr Leu Pro Ala Thr Gly Ser
130 135 140
Glu Ser Asn Ala Gly Ala Val Ile Ser Arg Lys Thr Thr Gly Asp Lys
145 150 155 160
Gln Ala Phe His Ser Ala His Val Gln Pro Val Phe Ala Val Leu Asp
165 170 175
Pro Val Tyr Thr Tyr Thr Leu Pro Pro Arg Gln Val Ala Asn Gly Val
180 185 190
Val Asp Ala Phe Val His Thr Val Glu Gln Tyr Val Thr Lys Pro Val
195 200 205
Asp Ala Lys Ile Gln Asp Arg Phe Ala Glu Gly Ile Leu Leu Thr Leu
210 215 220
Ile Glu Asp Gly Pro Lys Ala Leu Lys Glu Pro Glu Asn Tyr Asp Val
225 230 235 240
Arg Ala Asn Val Met Trp Ala Ala Thr Gln Ala Leu Asn Gly Leu Ile
245 250 255
Gly Ala Gly Val Pro Gln Asp Trp Ala Thr His Met Leu Gly His Glu
260 265 270
Leu Thr Ala Met His Gly Leu Asp His Ala Gln Thr Leu Ala Ile Val
275 280 285
Leu Pro Ala Leu Trp Asn Glu Lys Arg Asp Thr Lys Arg Ala Lys Leu
290 295 300
Leu Gln Tyr Ala Glu Arg Val Trp Asn Ile Thr Glu Gly Ser Asp Asp
305 310 315 320
Glu Arg Ile Asp Ala Ala Ile Ala Ala Thr Arg Asn Phe Phe Glu Gln
325 330 335
Leu Gly Val Pro Thr His Leu Ser Asp Tyr Gly Leu Asp Gly Ser Ser
340 345 350
Ile Pro Ala Leu Leu Lys Lys Leu Glu Glu His Gly Met Thr Gln Leu
355 360 365
Gly Glu Asn His Asp Ile Thr Leu Asp Val Ser Arg Arg Ile Tyr Glu
370 375 380
Ala Ala Arg
385
<210> 7
<211> 2948
<212> DNA
<213> 大肠杆菌(Escherichia coli)
<400> 7
gatggaaggg aatatcatgc gaattggcat accaagagaa cggttaacca atgaaacccg 60
tgttgcagca acgccaaaaa cagtggaaca gctgctgaaa ctgggtttta ccgtcgcggt 120
agagagcggc gcgggtcaac tggcaagttt tgacgataaa gcgtttgtgc aagcgggcgc 180
tgaaattgta gaagggaata gcgtctggca gtcagagatc attctgaagg tcaatgcgcc 240
gttagatgat gaaattgcgt tactgaatcc tgggacaacg ctggtgagtt ttatctggcc 300
tgcgcagaat ccggaattaa tgcaaaaact tgcggaacgt aacgtgaccg tgatggcgat 360
ggactctgtg ccgcgtatct cacgcgcaca atcgctggac gcactaagct cgatggcgaa 420
catcgccggt tatcgcgcca ttgttgaagc ggcacatgaa tttgggcgct tctttaccgg 480
gcaaattact gcggccggga aagtgccacc ggcaaaagtg atggtgattg gtgcgggtgt 540
tgcaggtctg gccgccattg gcgcagcaaa cagtctcggc gcgattgtgc gtgcattcga 600
cacccgcccg gaagtgaaag aacaagttca aagtatgggc gcggaattcc tcgagctgga 660
ttttaaagag gaagctggca gcggcgatgg ctatgccaaa gtgatgtcgg acgcgttcat 720
caaagcggaa atggaactct ttgccgccca ggcaaaagag gtcgatatca ttgtcaccac 780
cgcgcttatt ccaggcaaac cagcgccgaa gctaattacc cgtgaaatgg ttgactccat 840
gaaggcgggc agtgtgattg tcgacctggc agcccaaaac ggcggcaact gtgaatacac 900
cgtgccgggt gaaatcttca ctacggaaaa tggtgtcaaa gtgattggtt ataccgatct 960
tccgggccgt ctgccgacgc aatcctcaca gctttacggc acaaacctcg ttaatctgct 1020
gaaactgttg tgcaaagaga aagacggcaa tatcactgtt gattttgatg atgtggtgat 1080
tcgcggcgtg accgtgatcc gtgcgggcga aattacctgg ccggcaccgc cgattcaggt 1140
atcagctcag ccgcaggcgg cacaaaaagc ggcaccggaa gtgaaaactg aggaaaaatg 1200
tacctgctca ccgtggcgta aatacgcgtt gatggcgctg gcaatcattc tttttggctg 1260
gatggcaagc gttgcgccga aagaattcct tgggcacttc accgttttcg cgctggcctg 1320
cgttgtcggt tattacgtgg tgtggaatgt atcgcacgcg ctgcatacac cgttgatgtc 1380
ggtcaccaac gcgatttcag ggattattgt tgtcggagca ctgttgcaga ttggccaggg 1440
cggctgggtt agcttcctta gttttatcgc ggtgcttata gccagcatta atattttcgg 1500
tggcttcacc gtgactcagc gcatgctgaa aatgttccgc aaaaattaag gggtaacata 1560
tgtctggagg attagttaca gctgcataca ttgttgccgc gatcctgttt atcttcagtc 1620
tggccggtct ttcgaaacat gaaacgtctc gccagggtaa caacttcggt atcgccggga 1680
tggcgattgc gttaatcgca accatttttg gaccggatac gggtaatgtt ggctggatct 1740
tgctggcgat ggtcattggt ggggcaattg gtatccgtct ggcgaagaaa gttgaaatga 1800
ccgaaatgcc agaactggtg gcgatcctgc atagcttcgt gggtctggcg gcagtgctgg 1860
ttggctttaa cagctatctg catcatgacg cgggaatggc accgattctg gtcaatattc 1920
acctgacgga agtgttcctc ggtatcttca tcggggcggt aacgttcacg ggttcggtgg 1980
tggcgttcgg caaactgtgt ggcaagattt cgtctaaacc attgatgctg ccaaaccgtc 2040
acaaaatgaa cctggcggct ctggtcgttt ccttcctgct gctgattgta tttgttcgca 2100
cggacagcgt cggcctgcaa gtgctggcat tgctgataat gaccgcaatt gcgctggtat 2160
tcggctggca tttagtcgcc tccatcggtg gtgcagatat gccagtggtg gtgtcgatgc 2220
tgaactcgta ctccggctgg gcggctgcgg ctgcgggctt tatgctcagc aacgacctgc 2280
tgattgtgac cggtgcgctg gtcggttctt cgggggctat cctttcttac attatgtgta 2340
aggcgatgaa ccgttccttt atcagcgtta ttgcgggtgg tttcggcacc gacggctctt 2400
ctactggcga tgatcaggaa gtgggtgagc accgcgaaat caccgcagaa gagacagcgg 2460
aactgctgaa aaactcccat tcagtgatca ttactccggg gtacggcatg gcagtcgcgc 2520
aggcgcaata tcctgtcgct gaaattactg agaaattgcg cgctcgtggt attaatgtgc 2580
gtttcggtat ccacccggtc gcggggcgtt tgcctggaca tatgaacgta ttgctggctg 2640
aagcaaaagt accgtatgac atcgtgctgg aaatggacga gatcaatgat gactttgctg 2700
ataccgatac cgtactggtg attggtgcta acgatacggt taacccggcg gcgcaggatg 2760
atccgaagag tccgattgct ggtatgcctg tgctggaagt gtggaaagcg cagaacgtga 2820
ttgtctttaa acgttcgatg aacactggct atgctggtgt gcaaaacccg ctgttcttca 2880
aggaaaacac ccacatgctg tttggtgacg ccaaagccag cgtggatgca atcctgaaag 2940
ctctgtaa 2948
<210> 8
<211> 1401
<212> DNA
<213> 大肠杆菌(Escherichia coli)
<400> 8
atgccacatt cctacgatta cgatgccata gtaataggtt ccggccccgg cggcgaaggc 60
gctgcaatgg gcctggttaa gcaaggtgcg cgcgtcgcag ttatcgagcg ttatcaaaat 120
gttggcggcg gttgcaccca ctggggcacc atcccgtcga aagctctccg tcacgccgtc 180
agccgcatta tagaattcaa tcaaaaccca ctttacagcg accattcccg actgctccgc 240
tcttcttttg ccgatatcct taaccatgcc gataacgtga ttaatcaaca aacgcgcatg 300
cgtcagggat tttacgaacg taatcactgt gaaatattgc agggaaacgc tcgctttgtt 360
gacgagcata cgttggcgct ggattgcccg gacggcagcg ttgaaacact aaccgctgaa 420
aaatttgtta ttgcctgcgg ctctcgtcca tatcatccaa cagatgttga tttcacccat 480
ccacgcattt acgacagcga ctcaattctc agcatgcacc acgaaccgcg ccatgtactt 540
atctatggtg ctggagtgat cggctgtgaa tatgcgtcga tcttccgcgg tatggatgta 600
aaagtggatc tgatcaacac ccgcgatcgc ctgctggcat ttctcgatca agagatgtca 660
gattctctct cctatcactt ctggaacagt ggcgtagtga ttcgtcacaa cgaagagtac 720
gagaagatcg aaggctgtga cgatggtgtg atcatgcatc tgaagtcggg taaaaaactg 780
aaagctgact gcctgctcta tgccaacggt cgcaccggta ataccgattc gctggcgtta 840
cagaacattg ggctagaaac tgacagccgc ggacagctga aggtcaacag catgtatcag 900
accgcacagc cacacgttta cgcggtgggc gacgtgattg gttatccgag cctggcgtcg 960
gcggcctatg accaggggcg cattgccgcg caggcgctgg taaaaggcga agccaccgca 1020
catctgattg aagatatccc taccggtatt tacaccatcc cggaaatcag ctctgtgggc 1080
aaaaccgaac agcagctgac cgcaatgaaa gtgccatatg aagtgggccg cgcccagttt 1140
aaacatctgg cacgcgcaca aatcgtcggc atgaacgtgg gcacgctgaa aattttgttc 1200
catcgggaaa caaaagagat tctgggtatt cactgctttg gcgagcgcgc tgccgaaatt 1260
attcatatcg gtcaggcgat tatggaacag aaaggtggcg gcaacactat tgagtacttc 1320
gtcaacacca cctttaacta cccgacgatg gcggaagcct atcgggtagc tgcgttaaac 1380
ggtttaaacc gcctgtttta a 1401
<210> 9
<211> 4627
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
atgaacaaag atactttaat cccgacgacc aaagatttaa aacttaaaac gaatgtcgaa 60
aatatcaatt tgaaaaatta taaagataat tcctcttgct ttggggtctt cgaaaatgtg 120
gaaaatgcga ttaatagcgc agttcacgct caaaaaatcc tttcgttgca ttacaccaag 180
gaacagcgtg agaaaattat caccgaaatt cgtaaagctg cacttgagaa taaggaggtg 240
cttgctacta tgattttgga ggaaacacat atgggccgct acgaagacaa aatccttaaa 300
catgaactgg ttgcgaaata taccccggga accgaagacc ttacaaccac tgcgtggagt 360
ggtgacaacg gcttgactgt tgtagagatg tcgccctatg gggtaattgg ggcgattacc 420
ccgtctacca acccgacgga gaccgtgatc tgcaactcaa ttggaatgat tgctgcagga 480
aatgcagtcg tattcaacgg ccacccgggt gccaaaaagt gcgttgcatt cgcgattgaa 540
atgattaata aggcgattat ttcttgcggt ggtccggaaa atctggtcac cacgatcaag 600
aacccgacaa tggaaagtct ggatgcgatc atcaaacacc ctttgattaa gcttctttgc 660
gggacgggtg gaccgggtat ggttaagact ttgctgaact caggtaagaa agcgattggt 720
gctggcgcag gtaacccgcc tgtgatcgtc gacgatactg ccgacatcga gaaagcaggg 780
aagtccatta ttgaaggatg tagctttgac aacaatttgc cttgcatcgc agagaaagag 840
gtattcgttt ttgagaacgt cgcggacgat ctgattagta acatgctgaa gaacaacgca 900
gtcattatta acgaggatca ggtgtccaaa ctgatcgact tggtgttgca aaaaaataat 960
gaaactcagg agtacttcat caacaagaaa tgggttggaa aggatgccaa gttattcagt 1020
gatgaaattg atgttgaatc gccctcgaac attaagtgta ttgtctgtga ggtcaacgct 1080
aaccatccat ttgttatgac cgaattaatg atgcctattc tgcccatcgt tcgcgtgaag 1140
gacattgatg aagctgtaaa gtataccaaa atcgcggaac aaaaccgtaa gcacagcgca 1200
tacatctaca gtaaaaacat tgacaacctt aaccgttttg agcgcgaaat tgatacgacg 1260
attttcgtta agaacgcaaa aagtttcgct ggggtagggt atgaggcaga aggatttaca 1320
acttttacaa ttgcgggatc tacgggagaa gggattacct ccgcacgcaa tttcacgcgc 1380
caacgtcgtt gtgtgttggc ggggtgaaac tttaagaagg agatatacat gaacaacttt 1440
aatctgcaca ccccaacccg cattctgttt ggtaaaggcg caatcgctgg tttacgcgaa 1500
caaattcctc acgatgctcg cgtattgatt acctacggcg gcggcagcgt gaaaaaaacc 1560
ggcgttctcg atcaagttct ggatgccctg aaaggcatgg acgtgctgga atttggcggt 1620
attgagccaa acccggctta tgaaacgctg atgaacgccg tgaaactggt tcgcgaacag 1680
aaagtgactt tcctgctggc ggttggcggc ggttctgtac tggacggcac caaatttatc 1740
gccgcagcgg ctaactatcc ggaaaatatc gatccgtggc acattctgca aacgggcggt 1800
aaagagatta aaagcgccat cccgatgggc tgtgtgctga cgctgccagc aaccggttca 1860
gaatccaacg caggcgcggt gatctcccgt aaaaccacag gcgacaagca ggcgttccat 1920
tctgcccatg ttcagccggt atttgccgtg ctcgatccgg tttataccta caccctgccg 1980
ccgcgtcagg tggctaacgg cgtagtggac gcctttgtac acaccgtgga acagtatgtt 2040
accaaaccgg ttgatgccaa aattcaggac cgtttcgcag aaggcatttt gctgacgcta 2100
atcgaagatg gtccgaaagc cctgaaagag ccagaaaact acgatgtgcg cgccaacgtc 2160
atgtgggcgg cgactcaggc gctgaacggt ttgattggcg ctggcgtacc gcaggactgg 2220
gcaacgcata tgctgggcca cgaactgact gcgatgcacg gtctggatca cgcgcaaaca 2280
ctggctatcg tcctgcctgc actgtggaat gaaaaacgcg ataccaagcg cgctaagctg 2340
ctgcaatatg ctgaacgcgt ctggaacatc actgaaggtt ccgatgatga gcgtattgac 2400
gccgcgattg ccgcaacccg caatttcttt gagcaattag gcgtgccgac ccacctctcc 2460
gactacggtc tggacggcag ctccatcccg gctttgctga aaaaactgga agagcacggc 2520
atgacccaac tgggcgaaaa tcatgacatt acgttggatg tcagccgccg tatatacgaa 2580
gccgcccgct aattgacaat taatcatcgg ctcgtataat gtgtggaatt gtgagcggat 2640
aacaatttca cccattgaaa ggactacaca atgactgacg ttgtcatcgt atccgccgcc 2700
cgcaccgcgg tcggcaagtt tggcggctcg ctggccaaga tcccggcacc ggaactgggt 2760
gccgtggtca tcaaggccgc gctggagcgc gccggcgtca agccggagca ggtgagcgaa 2820
gtcatcatgg gccaggtgct gaccgccggt tcgggccaga accccgcacg ccaggccgcg 2880
atcaaggccg gcctgccggc gatggtgccg gccatgacca tcaacaaggt gtgcggctcg 2940
ggcctgaagg ccgtgatgct ggccgccaac gcgatcatgg cgggcgacgc cgagatcgtg 3000
gtggccggcg gccaggaaaa catgagcgcc gccccgcacg tgctgccggg ctcgcgcgat 3060
ggtttccgca tgggcgatgc caagctggtc gacaccatga tcgtcgacgg cctgtgggac 3120
gtgtacaacc agtaccacat gggcatcacc gccgagaacg tggccaagga atacggcatc 3180
acacgcgagg cgcaggatga gttcgccgtc ggctcgcaga acaaggccga agccgcgcag 3240
aaggccggca agtttgacga agagatcgtc ccggtgctga tcccgcagcg caagggcgac 3300
ccggtggcct tcaagaccga cgagttcgtg cgccagggcg ccacgctgga cagcatgtcc 3360
ggcctcaagc ccgccttcga caaggccggc acggtgaccg cggccaacgc ctcgggcctg 3420
aacgacggcg ccgccgcggt ggtggtgatg tcggcggcca aggccaagga actgggcctg 3480
accccgctgg ccacgatcaa gagctatgcc aacgccggtg tcgatcccaa ggtgatgggc 3540
atgggcccgg tgccggcctc caagcgcgcc ctgtcgcgcg ccgagtggac cccgcaagac 3600
ctggacctga tggagatcaa cgaggccttt gccgcgcagg cgctggcggt gcaccagcag 3660
atgggctggg acacctccaa ggtcaatgtg aacggcggcg ccatcgccat cggccacccg 3720
atcggcgcgt cgggctgccg tatcctggtg acgctgctgc acgagatgaa gcgccgtgac 3780
gcgaagaagg gcctggcctc gctgtgcatc ggcggcggca tgggcgtggc gctggcagtc 3840
gagcgcaaat aacggcgacg ataacgaagc caatcaagga gtggacatga ctcagcgcat 3900
tgcgtatgtg accggcggca tgggtggtat cggaaccgcc atttgccagc ggctggccaa 3960
ggatggcttt cgtgtggtgg ccggttgcgg ccccaactcg ccgcgccgcg aaaagtggct 4020
ggagcagcag aaggccctgg gcttcgattt cattgcctcg gaaggcaatg tggctgactg 4080
ggactcgacc aagaccgcat tcgacaaggt caagtccgag gtcggcgagg ttgatgtgct 4140
gatcaacaac gccggtatca cccgcgacgt ggtgttccgc aagatgaccc gcgccgactg 4200
ggatgcggtg atcgacacca acctgacctc gctgttcaac gtcaccaagc aggtgatcga 4260
cggcatggcc gaccgtggct ggggccgcat cgtcaacatc tcgtcggtga acgggcagaa 4320
gggccagttc ggccagacca actactccac cgccaaggcc ggcctgcatg gcttcaccat 4380
ggcactggcg caggaagtgg cgaccaaggg cgtgaccgtc aacacggtct ctccgggcta 4440
tatcgccacc gacatggtca aggcgatccg ccaggacgtg ctcgacaaga tcgtcgcgac 4500
gatcccggtc aagcgcctgg gcctgccgga agagatcgcc tcgatctgcg cctggttgtc 4560
gtcggaggag tccggtttct cgaccggcgc cgacttctcg ctcaacggcg gcctgcatat 4620
gggctga 4627
<210> 10
<211> 4627
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
atgatcaagg acaccctggt ttcgattaca aaagacttaa agttgaaaac aaacgtagaa 60
aacgccaacc ttaaaaacta taaagatgac tcgtcttgct tcggggtgtt tgagaacgtg 120
gaaaatgcga tttcgaacgc agtccacgcc cagaagattt tatcgcttca ctacactaag 180
gagcagcgcg aaaagattat cacggagatt cgtaaagctg cacttgagaa caaagagatt 240
ttggcaacca tgatcttgga ggagactcat atggggcgtt atgaagataa aattttaaag 300
catgaacttg tcgctaaata cactccaggg actgaagact taacgaccac ggcatggagc 360
ggagataatg ggcttactgt tgttgaaatg agcccctacg gggtgattgg ggcaatcact 420
cccagcacaa atcctaccga gactgtgatt tgtaattcta ttggcatgat tgcggctggc 480
aatacggtgg tcttcaatgg acatccgggg gccaagaagt gtgttgcatt tgctgttgag 540
atgatcaaca aagccattat ttcatgtggt gggcccgaga atttggttac aaccattaag 600
aatccaacta tggactctct ggacgctatt attaaacacc cgtcgattaa acttttatgc 660
ggaaccggag gaccgggaat ggtgaaaacc cttctgaatt ccgggaaaaa ggcgatcggt 720
gcgggtgccg gcaacccacc tgtcattgtt gatgacacag cagacattga aaaggcgggc 780
aagagcatca tcgagggctg tagttttgat aacaacacgc cctgcattgc tgaaaaggaa 840
gttttcgtct tcgagaatgt tgcggacgac cttatttcca atatgcttaa gaacaacgcg 900
gtaatcatta acgaagacca agtatcaaag ttaatcgatt tggtcctgca gaagaacaat 960
gagactcaag agtatagcat taataaaaaa tgggttggga aggacgcaaa attgtttctt 1020
gatgagatcg atgtggaatc cccttcctct gtcaaatgca tcatttgcga agtatctgcg 1080
cgtcacccat tcgtcatgac agagctgatg atgcccattc tgcctattgt acgcgttaaa 1140
gatatcgacg aagctattga atatgcgaaa atcgccgagc agaaccgtaa gcactcagcg 1200
tatatttatt ccaaaaatat cgataactta aatcgttttg agcgcgaaat cgatacaact 1260
atcttcgtca agaacgccaa aagctttgct ggcgtgggct atgaagctga agggtttacc 1320
acgttcacca tcgcagggag caccggcgaa gggattacaa gtgcgcgcaa tttcactcgt 1380
caacgtcgct gcgtgttagc cggttaaaac tttaagaagg agatatacat gaacaacttt 1440
aatctgcaca ccccaacccg cattctgttt ggtaaaggcg caatcgctgg tttacgcgaa 1500
caaattcctc acgatgctcg cgtattgatt acctacggcg gcggcagcgt gaaaaaaacc 1560
ggcgttctcg atcaagttct ggatgccctg aaaggcatgg acgtgctgga atttggcggt 1620
attgagccaa acccggctta tgaaacgctg atgaacgccg tgaaactggt tcgcgaacag 1680
aaagtgactt tcctgctggc ggttggcggc ggttctgtac tggacggcac caaatttatc 1740
gccgcagcgg ctaactatcc ggaaaatatc gatccgtggc acattctgca aacgggcggt 1800
aaagagatta aaagcgccat cccgatgggc tgtgtgctga cgctgccagc aaccggttca 1860
gaatccaacg caggcgcggt gatctcccgt aaaaccacag gcgacaagca ggcgttccat 1920
tctgcccatg ttcagccggt atttgccgtg ctcgatccgg tttataccta caccctgccg 1980
ccgcgtcagg tggctaacgg cgtagtggac gcctttgtac acaccgtgga acagtatgtt 2040
accaaaccgg ttgatgccaa aattcaggac cgtttcgcag aaggcatttt gctgacgcta 2100
atcgaagatg gtccgaaagc cctgaaagag ccagaaaact acgatgtgcg cgccaacgtc 2160
atgtgggcgg cgactcaggc gctgaacggt ttgattggcg ctggcgtacc gcaggactgg 2220
gcaacgcata tgctgggcca cgaactgact gcgatgcacg gtctggatca cgcgcaaaca 2280
ctggctatcg tcctgcctgc actgtggaat gaaaaacgcg ataccaagcg cgctaagctg 2340
ctgcaatatg ctgaacgcgt ctggaacatc actgaaggtt ccgatgatga gcgtattgac 2400
gccgcgattg ccgcaacccg caatttcttt gagcaattag gcgtgccgac ccacctctcc 2460
gactacggtc tggacggcag ctccatcccg gctttgctga aaaaactgga agagcacggc 2520
atgacccaac tgggcgaaaa tcatgacatt acgttggatg tcagccgccg tatatacgaa 2580
gccgcccgct aattgacaat taatcatcgg ctcgtataat gtgtggaatt gtgagcggat 2640
aacaatttca cccattgaaa ggactacaca atgactgacg ttgtcatcgt atccgccgcc 2700
cgcaccgcgg tcggcaagtt tggcggctcg ctggccaaga tcccggcacc ggaactgggt 2760
gccgtggtca tcaaggccgc gctggagcgc gccggcgtca agccggagca ggtgagcgaa 2820
gtcatcatgg gccaggtgct gaccgccggt tcgggccaga accccgcacg ccaggccgcg 2880
atcaaggccg gcctgccggc gatggtgccg gccatgacca tcaacaaggt gtgcggctcg 2940
ggcctgaagg ccgtgatgct ggccgccaac gcgatcatgg cgggcgacgc cgagatcgtg 3000
gtggccggcg gccaggaaaa catgagcgcc gccccgcacg tgctgccggg ctcgcgcgat 3060
ggtttccgca tgggcgatgc caagctggtc gacaccatga tcgtcgacgg cctgtgggac 3120
gtgtacaacc agtaccacat gggcatcacc gccgagaacg tggccaagga atacggcatc 3180
acacgcgagg cgcaggatga gttcgccgtc ggctcgcaga acaaggccga agccgcgcag 3240
aaggccggca agtttgacga agagatcgtc ccggtgctga tcccgcagcg caagggcgac 3300
ccggtggcct tcaagaccga cgagttcgtg cgccagggcg ccacgctgga cagcatgtcc 3360
ggcctcaagc ccgccttcga caaggccggc acggtgaccg cggccaacgc ctcgggcctg 3420
aacgacggcg ccgccgcggt ggtggtgatg tcggcggcca aggccaagga actgggcctg 3480
accccgctgg ccacgatcaa gagctatgcc aacgccggtg tcgatcccaa ggtgatgggc 3540
atgggcccgg tgccggcctc caagcgcgcc ctgtcgcgcg ccgagtggac cccgcaagac 3600
ctggacctga tggagatcaa cgaggccttt gccgcgcagg cgctggcggt gcaccagcag 3660
atgggctggg acacctccaa ggtcaatgtg aacggcggcg ccatcgccat cggccacccg 3720
atcggcgcgt cgggctgccg tatcctggtg acgctgctgc acgagatgaa gcgccgtgac 3780
gcgaagaagg gcctggcctc gctgtgcatc ggcggcggca tgggcgtggc gctggcagtc 3840
gagcgcaaat aacggcgacg ataacgaagc caatcaagga gtggacatga ctcagcgcat 3900
tgcgtatgtg accggcggca tgggtggtat cggaaccgcc atttgccagc ggctggccaa 3960
ggatggcttt cgtgtggtgg ccggttgcgg ccccaactcg ccgcgccgcg aaaagtggct 4020
ggagcagcag aaggccctgg gcttcgattt cattgcctcg gaaggcaatg tggctgactg 4080
ggactcgacc aagaccgcat tcgacaaggt caagtccgag gtcggcgagg ttgatgtgct 4140
gatcaacaac gccggtatca cccgcgacgt ggtgttccgc aagatgaccc gcgccgactg 4200
ggatgcggtg atcgacacca acctgacctc gctgttcaac gtcaccaagc aggtgatcga 4260
cggcatggcc gaccgtggct ggggccgcat cgtcaacatc tcgtcggtga acgggcagaa 4320
gggccagttc ggccagacca actactccac cgccaaggcc ggcctgcatg gcttcaccat 4380
ggcactggcg caggaagtgg cgaccaaggg cgtgaccgtc aacacggtct ctccgggcta 4440
tatcgccacc gacatggtca aggcgatccg ccaggacgtg ctcgacaaga tcgtcgcgac 4500
gatcccggtc aagcgcctgg gcctgccgga agagatcgcc tcgatctgcg cctggttgtc 4560
gtcggaggag tccggtttct cgaccggcgc cgacttctcg ctcaacggcg gcctgcatat 4620
gggctga 4627
<210> 11
<211> 891
<212> PRT
<213> 大肠杆菌(Escherichia coli)
<400> 11
Met Ala Val Thr Asn Val Ala Glu Leu Asn Ala Leu Val Glu Arg Val
1 5 10 15
Lys Lys Ala Gln Arg Glu Tyr Ala Ser Phe Thr Gln Glu Gln Val Asp
20 25 30
Lys Ile Phe Arg Ala Ala Ala Leu Ala Ala Ala Asp Ala Arg Ile Pro
35 40 45
Leu Ala Lys Met Ala Val Ala Glu Ser Gly Met Gly Ile Val Glu Asp
50 55 60
Lys Val Ile Lys Asn His Phe Ala Ser Glu Tyr Ile Tyr Asn Ala Tyr
65 70 75 80
Lys Asp Glu Lys Thr Cys Gly Val Leu Ser Glu Asp Asp Thr Phe Gly
85 90 95
Thr Ile Thr Ile Ala Glu Pro Ile Gly Ile Ile Cys Gly Ile Val Pro
100 105 110
Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ser Leu
115 120 125
Lys Thr Arg Asn Ala Ile Ile Phe Ser Pro His Pro Arg Ala Lys Asp
130 135 140
Ala Thr Asn Lys Ala Ala Asp Ile Val Leu Gln Ala Ala Ile Ala Ala
145 150 155 160
Gly Ala Pro Lys Asp Leu Ile Gly Trp Ile Asp Gln Pro Ser Val Glu
165 170 175
Leu Ser Asn Ala Leu Met His His Pro Asp Ile Asn Leu Ile Leu Ala
180 185 190
Thr Gly Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro
195 200 205
Ala Ile Gly Val Gly Ala Gly Asn Thr Pro Val Val Ile Asp Glu Thr
210 215 220
Ala Asp Ile Lys Arg Ala Val Ala Ser Val Leu Met Ser Lys Thr Phe
225 230 235 240
Asp Asn Gly Val Ile Cys Ala Ser Glu Gln Ser Val Val Val Val Asp
245 250 255
Ser Val Tyr Asp Ala Val Arg Glu Arg Phe Ala Thr His Gly Gly Tyr
260 265 270
Leu Leu Gln Gly Lys Glu Leu Lys Ala Val Gln Asp Val Ile Leu Lys
275 280 285
Asn Gly Ala Leu Asn Ala Ala Ile Val Gly Gln Pro Ala Tyr Lys Ile
290 295 300
Ala Glu Leu Ala Gly Phe Ser Val Pro Glu Asn Thr Lys Ile Leu Ile
305 310 315 320
Gly Glu Val Thr Val Val Asp Glu Ser Glu Pro Phe Ala His Glu Lys
325 330 335
Leu Ser Pro Thr Leu Ala Met Tyr Arg Ala Lys Asp Phe Glu Asp Ala
340 345 350
Val Glu Lys Ala Glu Lys Leu Val Ala Met Gly Gly Ile Gly His Thr
355 360 365
Ser Cys Leu Tyr Thr Asp Gln Asp Asn Gln Pro Ala Arg Val Ser Tyr
370 375 380
Phe Gly Gln Lys Met Lys Thr Ala Arg Ile Leu Ile Asn Thr Pro Ala
385 390 395 400
Ser Gln Gly Gly Ile Gly Asp Leu Tyr Asn Phe Lys Leu Ala Pro Ser
405 410 415
Leu Thr Leu Gly Cys Gly Ser Trp Gly Gly Asn Ser Ile Ser Glu Asn
420 425 430
Val Gly Pro Lys His Leu Ile Asn Lys Lys Thr Val Ala Lys Arg Ala
435 440 445
Glu Asn Met Leu Trp His Lys Leu Pro Lys Ser Ile Tyr Phe Arg Arg
450 455 460
Gly Ser Leu Pro Ile Ala Leu Asp Glu Val Ile Thr Asp Gly His Lys
465 470 475 480
Arg Ala Leu Ile Val Thr Asp Arg Phe Leu Phe Asn Asn Gly Tyr Ala
485 490 495
Asp Gln Ile Thr Ser Val Leu Lys Ala Ala Gly Val Glu Thr Glu Val
500 505 510
Phe Phe Glu Val Glu Ala Asp Pro Thr Leu Ser Ile Val Arg Lys Gly
515 520 525
Ala Glu Leu Ala Asn Ser Phe Lys Pro Asp Val Ile Ile Ala Leu Gly
530 535 540
Gly Gly Ser Pro Met Asp Ala Ala Lys Ile Met Trp Val Met Tyr Glu
545 550 555 560
His Pro Glu Thr His Phe Glu Glu Leu Ala Leu Arg Phe Met Asp Ile
565 570 575
Arg Lys Arg Ile Tyr Lys Phe Pro Lys Met Gly Val Lys Ala Lys Met
580 585 590
Ile Ala Val Thr Thr Thr Ser Gly Thr Gly Ser Glu Val Thr Pro Phe
595 600 605
Ala Val Val Thr Asp Asp Ala Thr Gly Gln Lys Tyr Pro Leu Ala Asp
610 615 620
Tyr Ala Leu Thr Pro Asp Met Ala Ile Val Asp Ala Asn Leu Val Met
625 630 635 640
Asp Met Pro Lys Ser Leu Cys Ala Phe Gly Gly Leu Asp Ala Val Thr
645 650 655
His Ala Met Glu Ala Tyr Val Ser Val Leu Ala Ser Glu Phe Ser Asp
660 665 670
Gly Gln Ala Leu Gln Ala Leu Lys Leu Leu Lys Glu Tyr Leu Pro Ala
675 680 685
Ser Tyr His Glu Gly Ser Lys Asn Pro Val Ala Arg Glu Arg Val His
690 695 700
Ser Ala Ala Thr Ile Ala Gly Ile Ala Phe Ala Asn Ala Phe Leu Gly
705 710 715 720
Val Cys His Ser Met Ala His Lys Leu Gly Ser Gln Phe His Ile Pro
725 730 735
His Gly Leu Ala Asn Ala Leu Leu Ile Cys Asn Val Ile Arg Tyr Asn
740 745 750
Ala Asn Asp Asn Pro Thr Lys Gln Thr Ala Phe Ser Gln Tyr Asp Arg
755 760 765
Pro Gln Ala Arg Arg Arg Tyr Ala Glu Ile Ala Asp His Leu Gly Leu
770 775 780
Ser Ala Pro Gly Asp Arg Thr Ala Ala Lys Ile Glu Lys Leu Leu Ala
785 790 795 800
Trp Leu Glu Thr Leu Lys Ala Glu Leu Gly Ile Pro Lys Ser Ile Arg
805 810 815
Glu Ala Gly Val Gln Glu Ala Asp Phe Leu Ala Asn Val Asp Lys Leu
820 825 830
Ser Glu Asp Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr
835 840 845
Pro Leu Ile Ser Glu Leu Lys Gln Ile Leu Leu Asp Thr Tyr Tyr Gly
850 855 860
Arg Asp Tyr Val Glu Gly Glu Thr Ala Ala Lys Lys Glu Ala Ala Pro
865 870 875 880
Ala Lys Ala Glu Lys Lys Ala Lys Lys Ser Ala
885 890
<210> 12
<211> 329
<212> PRT
<213> 大肠杆菌(Escherichia coli)
<400> 12
Met Lys Leu Ala Val Tyr Ser Thr Lys Gln Tyr Asp Lys Lys Tyr Leu
1 5 10 15
Gln Gln Val Asn Glu Ser Phe Gly Phe Glu Leu Glu Phe Phe Asp Phe
20 25 30
Leu Leu Thr Glu Lys Thr Ala Lys Thr Ala Asn Gly Cys Glu Ala Val
35 40 45
Cys Ile Phe Val Asn Asp Asp Gly Ser Arg Pro Val Leu Glu Glu Leu
50 55 60
Lys Lys His Gly Val Lys Tyr Ile Ala Leu Arg Cys Ala Gly Phe Asn
65 70 75 80
Asn Val Asp Leu Asp Ala Ala Lys Glu Leu Gly Leu Lys Val Val Arg
85 90 95
Val Pro Ala Tyr Asp Pro Glu Ala Val Ala Glu His Ala Ile Gly Met
100 105 110
Met Met Thr Leu Asn Arg Arg Ile His Arg Ala Tyr Gln Arg Thr Arg
115 120 125
Asp Ala Asn Phe Ser Leu Glu Gly Leu Thr Gly Phe Thr Met Tyr Gly
130 135 140
Lys Thr Ala Gly Val Ile Gly Thr Gly Lys Ile Gly Val Ala Met Leu
145 150 155 160
Arg Ile Leu Lys Gly Phe Gly Met Arg Leu Leu Ala Phe Asp Pro Tyr
165 170 175
Pro Ser Ala Ala Ala Leu Glu Leu Gly Val Glu Tyr Val Asp Leu Pro
180 185 190
Thr Leu Phe Ser Glu Ser Asp Val Ile Ser Leu His Cys Pro Leu Thr
195 200 205
Pro Glu Asn Tyr His Leu Leu Asn Glu Ala Ala Phe Glu Gln Met Lys
210 215 220
Asn Gly Val Met Ile Val Asn Thr Ser Arg Gly Ala Leu Ile Asp Ser
225 230 235 240
Gln Ala Ala Ile Glu Ala Leu Lys Asn Gln Lys Ile Gly Ser Leu Gly
245 250 255
Met Asp Val Tyr Glu Asn Glu Arg Asp Leu Phe Phe Glu Asp Lys Ser
260 265 270
Asn Asp Val Ile Gln Asp Asp Val Phe Arg Arg Leu Ser Ala Cys His
275 280 285
Asn Val Leu Phe Thr Gly His Gln Ala Phe Leu Thr Ala Glu Ala Leu
290 295 300
Thr Ser Ile Ser Gln Thr Thr Leu Gln Asn Leu Ser Asn Leu Glu Lys
305 310 315 320
Gly Glu Thr Cys Pro Asn Glu Leu Val
325
<210> 13
<211> 714
<212> PRT
<213> 大肠杆菌(Escherichia coli)
<400> 13
Met Ser Arg Ile Ile Met Leu Ile Pro Thr Gly Thr Ser Val Gly Leu
1 5 10 15
Thr Ser Val Ser Leu Gly Val Ile Arg Ala Met Glu Arg Lys Gly Val
20 25 30
Arg Leu Ser Val Phe Lys Pro Ile Ala Gln Pro Arg Thr Gly Gly Asp
35 40 45
Ala Pro Asp Gln Thr Thr Thr Ile Val Arg Ala Asn Ser Ser Thr Thr
50 55 60
Thr Ala Ala Glu Pro Leu Lys Met Ser Tyr Val Glu Gly Leu Leu Ser
65 70 75 80
Ser Asn Gln Lys Asp Val Leu Met Glu Glu Ile Val Ala Asn Tyr His
85 90 95
Ala Asn Thr Lys Asp Ala Glu Val Val Leu Val Glu Gly Leu Val Pro
100 105 110
Thr Arg Lys His Gln Phe Ala Gln Ser Leu Asn Tyr Glu Ile Ala Lys
115 120 125
Thr Leu Asn Ala Glu Ile Val Phe Val Met Ser Gln Gly Thr Asp Thr
130 135 140
Pro Glu Gln Leu Lys Glu Arg Ile Glu Leu Thr Arg Asn Ser Phe Gly
145 150 155 160
Gly Ala Lys Asn Thr Asn Ile Thr Gly Val Ile Val Asn Lys Leu Asn
165 170 175
Ala Pro Val Asp Glu Gln Gly Arg Thr Arg Pro Asp Leu Ser Glu Ile
180 185 190
Phe Asp Asp Ser Ser Lys Ala Lys Val Asn Asn Val Asp Pro Ala Lys
195 200 205
Leu Gln Glu Ser Ser Pro Leu Pro Val Leu Gly Ala Val Pro Trp Ser
210 215 220
Phe Asp Leu Ile Ala Thr Arg Ala Ile Asp Met Ala Arg His Leu Asn
225 230 235 240
Ala Thr Ile Ile Asn Glu Gly Asp Ile Asn Thr Arg Arg Val Lys Ser
245 250 255
Val Thr Phe Cys Ala Arg Ser Ile Pro His Met Leu Glu His Phe Arg
260 265 270
Ala Gly Ser Leu Leu Val Thr Ser Ala Asp Arg Pro Asp Val Leu Val
275 280 285
Ala Ala Cys Leu Ala Ala Met Asn Gly Val Glu Ile Gly Ala Leu Leu
290 295 300
Leu Thr Gly Gly Tyr Glu Met Asp Ala Arg Ile Ser Lys Leu Cys Glu
305 310 315 320
Arg Ala Phe Ala Thr Gly Leu Pro Val Phe Met Val Asn Thr Asn Thr
325 330 335
Trp Gln Thr Ser Leu Ser Leu Gln Ser Phe Asn Leu Glu Val Pro Val
340 345 350
Asp Asp His Glu Arg Ile Glu Lys Val Gln Glu Tyr Val Ala Asn Tyr
355 360 365
Ile Asn Ala Asp Trp Ile Glu Ser Leu Thr Ala Thr Ser Glu Arg Ser
370 375 380
Arg Arg Leu Ser Pro Pro Ala Phe Arg Tyr Gln Leu Thr Glu Leu Ala
385 390 395 400
Arg Lys Ala Gly Lys Arg Ile Val Leu Pro Glu Gly Asp Glu Pro Arg
405 410 415
Thr Val Lys Ala Ala Ala Ile Cys Ala Glu Arg Gly Ile Ala Thr Cys
420 425 430
Val Leu Leu Gly Asn Pro Ala Glu Ile Asn Arg Val Ala Ala Ser Gln
435 440 445
Gly Val Glu Leu Gly Ala Gly Ile Glu Ile Val Asp Pro Glu Val Val
450 455 460
Arg Glu Ser Tyr Val Gly Arg Leu Val Glu Leu Arg Lys Asn Lys Gly
465 470 475 480
Met Thr Glu Thr Val Ala Arg Glu Gln Leu Glu Asp Asn Val Val Leu
485 490 495
Gly Thr Leu Met Leu Glu Gln Asp Glu Val Asp Gly Leu Val Ser Gly
500 505 510
Ala Val His Thr Thr Ala Asn Thr Ile Arg Pro Pro Leu Gln Leu Ile
515 520 525
Lys Thr Ala Pro Gly Ser Ser Leu Val Ser Ser Val Phe Phe Met Leu
530 535 540
Leu Pro Glu Gln Val Tyr Val Tyr Gly Asp Cys Ala Ile Asn Pro Asp
545 550 555 560
Pro Thr Ala Glu Gln Leu Ala Glu Ile Ala Ile Gln Ser Ala Asp Ser
565 570 575
Ala Ala Ala Phe Gly Ile Glu Pro Arg Val Ala Met Leu Ser Tyr Ser
580 585 590
Thr Gly Thr Ser Gly Ala Gly Ser Asp Val Glu Lys Val Arg Glu Ala
595 600 605
Thr Arg Leu Ala Gln Glu Lys Arg Pro Asp Leu Met Ile Asp Gly Pro
610 615 620
Leu Gln Tyr Asp Ala Ala Val Met Ala Asp Val Ala Lys Ser Lys Ala
625 630 635 640
Pro Asn Ser Pro Val Ala Gly Arg Ala Thr Val Phe Ile Phe Pro Asp
645 650 655
Leu Asn Thr Gly Asn Thr Thr Tyr Lys Ala Val Gln Arg Ser Ala Asp
660 665 670
Leu Ile Ser Ile Gly Pro Met Leu Gln Gly Met Arg Lys Pro Val Asn
675 680 685
Asp Leu Ser Arg Gly Ala Leu Val Asp Asp Ile Val Tyr Thr Ile Ala
690 695 700
Leu Thr Ala Ile Gln Ser Ala Gln Gln Gln
705 710
<210> 14
<211> 400
<212> PRT
<213> 大肠杆菌(Escherichia coli)
<400> 14
Met Ser Ser Lys Leu Val Leu Val Leu Asn Cys Gly Ser Ser Ser Leu
1 5 10 15
Lys Phe Ala Ile Ile Asp Ala Val Asn Gly Glu Glu Tyr Leu Ser Gly
20 25 30
Leu Ala Glu Cys Phe His Leu Pro Glu Ala Arg Ile Lys Trp Lys Met
35 40 45
Asp Gly Asn Lys Gln Glu Ala Ala Leu Gly Ala Gly Ala Ala His Ser
50 55 60
Glu Ala Leu Asn Phe Ile Val Asn Thr Ile Leu Ala Gln Lys Pro Glu
65 70 75 80
Leu Ser Ala Gln Leu Thr Ala Ile Gly His Arg Ile Val His Gly Gly
85 90 95
Glu Lys Tyr Thr Ser Ser Val Val Ile Asp Glu Ser Val Ile Gln Gly
100 105 110
Ile Lys Asp Ala Ala Ser Phe Ala Pro Leu His Asn Pro Ala His Leu
115 120 125
Ile Gly Ile Glu Glu Ala Leu Lys Ser Phe Pro Gln Leu Lys Asp Lys
130 135 140
Asn Val Ala Val Phe Asp Thr Ala Phe His Gln Thr Met Pro Glu Glu
145 150 155 160
Ser Tyr Leu Tyr Ala Leu Pro Tyr Asn Leu Tyr Lys Glu His Gly Ile
165 170 175
Arg Arg Tyr Gly Ala His Gly Thr Ser His Phe Tyr Val Thr Gln Glu
180 185 190
Ala Ala Lys Met Leu Asn Lys Pro Val Glu Glu Leu Asn Ile Ile Thr
195 200 205
Cys His Leu Gly Asn Gly Gly Ser Val Ser Ala Ile Arg Asn Gly Lys
210 215 220
Cys Val Asp Thr Ser Met Gly Leu Thr Pro Leu Glu Gly Leu Val Met
225 230 235 240
Gly Thr Arg Ser Gly Asp Ile Asp Pro Ala Ile Ile Phe His Leu His
245 250 255
Asp Thr Leu Gly Met Ser Val Asp Ala Ile Asn Lys Leu Leu Thr Lys
260 265 270
Glu Ser Gly Leu Leu Gly Leu Thr Glu Val Thr Ser Asp Cys Arg Tyr
275 280 285
Val Glu Asp Asn Tyr Ala Thr Lys Glu Asp Ala Lys Arg Ala Met Asp
290 295 300
Val Tyr Cys His Arg Leu Ala Lys Tyr Ile Gly Ala Tyr Thr Ala Leu
305 310 315 320
Met Asp Gly Arg Leu Asp Ala Val Val Phe Thr Gly Gly Ile Gly Glu
325 330 335
Asn Ala Ala Met Val Arg Glu Leu Ser Leu Gly Lys Leu Gly Val Leu
340 345 350
Gly Phe Glu Val Asp His Glu Arg Asn Leu Ala Ala Arg Phe Gly Lys
355 360 365
Ser Gly Phe Ile Asn Lys Glu Gly Thr Arg Pro Ala Val Val Ile Pro
370 375 380
Thr Asn Glu Glu Leu Val Ile Ala Gln Asp Ala Ser Arg Leu Thr Ala
385 390 395 400

Claims (10)

1.用于生产光学纯1,3-丁二醇的重组菌,其特征在于,所述重组菌是将phaA、phaB、bld和yqhD基因通过质粒导入微生物中或通过基因工程手段整合到微生物染色体上而成;
其中,所述phaA基因来源于Cupriavidus necator,其为编码如下蛋白质(a)或(b)的基因:
(a)由SEQ ID NO:3所示的氨基酸序列组成的蛋白质;
(b)SEQ ID NO:3所示序列经取代、缺失或添加一个或几个氨基酸且具有同等功能的由(a)衍生的蛋白质;
所述phaB基因来源于Cupriavidus necator,其为编码如下蛋白质(c)或(d)的基因:
(c)由SEQ ID NO:4所示的氨基酸序列组成的蛋白质;
(d)SEQ ID NO:4所示序列经取代、缺失或添加一个或几个氨基酸且具有同等功能的由(c)衍生的蛋白质;
所述bld基因来源于Clostridium saccharoperbutylacetonicum,其编码蛋白的氨基酸序列如SEQ ID NO:1或2所示;
所述yqhD基因来源于大肠杆菌(Escherichia coli),其为编码如下蛋白质(e)或(f)的基因:
(e)由SEQ ID NO:6所示的氨基酸序列组成的蛋白质;
(f)SEQ ID NO:6所示序列经取代、缺失或添加一个或几个氨基酸且具有同等功能的由(e)衍生的蛋白质;
其中,所述微生物选自埃希氏菌属(Escherichia)、克雷伯氏菌属(Klebsiella)、棒杆菌属(Corynebacterium)、短杆菌属(Brevibacterium)中的菌种;优选大肠杆菌。
2.根据权利要求1所述的重组菌,其特征在于,所述重组菌的构建如下:phaA、phaB基因经密码子优化后,与bld、yqhD基因一起构建到表达载体上,用重组载体转化大肠杆菌,筛选阳性转化子;
优选地,密码子优化的phaA-phaB操纵子的序列如SEQ ID NO:5所示。
3.根据权利要求2所述的重组菌,其特征在于,所述重组菌的构建如下:将bld-yqhD-phaAB串联基因表达盒构建到ptrc99a质粒上,用重组质粒转化大肠杆菌,筛选阳性转化子;
其中,bld-yqhD-phaAB串联基因表达盒的序列如SEQ ID NO:9和10所示。
4.用于生产光学纯1,3-丁二醇的重组大肠杆菌,其特征在于,所述重组大肠杆菌是以权利要求2或3所述的重组菌作为出发菌株,利用基因工程手段对出发菌株进行改造,得到的细胞内NADPH供给增强的工程菌。
5.根据权利要求4所述的重组大肠杆菌,其特征在于,通过增强出发菌株中与NADPH生物合成途径相关的基因,来提高细胞内NADPH的供给;
优选地,所述与NADPH生物合成途径相关的基因为pntAB基因,核苷酸序列如下:
i)SEQ ID NO:7所示的核苷酸序列;
ii)SEQ ID NO:7所示的核苷酸序列经取代、缺失和/或增加一个或多个核苷酸且表达相同功能蛋白质的核苷酸序列;
iii)在严格条件下与SEQ ID NO:7所示序列杂交且表达相同功能蛋白质的核苷酸序列,所述严格条件为在含0.1%SDS的0.1×SSPE或含0.1%SDS的0.1×SSC溶液中,在65℃下杂交,并用该溶液洗膜;或
iv)与i)、ii)或iii)的核苷酸序列具有90%以上同源性且表达相同功能蛋白质的核苷酸序列。
6.根据权利要求4或5所述的重组大肠杆菌,其特征在于,弱化出发菌株中sthA基因,来提高细胞内NADPH的供给;所述弱化包括敲除或降低基因的表达;
sthA基因的核苷酸序列如下:
i)SEQ ID NO:8所示的核苷酸序列;
ii)SEQ ID NO:8所示的核苷酸序列经取代、缺失和/或增加一个或多个核苷酸且表达相同功能蛋白质的核苷酸序列;
iii)在严格条件下与SEQ ID NO:8所示序列杂交且表达相同功能蛋白质的核苷酸序列,所述严格条件为在含0.1%SDS的0.1×SSPE或含0.1%SDS的0.1×SSC溶液中,在65℃下杂交,并用该溶液洗膜;或
iv)与i)、ii)或iii)的核苷酸序列具有90%以上同源性且表达相同功能蛋白质的核苷酸序列。
7.高产1,3-丁二醇的工程菌,其特征在于,所述工程菌是以权利要求2或3所述的重组菌,或者权利要求4-6任一项所述的重组大肠杆菌作为原始菌株,利用基因工程手段对原始菌株做进一步改造,得到的细胞内乙酰CoA流向1,3-丁二醇合成途径的代谢通量增强的工程菌。
8.根据权利要求7所述的工程菌,其特征在于,弱化原始菌株中adhE、ldhA、pta、ackA基因中的至少一种基因,来提高细胞内乙酰CoA流向1,3-丁二醇合成途径的代谢通量;所述弱化包括敲除或降低基因的表达;
adhE、ldhA、pta、ackA基因编码蛋白的氨基酸序列分别如SEQ ID NO:11-14所示;
优选地,弱化原始菌株中adhE、ldhA、pta和ackA基因,来提高细胞内乙酰CoA流向1,3-丁二醇合成途径的代谢通量。
9.权利要求1-3任一项所述的重组菌,或权利要求4-6任一项所述的重组大肠杆菌,或者权利要求7或8所述的工程菌在发酵生产1,3-丁二醇中的应用。
10.丁醛脱氢酶突变体,其特征在于,所述丁醛脱氢酶突变体的氨基酸序列如SEQ IDNO:2所示。
CN201910664906.6A 2019-07-23 2019-07-23 用于生产光学纯1,3-丁二醇的重组菌及其应用 Active CN112280722B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910664906.6A CN112280722B (zh) 2019-07-23 2019-07-23 用于生产光学纯1,3-丁二醇的重组菌及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910664906.6A CN112280722B (zh) 2019-07-23 2019-07-23 用于生产光学纯1,3-丁二醇的重组菌及其应用

Publications (2)

Publication Number Publication Date
CN112280722A true CN112280722A (zh) 2021-01-29
CN112280722B CN112280722B (zh) 2022-03-08

Family

ID=74419149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910664906.6A Active CN112280722B (zh) 2019-07-23 2019-07-23 用于生产光学纯1,3-丁二醇的重组菌及其应用

Country Status (1)

Country Link
CN (1) CN112280722B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107147A (zh) * 2021-11-10 2022-03-01 清华大学 一种可利用甲醇生产光学纯1,3-丁二醇的重组微生物及其应用
CN114350583A (zh) * 2021-12-17 2022-04-15 清华大学 一种发酵生产1,2-丁二醇的方法、重组微生物及其应用
CN115873881A (zh) * 2021-09-30 2023-03-31 北京化工大学 一种产1,3-丁二醇的基因工程菌及其应用
WO2023182679A1 (ko) * 2022-03-22 2023-09-28 주식회사 엑티브온 글루코스로부터 1,3-부탄디올을 생산하는 재조합 대장균 균주 및 이를 이용한 1,3-부탄디올의 생산방법
KR20230140323A (ko) * 2022-03-22 2023-10-06 주식회사 엑티브온 글루코스로부터 1,3-부탄디올을 생산하는 재조합 대장균 균주 및 이를 이용한 1,3-부탄디올의 생산방법
CN117701489A (zh) * 2024-02-05 2024-03-15 北京绿色康成生物技术有限公司 一种提高大肠杆菌生产1,3-丁二醇的方法
CN119639785A (zh) * 2025-02-11 2025-03-18 北京绿色康成生物技术有限公司 一种提高生物法合成1,3-丁二醇产量的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625846A (zh) * 2009-04-30 2012-08-01 基因组股份公司 用于生产1,3-丁二醇的生物
CN102686719A (zh) * 2009-10-30 2012-09-19 株式会社大赛璐 具有1,3-丁二醇生产功能的基因重组微生物及其应用
EP3050970A1 (en) * 2015-01-28 2016-08-03 Metabolic Explorer Modified microorganism for optimized production of 1,4-butanediol
US20170145446A1 (en) * 2014-05-12 2017-05-25 Metabolic Explorer New microorganism and method for the production of 1.2-propanediol based on nadph dependent acetol reductase and improved nadph supply
CN108048494A (zh) * 2017-12-29 2018-05-18 中国科学院天津工业生物技术研究所 一种利用生物酶合成1,3-丙二醇的方法
WO2018183664A1 (en) * 2017-03-31 2018-10-04 Genomatica, Inc. Aldehyde dehydrogenase variants and methods of use
CN108884467A (zh) * 2015-10-13 2018-11-23 朗泽科技新西兰有限公司 包含产能发酵途径的基因工程菌

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102625846A (zh) * 2009-04-30 2012-08-01 基因组股份公司 用于生产1,3-丁二醇的生物
CN106119113A (zh) * 2009-04-30 2016-11-16 基因组股份公司 用于生产 1,3‑丁二醇的生物
CN102686719A (zh) * 2009-10-30 2012-09-19 株式会社大赛璐 具有1,3-丁二醇生产功能的基因重组微生物及其应用
US20170145446A1 (en) * 2014-05-12 2017-05-25 Metabolic Explorer New microorganism and method for the production of 1.2-propanediol based on nadph dependent acetol reductase and improved nadph supply
EP3050970A1 (en) * 2015-01-28 2016-08-03 Metabolic Explorer Modified microorganism for optimized production of 1,4-butanediol
CN108884467A (zh) * 2015-10-13 2018-11-23 朗泽科技新西兰有限公司 包含产能发酵途径的基因工程菌
WO2018183664A1 (en) * 2017-03-31 2018-10-04 Genomatica, Inc. Aldehyde dehydrogenase variants and methods of use
CN108048494A (zh) * 2017-12-29 2018-05-18 中国科学院天津工业生物技术研究所 一种利用生物酶合成1,3-丙二醇的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YE ZHANG等: "Production of C2-C4 diols from renewable bioresources:new metabolic pathways and metabolic engineering strategies", 《BIOTECHNOLOGY FOR BIOFUELS》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873881A (zh) * 2021-09-30 2023-03-31 北京化工大学 一种产1,3-丁二醇的基因工程菌及其应用
CN114107147A (zh) * 2021-11-10 2022-03-01 清华大学 一种可利用甲醇生产光学纯1,3-丁二醇的重组微生物及其应用
CN114107147B (zh) * 2021-11-10 2023-12-29 清华大学 一种可利用甲醇生产光学纯1,3-丁二醇的重组微生物及其应用
CN114350583A (zh) * 2021-12-17 2022-04-15 清华大学 一种发酵生产1,2-丁二醇的方法、重组微生物及其应用
CN114350583B (zh) * 2021-12-17 2023-07-25 清华大学 一种发酵生产1,2-丁二醇的方法、重组微生物及其应用
WO2023182679A1 (ko) * 2022-03-22 2023-09-28 주식회사 엑티브온 글루코스로부터 1,3-부탄디올을 생산하는 재조합 대장균 균주 및 이를 이용한 1,3-부탄디올의 생산방법
KR20230140323A (ko) * 2022-03-22 2023-10-06 주식회사 엑티브온 글루코스로부터 1,3-부탄디올을 생산하는 재조합 대장균 균주 및 이를 이용한 1,3-부탄디올의 생산방법
KR102770290B1 (ko) * 2022-03-22 2025-02-24 주식회사 엑티브온 글루코스로부터 1,3-부탄디올을 생산하는 재조합 대장균 균주 및 이를 이용한 1,3-부탄디올의 생산방법
CN117701489A (zh) * 2024-02-05 2024-03-15 北京绿色康成生物技术有限公司 一种提高大肠杆菌生产1,3-丁二醇的方法
CN117701489B (zh) * 2024-02-05 2024-05-10 北京绿色康成生物技术有限公司 一种提高大肠杆菌生产1,3-丁二醇的方法
CN119639785A (zh) * 2025-02-11 2025-03-18 北京绿色康成生物技术有限公司 一种提高生物法合成1,3-丁二醇产量的方法
CN119639785B (zh) * 2025-02-11 2025-06-10 北京绿色康成生物技术有限公司 一种提高生物法合成1,3-丁二醇产量的方法

Also Published As

Publication number Publication date
CN112280722B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN112280722B (zh) 用于生产光学纯1,3-丁二醇的重组菌及其应用
JP6899793B2 (ja) 1,3−ブタンジオールの産生のための生物
EP1124979A1 (en) Production of 3-hydroxypropionic acid in recombinant organisms
CN105567622B (zh) 一种重组大肠杆菌及合成3-羟基丙酸中的应用
KR20090029256A (ko) 재생가능한 공급원으로부터 발효에 의한 글리콜산의 제조 방법
AU2012214255A1 (en) Cells and methods for producing isobutyric acid
CN113583925B (zh) 一种代谢工程大肠杆菌发酵制备广藿香醇的方法
CN112662637A (zh) 一种甲酸脱氢酶突变体及其制备方法和应用
CN108359628B (zh) 利用乙酸和丙酸生产聚羟基脂肪酸酯的基因工程菌及其构建方法和应用
CN112280723B (zh) 联产1,3-丙二醇和1,3-丁二醇的重组菌及其应用
US10760100B2 (en) Polypeptide having ferredoxin-NADP+ reductase activity, polynucleotide encoding the same and uses thereof
CN114107147B (zh) 一种可利用甲醇生产光学纯1,3-丁二醇的重组微生物及其应用
CN101595218A (zh) 在真核细胞中生产丁醇
CN108085288B (zh) 一种利用重组微生物发酵生产1,3-丙二醇的方法
CN114058601B (zh) 具有催化乙醇醛合成乙二醇功能的酶及其应用
CN113832087B (zh) 一种利用大肠杆菌全生物合成丙二酸的方法
CN114196609B (zh) 从乳酸合成纯聚乳酸的大肠杆菌工程菌及其制备方法和应用
CN114350583B (zh) 一种发酵生产1,2-丁二醇的方法、重组微生物及其应用
CN120442511A (zh) 一种利用甲醇和/或甲醛及果糖酶法合成d-甘露醇的方法
CN117987437A (zh) 一种产2,3-丁二醇的工程菌及其构建方法与应用
CN113174375A (zh) Aro3蛋白突变体及其应用
CN119552902A (zh) 一种重组嗜盐微生物及用其制备玉米蛋白的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant