CN112299433A - Hydrogen type ZSM-5/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application - Google Patents
Hydrogen type ZSM-5/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application Download PDFInfo
- Publication number
- CN112299433A CN112299433A CN201910693676.6A CN201910693676A CN112299433A CN 112299433 A CN112299433 A CN 112299433A CN 201910693676 A CN201910693676 A CN 201910693676A CN 112299433 A CN112299433 A CN 112299433A
- Authority
- CN
- China
- Prior art keywords
- temperature
- zeolite
- zsm
- hours
- roasting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 111
- 229910021536 Zeolite Inorganic materials 0.000 title claims abstract description 103
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 103
- 239000010457 zeolite Substances 0.000 title claims abstract description 103
- 230000005496 eutectics Effects 0.000 title claims abstract description 80
- 238000006317 isomerization reaction Methods 0.000 title claims abstract description 54
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 38
- 239000001257 hydrogen Substances 0.000 title claims abstract description 38
- 125000003118 aryl group Chemical group 0.000 title claims abstract description 11
- 238000002360 preparation method Methods 0.000 title abstract description 13
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052702 rhenium Inorganic materials 0.000 claims abstract description 25
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 24
- 239000011230 binding agent Substances 0.000 claims abstract description 23
- 238000001035 drying Methods 0.000 claims abstract description 20
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims abstract description 20
- 230000020335 dealkylation Effects 0.000 claims abstract description 18
- 238000006900 dealkylation reaction Methods 0.000 claims abstract description 18
- 238000005406 washing Methods 0.000 claims abstract description 17
- 238000003756 stirring Methods 0.000 claims abstract description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 15
- 239000010703 silicon Substances 0.000 claims abstract description 15
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 8
- 239000010935 stainless steel Substances 0.000 claims abstract description 8
- 238000000967 suction filtration Methods 0.000 claims abstract description 5
- 230000007935 neutral effect Effects 0.000 claims abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 30
- 239000000243 solution Substances 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 238000001354 calcination Methods 0.000 claims description 20
- 239000012266 salt solution Substances 0.000 claims description 19
- 238000001914 filtration Methods 0.000 claims description 17
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 16
- 230000004913 activation Effects 0.000 claims description 16
- 150000003863 ammonium salts Chemical class 0.000 claims description 14
- 238000007598 dipping method Methods 0.000 claims description 14
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 13
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 claims description 12
- 238000000465 moulding Methods 0.000 claims description 12
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 11
- 229910021641 deionized water Inorganic materials 0.000 claims description 11
- 230000003213 activating effect Effects 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000006229 carbon black Substances 0.000 claims description 9
- 239000003921 oil Substances 0.000 claims description 9
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 claims description 9
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 claims description 9
- 235000019270 ammonium chloride Nutrition 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 8
- 238000005342 ion exchange Methods 0.000 claims description 8
- DYIZHKNUQPHNJY-UHFFFAOYSA-N oxorhenium Chemical compound [Re]=O DYIZHKNUQPHNJY-UHFFFAOYSA-N 0.000 claims description 8
- 229910003449 rhenium oxide Inorganic materials 0.000 claims description 8
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 claims description 5
- BGQMOFGZRJUORO-UHFFFAOYSA-M tetrapropylammonium bromide Chemical compound [Br-].CCC[N+](CCC)(CCC)CCC BGQMOFGZRJUORO-UHFFFAOYSA-M 0.000 claims description 5
- 239000004927 clay Substances 0.000 claims description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- 235000019353 potassium silicate Nutrition 0.000 claims description 4
- 150000003281 rhenium Chemical class 0.000 claims description 4
- WXBOMIKEWRRKBB-UHFFFAOYSA-N rhenium(iv) oxide Chemical compound O=[Re]=O WXBOMIKEWRRKBB-UHFFFAOYSA-N 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 4
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 claims description 4
- 238000005470 impregnation Methods 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- YSZJKUDBYALHQE-UHFFFAOYSA-N rhenium trioxide Chemical compound O=[Re](=O)=O YSZJKUDBYALHQE-UHFFFAOYSA-N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical class N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 1
- -1 boria Chemical compound 0.000 claims 1
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 abstract description 54
- 230000008569 process Effects 0.000 abstract description 8
- 238000005984 hydrogenation reaction Methods 0.000 abstract description 3
- 230000000737 periodic effect Effects 0.000 abstract description 3
- 238000007086 side reaction Methods 0.000 abstract description 3
- 238000006555 catalytic reaction Methods 0.000 abstract 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 81
- 239000000047 product Substances 0.000 description 20
- 229910052593 corundum Inorganic materials 0.000 description 15
- 229910001845 yogo sapphire Inorganic materials 0.000 description 15
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 14
- 239000002808 molecular sieve Substances 0.000 description 14
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 14
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 13
- 239000008096 xylene Substances 0.000 description 11
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 8
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 229910000510 noble metal Inorganic materials 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical group CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052810 boron oxide Inorganic materials 0.000 description 3
- 229910052570 clay Inorganic materials 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 2
- 238000004523 catalytic cracking Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229940078552 o-xylene Drugs 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910003158 γ-Al2O3 Inorganic materials 0.000 description 2
- QSHYGLAZPRJAEZ-UHFFFAOYSA-N 4-(chloromethyl)-2-(2-methylphenyl)-1,3-thiazole Chemical compound CC1=CC=CC=C1C1=NC(CCl)=CS1 QSHYGLAZPRJAEZ-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- UAEPNZWRGJTJPN-UHFFFAOYSA-N Methylcyclohexane Natural products CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
- 239000012690 zeolite precursor Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/023—Preparation of physical mixtures or intergrowth products of zeolites chosen from group C01B39/04 or two or more of groups C01B39/14 - C01B39/48
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/026—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C01B39/38—Type ZSM-5
- C01B39/40—Type ZSM-5 using at least one organic template directing agent
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7023—EUO-type, e.g. EU-1, TPZ-3 or ZSM-50
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The invention relates to hydrogen type ZSM-5/EU-1 eutectic zeolite, an aromatic isomerization catalyst containing the eutectic zeolite, a preparation method and application, wherein the ZSM-5/EU-1 eutectic zeolite is prepared by the following method: step 1): adding a certain amount of EU-1 zeolite into NaOH solution, uniformly stirring, adding a template agent, a silicon source and water, and uniformly stirring; step 2): and transferring the solution to a stainless steel kettle, crystallizing at 100-300 ℃ for 12-36 hours, taking out, cooling to room temperature, washing with water to be neutral, performing suction filtration, and drying to obtain the ZSM-5/EU-1 eutectic zeolite. The aromatic isomerization catalyst comprises the following components in parts by weight: 10.0-80.0 w% of hydrogen type ZSM-5/EU-1 eutectic zeolite, 15.0-90.0 w% of binder and 0.1-5.0 w% of metal rhenium in the VIIB group of the periodic table. The catalyst can be applied to the ethylbenzene dealkylation type C8 arene isomerization catalytic reaction process, and can effectively reduce the hydrogenation side reaction after the ethylbenzene dealkylation.
Description
Technical Field
The invention relates to hydrogen type ZSM-5/EU-1 eutectic zeolite and an aromatic hydrocarbon isomerization catalyst containing the eutectic zeolite. The aromatic hydrocarbon isomerization catalyst can be applied to a xylene isomerization unit of an aromatic hydrocarbon combination device, raffinate oil after separation of a target product, namely p-xylene (or o-xylene), is isomerized into a product with xylene close to thermodynamic equilibrium, and meanwhile, part of ethylbenzene in a raw material is converted into benzene, and belongs to the technical field of catalysts.
Background
Since ethylbenzene has a boiling point that is only 2.2 ℃ different from PX, separation of ethylbenzene from xylenes by rectification is difficult and uneconomical, and therefore ethylbenzene must be converted during xylene isomerization. The commercial isomerization technology of C8 aromatics can be classified into ethylbenzene conversion type and ethylbenzene dealkylation type according to the ethylbenzene conversion route. The ethylbenzene dealkylation type C8 aromatics isomerization technology has attracted considerable attention because it can reduce the investment scale of the plant and the consumption of utilities in operation, and enrich the product types of the plant. For ethylbenzene dealkylation type C8 aromatics isomerization catalysts, the indexes for characterizing the performance of the catalysts are generally as follows: equilibrium concentration of p-xylene (PX/. sigma.X), ethylbenzene conversion (EBc) and Xylene Yield (XY).
The general process of the aromatics complex is to send the benzene component generated by the dealkylation of ethylbenzene in the xylene isomerization unit to the subsequent units for separation and refining to produce pure benzene products. The purity of benzene in low boiling azeotropes (mainly cyclohexane and methylcyclopentane) has a large impact on the energy consumption of the subsequent separation and refining processes. When the purity of benzene in the low-boiling-point azeotrope is higher (not less than 99.3%), the benzene component can be directly sent to the rectifying section of the aromatic extraction unit, and qualified pure benzene product (not less than 99.9%) is directly extracted from the side line of the benzene tower; when the purity of benzene in the low boiling point azeotrope is lower (less than 99.3%), benzene can not be separated from other azeotropes directly by rectification, and the material needs to be sent into an aromatic extraction unit to produce a pure benzene product, so that the load of the extraction unit and the production energy consumption are increased. Thus, for commercial ethylbenzene dealkylation type C8 aromatics isomerization catalysts, the purity of the product benzene in the low boiling azeotrope is also an important indicator.
The patent CN1233531A, CN101293805A and CN1327945A disclose EU-1 zeolite and a technology for C8 aromatic hydrocarbon isomerization reaction thereof, and relate to the synthesis of EU-1 molecular sieve, the dealumination of the EU-1 molecular sieve by acid, the modification of a catalyst by tin and indium and the like. Patents CN1102360A and CN1887423A disclose that ZSM-5 zeolite and mordenite are used in an ethylbenzene dealkylation type C8 aromatic isomerization catalyst, and a group viii metal is added, so that the catalyst has high ethylbenzene removal capability. Patent CN102039161 discloses a catalyst using EUO and ZSM-5 molecular sieves and at least one noble metal of group viii and antimony oxide, having high ethylbenzene conversion activity and xylene selectivity. However, none of the above patent technologies relate to the product distribution study after ethylbenzene dealkylation.
Patent CN108273546A discloses a preparation method of a catalyst for preparing propylene by catalytic cracking of naphtha, which comprises the following steps: firstly, preparing EU-1/ZSM-5 composite molecular sieve by adopting a hydrothermal synthesis method, and then adding gamma-Al2O3Uniformly mixing, loading perrhenic acid and tetrabutyl ammonium perrhenate by adopting an impregnation method after molding, thus obtaining the naphtha catalystAnd (3) preparing the propylene catalyst by chemical cracking. The patent discloses: the catalyst for preparing propylene by catalytic cracking of naphtha prepared by the method can be used for catalytically cracking naphtha to produce more propylene products. The technology utilizes the cracking function of the EU-1/ZSM-5 composite molecular sieve to treat naphtha (mainly straight-chain alkane of C5-C7) and crack the naphtha into micromolecule (C2-C4) olefin. The technology is not suitable for processing the C8 aromatic hydrocarbon isomerization process, otherwise, the technology can cause the C8 aromatic hydrocarbon raw material to be largely cracked, the liquid yield is reduced, and the economic benefit is not high. The C8 aromatic hydrocarbon isomerization catalyst which adopts ZSM-5, EU-1 zeolite as an acidic component and a VIII group noble metal as a metal component has been realized to be industrially applied, shows good catalytic performance, but still has the problem that an acidic active center is not matched with a metal active center. In the ethylbenzene dealkylation type C8 arene isomerization catalyst, even if the content of the VIII group noble metal is controlled to be below 0.05 percent, the problem of higher non-arene content azeotropic with benzene can be caused, the purity of the benzene in a low-boiling-point azeotrope is reduced, and the yield and the energy consumption of an arene combined device are influenced.
Disclosure of Invention
The method takes ZSM-5/EU-1 eutectic zeolite as an acid center, takes non-noble metal rhenium as a metal center, and the acid center is better matched with the metal center, so that the method can realize xylene isomerization and ethylbenzene dealkylation, can quickly hydrogenate an ethyl intermediate generated by ethylbenzene dealkylation to generate ethane, and can effectively control a hydrogenation side reaction of the ethylbenzene dealkylation to generate benzene, thereby improving the purity of the benzene in a low-boiling-point azeotrope. The specific invention content is as follows:
firstly, the invention provides hydrogen type ZSM-5/EU-1 eutectic zeolite, which simultaneously contains a ZSM-5 zeolite crystal phase and an EU-1 zeolite crystal phase and is prepared by the following method:
step 1): adding a certain amount of EU-1 zeolite into NaOH solution, uniformly stirring, adding a template agent, a silicon source and water, and uniformly stirring;
step 2): transferring the solution to a stainless steel kettle, crystallizing at 100-300 ℃ for 12-36 hours, taking out, cooling to room temperature, washing with water to be neutral, performing suction filtration, and drying to obtain ZSM-5/EU-1 eutectic zeolite;
wherein the template agent is one or more of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromide and triethylamine;
the silicon source is one or more of silica sol, water glass, white carbon black and silicic acid.
Preferably, the hydrogen type ZSM-5/EU-1 eutectic zeolite provided by the invention is prepared by the steps of preparing a template agent, wherein the template agent is tetraethylammonium hydroxide; the silicon source is a mixture of silica sol and white carbon black.
The invention provides hydrogen type ZSM-5/EU-1 eutectic zeolite, wherein the mass content of a ZSM-5 zeolite crystalline phase is 60-95% by taking the mass of the eutectic zeolite as a hundred percent.
Preferably, the hydrogen type ZSM-5/EU-1 eutectic zeolite provided by the invention is characterized in that the mass content of the ZSM-5 zeolite crystalline phase is 70-90% by taking the mass of the eutectic zeolite as a hundred percent.
The invention provides hydrogen type ZSM-5/EU-1 eutectic zeolite, wherein the silicon-aluminum ratio of the eutectic zeolite is 1: 20 to 160.
Generally, EU-1 zeolite is added into NaOH solution for treatment, the EU-1 molecular sieve is primarily decomposed in alkali solution to form an EU-1 molecular sieve primary structural unit, the EU-1 molecular sieve primary structural unit plays a role in structure guidance for synthesis of the eutectic molecular sieve, crystallization of the eutectic molecular sieve is accelerated to form an EU-1 zeolite precursor, then a template agent, a silicon source and water are added to form a reactant mixed solution, and then the solution is transferred to a stainless steel kettle for crystallization.
In the step 1), firstly, adding the EU-1 zeolite into a NaOH solution, wherein the EU-1 zeolite is primarily decomposed in an alkali solution to form a primary EU-1 molecular sieve structural unit, so that the EU-1 molecular sieve structural unit plays a role in structure guidance for the synthesis of the eutectic molecular sieve and accelerates the crystallization of the eutectic molecular sieve. In this process, stirring, preferably continuous stirring, may be carried out. And adding the template agent, the silicon source and the water after uniformly stirring, and uniformly stirring to form a reactant mixed solution. Wherein the template agent is one or more of tetraethyl ammonium hydroxide, tetrapropyl ammonium hydroxide, tetraethyl ammonium bromide, tetrapropyl ammonium bromide and triethylamine; preferably tetraethylammonium hydroxide. The silicon source is one or more of silica sol, water glass, white carbon black and silicic acid, and preferably, the silicon source is a mixture of the silica sol and the white carbon black.
The step 2) is a crystallization process, and the reactant mixed solution in the step 1) is transferred to a stainless steel kettle for crystallization, wherein the crystallization temperature is 100-300 ℃, and the crystallization time is 12-36 hours.
And taking out the product, and cooling to room temperature, wherein the process can be carried out under natural conditions or by adopting a freezing method for rapidly cooling. The product is then washed with water to neutrality, which is for the unreacted templating agent, the silicon source.
And (3) carrying out suction filtration on the product, and drying to obtain the ZSM-35/EU-1 eutectic zeolite.
The invention also provides an aromatic hydrocarbon isomerization catalyst which contains the hydrogen type ZSM-5/EU-1 eutectic zeolite; and the catalyst comprises the following components in percentage by total mass:
10.0-80.0% of hydrogen type ZSM-5/EU-1 eutectic zeolite;
0.1-5.0% of metal rhenium;
the balance being binder.
Preferably, the content of the hydrogen type ZSM-5/EU-1 eutectic zeolite in the aromatic hydrocarbon isomerization catalyst provided by the invention is 40-70% by weight of the total catalyst.
Preferably, the aromatic hydrocarbon isomerization catalyst provided by the invention has the metal rhenium content of 0.5-3.0% by weight of the total catalyst.
More preferably, the aromatic hydrocarbon isomerization catalyst provided by the invention has a metal rhenium content of 1.0-2.0% by weight of the total catalyst.
Preferably, the aromatic hydrocarbon isomerization catalyst provided by the invention has a binder selected from one or more of alumina, titanium oxide, silicon oxide, boron oxide, magnesium oxide and clay
More preferably, the present invention provides the aromatic hydrocarbon isomerization catalyst, wherein the binder site is alumina and/or titania.
In the aromatic hydrocarbon isomerization catalyst provided by the invention, the content of the hydrogen type ZSM-5/EU-1 eutectic zeolite is 10-80% by weight of the total mass of the catalyst. In the aromatic hydrocarbon isomerization catalyst provided by the invention, the content of the metal rhenium is 0.1-5.0%, preferably 0.5-3.0%, and more preferably 1.0-2.0% in percentage by total mass of the catalyst. In the aromatic hydrocarbon isomerization catalyst provided by the invention, a binder is not particularly limited, the binder is one or more selected from alumina, titanium oxide, silica, boron oxide, magnesium oxide and clay, and the binder is preferably alumina and/or titanium oxide.
The invention also provides a preparation method of the aromatic hydrocarbon isomerization catalyst, which comprises the following steps:
step 1): roasting ZSM-5/EU-1 eutectic zeolite in a low-oxygen-concentration atmosphere at the roasting temperature of 200-500 ℃ for 3-8 h;
step 2): uniformly mixing, molding and roasting the roasted eutectic zeolite and a binder, wherein the roasting temperature is 200-600 ℃, and the roasting time is 3-6 hours;
step 3): the roasted product in the step 2) is added in an amount of 0.1-0.5 g/mL-1Performing ion exchange for 2-4 hours in the ammonium salt solution at the exchange temperature of 40-95 ℃, then washing with deionized water, and filtering;
step 4): dipping the product exchanged in the step 3) in a rhenium salt solution with a liquid-solid ratio of 1.0-3.0 for 2-24 hours at a dipping temperature of 25-95 ℃, and then filtering and drying;
step 5): activating the product dried in the step 4) in an air atmosphere, wherein the activation temperature is 200-550 ℃, and the activation time is 2-8 hours; and then reducing in a hydrogen atmosphere at the temperature of 200-550 ℃ for 2-8 hours to obtain the catalyst.
The preparation method of the aromatic hydrocarbon isomerization catalyst provided by the invention is characterized in that the roasting temperature in the step 1) is 300-400 ℃; the roasting temperature in the step 2) is 350-450 ℃; the ammonium salt solution in the step 3) is ammonium chloride and/or ammonium nitrate, and the exchange temperature is 60-80 ℃. In the step 4), the liquid-solid ratio is 1.2-2.0, the dipping temperature is 40-60 ℃, and the dipping time is 6-16 hours; in the step 5), the activation temperature is 300-400 ℃; the reduction temperature is 300-400 ℃.
Generally, in the step 1), the ZSM-5/EU-1 eutectic zeolite is firstly calcined in the low-oxygen concentration atmosphere, and the calcination temperature and the calcination time are not particularly limited, wherein the calcination temperature can be 200-500 ℃, and if the calcination temperature is lower than 200 ℃, the temperature is lower. If the calcination temperature is higher than 500 ℃, the temperature is higher. The calcination time is generally 3 to 8 hours, and if the calcination time is less than 3 hours, the time is too short. If the calcination time is more than 8 hours, the time is too long.
In the step 2), uniformly mixing, molding and roasting the roasted eutectic zeolite and the binder, wherein the roasting temperature and the roasting time are not particularly limited, preferably the roasting temperature is 200-600 ℃, and the roasting time is 3-6 hours; if the roasting temperature is lower than 200 ℃, the temperature is lower; if the roasting temperature is higher than 600 ℃, the temperature is higher; the roasting time is generally 3-8h, and if the roasting time is less than 3 h, the roasting time is too short; if the calcination time is more than 6 hours, the time is too long.
In the step 3), the roasted product obtained in the step 2) is added in an amount of 0.1-0.5 g/mL-1Performing ion exchange for 2-4 hours in the ammonium salt solution at the exchange temperature of 40-95 ℃, then washing with deionized water, and filtering; the concentration of the ammonium salt solution in this step is not particularly limited, but is preferably 0.1 to 0.5 g/mL-1If the concentration is lower than this value, the concentration is lower. If it is higher than this value, the concentration is higher. The exchange temperature in this step is not particularly limited, but is preferably 40 to 95 ℃ and if the temperature is lower than 40 ℃, the temperature is lower. If it is higher than 95 deg.C, the temperature is too high.
In the step 4), the product exchanged in the step 3) is soaked in a rhenium salt solution with a liquid-solid ratio of 1.0-3.0 for 2-24 hours at a soaking temperature of 25-95 ℃, and then filtered and dried, wherein in the step, a soaking method is adopted to load rhenium metal on a catalyst carrier. In this process, the dipping time is not particularly limited, but is generally 2 to 24 hours, and if the dipping time is less than 2 hours, the time is too short; if the dipping time is longer than 24 hours, the time is too long. The dipping temperature is not particularly limited, and is generally 25-95 ℃, and if the temperature is lower than 25 ℃, the temperature is lower; if it is higher than 95 deg.C, the temperature is too high.
Step 5): activating the product dried in the step 4) in an air atmosphere, wherein the activation temperature is 200-550 ℃, and the activation time is 2-8 hours; and then reducing in a hydrogen atmosphere at the temperature of 200-550 ℃ for 2-8 hours to obtain the catalyst.
The invention also provides another preparation method of the aromatic hydrocarbon isomerization catalyst, which comprises the following specific steps:
step 1): roasting ZSM-5/EU-1 eutectic zeolite in a low-oxygen-concentration atmosphere at the roasting temperature of 200-500 ℃ for 3-8 h;
step 2): uniformly mixing, molding and roasting the roasted eutectic zeolite and a binder, wherein the roasting temperature is 200-600 ℃, and the roasting time is 3-8 hours;
step 3): uniformly mixing, molding and roasting the roasted eutectic zeolite, rhenium oxide and a binder, wherein the roasting temperature is 200-600 ℃;
step 4): 0.1-0.5 g/mL of the catalyst calcined in the step 3)-1Performing ion exchange for 2-4 hours in the ammonium salt solution at the exchange temperature of 40-95 ℃, then washing with deionized water, and filtering;
step 5): activating the dried catalyst in the step 4) in an air atmosphere, wherein the activation temperature is 200-550 ℃, and the activation time is 2-8 hours; and then reducing in a hydrogen atmosphere at the temperature of 200-550 ℃ for 2-8 hours to obtain the catalyst.
The preparation method of the aromatic hydrocarbon isomerization catalyst provided by the invention is characterized in that the roasting temperature in the step 1) is 300-400 ℃; the roasting temperature in the step 2) is 350-450 ℃; the rhenium oxide in the step 3) is one or more of rhenium heptoxide, rhenium dioxide and rhenium trioxide; the roasting temperature is 350-450 ℃. The rhenium oxide is rhenium heptoxide. The ammonium salt solution in the step 4) is ammonium chloride and/or ammonium nitrate, and the exchange temperature is 60-80 ℃; in the step 5), the activation temperature is 300-400 ℃, and the reduction temperature is 300-400 ℃.
Generally, in the step 1), firstly, roasting the ZSM-5/EU-1 eutectic zeolite in a low-oxygen-concentration atmosphere, wherein the roasting temperature and the roasting time are not particularly limited, the roasting temperature can be 200-500 ℃, and if the roasting temperature is lower than 200 ℃, the temperature is lower; if the calcination temperature is higher than 500 ℃, the temperature is higher. The roasting time is generally 3-8h, and if the roasting time is less than 3 h, the roasting time is too short; if the calcination time is more than 8 hours, the time is too long.
In the step 2), uniformly mixing, molding and roasting the roasted eutectic zeolite and the binder, wherein the roasting temperature and the roasting time are not particularly limited, preferably the roasting temperature is 200-600 ℃, and the roasting time is 3-8 h; if the calcination temperature is lower than 200 ℃, the temperature is lower. If the calcination temperature is higher than 600 ℃, the temperature is higher. The roasting time is generally 3-8h, and if the roasting time is less than 3 h, the roasting time is too short; if the calcination time is more than 8 hours, the time is too long.
In the step 3), uniformly mixing, molding and roasting the roasted eutectic zeolite, the oxide of rhenium and the binder, wherein the roasting temperature is 200-600 ℃, the roasting temperature and the roasting time are not particularly limited, the roasting temperature is preferably 200-600 ℃, and if the roasting temperature is lower than 200 ℃, the temperature is lower; if the calcination temperature is higher than 600 ℃, the temperature is higher.
In the step 4), the calcined catalyst in the step 3) is added in an amount of 0.1-0.5 g/mL-1Performing ion exchange for 2-4 hours in the ammonium salt solution at the exchange temperature of 40-95 ℃, then washing with deionized water, and filtering; the purpose of this step is. . . In this process, the dipping time is not particularly limited, but is generally 2 to 4 hours, and if the dipping time is less than 2 hours, the time is too short; if the dipping time is more than 4 hours, the time is too long. The dipping temperature is not particularly limited, but is generally 40 to 95 ℃ and less than 40 DEG CIf so, the temperature is lower; if it is higher than 95 deg.C, the temperature is too high.
Step 5): activating the dried catalyst in the step 4) in an air atmosphere, wherein the activation temperature is 200-550 ℃, and the activation time is 2-8 hours; and then reducing in a hydrogen atmosphere at the temperature of 200-550 ℃ for 2-8 hours to obtain the catalyst.
The application of the aromatic hydrocarbon isomerization catalyst provided by the invention is characterized in that raffinate oil of an aromatic hydrocarbon combination device is used as a raw material to carry out dealkylation type C8 aromatic hydrocarbon isomerization reaction, and the reaction conditions are as follows: the reaction temperature is 300-400 ℃, the hydrogen partial pressure is 0.70-1.5 MPa, and the volume ratio of hydrogen to oil is 100-500 v.v-1And the feeding weight hourly space velocity is 5-15 h-1。
The invention can also be stated in detail as follows:
an aromatic isomerization catalyst comprising by weight: 10.0-80.0 w% of hydrogen type ZSM-5/EU-1 eutectic zeolite, 15.0-90.0 w% of binder and 0.1-5.0 w% of metal rhenium in the VIIB group of the periodic table.
The preparation method of the hydrogen type ZSM-5/EU-1 eutectic zeolite comprises the following steps: adding a certain amount of EU-1 zeolite into NaOH solution, uniformly stirring, adding a template agent, a silicon source and water, and uniformly stirring. And transferring the solution to a stainless steel kettle, crystallizing at 100-300 ℃ for 12-36 hours, taking out, cooling to room temperature, washing to be neutral with water, performing suction filtration, and drying at 100 ℃ to obtain the ZSM-5/EU-1 eutectic zeolite. The template agent is one or more of tetraethyl ammonium hydroxide, tetrapropyl ammonium hydroxide, tetraethyl ammonium bromide, tetrapropyl ammonium bromide and triethylamine, and tetraethyl ammonium hydroxide is preferred. The silicon source is one or more of silica sol, water glass, white carbon black and silicic acid, and the mixture of silica sol and white carbon black is preferred.
The hydrogen type ZSM-5/EU-1 eutectic zeolite contains ZSM-5 zeolite crystal phase and EU-1 zeolite crystal phase at the same time, and the weight content of the ZSM-5 zeolite in the eutectic zeolite is 60-95 w%, preferably 70-90 w%. Silicon to aluminum ratio (SiO)2/Al2O3) More than 20, preferably in the range of 20-160, and the content of the hydrogen type ZSM-5/EU-1 eutectic zeolite is preferably 40-70 w%.
The binder is selected from one or more of alumina, titanium oxide, silicon oxide, boron oxide, magnesium oxide and clay, preferably from alumina, titanium oxide or a mixture of the two.
The content of rhenium (Re) in the VIIB group metal of the periodic Table is 0.1 to 5.0 w%, preferably 1.0 to 3.0 w%, more preferably 0.5 to 2.0 w%.
The preparation method of the catalyst comprises the following steps: roasting ZSM-5/EU-1 eutectic zeolite in a low-oxygen-concentration atmosphere at the roasting temperature of 200-500 ℃, preferably 300-400 ℃ for 3-8 h. Uniformly mixing and molding the sintered eutectic zeolite and the binder, and roasting at the temperature of 200-600 ℃, preferably 350-450 ℃, wherein the roasting time is 3-8 h. The calcined catalyst is added in an amount of 0.1 to 0.5 g/mL-1And carrying out ion exchange in the ammonium salt solution for 2-4 hours, wherein the ammonium salt solution is preferably selected from ammonium chloride and ammonium nitrate, the exchange temperature is 40-95 ℃, preferably 60-80 ℃, and then washing with deionized water and filtering. And (3) soaking the exchanged catalyst in a rhenium salt solution with the liquid-solid ratio of 1.0-3.0, preferably 1.2-2.0 at 25-95 ℃, preferably 40-60 ℃ for 2-24 hours, preferably 6-16 hours, preferably ammonium perrhenate, filtering and drying. Activating the dried catalyst for 2-8 hours at 200-550 ℃, preferably 300-400 ℃ in an air atmosphere, and then reducing for 2-8 hours at 200-550 ℃, preferably 300-400 ℃ in a hydrogen atmosphere to obtain the catalyst.
The preparation method of the catalyst comprises the following steps: roasting ZSM-5/EU-1 eutectic zeolite in a low-oxygen-concentration atmosphere, wherein the roasting temperature is 200-500 ℃, and preferably 300-400 ℃. Uniformly mixing and molding the sintered eutectic zeolite, rhenium oxide and a binder, and roasting at the temperature of 200-600 ℃, preferably 350-450 ℃; the rhenium oxide is one or more of rhenium heptoxide, rhenium dioxide and rhenium trioxide, and preferably rhenium heptoxide. The calcined catalyst is added in an amount of 0.1 to 0.5 g/mL-1And carrying out ion exchange in the ammonium salt solution for 2-4 hours, wherein the ammonium salt solution is preferably selected from ammonium chloride and ammonium nitrate, the exchange temperature is 40-95 ℃, preferably 60-80 ℃, and then washing with deionized water, filtering and drying. Activating the dried catalyst for 2-8 hours at 200-550 ℃, preferably 300-400 ℃ in an air atmosphere, and then activating the catalyst at 200-550 ℃, preferably 300-400 ℃ in a hydrogen atmosphereAnd reducing for 2-8 hours to obtain the catalyst.
The invention also relates to application of the catalyst, which is characterized in that raffinate oil of an aromatic hydrocarbon combination device is used as a raw material to carry out dealkylation type C8 aromatic hydrocarbon isomerization reaction at the reaction temperature of 300-400 ℃, the hydrogen partial pressure of 0.70-1.5 MPa and the hydrogen-oil volume ratio of 100-500 v.v.v-1And the feeding weight hourly space velocity is 5-15 h-1Under the condition, xylene isomerization and ethylbenzene dealkylation can be realized, and the hydrogenation side reaction of generating benzene by ethylbenzene dealkylation can be effectively controlled, so that the purity of benzene in the low-boiling-point azeotrope is improved. The purity of benzene in the azeotrope of benzene, methyl cyclopentane and cyclohexane is not less than 99.5%.
Detailed Description
The following examples illustrate the invention without in any way limiting its scope.
Preparation of ZSM-5/EU-1 eutectic zeolite
Example 1
Adding EU-1 zeolite into NaOH solution, stirring uniformly, adding tetraethylammonium hydroxide, silica sol, white carbon black and water, and stirring uniformly. Transferring the solution to a stainless steel kettle, crystallizing at 200 ℃ for 30 hours, taking out, cooling to room temperature, washing to neutrality with water, filtering, and drying at 100 ℃ to obtain different SiO2/Al2O3ZSM-5/EU-1 eutectic zeolite.
Example 2
Adding EU-1 zeolite into NaOH solution, stirring uniformly, adding tetraethylammonium bromide, tetrapropylammonium bromide, silica sol and water, and stirring uniformly. Transferring the solution to a stainless steel kettle, crystallizing at 160 ℃ for 36 hours, taking out, cooling to room temperature, washing to neutrality with water, filtering, and drying at 100 ℃ to obtain different SiO2/Al2O3ZSM-5/EU-1 eutectic zeolite.
Preparation of the catalyst
Example 3
Containing 70.0 w% ZSM-5/EU-1 eutectic zeolite (SiO)2/Al2O3100), 3.0 w% Re, 27.0 w% alumina, catalyst C3.
SiO synthesized in example 12/Al2O3100 of ZSM-5/EU-1 eutectic zeolite is fully mixed with pseudo-boehmite powder, 3.0w percent of nitric acid solution is added and uniformly mixed, and a cylindrical orifice plate is used for extrusion molding; standing the cylindrical strip at room temperature for 4 hours, drying at 120 ℃ for 2 hours, and roasting at 500 ℃ in air for 4 hours to prepare a catalyst carrier; the catalyst carrier was adjusted to 0.2 g/mL-1Exchanging the ammonium chloride solution for 2 hours at the temperature of 60-90 ℃, washing the ammonium chloride solution by deionized water, and filtering; the obtained carrier after exchange is immersed in a solution containing ammonium perrhenate at normal temperature for 12 hours, dried at 120 ℃ for 2 hours, calcined at 500 ℃ for 4 hours, and reduced in hydrogen at 500 ℃ for 4 hours to obtain the catalyst C3.
Example 4
Containing 50.0 w% ZSM-5/EU-1 eutectic zeolite (SiO)2/Al2O320), 1.0 w% Re, 49.0 w% alumina, catalyst C4.
SiO synthesized in example 22/Al2O3ZSM-5/EU-1 eutectic zeolite 20 was extruded, dried, calcined, ammonium exchanged, impregnated, dried, calcined, and reduced as described in example 3 to obtain catalyst C4.
Example 5
Containing 80.0 w% of ZSM-5/EU-1 eutectic zeolite (SiO)2/Al2O360), 4.5 w% Re, 15.5 w% alumina catalyst C5.
SiO synthesized in example 12/Al2O3The 60 ZSM-5/EU-1 eutectic zeolite is fully mixed with rhenium heptoxide and pseudo-boehmite powder, 3.0 w% nitric acid solution is added and uniformly mixed, and a cylindrical orifice plate is used for extrusion molding; standing the cylindrical strip at room temperature for 4 hours, drying at 120 ℃ for 2 hours, and roasting at 500 ℃ in air for 4 hours to prepare a catalyst carrier; the catalyst carrier was adjusted to 0.2 g/mL-1Exchanging the ammonium nitrate solution for 2 hours at the temperature of 60-90 ℃, washing with deionized water, and filtering; drying at 120 deg.C for 2 hr, calcining at 500 deg.C for 4 hr, and reducing at 500 deg.C in hydrogen for 4 hr to obtain catalyst C5.
Example 6
Containing 40.0 w% of ZSM-5/EU-1 eutectic zeolite (SiO)2/Al2O380), 0.5 w% Re, 59.5 w% alumina catalyst C6.
SiO synthesized in example 22/Al2O3ZSM-5/EU-1 eutectic zeolite and rhenium dioxide 80 were subjected to extrusion, drying, calcination, ammonium exchange, drying, calcination and reduction by the method described in example 5 to obtain catalyst C6.
Example 7
Containing 60.0 w% ZSM-5/EU-1 eutectic zeolite (SiO)2/Al2O340), 2.0 w% Re, 38.0 w% alumina catalyst C7.
SiO synthesized in example 12/Al2O3ZSM-5/EU-1 eutectic zeolite 40 was extruded, dried, calcined, ammonium exchanged, impregnated, dried, calcined, and reduced as in example 3 to give catalyst C7.
Comparative example 1
Containing 60.0 w% ZSM-5/EU-1 eutectic zeolite (SiO)2/Al2O340), 0.2 w% Pt, 38.0 w% alumina catalyst C8.
SiO synthesized in example 12/Al2O3Adopting the method in the embodiment 2 to carry out extrusion, drying, roasting and ammonium exchange on 40 ZSM-5/EU-1 eutectic zeolite; the obtained exchanged carrier was immersed in a solution containing chloroplatinic acid at normal temperature for 12 hours, dried at 120 ℃ for 2 hours, calcined at 500 ℃ for 4 hours, and reduced in hydrogen at 500 ℃ for 4 hours to obtain catalyst C8.
Comparative example 2
Taking ZSM-5 zeolite, EU-1 zeolite and gamma-Al2O3Weighing and uniformly mixing the materials according to the weight ratio of 45:15:40, kneading the mixed powder in dilute nitric acid with the concentration of 2%, extruding and forming, drying at 115 ℃, and roasting in the air at 600 ℃ for 2 hours to obtain the carrier. 5% NH for the support4And exchanging the Cl aqueous solution for 2 hours at 95 ℃, filtering, washing with deionized water, and drying to obtain the ammonium carrier. Ammonium type vectors are treated with 0.35 mg/ml of a liquid-solid weight ratio of 1.4 at room temperatureSoaking in ml concentration chloroplatinic acid for 20 hr, filtering, diffusing at 60 deg.c for 4 hr, drying at 120 deg.c for 4 hr, activating in air at 500 deg.c for 4 hr, and reducing in hydrogen for 4 hr to obtain catalyst C9 with platinum content of 0.1 wt%.
Evaluation of catalyst Effect
Example 8
The performance of the catalysts C3-C9 was evaluated using a 100mL fixed bed unit, the feedstock was raffinate oil from an aromatics complex, the composition of which is shown in Table 1, and the feedstock contained no cyclohexane or methylcyclopentane.
TABLE 1 raffinate oil composition for evaluation
Wherein C7N + P means C7And below cycloalkanes and alkanes, C8N + P meaning C8Cycloalkanes and alkanes, B means benzene, T means toluene, EB means ethylbenzene, PX means p-xylene, MX means m-xylene, OX means o-xylene, C9+ A means C9And the above aromatic hydrocarbons.
TABLE 2 evaluation conditions for catalyst Performance
Catalyst performance was evaluated in terms of equilibrium concentration of p-xylene (PX/. sigma.X), ethylbenzene conversion (EBc), Xylene Yield (XY) and benzene purity Bp in azeotropic systems (benzene, cyclohexane, methylcyclopentane).
TABLE 3 evaluation results of catalyst Properties
The evaluation results show that the catalysts C3-C7 adopting non-noble metal Re in the invention keep higher ethylbenzene conversion rate and xylene yield, and the purity of benzene in the reaction product in an azeotropic system (benzene, cyclohexane and methyl cyclopentane) is higher, and is 99.53-99.84%, which is obviously higher than the catalysts C8 and C9 adopting noble metal Pt.
In the catalyst C3-C7 of the invention, the benzene component of the isomerization product can be directly sent to the rectifying section of the aromatic hydrocarbon extraction unit, and qualified pure benzene products are directly extracted from the side line of the benzene tower, thus effectively reducing the production energy consumption of the aromatic hydrocarbon combination device.
Claims (19)
1. A hydrogen form ZSM-5/EU-1 eutectic zeolite, the zeolite contains ZSM-5 zeolite crystal phase and EU-1 zeolite crystal phase at the same time, characterized by that, the zeolite adopts the following method to prepare:
step 1): adding a certain amount of EU-1 zeolite into NaOH solution, uniformly stirring, adding a template agent, a silicon source and water, and uniformly stirring;
step 2): transferring the solution to a stainless steel kettle, crystallizing at 100-300 ℃ for 12-36 hours, taking out, cooling to room temperature, washing with water to be neutral, performing suction filtration, and drying to obtain ZSM-5/EU-1 eutectic zeolite;
wherein the template agent is one or more of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetraethylammonium bromide, tetrapropylammonium bromide and triethylamine;
the silicon source is one or more of silica sol, water glass, white carbon black and silicic acid.
2. The hydrogen form ZSM-5/EU-1 eutectic zeolite of claim 1, wherein the templating agent is tetraethylammonium hydroxide; the silicon source is a mixture of silica sol and white carbon black.
3. The hydrogen type ZSM-5/EU-1 eutectic zeolite as claimed in claim 1, wherein the ZSM-5 zeolite crystal phase has a mass content of 60-95% by mass of the eutectic zeolite.
4. The hydrogen type ZSM-5/EU-1 eutectic zeolite as claimed in claim 3, wherein the ZSM-5 zeolite crystal phase has a mass content of 70-90% by mass of the eutectic zeolite.
5. The hydrogen form ZSM-5/EU-1 eutectic zeolite of claim 1, wherein the eutectic zeolite has a silica to alumina ratio of 1: 20 to 160.
6. An aromatic isomerization catalyst comprising the hydrogen form of ZSM-5/EU-1 eutectic zeolite of any of claims 1-5; and the catalyst comprises the following components in percentage by total mass:
10.0-80.0% of hydrogen type ZSM-5/EU-1 eutectic zeolite;
0.1-5.0% of metal rhenium;
the balance being binder.
7. The aromatic hydrocarbon isomerization catalyst according to claim 6, wherein the hydrogen type ZSM-5/EU-1 eutectic zeolite is contained in an amount of 40 to 70% by weight based on the total weight of the catalyst.
8. The aromatic hydrocarbon isomerization catalyst according to claim 6, wherein the metallic rhenium is contained in an amount of 0.5 to 3.0% by weight based on the total catalyst mass.
9. The aromatic hydrocarbon isomerization catalyst according to claim 6, wherein the metallic rhenium is contained in an amount of 1.0 to 2.0% by weight based on the total catalyst mass.
10. The aromatic hydrocarbon isomerization catalyst of claim 6, wherein the binder is one or more selected from the group consisting of alumina, titania, silica, boria, magnesia, and clay.
11. The aromatic isomerization catalyst of claim 10 wherein the binder site is alumina and/or titania.
12. A method for preparing an aromatic hydrocarbon isomerization catalyst, which is the method for preparing the catalyst according to any one of claims 6 to 11, and is characterized by comprising the following specific steps:
step 1): roasting the ZSM-5/EU-1 eutectic zeolite of any one of claims 1-5 in a low oxygen concentration atmosphere at a temperature of 200-500 ℃ for 3-8 h;
step 2): uniformly mixing, molding and roasting the roasted eutectic zeolite and a binder, wherein the roasting temperature is 200-600 ℃, and the roasting time is 3-6 hours;
step 3): placing 0.1-0.5 g ∙ mL of the product roasted in the step 2)-1Performing ion exchange for 2-4 hours in the ammonium salt solution at the exchange temperature of 40-95 ℃, then washing with deionized water, and filtering;
step 4): dipping the product exchanged in the step 3) in a rhenium salt solution with a liquid-solid ratio of 1.0-3.0 for 2-24 hours at a dipping temperature of 25-95 ℃, and then filtering and drying;
step 5): activating the product dried in the step 4) in an air atmosphere, wherein the activation temperature is 200-550 ℃, and the activation time is 2-8 hours; and then reducing in a hydrogen atmosphere at the temperature of 200-550 ℃ for 2-8 hours to obtain the catalyst.
13. The method for preparing the aromatic hydrocarbon isomerization catalyst according to claim 12, wherein the calcination temperature in the step 1) is 300 to 400 ℃;
the roasting temperature in the step 2) is 350-450 ℃;
the ammonium salt solution in the step 3) is ammonium chloride and/or ammonium nitrate, and the exchange temperature is 60-80 ℃.
14. The method for preparing the aromatic hydrocarbon isomerization catalyst according to claim 12 or 13, wherein the liquid-solid ratio in the step 4) is 1.2 to 2.0, the impregnation temperature is 40 to 60 ℃, and the impregnation time is 6 to 16 hours;
in the step 5), the activation temperature is 300-400 ℃; the reduction temperature is 300-400 ℃.
15. A method for preparing an aromatic hydrocarbon isomerization catalyst, which is the method for preparing the catalyst according to any one of claims 6 to 11, and is characterized by comprising the following specific steps:
step 1): roasting the ZSM-5/EU-1 eutectic zeolite of any one of claims 1-5 in a low oxygen concentration atmosphere at a temperature of 200-500 ℃ for 3-8 h;
step 2): uniformly mixing, molding and roasting the roasted eutectic zeolite and a binder, wherein the roasting temperature is 200-600 ℃, and the roasting time is 3-8 hours;
step 3): uniformly mixing, molding and roasting the roasted eutectic zeolite, rhenium oxide and a binder, wherein the roasting temperature is 200-600 ℃;
step 4): 0.1-0.5 g of ∙ mL of the catalyst calcined in the step 3)-1Ammonium salt solution of (2)Performing ion exchange for 2-4 hours at the exchange temperature of 40-95 ℃, then washing with deionized water, and filtering;
step 5): activating the dried catalyst in the step 4) in an air atmosphere, wherein the activation temperature is 200-550 ℃, and the activation time is 2-8 hours; and then reducing in a hydrogen atmosphere at the temperature of 200-550 ℃ for 2-8 hours to obtain the catalyst.
16. The method for preparing the aromatic hydrocarbon isomerization catalyst according to claim 15, wherein the calcination temperature in the step 1) is 300 to 400 ℃;
the roasting temperature in the step 2) is 350-450 ℃;
the rhenium oxide in the step 3) is one or more of rhenium heptoxide, rhenium dioxide and rhenium trioxide; the roasting temperature is 350-450 ℃.
17. The method of preparing an aromatic isomerization catalyst as claimed in claim 16 wherein the rhenium oxide is rhenium heptoxide.
18. The method for preparing the aromatic hydrocarbon isomerization catalyst according to any one of claims 15 to 17, wherein the ammonium salt solution in the step 4) is ammonium chloride and/or ammonium nitrate, and the exchange temperature is 60 to 80 ℃;
in the step 5), the activation temperature is 300-400 ℃, and the reduction temperature is 300-400 ℃.
19. The use of an aromatics isomerization catalyst as claimed in any one of claims 6 to 10, wherein the raffinate oil from the aromatics complex is used as the feedstock for the dealkylation C8 aromatics isomerization reaction under the following conditions: the reaction temperature is 300-400 ℃, the hydrogen partial pressure is 0.70-1.5 MPa, and the hydrogen-oil volume ratio is 100-500 v ∙ v-1And the feeding weight hourly space velocity is 5-15 h-1。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910693676.6A CN112299433B (en) | 2019-07-29 | 2019-07-29 | Hydrogen type ZSM-5/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910693676.6A CN112299433B (en) | 2019-07-29 | 2019-07-29 | Hydrogen type ZSM-5/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112299433A true CN112299433A (en) | 2021-02-02 |
| CN112299433B CN112299433B (en) | 2022-06-03 |
Family
ID=74330145
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910693676.6A Active CN112299433B (en) | 2019-07-29 | 2019-07-29 | Hydrogen type ZSM-5/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112299433B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114426280A (en) * | 2022-03-14 | 2022-05-03 | 江西师范大学 | A kind of method for regulating MFI molecular sieve particle size |
| CN115709096A (en) * | 2021-08-23 | 2023-02-24 | 中国石油天然气股份有限公司 | High-activity catalyst for preparing benzene by disproportionation of toluene |
| CN115888808A (en) * | 2021-08-18 | 2023-04-04 | 中国科学院大连化学物理研究所 | Preparation method of catalyst for synthesizing 3-methylpyridine from acrolein, propionaldehyde and ammonia |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090093661A1 (en) * | 2005-12-22 | 2009-04-09 | Emmanuelle Guillon | Catalyst comprising an euo zeolite, a 10 mr zeolite and a 12 mr zeolite, and its use in isomerizing aromatic c8 compounds |
| CN102909064A (en) * | 2011-08-01 | 2013-02-06 | 中国石油化工股份有限公司 | Catalyst for alkylation of toluene with methanol, and preparation method and applications thereof |
| CN106311321A (en) * | 2015-07-03 | 2017-01-11 | 中国石油天然气股份有限公司 | Catalyst containing EU-1/ZSM-5 eutectic zeolite, preparation method and application |
| CN108273546A (en) * | 2018-02-14 | 2018-07-13 | 彭杰 | A kind of preparation method of naphtha catalytic cracking catalyst for preparing propene |
| CN109704358A (en) * | 2017-10-26 | 2019-05-03 | 中国石油化工股份有限公司 | The synthetic method of EU-1/ZSM-5 composite molecular screen |
-
2019
- 2019-07-29 CN CN201910693676.6A patent/CN112299433B/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090093661A1 (en) * | 2005-12-22 | 2009-04-09 | Emmanuelle Guillon | Catalyst comprising an euo zeolite, a 10 mr zeolite and a 12 mr zeolite, and its use in isomerizing aromatic c8 compounds |
| CN102909064A (en) * | 2011-08-01 | 2013-02-06 | 中国石油化工股份有限公司 | Catalyst for alkylation of toluene with methanol, and preparation method and applications thereof |
| CN106311321A (en) * | 2015-07-03 | 2017-01-11 | 中国石油天然气股份有限公司 | Catalyst containing EU-1/ZSM-5 eutectic zeolite, preparation method and application |
| CN109704358A (en) * | 2017-10-26 | 2019-05-03 | 中国石油化工股份有限公司 | The synthetic method of EU-1/ZSM-5 composite molecular screen |
| CN108273546A (en) * | 2018-02-14 | 2018-07-13 | 彭杰 | A kind of preparation method of naphtha catalytic cracking catalyst for preparing propene |
Non-Patent Citations (1)
| Title |
|---|
| 闫萍等: "EU-1/ZSM-5复合分子筛的合成与表征", 《石油炼制与化工》 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115888808A (en) * | 2021-08-18 | 2023-04-04 | 中国科学院大连化学物理研究所 | Preparation method of catalyst for synthesizing 3-methylpyridine from acrolein, propionaldehyde and ammonia |
| CN115888808B (en) * | 2021-08-18 | 2025-03-11 | 中国科学院大连化学物理研究所 | Preparation method of catalyst for synthesizing 3-methylpyridine from acrolein, propionaldehyde and ammonia |
| CN115709096A (en) * | 2021-08-23 | 2023-02-24 | 中国石油天然气股份有限公司 | High-activity catalyst for preparing benzene by disproportionation of toluene |
| CN114426280A (en) * | 2022-03-14 | 2022-05-03 | 江西师范大学 | A kind of method for regulating MFI molecular sieve particle size |
| CN114426280B (en) * | 2022-03-14 | 2023-01-10 | 江西师范大学 | A kind of method of regulating MFI molecular sieve particle size |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112299433B (en) | 2022-06-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH03146135A (en) | Catalyst and method for isomerization | |
| CN100512954C (en) | Process and catalyst for isomerization of C8 alkylaromatics | |
| CN101208283A (en) | Two-stage aromatics isomerization process | |
| CN109414693B (en) | Catalyst composition comprising CON-type zeolite and ZSM-5-type zeolite, methods of making and using the same | |
| CN112299433B (en) | Hydrogen type ZSM-5/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application | |
| JP5123810B2 (en) | Aromatic isomerization catalyst | |
| CN103842318B (en) | Catalysts and methods for hydrocarbon conversion | |
| CN110961143B (en) | Molecular sieve catalyst, preparation method thereof and application thereof in ethylbenzene dealkylation reaction and xylene isomerization reaction | |
| WO2015152159A1 (en) | Method for producing unsaturated hydrocarbon | |
| US8247630B2 (en) | Process for C8 alkylaromatic isomerization | |
| CN112299435B (en) | Hydrogen type ZSM-35/EU-1 eutectic zeolite, aromatic isomerization catalyst, preparation method and application | |
| JP2020500710A (en) | Catalyst system and method for converting hydrocarbon feed utilizing said catalyst system | |
| US7745677B2 (en) | Aromatic isomerization catalyst and isomerization process | |
| KR101622495B1 (en) | Aromatics isomerization using a dual-catalyst system | |
| JP3820685B2 (en) | Catalyst composition for transalkylation reaction of alkyl aromatic hydrocarbon and method for producing xylene | |
| JPH1045640A (en) | Transalkylation of aralkyl hydrocarbon | |
| CN108262058B (en) | Process for selective cracking of non-aromatic hydrocarbons | |
| CN108264445B (en) | Method for toluene disproportionation and/or alkyl transfer reaction | |
| US8431760B2 (en) | Hydrocarbon conversion using an improved molecular sieve | |
| EP4081342A1 (en) | Catalyst and its use in ethylbenzene dealkylation | |
| US20100152025A1 (en) | Molecular Sieve | |
| JPH0827040A (en) | Catalyst for isomerizing xylenes and method for isomerizing xylenes | |
| JPH06121932A (en) | Xylene isomerization catalyst and xylene isomerization reaction method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |