CN112311023B - Power control circuit and power control method - Google Patents
Power control circuit and power control method Download PDFInfo
- Publication number
- CN112311023B CN112311023B CN201910675372.7A CN201910675372A CN112311023B CN 112311023 B CN112311023 B CN 112311023B CN 201910675372 A CN201910675372 A CN 201910675372A CN 112311023 B CN112311023 B CN 112311023B
- Authority
- CN
- China
- Prior art keywords
- transistor
- power
- voltage
- diode element
- voltage difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000004044 response Effects 0.000 claims abstract description 23
- 238000012546 transfer Methods 0.000 claims abstract description 16
- 230000008859 change Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 description 22
- 230000007246 mechanism Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000005669 field effect Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0063—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种电源控制技术,尤其涉及一种电源控制电路与电源控制方法。The invention relates to a power control technology, in particular to a power control circuit and a power control method.
背景技术Background technique
随着电动车等电子装置的耗电量越来越大,电池模块的安全性也越来越被注意。当电池模块的输出电流过大时,电子装置中的电池保护芯片可能会启动低电压保护机制,以即时停止电池模块的充/放电,避免发生危险。目前来说,大多数的电池模块都是使用高功率场效晶体管来作为电池模块的开关电路。然而,在低电压保护机制中,若流经高功率场效晶体管的电流很大,则高功率场效晶体管的关闭时间可能会被延长(例如千分之几十秒),从而导致高功率场效晶体管或其余电子元件发生损坏。With the increasing power consumption of electronic devices such as electric vehicles, the safety of battery modules has also been paid more and more attention. When the output current of the battery module is too large, the battery protection chip in the electronic device may activate a low-voltage protection mechanism to immediately stop the charging/discharging of the battery module to avoid danger. At present, most battery modules use high-power field effect transistors as switching circuits of the battery modules. However, in the low-voltage protection mechanism, if the current flowing through the high-power field effect transistor is large, the turn-off time of the high-power field effect transistor may be prolonged (for example, tens of thousands of seconds), resulting in high power field effect. damage to the effective transistor or other electronic components.
发明内容SUMMARY OF THE INVENTION
本发明提供一种电源控制电路与电源控制方法,可有效改善上述问题。The present invention provides a power control circuit and a power control method, which can effectively improve the above problems.
本发明的实施例提供一种电源控制电路,其包括电池单元、电源控制器及开关电路。所述电源控制器用以提供控制信号。所述开关电路耦接在所述电池单元与所述电源控制器之间。所述开关电路包括二极管元件。所述二极管元件用以接收所述控制信号。所述开关电路响应于所述二极管元件的第一端与第二端之间的电压差而切断所述电池单元的电源传递路径。Embodiments of the present invention provide a power control circuit, which includes a battery unit, a power controller, and a switch circuit. The power controller is used for providing control signals. The switch circuit is coupled between the battery unit and the power controller. The switching circuit includes a diode element. The diode element is used for receiving the control signal. The switch circuit cuts off the power transfer path of the battery cell in response to a voltage difference between the first terminal and the second terminal of the diode element.
本发明的实施例另提供一种电源控制方法,其包括:由电源控制器提供控制信号;由二极管元件接收所述控制信号;以及响应于所述二极管元件的第一端与第二端之间的电压差而切断电池单元的电源传递路径。An embodiment of the present invention further provides a power control method, which includes: providing a control signal by a power controller; receiving the control signal by a diode element; and responding to the difference between a first end and a second end of the diode element The voltage difference of the battery unit cuts off the power transmission path of the battery unit.
基于上述,开关电路中的二极管元件可接收来自电源控制器的控制信号。在特定情况下,响应于所述二极管元件的第一端与第二端之间的电压差,电池单元的电源传递路径可被切断。藉此,可有效减少切断电池单元的电源传递路径的延迟时间,进而提高对于所述开关电路、所述电池单元和/或电子装置中其余电子元件的保护效率。Based on the above, the diode element in the switching circuit can receive the control signal from the power supply controller. In certain cases, in response to a voltage difference between the first and second ends of the diode element, the power transfer path of the battery cell may be cut off. Thereby, the delay time of cutting off the power transmission path of the battery unit can be effectively reduced, thereby improving the protection efficiency of the switch circuit, the battery unit and/or the remaining electronic components in the electronic device.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.
附图说明Description of drawings
图1是根据本发明的一实施例所示出的电源控制电路的示意图;FIG. 1 is a schematic diagram of a power control circuit according to an embodiment of the present invention;
图2是根据本发明的一实施例所示出的电源控制电路的示意图;FIG. 2 is a schematic diagram of a power control circuit according to an embodiment of the present invention;
图3是根据本发明的一实施例所示出的电源控制电路的示意图;3 is a schematic diagram of a power control circuit according to an embodiment of the present invention;
图4是根据本发明的一实施例所示出的电源控制方法的流程图。FIG. 4 is a flowchart of a power control method according to an embodiment of the present invention.
附图标记说明Description of reference numerals
10、20、30:电源控制电路10, 20, 30: Power control circuit
11:电池单元11: Battery unit
12、22、32:开关电路12, 22, 32: switch circuit
13:电源控制器13: Power Controller
101:耗电装置101: Power-consuming devices
102:电源传递路径102: Power Delivery Path
D1:二极管元件D1: Diode element
Q1、Q2(1)、Q2(2):晶体管Q1, Q2(1), Q2(2): Transistors
31:充电电路31: Charging circuit
S401~S403:步骤S401~S403: Steps
CS:控制信号CS: control signal
CV:控制电压CV: Control Voltage
GND:参考接地电压GND: reference ground voltage
具体实施方式Detailed ways
图1是根据本发明的一实施例所示出的电源控制电路的示意图。请参照图1,电源控制电路10可设置于各类由电池单元11对耗电装置101进行供电的电子装置,例如电动车、笔记本电脑或智能手机等等。以电动车为例,耗电装置101可以是车用仪表板、车灯、动力系统和/或剎车系统等受电池单元11提供的电源驱动的电子装置。或者,以笔记本电脑为例,耗电装置101可以是显示器、中央处理器、存储器模块、通讯模块和/或各式功能电路。FIG. 1 is a schematic diagram of a power control circuit according to an embodiment of the present invention. Referring to FIG. 1 , the
电源控制电路10包括电池单元11、开关电路12及电源控制器13。电池单元11用以执行放电操作以提供电源至耗电装置101。例如,电池单元11可包括镍镉(Ni-Cd)电池、镍氢(Ni-MH)电池、锂离子(Li-lon)电池、锂聚合物(Li-polymer)电池及铅酸(Sealed)电池的至少其中之一,且电池单元11的类型不限于此。此外,电池单元11中电池的数目可以是一或多个,本发明不加以限制。The
电源控制器13可包括一或多个芯片(或芯片组)。例如,电源控制器13可包括处理器、或是其他可程序化的一般用途或特殊用途的微处理器、数字信号处理器、可程序化控制器、特殊应用集成电路、可程序化逻辑装置或其他类似装置或这些装置的组合。在一实施例中,电源控制器13亦称为电源管理芯片或电池保护芯片。The
开关电路12耦接在电池单元11与电源控制器13之间。电源控制器13可提供控制信号CS至开关电路12。特别是,电源控制器13可通过控制信号CS来控制开关电路12导通或切断电池单元11的电源传递路径102。当电源传递路径102被开关电路12导通时,电池单元11可经由电源传递路径102提供电源至耗电装置101。然而,当电源传递路径102被开关电路12切断时,电池单元11无法经由电源传递路径102提供电源至耗电装置101。The
在一实施例中,电源控制器13可检测电源传递路径102上的电流和/或电压。电源控制器13可根据所检测的电流和/或电压来判断是否启动低电压保护机制、高/低电流保护机制、温度保护机制和/或短路保护机制。以上保护机制中的至少一者可称为电源保护机制。在正常情况下,电源控制器13可通过控制信号CS维持开关电路12导通电源传递路径102,使电池单元11正常供电至耗电装置101。In one embodiment, the
然而,当判定须启动电源保护机制时(例如当电源传递路径102上的电流和/或电压发生异常时),电源控制器13可改变控制信号CS的电压电平,以控制开关电路12切断电源传递路径102。例如,电源控制器13可将控制信号CS的电压电平从逻辑高调整为逻辑低。响应于控制信号CS的电压电平从逻辑高调整为逻辑低,开关电路12可切断电源传递路径102。须注意的是,开关电路12切断电源传递路径102的速度和/或效率攸关电源保护机制的效能与系统安全性。若开关电路12切断电源传递路径102的速度较慢(例如63.4毫秒),则可能在电源传递路径102被完全切断之前,开关电路12和/或耗电装置101中的部分电子元件就被损坏。However, when it is determined that the power protection mechanism needs to be activated (for example, when the current and/or voltage on the
在本实施例中,开关电路12包括二极管元件D1。二极管元件D1的数目可以是一或多个。二极管元件D1可接收控制信号CS。开关电路12可响应于二极管元件D1的第一端(例如输入端)与第二端(例如输出端)之间的电压差而切断电源传递路径102。例如,开关电路12可检测二极管元件D1的第一端与第二端之间的电压差。当电源控制器13改变控制信号CS的电压电平的瞬间,二极管元件D1两端的电压差会大于一临界值。此时,根据此电压差,开关电路12可瞬间切断电源传递路径102。In the present embodiment, the
在一实施例中,开关电路12可持续将所检测的电压差与一临界值进行比较。若所检测的电压差大于此临界值,表示电源控制器13已改变控制信号CS的电压电平,故开关电路12可立即切断电源传递路径102。在一些实施例中,根据二极管元件D1两端之间的电压差来切断电源传递路径102约只需要花费0.5至6.05微秒,大幅提高电源传递路径102的切断效率。然而,若所检测的电压差不大于此临界值,开关电路12可维持电源传递路径102为导通状态。In one embodiment, the switching
在一实施例中,开关电路12还包括晶体管(亦称为第一晶体管)Q1。晶体管Q1耦接在二极管元件D1与电池单元11之间,如图1所示。晶体管Q1可用以导通或切断电源传递路径102。例如,晶体管Q1可为高功率金属氧化物半导体场效晶体管(power MOSFET)或其他具有相似功能的电子元件。In one embodiment, the
在一实施例中,开关电路12还包括晶体管(亦称为第二晶体管)Q2(1)。晶体管Q2(1)耦接在二极管元件D1与晶体管Q1之间,如图1所示。晶体管Q2(1)可检测二极管元件D1两端的电压差并响应于此电压差而改变晶体管Q1的控制电压CV。接着,晶体管Q1可响应于控制电压CV的改变而切断电源传递路径102。In one embodiment, the
在图1的实施例中,是以双极性接面型晶体管(BJT)作为晶体管Q2(1)的范例。晶体管Q2(1)的第一端(例如基极)与第二端(射极)分别耦接至二极管元件D1的第一端(例如输入端)与第二端(例如输出端)以检测二极管元件D1两端的电压差。此外,晶体管Q2(1)的第三端(例如集极)耦接至参考接地电压GND,如图1所示。In the embodiment of FIG. 1, a bipolar junction transistor (BJT) is used as an example of the transistor Q2(1). The first terminal (eg base) and the second terminal (emitter) of the transistor Q2(1) are respectively coupled to the first terminal (eg input terminal) and the second terminal (eg output terminal) of the diode element D1 to detect the diode The voltage difference across element D1. In addition, the third terminal (eg, the collector) of the transistor Q2(1) is coupled to the reference ground voltage GND, as shown in FIG. 1 .
若二极管元件D1两端的电压差大于一临界值(例如0.8至0.9伏特),晶体管Q2(1)可响应于此电压差而被导通。经导通的晶体管Q2(1)可根据参考接地电压GND来改变晶体管Q1的控制电压CV。例如,当晶体管Q2(1)被导通时,晶体管Q2(1)可瞬间将控制电压CV调整为等于或接近参考接地电压GND。此时,晶体管Q1可迅速切断电源传递路径102。If the voltage difference across the diode element D1 is greater than a threshold value (eg, 0.8 to 0.9 volts), the transistor Q2(1) can be turned on in response to the voltage difference. The turned-on transistor Q2(1) can change the control voltage CV of the transistor Q1 according to the reference ground voltage GND. For example, when the transistor Q2(1) is turned on, the transistor Q2(1) can momentarily adjust the control voltage CV to be equal to or close to the reference ground voltage GND. At this time, the transistor Q1 can quickly cut off the
图2是根据本发明的一实施例所示出的电源控制电路的示意图。请参照图2,相较于图1的电源控制电路10,在本实施例中,电源控制电路20包括开关电路22,且开关电路22中的晶体管Q2(2)是以P型金属氧化物半导体场效晶体管作为范例。其余相同标号的电子元件可参照图1的实施例的说明,在此不重复赘述。FIG. 2 is a schematic diagram of a power control circuit according to an embodiment of the present invention. Referring to FIG. 2 , compared with the
在本实施例中,晶体管Q2(2)的第一端(例如栅极)与第二端(源极)分别耦接至二极管元件D1的第一端(例如输入端)与第二端(例如输出端)以检测二极管元件D1两端的电压差。此外,晶体管Q2的第三端(例如漏极)耦接至参考接地电压GND,如图2所示。In this embodiment, the first terminal (eg gate) and the second terminal (source) of the transistor Q2(2) are respectively coupled to the first terminal (eg the input terminal) and the second terminal (eg the input terminal) of the diode element D1 output) to detect the voltage difference across the diode element D1. In addition, the third terminal (eg, the drain) of the transistor Q2 is coupled to the reference ground voltage GND, as shown in FIG. 2 .
若二极管元件D1两端的电压差大于一临界值(例如1至3伏特),晶体管Q2(2)可响应于此电压差而被导通。一旦晶体管Q2(2)被导通,晶体管Q2(2)可瞬间将控制电压CV调整为等于或接近参考接地电压GND。响应于控制电压CV的变化,晶体管Q1可迅速切断电源传递路径102。If the voltage difference across the diode element D1 is greater than a threshold value (eg, 1 to 3 volts), the transistor Q2(2) can be turned on in response to the voltage difference. Once the transistor Q2(2) is turned on, the transistor Q2(2) can momentarily adjust the control voltage CV to be equal to or close to the reference ground voltage GND. In response to changes in the control voltage CV, the transistor Q1 can quickly cut off the
换言之,在图1与图2的实施例中,当电源控制器13改变控制信号CS的电压电平的瞬间,二极管元件D1两端的电压差会大于一临界值。一旦二极管元件D1两端的电压差大于此临界值,晶体管Q2(1)或Q2(2)可瞬间将控制电压CV拉近至约等于参考接地电压GND,使得晶体管Q1迅速切断电源传递路径102。因此,当异常情形发生(例如电压、电流和/或温度异常)时,电源控制器13可以在几乎没有延迟的情况下快速启动电源保护机制,有效提高对于开关电路12(或22)和/或耗电装置101的保护能力。In other words, in the embodiments of FIGS. 1 and 2 , when the
图3是根据本发明的一实施例所示出的电源控制电路的示意图。请参照图3,相较于图1与图2的实施例,在本实施例中,电源控制电路30还包括充电电路31。当开关电路32维持电源传递路径102为导通状态时,充电电路31可经由电源传递路径102对电池单元11进行充电。FIG. 3 is a schematic diagram of a power control circuit according to an embodiment of the present invention. Referring to FIG. 3 , compared with the embodiments of FIGS. 1 and 2 , in this embodiment, the
然而,当发生异常时,电源控制器13可改变控制信号CS。响应于控制信号CS的变化,开关电路32可通过参考接地电压GND来瞬间切断电源传递路径102,以启动电源保护机制。相关的操作细节亦可参考图1与图2的实施例,在此不重复赘述。此外,在切断电源传递路径102后,充电电路31即无法对电池单元11进行充电。However, when an abnormality occurs, the
须注意的是,虽然在前述实施例中开关电路12、22及32中作为开关使用的晶体管(例如晶体管Q1)的数目皆为1个,然而,本发明并不限制前述实施例中开关电路12、22及32中作为开关使用的晶体管(例如晶体管Q1)的数目。以图1为例,在一实施例中,若晶体管Q1的数目为多个,则此些晶体管Q1可以并联的方式连接于电源传递路径102上,且控制电压CV可用于控制每一个晶体管Q1以导通或切断电源传递路径102。It should be noted that although the number of transistors (eg transistor Q1 ) used as switches in the
须注意的是,在前述实施例中,电源传递路径102的切断皆不需由额外的控制元件(例如微处理器单元)进行控制,从而可减少信号传递延迟和/或提高切断电源传递路径102的效率。此外,相较于仅将一或多个电阻串接在晶体管Q1与参考接地电压GND之间,前述实施例中将晶体管Q2(1)或Q2(2)串接在晶体管Q1与参考接地电压GND之间,可减少晶体管Q1与参考接地电压GND之间的漏电流。It should be noted that, in the aforementioned embodiments, the cut-off of the
图4是根据本发明的一实施例所示出的电源控制方法的流程图。请参照图4,在步骤S401中,由电源控制器提供控制信号。在步骤S402中,由二极管元件接收所述控制信号。在步骤S403中,响应于所述二极管元件的第一端与第二端之间的电压差而切断电池单元的电源传递路径。FIG. 4 is a flowchart of a power control method according to an embodiment of the present invention. Referring to FIG. 4 , in step S401 , a control signal is provided by a power supply controller. In step S402, the control signal is received by a diode element. In step S403, the power transmission path of the battery cell is cut off in response to the voltage difference between the first end and the second end of the diode element.
然而,图4中各步骤已详细说明如上,在此便不再赘述。值得注意的是,图4中各步骤可以实作为多个程序码或是电路,本发明不加以限制。此外,图4的方法可以搭配以上范例实施例使用,也可以单独使用,本发明不加以限制。However, each step in FIG. 4 has been described in detail as above, and will not be repeated here. It should be noted that each step in FIG. 4 can be implemented as a plurality of program codes or circuits, which is not limited in the present invention. In addition, the method of FIG. 4 can be used in conjunction with the above exemplary embodiments, and can also be used alone, which is not limited in the present invention.
综上所述,设置于开关电路中的二极管元件可接收来自电源控制器的控制信号。在特定情况下,响应于所述二极管元件的第一端与第二端之间的电压差,电池单元的电源传递路径可被切断。藉此,可有效减少切断电池单元的电源传递路径的延迟时间,进而提高对于所述开关电路、所述电池单元和/或电子装置中其余电子元件的保护效率。To sum up, the diode element disposed in the switch circuit can receive the control signal from the power supply controller. In certain cases, in response to a voltage difference between the first and second ends of the diode element, the power transfer path of the battery cell may be cut off. Thereby, the delay time of cutting off the power transmission path of the battery unit can be effectively reduced, thereby improving the protection efficiency of the switch circuit, the battery unit and/or the remaining electronic components in the electronic device.
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作些许的更改与润饰,故本发明的保护范围当视权利要求所界定的为准。Although the present invention has been disclosed above with examples, it is not intended to limit the present invention. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be subject to what is defined in the claims.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910675372.7A CN112311023B (en) | 2019-07-25 | 2019-07-25 | Power control circuit and power control method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910675372.7A CN112311023B (en) | 2019-07-25 | 2019-07-25 | Power control circuit and power control method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112311023A CN112311023A (en) | 2021-02-02 |
| CN112311023B true CN112311023B (en) | 2022-10-21 |
Family
ID=74329182
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910675372.7A Active CN112311023B (en) | 2019-07-25 | 2019-07-25 | Power control circuit and power control method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112311023B (en) |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001211059A (en) * | 2000-01-26 | 2001-08-03 | Toshiba Corp | Overcurrent protection circuit for semiconductor switch element |
| TWI574480B (en) * | 2013-07-22 | 2017-03-11 | 緯創資通股份有限公司 | Overcurrent protection circuit and server using the same |
| CN203911750U (en) * | 2014-05-23 | 2014-10-29 | 正芯科技有限公司 | Active unidirectional conduction apparatus |
| JP6041031B1 (en) * | 2015-10-02 | 2016-12-07 | ミツミ電機株式会社 | Secondary battery protection integrated circuit, secondary battery protection device and battery pack |
-
2019
- 2019-07-25 CN CN201910675372.7A patent/CN112311023B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN112311023A (en) | 2021-02-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11791624B2 (en) | Overvoltage protection circuit and device | |
| EP2894758A1 (en) | Power supply, power supply charging circuit, power supply charging method and terminal device | |
| US10389144B2 (en) | Battery protection circuit monitoring a state of a charging switch and battery pack including same | |
| JP6068366B2 (en) | Storage system and control method of secondary battery pack | |
| JP5376641B2 (en) | Battery device | |
| TWI692175B (en) | Power control circuit and power control method | |
| CN101552482A (en) | Charge and discharge control circuit and battery device | |
| CN110783997A (en) | Battery protection circuit and battery discharging device | |
| CN111699603B (en) | Battery protection circuit and battery pack including the same | |
| WO2021018272A1 (en) | Charging/discharging protection circuit, terminal device, and battery discharging control method | |
| JP2015111980A (en) | Secondary protection ic, control method of secondary protection ic, protection module, and battery pack | |
| EP3764453A1 (en) | Battery management device and mobile terminal | |
| KR20210120092A (en) | Charging circuits and electronics | |
| CN112181037A (en) | Multi-path power supply current equalizing circuit and control method | |
| CN108832696A (en) | Lithium battery pack | |
| CN112671061B (en) | Battery protection board control system and terminal | |
| CN109193834B (en) | Overvoltage protection device, method and system | |
| WO2019071388A1 (en) | Battery control circuit and electronic device | |
| CN112311023B (en) | Power control circuit and power control method | |
| CN221380557U (en) | Power supply | |
| CN103094932B (en) | Power supply system and power protection circuit thereof | |
| KR20180125771A (en) | Auxiliary battery including dual protection circuit | |
| CN114050554A (en) | A battery protection circuit and its power tube control method | |
| CN116154728B (en) | Battery protection controller and battery protection circuit | |
| CN216086227U (en) | battery activation circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |