CN112416783B - Method, device, equipment and storage medium for determining software quality influence factors - Google Patents
Method, device, equipment and storage medium for determining software quality influence factors Download PDFInfo
- Publication number
- CN112416783B CN112416783B CN202011342772.5A CN202011342772A CN112416783B CN 112416783 B CN112416783 B CN 112416783B CN 202011342772 A CN202011342772 A CN 202011342772A CN 112416783 B CN112416783 B CN 112416783B
- Authority
- CN
- China
- Prior art keywords
- software
- target
- value
- historical
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Prevention of errors by analysis, debugging or testing of software
- G06F11/362—Debugging of software
- G06F11/366—Debugging of software using diagnostics
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Stored Programmes (AREA)
Abstract
本申请涉及一种软件质量影响因素确定方法、装置、计算机设备和存储介质,通过根据目标软件质量的影响因素的历史参数值,构建用于根据目标软件质量的影响因素的参数值预测目标软件的软件缺陷数量的缺陷预测模型,然后采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值,根据软件缺陷数量的最小值,确定目标软件质量的影响因素的目标参数值。该方法将目标参数值作为该目标软件的测试指导数据对目标软件进行质量测试,可以保证该目标软件的缺陷最少,参考该目标参数值进行测试工作前期准备,对测试前期工作不合理的地方进行调整,有效地降低测试成本和提高软件系统质量。
The present application relates to a method, device, computer equipment and storage medium for determining the influencing factors of software quality. According to the historical parameter values of the influencing factors of target software quality, a method for predicting the quality of target software based on the parameter values of the influencing factors of target software quality is constructed. The defect prediction model for the number of software defects, and then the preset optimization algorithm model is used to obtain the minimum value of the number of software defects output by the defect prediction model. According to the minimum value of the number of software defects, the target parameter value of the influencing factors of the target software quality is determined. . The method uses the target parameter value as the test guidance data of the target software to test the quality of the target software, which can ensure that the defect of the target software is the least. Adjustment, effectively reduce the cost of testing and improve the quality of software systems.
Description
技术领域technical field
本申请涉及计算机技术领域,特别是涉及一种软件质量影响因素确定方法、装置、设备和存储介质。The present application relates to the field of computer technology, and in particular, to a method, apparatus, device and storage medium for determining software quality influencing factors.
背景技术Background technique
软件测试指的是使用人工或自动的手段来运行或测定某个软件质量的过程,其目的在于检验该软件是否满足规定的需求或预期结果与实际结果之间的差别。Software testing refers to the process of using manual or automatic means to run or measure the quality of a piece of software, the purpose of which is to check whether the software meets specified requirements or the difference between expected and actual results.
目前,对于软件产品测试前期的工作准备包括测试资源准备、人员分配、以及测试用例准备等,都是通过以往工作经验或者之前迭代项目完成情况作为参考数据进行的,例如,参照以往经验对影响软件质量的各个影响因素进行一一测试,以保证软件产品的质量。虽然以往经验可以作为参考数据,但由于各个软件系统较为复杂,功能之间存在区别,所以依据之前的经验作为参考数据必然也会存在误差,需要在对影响软件质量的各个影响因素的测试过程中进行调整,这样必定就会耗费一定的人力物力成本。At present, the preparatory work for software product testing, including test resource preparation, personnel allocation, and test case preparation, is all based on past work experience or the completion of previous iteration projects as reference data. Each influencing factor of quality is tested one by one to ensure the quality of software products. Although past experience can be used as reference data, due to the complexity of each software system and the differences between functions, there will inevitably be errors based on previous experience as reference data. Adjustment will inevitably cost a certain amount of manpower and material resources.
因此,现有的软件产品测试前期准备工作中,缺乏有效的测试指导数据来进行高效的软件产品测试。Therefore, in the preparatory work of the existing software product testing, there is a lack of effective testing guidance data to carry out efficient software product testing.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述技术问题,提供一种能够提供有效的测试指导数据以高效地进行软件产品测试的软件质量影响因素确定方法、装置、设备和存储介质。Based on this, it is necessary to provide a method, device, device and storage medium for determining software quality influencing factors that can provide effective test guidance data to efficiently test software products.
第一方面,本申请提供一种软件质量影响因素确定方法,该方法包括:In a first aspect, the present application provides a method for determining factors affecting software quality, the method comprising:
根据目标软件质量的影响因素的历史参数值,构建目标软件的缺陷预测模型;缺陷预测模型用于根据软件质量的影响因素的参数值预测对应的软件缺陷数量;According to the historical parameter values of the influencing factors of the target software quality, a defect prediction model of the target software is constructed; the defect prediction model is used to predict the corresponding software defect quantity according to the parameter values of the influencing factors of the software quality;
采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值;Use a preset optimization algorithm model to obtain the minimum number of software defects output by the defect prediction model;
根据软件缺陷数量的最小值,确定目标软件质量的影响因素的目标参数值。According to the minimum value of the number of software defects, the target parameter values of the influencing factors of the target software quality are determined.
在其中一个实施例中,上述根据目标软件质量的影响因素的历史参数值,构建目标软件的缺陷预测模型,包括:In one embodiment, the above-mentioned construction of a defect prediction model of the target software according to the historical parameter values of the influencing factors of the target software quality includes:
获取影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量;Obtain the historical parameter values of the influencing factors and the number of historical software defects of the software version to which each historical parameter value belongs;
从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集;Determine the model sample data set from the historical parameter values of the influencing factors and the number of historical software defects;
根据模型样本数据集构建缺陷预测模型。Build a defect prediction model from the model sample dataset.
在其中一个实施例中,上述从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集,包括:In one of the embodiments, the above-mentioned determination of the model sample data set from the historical parameter values of the influencing factors and the number of historical software defects includes:
对影响因素进行相关性分析,获取影响因素与软件的缺陷数量之间的相关性值;Perform correlation analysis on the influencing factors to obtain the correlation value between the influencing factors and the number of software defects;
将相关性值大于预设阈值的影响因素确定为样本影响因素;Determine the influence factor whose correlation value is greater than the preset threshold as the sample influence factor;
将样本影响因素的历史参数值和样本影响因素所属软件版本的历史软件缺陷数量,确定为模型样本数据集。The historical parameter values of the sample influencing factors and the number of historical software defects of the software version to which the sample influencing factors belong are determined as the model sample data set.
在其中一个实施例中,上述根据模型样本数据集构建缺陷预测模型,包括:In one embodiment, the above-mentioned constructing a defect prediction model according to the model sample data set includes:
将样本影响因素的历史参数值作为输入参数、将样本影响因素所属软件版本的历史软件缺陷数量作为模型输出,迭代训练初始网络模型直至满足预设的迭代训练终止条件,得到缺陷预测模型。Taking the historical parameter values of the sample influencing factors as input parameters, and using the historical software defect numbers of the software version to which the sample influencing factors belong as the model output, the initial network model is iteratively trained until the preset iterative training termination conditions are met, and the defect prediction model is obtained.
在其中一个实施例中,上述迭代训练终止条件包括迭代训练的次数达到预设的迭代次数,或者,初始网络模型的输出值与预设标准值之间误差小于预设误差。In one embodiment, the above-mentioned iterative training termination condition includes that the number of iterative training reaches a preset number of iterations, or the error between the output value of the initial network model and the preset standard value is less than a preset error.
在其中一个实施例中,上述采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值,包括:In one embodiment, the above-mentioned use of a preset optimization algorithm model to obtain the minimum value of the number of software defects output by the defect prediction model includes:
将缺陷预测模型作为优化算法模型的适应度函数;优化算法模型中包括决策变量的范围和移动速度,决策变量为软件质量的影响因素中的参数值为非固定值的影响因素;The defect prediction model is used as the fitness function of the optimization algorithm model; the optimization algorithm model includes the range and moving speed of the decision variables, the decision variables are the influencing factors of software quality, and the parameter values are the influencing factors of non-fixed values;
初始化优化算法模型的优化参数;Initialize the optimization parameters of the optimization algorithm model;
基于初始化的优化参数,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到软件缺陷数量的最小值。Based on the initialized optimization parameters, the range and moving speed of the decision variables are updated iteratively until the iteration converges, and the minimum number of software defects is obtained.
在其中一个实施例中,上述优化参数包括初始全局最佳位置、初始个体最佳位置;In one of the embodiments, the above-mentioned optimization parameters include an initial global best position and an initial individual best position;
则基于初始化的优化参数,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到软件缺陷数量的最小值,包括:Based on the initialized optimization parameters, the range and moving speed of the decision variables are iteratively updated until the iteration converges, and the minimum number of software defects is obtained, including:
基于初始全局最佳位置和初始个体最佳位置,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到目标全局最佳位置;Based on the initial global best position and the initial individual best position, iteratively update the range and moving speed of the decision variable until the iteration converges, and the target global best position is obtained;
将得到目标全局最佳位置时,缺陷预测模型中的输出值确定为软件缺陷数量的最小值。When the target global best position is obtained, the output value in the defect prediction model is determined as the minimum value of the number of software defects.
在其中一个实施例中,上述基于初始全局最佳位置和初始个体最佳位置,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到目标全局最佳位置,包括:In one embodiment, based on the initial global best position and the initial individual best position, the range and moving speed of the decision variable are iteratively updated until the iteration converges, and the target global best position is obtained, including:
以初始全局最佳位置和初始个体最佳位置为初始值,更新决策变量的范围和移动速度;Using the initial global best position and the initial individual best position as the initial values, update the range and moving speed of the decision variable;
根据更新后的决策变量的范围和移动速度,计算每个更新后的决策变量在缺陷预测模型中的输出值,并比较所有输出值,确定当前次的全局最佳位置;According to the range and moving speed of the updated decision variable, calculate the output value of each updated decision variable in the defect prediction model, and compare all output values to determine the current global best position;
若达到预设的迭代收敛条件,确定当前次的全局最佳位置为目标全局最佳位置;If the preset iterative convergence condition is reached, determine the current global best position as the target global best position;
若未达到迭代收敛条件,继续获取下一次的全局最佳位置,直至达到迭代收敛条件,得到目标全局最佳位置。If the iterative convergence condition is not reached, continue to obtain the next global best position until the iterative convergence condition is reached, and the target global best position is obtained.
在其中一个实施例中,上述优化参数还包括初始迭代索引、迭代最大次数、初始停止索引、最大停止索引;In one of the embodiments, the above-mentioned optimization parameters further include an initial iteration index, a maximum number of iterations, an initial stop index, and a maximum stop index;
则迭代收敛条件包括:初始迭代索引达到迭代最大次数,或者初始停止索引达到最大停止索引。Then the iteration convergence condition includes: the initial iteration index reaches the maximum number of iterations, or the initial stop index reaches the maximum stop index.
第二方面,本申请实施例提供一种软件质量影响因素确定装置,该装置包括:In a second aspect, an embodiment of the present application provides a software quality influencing factor determination device, the device comprising:
构建模块,用于根据目标软件质量的影响因素的历史参数值,构建所述目标软件的缺陷预测模型;所述缺陷预测模型用于根据软件质量的影响因素的参数值预测对应的软件缺陷数量;a building module for constructing a defect prediction model of the target software according to the historical parameter values of the influencing factors of the target software quality; the defect prediction model is used to predict the corresponding software defect quantity according to the parameter values of the influencing factors of the software quality;
优化模块,用于采用预设的优化算法模型,求取所述缺陷预测模型输出的软件缺陷数量的最小值;an optimization module, configured to use a preset optimization algorithm model to obtain the minimum value of the number of software defects output by the defect prediction model;
确定模块,用于根据所述软件缺陷数量的最小值,确定所述目标软件质量的影响因素的目标参数值。The determining module is configured to determine the target parameter value of the influencing factor of the target software quality according to the minimum value of the software defect quantity.
第三方面,本申请实施例提供一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述第一方面实施例提供的任一项方法的步骤。In a third aspect, an embodiment of the present application provides a computer device, including a memory and a processor, where the memory stores a computer program, and the processor implements the steps of any one of the methods provided in the first embodiment of the first aspect when the processor executes the computer program.
第四方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述第一方面实施例提供的任一项方法的步骤。In a fourth aspect, embodiments of the present application provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of any one of the methods provided in the embodiments of the first aspect.
本申请实施例提供的一种软件质量影响因素确定方法、装置、计算机设备和存储介质,通过根据目标软件质量的影响因素的历史参数值,构建用于根据目标软件质量的影响因素的参数值预测目标软件的软件缺陷数量的缺陷预测模型,然后采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值,根据软件缺陷数量的最小值,确定目标软件质量的影响因素的目标参数值。该方法中,缺陷预测模型是针对目标软件构建的,不同的软件产品构建不同的缺陷预测模型,构建专门用于根据目标软件质量的影响因素的参数值预测目标软件的软件缺陷数量的模型,在此基础上,通过预设的优化算法模型对该缺陷预测模型进行优化,得到该缺陷预测模型输出的软件缺陷数量最小值,并确定该最小值对应的输入参数为目标影响参数的目标参数值,这样,将目标参数值作为该目标软件的测试指导数据对目标软件进行质量测试,可以保证该目标软件的缺陷最少。参考该目标参数值进行测试工作前期准备,对测试前期工作不合理的地方进行调整,有效地降低测试成本和提高软件系统质量。A method, device, computer equipment, and storage medium for determining a software quality influencing factor provided by the embodiments of the present application, by constructing a parameter value prediction based on the influencing factor of the target software quality according to the historical parameter value of the influencing factor of the target software quality The defect prediction model of the number of software defects of the target software, and then the preset optimization algorithm model is used to obtain the minimum number of software defects output by the defect prediction model. According to the minimum number of software defects, the influencing factors of the target software quality are determined. target parameter value. In this method, the defect prediction model is constructed for the target software, different software products are constructed with different defect prediction models, and a model specially used to predict the number of software defects of the target software according to the parameter values of the influencing factors of the target software quality is constructed. On this basis, the defect prediction model is optimized by the preset optimization algorithm model, the minimum value of the number of software defects output by the defect prediction model is obtained, and the input parameter corresponding to the minimum value is determined as the target parameter value of the target influence parameter, In this way, using the target parameter value as the test guide data of the target software to perform quality testing on the target software can ensure that the target software has the fewest defects. Refer to the target parameter value to prepare for the pre-test work, adjust the unreasonable parts of the pre-test work, effectively reduce the test cost and improve the quality of the software system.
附图说明Description of drawings
图1为一实施例提供的一种软件质量影响因素确定方法的应用环境图;1 is an application environment diagram of a method for determining a software quality influencing factor provided by an embodiment;
图2为一实施例提供的一种软件质量影响因素确定方法的流程示意图;2 is a schematic flowchart of a method for determining a software quality influencing factor provided by an embodiment;
图3为另一实施例提供的一种软件质量影响因素确定方法的流程示意图;3 is a schematic flowchart of a method for determining a software quality influencing factor provided by another embodiment;
图4为另一实施例提供的一种软件质量影响因素确定方法的流程示意图;4 is a schematic flowchart of a method for determining a software quality influencing factor provided by another embodiment;
图5为另一实施例提供的一种软件质量影响因素确定方法的流程示意图;5 is a schematic flowchart of a method for determining a software quality influencing factor provided by another embodiment;
图6为另一实施例提供的一种软件质量影响因素确定方法的流程示意图;6 is a schematic flowchart of a method for determining a software quality influencing factor provided by another embodiment;
图7为一实施例提供的一种软件质量影响因素确定方法的流程图;7 is a flowchart of a method for determining a software quality influencing factor provided by an embodiment;
图8为一实施例提供的一种软件质量影响因素确定装置的结构框图;8 is a structural block diagram of an apparatus for determining software quality influencing factors provided by an embodiment;
图9为一实施例中计算机设备的内部结构图。FIG. 9 is an internal structure diagram of a computer device in an embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请实施例提供的一种软件质量影响因素确定方法,可以应用于如图1所示的应用环境中,该应用环境中,计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储软件质量影响因素确定过程中的数据。该计算机设备的网络接口用于与外部的其他设备通过网络连接通信。该计算机程序被处理器执行时以实现一种软件质量影响因素确定方法。A method for determining a software quality influencing factor provided by an embodiment of the present application can be applied to an application environment as shown in FIG. 1 , where a processor of a computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system, a computer program, and a database. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The database of the computer equipment is used to store the data in the process of determining the software quality influencing factors. The network interface of the computer device is used to communicate with other external devices through a network connection. The computer program, when executed by the processor, implements a software quality influencing factor determination method.
本申请实施例提供一种软件质量影响因素确定方法、装置、计算机设备和存储介质,能够提供有效的测试指导数据以进行高效的软件产品测试。下面将通过实施例并结合附图具体地对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。需要说明的是,本申请提供的一种软件质量影响因素确定方法,图2-图7的执行主体为计算机设备,其中,其执行主体还可以是软件质量影响因素确定装置,其中该装置可以通过软件、硬件或者软硬件结合的方式实现成为计算机设备的部分或者全部。Embodiments of the present application provide a method, apparatus, computer device, and storage medium for determining software quality influencing factors, which can provide effective test guidance data for efficient software product testing. The technical solution of the present application and how the technical solution of the present application solves the above-mentioned technical problems will be specifically described in detail below with reference to the accompanying drawings. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. It should be noted that, in a method for determining a software quality influencing factor provided by the present application, the execution subject of FIG. 2-FIG. 7 is a computer device, wherein the execution subject may also be a software quality influencing factor determination device, wherein the device can pass Software, hardware, or a combination of software and hardware is implemented as part or all of a computer device.
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。In order to make the purposes, technical solutions and advantages of the embodiments of the present application clearer, the technical solutions in the embodiments of the present application will be described clearly and completely below with reference to the drawings in the embodiments of the present application. Obviously, the described embodiments It is a part of the embodiments of the present application, but not all of the embodiments.
在一个实施例中,图2提供了一种软件质量影响因素确定方法,本实施例涉及的是计算机设备根据目标软件质量的影响因素的历史参数值,构建目标软件的缺陷预测模型后,采用预设的优化算法模型求取该缺陷预测模型输出的软件缺陷数量的最小值,以基于该最小值确定出目标软件质量的影响因素的目标参数值的具体过程,如图2所示,该方法包括:In one embodiment, FIG. 2 provides a method for determining influencing factors of software quality. This embodiment involves a computer device, after constructing a defect prediction model of the target software according to the historical parameter values of the influencing factors of the target software quality, using a pre-defined The set optimization algorithm model obtains the minimum value of the number of software defects output by the defect prediction model, so as to determine the specific process of the target parameter value of the influencing factor of the target software quality based on the minimum value, as shown in Figure 2, the method includes: :
S101,根据目标软件质量的影响因素的历史参数值,构建目标软件的缺陷预测模型;缺陷预测模型用于根据软件质量的影响因素的参数值预测对应的软件缺陷数量。S101 , construct a defect prediction model of the target software according to the historical parameter values of the influencing factors of the target software quality; the defect prediction model is used to predict the corresponding software defect quantity according to the parameter values of the influencing factors of the software quality.
其中,目标软件指的是当前需要确定质量影响因素的任意一个软件;本实施例对该目标软件最终确定出的质量影响因素的参数值,即作为该目标软件进行高效的软件测试的有效的测试指导数据。其中,软件质量的影响因素也可以是理解为形成软件缺陷的影响因素,例如,测试时间、人员分配、软硬件测试资源、需求数、功能点覆盖率、测试策略覆盖率、测试用例覆盖率、测试用例颗粒度、测试用例个数、代码行数、测试环境差异程度、集成系统数等。The target software refers to any software that currently needs to determine the quality influencing factor; the parameter value of the quality influencing factor finally determined for the target software in this embodiment is an effective test for performing efficient software testing on the target software. guidance data. Among them, the influencing factors of software quality can also be understood as the influencing factors that form software defects, such as test time, personnel allocation, software and hardware testing resources, number of requirements, function point coverage, test strategy coverage, test case coverage, Test case granularity, number of test cases, number of lines of code, degree of difference between test environments, number of integrated systems, etc.
实际应用中,很多服务平台都集成了较多了软件产品的功能,例如,智慧医疗云软件产品集成功能非常多,其在开发过程中也存在较多的缺陷,而有效的预测计算缺陷是对软件缺陷优化的基础,因此可以通过建立软件的缺陷预测模型来预测软件缺陷,缺陷预测模型指的是可以根据任一软件质量的影响因素的参数值预测出该软件缺陷数量的模型,该缺陷预测模型可以是神经网络模型,例如,反向传播(back propagation,BP)神经网络等均可,且BP神经网络具有强拟合能力的特点,可以实现对软件缺陷的有效计算。In practical applications, many service platforms have integrated more functions of software products. For example, smart medical cloud software products have many integrated functions, and there are many defects in the development process, and effective prediction calculation defects are correct. The basis of software defect optimization, so software defects can be predicted by establishing a software defect prediction model. A defect prediction model refers to a model that can predict the number of software defects according to the parameter values of any software quality influencing factors. The model can be a neural network model, for example, a back propagation (back propagation, BP) neural network, etc., and the BP neural network has the characteristics of strong fitting ability, which can realize effective calculation of software defects.
一般每个软件都会经历多种版本的递进,每个版本的软件都会存在一定的缺陷,因此,可以收集目标软件的质量影响因素的历史参数值,即各个历史版本的影响因素的参数值,该参数值包括具体输入参数以及软件的缺陷数量,之后可根据这些历史参数值,构建上述缺陷预测模型。构建成功的缺陷预测模型输入参数即为上述影响因素中任意数量组合的影响因素,对应的输出即为这些组合的影响因素对应的缺陷数量。Generally, each software will go through multiple versions of progression, and each version of the software will have certain defects. Therefore, the historical parameter values of the quality influencing factors of the target software can be collected, that is, the parameter values of the influencing factors of each historical version. The parameter value includes specific input parameters and the number of defects of the software, and then the above-mentioned defect prediction model can be constructed according to these historical parameter values. The input parameters of the successfully constructed defect prediction model are the influencing factors of any combination of the above influencing factors, and the corresponding output is the number of defects corresponding to the influencing factors of these combinations.
S102,采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值。S102, using a preset optimization algorithm model to obtain the minimum value of the number of software defects output by the defect prediction model.
优化算法模型指的是缺陷预测模型的优化模型,用于使得缺陷预测模型输出的软件缺陷数量最小,以提高缺陷预测模型的软件质量。The optimization algorithm model refers to the optimization model of the defect prediction model, which is used to minimize the number of software defects output by the defect prediction model, so as to improve the software quality of the defect prediction model.
可选地,可以通过粒子群优化算法(Particle swarm optimization,PSO)建立该优化算法模型。PSO算法具有较强的全局寻优能力,由于上述建立的缺陷预测模型具有较多的影响因素作为输入参数,这些影响因素之间还存在复杂的关系,而PSO算法搜索速度快、效率高,算法简单、无需许多参数的调节、适合于实值型处理的这些优点,可以对上述缺陷预测模型进行优化时得到较好的指导性结果。Optionally, the optimization algorithm model can be established through particle swarm optimization (Particle swarm optimization, PSO). The PSO algorithm has strong global optimization ability. Since the defect prediction model established above has many influencing factors as input parameters, there is still a complex relationship between these influencing factors. However, the PSO algorithm has fast search speed and high efficiency. The advantages of simplicity, no adjustment of many parameters, and suitability for real-valued processing can lead to better guiding results when optimizing the above defect prediction model.
具体地,通过优化算法模型对缺陷预测模型进行不断迭代求取缺陷预测模型输出的缺陷数量的最小值,在优化算法中根据上述影响因素设置缺陷预测模型的决策变量,求得对应的决策变量参数即为要获得的最优解。Specifically, the optimization algorithm model is used to continuously iterate the defect prediction model to obtain the minimum number of defects output by the defect prediction model. In the optimization algorithm, the decision variables of the defect prediction model are set according to the above influencing factors, and the corresponding decision variable parameters are obtained. is the optimal solution to be obtained.
例如,优化过程可描述为公式:其中,yo表示的是缺陷预测模型的输出值,即缺陷数量,BPNN指代的是以BP神经网络构建的缺陷预测模型,那么该优化过程即为求取缺陷数量最小值minyo。这样通过优化算法模型对缺陷预测模型进行优化,求取上述公式(1)中的yo的最小值。For example, the optimization process can be described as the formula: Among them, yo represents the output value of the defect prediction model, that is, the number of defects, and BPNN refers to the defect prediction model constructed by BP neural network, then the optimization process is to obtain the minimum number of defects, miny o . In this way, the defect prediction model is optimized through the optimization algorithm model, and the minimum value of yo in the above formula (1) is obtained.
其中,决策变量指的是非固定值的影响因素,所以上述确定的影响因素中,在进行具体优化过程之前,若是已经确定的参数,在这里将不作为决策变量,例如,上述影响因素中的需求数和集成系统数量,即在优化算法模型中的实际值不作为决策变量。而对于单位为百分比的影响因素,其参数范围可设为0-100%,例如,测试用例覆盖率,功能点覆盖率;剩余影响因素作为决策变量时其限制范围均设置为大于0,这样避免了对决策变量不设置范围时,导致优化过程无休无止,无法迭代收敛的现象。Among them, decision variables refer to influencing factors with non-fixed values, so among the above-determined influencing factors, before the specific optimization process, if the parameters have been determined, they will not be used as decision-making variables here, for example, the requirements in the above-mentioned influencing factors The number and the number of integrated systems, that is, the actual value in the optimization algorithm model, are not used as decision variables. For the influencing factors whose unit is a percentage, the parameter range can be set to 0-100%, for example, test case coverage, function point coverage; when the remaining influencing factors are used as decision variables, the limit range is set to be greater than 0, so as to avoid When the range of decision variables is not set, the optimization process is endless and the iterative convergence cannot be achieved.
S103,根据软件缺陷数量的最小值,确定目标软件质量的影响因素的目标参数值。S103, according to the minimum value of the software defect quantity, determine the target parameter value of the influencing factor of the target software quality.
在上述步骤中通过优化算法模型得到软件缺陷数量的最小值之后,将该最小值对应的缺陷预测模型的输入参数直接确定为该目标软件的目标影响参数的目标参数值。相当于,使用目标参数值作为该目标软件的测试指导数据对目标软件进行质量测试,可以保证该目标软件的缺陷最少。After obtaining the minimum value of the number of software defects by optimizing the algorithm model in the above steps, the input parameter of the defect prediction model corresponding to the minimum value is directly determined as the target parameter value of the target influence parameter of the target software. Equivalently, using the target parameter value as the test guide data of the target software to perform quality testing on the target software can ensure that the target software has the fewest defects.
本实施例提供的软件质量影响因素确定方法,通过根据目标软件质量的影响因素的历史参数值,构建用于根据目标软件质量的影响因素的参数值预测目标软件的软件缺陷数量的缺陷预测模型,然后采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值,根据软件缺陷数量的最小值,确定目标软件质量的影响因素的目标参数值。该方法中,缺陷预测模型是针对目标软件构建的,不同的软件产品构建不同的缺陷预测模型,构建专门用于根据目标软件质量的影响因素的参数值预测目标软件的软件缺陷数量的模型,在此基础上,通过预设的优化算法模型对该缺陷预测模型进行优化,得到该缺陷预测模型输出的软件缺陷数量最小值,并确定该最小值对应的输入参数为目标影响参数的目标参数值,这样,将目标参数值作为该目标软件的测试指导数据对目标软件进行质量测试,可以保证该目标软件的缺陷最少。参考该目标参数值进行测试工作前期准备,对测试前期工作不合理的地方进行调整,有效地降低测试成本和提高软件系统质量。In the method for determining software quality influencing factors provided by this embodiment, by constructing a defect prediction model for predicting the number of software defects of the target software according to the parameter values of the influencing factors of the target software quality according to the historical parameter values of the influencing factors of the target software quality, Then, using the preset optimization algorithm model, the minimum value of the software defect quantity output by the defect prediction model is obtained, and the target parameter value of the influencing factor of the target software quality is determined according to the minimum value of the software defect quantity. In this method, the defect prediction model is constructed for the target software, different software products are constructed with different defect prediction models, and a model specially used to predict the number of software defects of the target software according to the parameter values of the influencing factors of the target software quality is constructed. On this basis, the defect prediction model is optimized by the preset optimization algorithm model, the minimum value of the number of software defects output by the defect prediction model is obtained, and the input parameter corresponding to the minimum value is determined as the target parameter value of the target influence parameter, In this way, using the target parameter value as the test guide data of the target software to perform quality testing on the target software can ensure that the target software has the fewest defects. Refer to the target parameter value to prepare for the pre-test work, adjust the unreasonable parts of the pre-test work, effectively reduce the test cost and improve the quality of the software system.
以智慧医疗云软件为例,实际应用中,采用该方法可以实现对智慧医疗云软件项目前期相关准备工作涉及到的影响因素的参数值进行有效的优化,获得目标软件测试时的最佳参数值。该最佳参数值对软件产品测试工作前期工作具有有效的指导,例如,在前分配资源、制定测试计划,以及设计测试用例期间,均可参考该最佳参数值进行测试工作前期准备,对测试前期工作不合理的地方进行调整,有效地降低测试成本和提高软件系统质量,保证智慧医疗云软件产品的高质量上线和交付,满足使用需求。Taking the smart medical cloud software as an example, in practical applications, this method can effectively optimize the parameter values of the influencing factors involved in the preparatory work of the smart medical cloud software project, and obtain the best parameter values for the target software test. . The optimal parameter value has an effective guide for the preliminary work of the software product testing work. For example, during the pre-allocation of resources, the formulation of test plans, and the design of test cases, the optimal parameter value can be referred to to prepare for the pre-test work, and test Adjust the unreasonable parts of the previous work, effectively reduce the test cost and improve the quality of the software system, ensure the high-quality launch and delivery of smart medical cloud software products, and meet the needs of use.
在以上实施例的基础上,本申请实施例提供了一种软件质量影响因素确定方法的实施例,该实施例涉及的是根据目标软件质量的影响因素的历史参数值,构建目标软件的缺陷预测模型的具体过程,如图3所示,上述S101步骤包括:On the basis of the above embodiments, the embodiments of the present application provide an embodiment of a method for determining influencing factors of software quality, which involves constructing defect predictions of target software according to historical parameter values of influencing factors of target software quality The specific process of the model, as shown in Figure 3, the above step S101 includes:
S201,获取影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量。S201: Obtain historical parameter values of the influencing factors and the number of historical software defects of the software version to which each historical parameter value belongs.
在获取目标软件的影响因素的历史参数值时,需要将各历史参数值所属软件版本的历史软件缺陷数量一并获取。在获取历史参数值时,可对于集成了较多了软件产品的功能的服务平台,其各个软件产品之间都是相互依赖,可以集成使用的,对于这些软件产品构建缺陷预测模型时,可收集该服务平台中任意软件产品的历史参数值作为参考,例如,智慧医疗云产品较多,各个产品之间都是相互依赖可集成使用,因此要建立针对智慧医疗云的缺陷预测模型时,历史参数值可收集智慧医疗云任意软件产品的历史开发数据,即收集智慧医疗云各个软件系统以前各个版本发布时的质量影响因素的参数值,这样,增加了缺陷预测模型的训练数据的多样性,也保证了训练数据的完整性。When acquiring the historical parameter values of the influencing factors of the target software, it is necessary to acquire the number of historical software defects of the software version to which each historical parameter value belongs. When obtaining historical parameter values, for service platforms that integrate more functions of software products, each software product is interdependent and can be used in an integrated manner. When constructing defect prediction models for these software products, it can collect The historical parameter values of any software product in the service platform are used as a reference. For example, there are many smart medical cloud products, and each product is interdependent and can be used in an integrated manner. Therefore, when establishing a defect prediction model for the smart medical cloud, the historical parameters The value can collect the historical development data of any software product of the smart medical cloud, that is, collect the parameter values of the quality influencing factors of each software system of the smart medical cloud when the previous versions were released, thus increasing the diversity of training data for the defect prediction model, and also The integrity of the training data is guaranteed.
将以上影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量分别对应收集起来,即构成历史数据集。The historical parameter values of the above influencing factors and the number of historical software defects of the software version to which each historical parameter value belongs are collected correspondingly to form a historical data set.
S202,从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集。S202, a model sample data set is determined from the historical parameter values of the influencing factors and the number of historical software defects.
构建缺陷预测模型时,模型的输入参数的确定非常重要,那么为了保证最终确定的训练缺陷预测模型的样本数据集更加符合目标软件的,需要从上述步骤收集的历史数据集中筛选出最终要的模型样本数据集。When building a defect prediction model, it is very important to determine the input parameters of the model. In order to ensure that the final sample data set for training the defect prediction model is more in line with the target software, the final model needs to be selected from the historical data set collected in the above steps. sample dataset.
示例地,可以对上述影响因素与软件缺陷数量之间的相关性进行分析,例如,通过斯皮尔曼秩相关系数(Spearman rank-order correlation coefficie nt,SRCC)进行分析,然后根据相关性分析结果,从影响因素的历史参数值和历史软件缺陷数量中确定出最终需要的模型样本数据集。也可以是根据预设权重或者大数据经验值,从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集。本申请实施例对此不加以限制。For example, the correlation between the above-mentioned influencing factors and the number of software defects can be analyzed, for example, by Spearman rank-order correlation coefficient (SRCC) analysis, and then according to the correlation analysis results, The final required model sample data set is determined from the historical parameter values of the influencing factors and the number of historical software defects. The model sample data set may also be determined from the historical parameter values of the influencing factors and the number of historical software defects according to preset weights or big data empirical values. This embodiment of the present application does not limit this.
S203,根据模型样本数据集构建缺陷预测模型。S203, construct a defect prediction model according to the model sample data set.
在得到了模型样本数据集后,根据该模型样本数据集构建缺陷预测模型。After the model sample data set is obtained, a defect prediction model is constructed according to the model sample data set.
示例地,假设模型样本数据集中的主要影响参数为n个,分别为u1,u2,…,un。即确定该n个影响参数作为缺陷预测模型的输入参数,其对应的软件缺陷数量作为输出,训练初始缺陷预测模型。可以采用初始BP神经网络模型进行训练,这样由于各影响因素之间具有比较复杂的关系,例如,需求数和代码行数或用例个数和用例颗粒度、覆盖率;需求越多,代码也会相应越多;用例个数越多,用例的颗粒度和覆盖率也会相对越多。软件产品的影响参数之间具有很强的耦合性,一般的数学模型很难满足建模精度要求,而BP神经网络具有强非线性函数拟合能力,可以解决软件缺建模问题。For example, it is assumed that there are n main influencing parameters in the model sample data set, namely u 1 , u 2 ,...,u n . That is, the n influencing parameters are determined as the input parameters of the defect prediction model, and the corresponding number of software defects is used as the output to train the initial defect prediction model. The initial BP neural network model can be used for training, so that due to the complex relationship between various influencing factors, for example, the number of requirements and the number of lines of code or the number of use cases and the granularity and coverage of use cases; the more requirements, the code will also The more corresponding; the more use cases, the more granularity and coverage of use cases. There is a strong coupling between the influencing parameters of software products, and it is difficult for general mathematical models to meet the requirements of modeling accuracy, while BP neural network has strong nonlinear function fitting ability, which can solve the problem of lack of software modeling.
例如,缺陷预测模型(BP神经网络)为:For example, the defect prediction model (BP neural network) is:
上述公式(2)中:{ui,i=1,2,L n}是缺陷预测模型的输入参数,其中n是模型样本数据集中的主要影响参数的个数;m是神经网络中隐含层神经元数量,该数量一般通过试凑法获得;wij是神经网络中第i个输入神经元与第j个隐含层神经元之间的权值;wjo是神经网络中第j个隐含层神经元与输出神经元之间的权值;bj和bo分别是神经网络中隐含层和输出层的阈值;yo是缺陷预测模型的输出值软件缺陷数量。In the above formula (2): {u i , i=1, 2, L n} are the input parameters of the defect prediction model, where n is the number of main influencing parameters in the model sample data set; m is the hidden value in the neural network The number of layer neurons, which is generally obtained by trial and error; w ij is the weight between the i-th input neuron and the j-th hidden layer neuron in the neural network; w jo is the j-th neuron in the neural network The weight between the hidden layer neuron and the output neuron; b j and b o are the thresholds of the hidden layer and output layer in the neural network respectively; yo is the output value of the defect prediction model and the number of software defects.
训练时,可以将模型样本数据集分为训练样本数据集和预测数据,使用训练样本数据集对初始缺陷预测模型进行训练,通过不断迭代收敛获得较好的阈值和权值,获得最终的缺陷预测模型。具体地,可设置迭代次数为M,迭代误差目标为0.01,通过反向传播算法训练模型,获得wjo、wij、bj和bo。可选地,迭代训练终止条件包括迭代训练的次数达到预设的迭代次数,或者,初始网络模型的输出值与预设标准值之间误差小于预设误差。During training, the model sample data set can be divided into training sample data set and prediction data, use the training sample data set to train the initial defect prediction model, obtain better thresholds and weights through continuous iterative convergence, and obtain the final defect prediction Model. Specifically, the number of iterations can be set to M, the iteration error target can be set to 0.01, and the model is trained by back-propagation algorithm to obtain w jo , w ij , b j and b o . Optionally, the iterative training termination condition includes that the number of iterative training reaches a preset number of iterations, or the error between the output value of the initial network model and the preset standard value is less than a preset error.
则训练过程为:(1)输入层负责接收输入参数ui,并将参数值传给中间隐含层更神经元;隐含层负责内部信息处理和交换,隐层传递到输出层各神经元的信息,经处理后,完成一次学习的正向传播处理过程,由输出层输出yo;(2)当下述公式(3)的值大于预设阈值时,例如0.01,进入误差的反向传播阶段。误差通过输出层,按误差梯度下降的方式修正各层之间的权值,向隐含层、输入层逐层反传。不断进行正向传播和误差反向传播过程,各层权值不断调整,这是BP神经网络学习训练的过程,当迭代次数大于M时或者公式(3)值小于0.01时训练停止,此时的wjo、wij、bj和bo即为最终训练模型的阈值和权值。The training process is as follows: (1) The input layer is responsible for receiving the input parameters u i , and passing the parameter values to the neurons in the middle hidden layer; the hidden layer is responsible for internal information processing and exchange, and the hidden layer is passed to the neurons in the output layer The information, after processing, completes a learning forward propagation process, output y o by the output layer; (2) when the value of the following formula (3) is greater than the preset threshold, such as 0.01, the back propagation of the error stage. The error passes through the output layer, corrects the weights between layers according to the method of error gradient descent, and transfers back to the hidden layer and the input layer layer by layer. The process of forward propagation and error back propagation is continuously performed, and the weights of each layer are continuously adjusted. This is the process of learning and training of BP neural network. When the number of iterations is greater than M or the value of formula (3) is less than 0.01, the training stops. w jo , w ij , b j and bo are the thresholds and weights of the final training model.
其中,公式(3)中E表示误差,yo是缺陷预测模型的输出值软件缺陷数量,y为历史版本软件的真实软件缺陷数量。由于历史软件版本的软件缺陷数量是已经发生过的真实数据,所以获取的历史软件缺陷数量可以作为标准数据来验证缺陷预测模型的准确度。Among them, E in formula (3) represents the error, yo is the output value of the defect prediction model, the number of software defects, and y is the real number of software defects in the historical version of the software. Since the number of software defects in historical software versions is the real data that has occurred, the acquired historical software defect numbers can be used as standard data to verify the accuracy of the defect prediction model.
本实施例中,通过获取影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量,从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集,然后根据模型样本数据集构建缺陷预测模型。要构建的缺陷预测模型是目标软件的,采用的样本数据集也是从目标软件的影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量中选择的,这样针对针对不同的软件产品构建不同的缺陷预测模型,保证了要确定的目标参数值更加适用目标软件,然后将目标参数值作为前期准备工作的参考,可以极大地减少成本、保证软件产品质量。In this embodiment, by obtaining the historical parameter values of the influencing factors and the historical software defect quantity of the software version to which each historical parameter value belongs, the model sample data set is determined from the historical parameter values of the influencing factors and the historical software defect quantity, and then according to the model samples The dataset builds a defect prediction model. The defect prediction model to be constructed belongs to the target software, and the sample data set used is also selected from the historical parameter values of the influencing factors of the target software and the number of historical software defects of the software version to which each historical parameter value belongs. The product builds different defect prediction models to ensure that the target parameter values to be determined are more suitable for the target software, and then the target parameter values are used as a reference for the preparatory work, which can greatly reduce costs and ensure software product quality.
如图4所示,在一个实施例中,以相关性分析为例,对上述从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集的过程进行具体说明,该实施例包括:As shown in FIG. 4 , in one embodiment, taking correlation analysis as an example, the above process of determining the model sample data set from the historical parameter values of the influencing factors and the number of historical software defects is described in detail. This embodiment includes:
S301,对影响因素进行相关性分析,获取影响因素与软件的缺陷数量之间的相关性值。S301, perform a correlation analysis on the influencing factors, and obtain a correlation value between the influencing factors and the number of defects of the software.
首先对上述S201步骤中收集到的历史数据集进行归一化处理,以去除各数据间的差异性。在进行归一化处理之后,对历史数据集中的各影响因素分别与对应的软件缺陷数量进行相关性分析。First, normalize the historical data set collected in the above step S201 to remove the differences between the data. After normalization, the correlation analysis is carried out on each influencing factor in the historical data set and the corresponding number of software defects.
上述收集的历史数据集中分别是对影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量对应收集的,每个版本对应一组数据,那么计算相关性时就是将每个版本中的各影响因素(参数值)与该版本的软件缺陷数量分别计算相关性,得到各个影响因素的相关性。The historical data sets collected above are collected from the historical parameter values of the influencing factors and the number of historical software defects of the software version to which each historical parameter value belongs. Each version corresponds to a set of data, so when calculating the correlation, each version The correlation between each influencing factor (parameter value) and the number of software defects in this version is calculated separately, and the correlation of each influencing factor is obtained.
具体地,以SRCC为例,相关性计算过程为:假设参数a和b数据序列分别为[a1,a2,K,an]和[b1,b2,K,bn],那么参数a和b之间的SRCC相关性为:Specifically, taking SRCC as an example, the correlation calculation process is as follows: assuming that the data sequences of parameters a and b are [a 1 , a 2 , K, a n ] and [b 1 , b 2 , K, b n ] respectively, then The SRCC correlation between parameters a and b is:
其中,公式(4)中,ai和bi为实际值,和为平均值,δ为参数a和b相关值,范围为[-1,1],δ为相关性值,其绝对值越大表示相关性越大。Among them, in formula (4), a i and b i are actual values, and is the average value, δ is the correlation value of parameters a and b, the range is [-1, 1], δ is the correlation value, and the larger the absolute value, the greater the correlation.
对于任一个影响因素,该影响因素和该影响因素所属版本的软件缺陷数量分别作为公式(4)中的参数a和b,那么通过公式(4)就可以求得该影响因素和该影响因素所属版本的软件缺陷数量之间的相关性。依照此过程,计算出每个影响因素的相关性值。For any influencing factor, the influencing factor and the number of software defects of the version to which the influencing factor belongs are taken as parameters a and b in formula (4), respectively, then through formula (4), the influencing factor and the number of software defects to which the influencing factor belongs can be obtained. The correlation between the number of software defects in the version. According to this process, the correlation value of each influencing factor is calculated.
S302,将相关性值大于预设阈值的影响因素确定为样本影响因素。S302: Determine the influence factor whose correlation value is greater than the preset threshold as the sample influence factor.
得到各个影响因素的相关性值后,将相关性值大于预设阈值的影响因素确定为样本影响因素。例如,将相关性大于0.5的影响因素保留作为样本影响因素,剔除掉相关性小于0.5的影响因素。After the correlation value of each influencing factor is obtained, the influencing factor whose correlation value is greater than the preset threshold is determined as the sample influencing factor. For example, the influencing factors with a correlation greater than 0.5 are retained as the sample influencing factors, and the influencing factors with a correlation less than 0.5 are eliminated.
S303,将样本影响因素的历史参数值和样本影响因素所属软件版本的历史软件缺陷数量,确定为模型样本数据集。S303: Determine the historical parameter values of the sample influencing factors and the historical software defect quantity of the software version to which the sample influencing factors belong as a model sample data set.
在得到样本影响因素之后,将各样本影响因素的历史参数值和样本影响因素所属软件版本的历史软件缺陷数量对应收集起来,构成最终需要的模型样本数据集。可选地,将样本影响因素的历史参数值作为输入参数、将样本影响因素所属软件版本的历史软件缺陷数量作为模型输出,迭代训练初始网络模型直至满足预设的迭代训练终止条件,得到缺陷预测模型。After the sample influencing factors are obtained, the historical parameter values of each sample influencing factor and the historical software defect quantity of the software version to which the sample influencing factors belong are collected correspondingly to form the final model sample data set. Optionally, the historical parameter values of the sample influencing factors are used as input parameters, and the number of historical software defects of the software version to which the sample influencing factors belong is used as the model output, and the initial network model is iteratively trained until a preset iterative training termination condition is met, and a defect prediction is obtained. Model.
本实施例中,通过对影响因素进行相关性分析,获取影响因素与软件的缺陷数量之间的相关性值,将相关性值大于预设阈值的影响因素确定为样本影响因素,然后将样本影响因素的历史参数值和样本影响因素所属软件版本的历史软件缺陷数量,确定为模型样本数据集。这样,以准确地的相关性值作为筛选模型样本数据集的依据,量化的结果使得筛选结果更加准确。In this embodiment, by performing correlation analysis on the influencing factors, the correlation value between the influencing factor and the number of defects in the software is obtained, and the influencing factor whose correlation value is greater than the preset threshold is determined as the sample influencing factor, and then the sample influence factor is determined. The historical parameter values of the factors and the number of historical software defects of the software version to which the sample influencing factors belong are determined as the model sample data set. In this way, the accurate correlation value is used as the basis for screening the model sample data set, and the quantitative result makes the screening result more accurate.
下面提供一种实施例对上述采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值的过程进行说明,如图5所示,在一个实施例中,上述S102包括以下步骤:An embodiment is provided below to describe the above process of using a preset optimization algorithm model to obtain the minimum value of the number of software defects output by the defect prediction model. As shown in FIG. 5 , in one embodiment, the above S102 includes the following: step:
S401,将缺陷预测模型作为优化算法模型的适应度函数;优化算法模型中包括决策变量的范围和移动速度,决策变量为软件质量的影响因素中的参数值为非固定值的影响因素。S401, the defect prediction model is used as the fitness function of the optimization algorithm model; the optimization algorithm model includes the range and moving speed of the decision variables, the decision variables are the influencing factors of software quality, and the parameter values are non-fixed value influencing factors.
将建立的缺陷预测模型加入到优化算法(粒子群优化算法)中作为优化算法模型的适应度函数,并在优化算法中设置决策变量的范围和移动速度,其中决策变量表示软件质量的影响因素中的参数值为非固定值的影响因素。The established defect prediction model is added to the optimization algorithm (particle swarm optimization algorithm) as the fitness function of the optimization algorithm model, and the range and moving speed of the decision variables are set in the optimization algorithm, where the decision variables represent the influencing factors of software quality. The parameter value of is a non-fixed value influencing factor.
例如,将缺陷预测模型作为优化算法模型的适应度函数后,得到包括决策变量的公式如下:For example, after taking the defect prediction model as the fitness function of the optimization algorithm model, the formula including the decision variables is obtained as follows:
V(k+1)=ψ(k)V(k)+c1r1[pbest(k)-Z(k)]+c2r2[gbest(k)-Z(k)] (5)V(k+1)=ψ(k)V(k)+c 1 r 1 [pbest(k)-Z(k)]+c 2 r 2 [gbest(k)-Z(k)] (5)
Z(k+1)=Z(k)+V(k+1) (6)Z(k+1)=Z(k)+V(k+1) (6)
其中,公式(5)中,c1和c2为迭代因素,通常取值为c1=c2=2;gbest(k)为全局最佳位置,pbest(k)为个体最佳位置,Z=[z1,z2,…,zD]T为决策变量的范围,zi的大小范围根据设置的决策变量的范围决定;V=[v1,v2,…,vD]T为决策变量的移动速度,通常vi∈[-0.5,0.5];ψ为加权系数,其中加权系数可根据公式(7)确定,通常,公式(7)中ψmax和ψmin分别为0.9和0.4,kImax为最大迭代参数。Among them, in formula (5), c 1 and c 2 are iterative factors, usually taking the value of c 1 =c 2 =2; gbest(k) is the global best position, pbest(k) is the individual best position, Z =[z 1 ,z 2 ,...,z D ] T is the range of decision variables, and the size range of zi is determined according to the range of the set decision variables; V=[v 1 ,v 2 ,...,v D ] T is The moving speed of the decision variable, usually v i ∈ [-0.5, 0.5]; ψ is the weighting coefficient, where the weighting coefficient can be determined according to formula (7), usually, ψ max and ψ min in formula (7) are 0.9 and 0.4, respectively , k Imax is the maximum iteration parameter.
S402,初始化优化算法模型的优化参数。S402, initialize the optimization parameters of the optimization algorithm model.
基于上述待优化的函数,开始更新决策变量的范围和移动速度之前,需要先初始化优化算法模型的优化参数。其中,优化参数包括迭代索引、迭代最大次数、停止索引、最大停止索引、全局最佳位置、个体最佳位置;其中,迭代索引初始值为k=0,在每迭代一次,迭代索引加1,直至达到最大迭代次数kImax;其中,停止索引初始值为ns=0,每停止一次停止索引加1,直至停止索引达到最大停止索引NSmax;同样,初始全局最佳位置为:gbest(0),初始个体最佳位置为pbest(0)。那么初始化上述优化参数即是将所有优化参数归为初始值。Based on the above functions to be optimized, before starting to update the range and moving speed of the decision variables, the optimization parameters of the optimization algorithm model need to be initialized. Among them, the optimization parameters include iteration index, maximum number of iterations, stop index, maximum stop index, global best position, and individual best position; wherein, the initial value of the iteration index is k=0, and in each iteration, the iteration index is incremented by 1, Until the maximum number of iterations k Imax is reached; wherein, the initial value of the stop index is n s =0, and the stop index is incremented by 1 for each stop until the stop index reaches the maximum stop index N Smax ; Similarly, the initial global best position is: gbest(0 ), and the initial individual best position is pbest(0). Then, to initialize the above optimization parameters is to classify all the optimization parameters as initial values.
S403,基于初始化的优化参数,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到软件缺陷数量的最小值。S403 , based on the initialized optimization parameters, iteratively update the range and moving speed of the decision variable until the iteration converges, and obtain the minimum value of the number of software defects.
在初始化优化参数后,开始进行迭代更新决策变量的范围和移动速度的过程,直至迭代收敛,得到软件缺陷数量的最小值,此时对应根据迭代收敛时的决策变量的范围和移动速度即为影响因素的参数值的最佳值。After initializing the optimization parameters, the process of iteratively updating the range and moving speed of the decision variables is started until the iteration converges and the minimum number of software defects is obtained. At this time, the range and moving speed of the decision variables corresponding to the convergence of the iteration are the influence The optimal value of the parameter value for the factor.
可选地,基于初始全局最佳位置和初始个体最佳位置,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到目标全局最佳位置;将得到目标全局最佳位置时,缺陷预测模型中的输出值确定为软件缺陷数量的最小值。Optionally, based on the initial global best position and the initial individual best position, iteratively update the range and moving speed of the decision variable until iteratively converges to obtain the target global best position; when the target global best position is obtained, the defect prediction model The output value in is determined as the minimum number of software defects.
以初始全局最佳位置和初始个体最佳位置第一次更新决策变量的范围和移动速度,且确定最新的全局最佳位置和个体最佳位置,第一次更新后检测是否达到迭代收敛条件,若未到达,继续根据最新的全局最佳位置和个体最佳位置更新决策变量的范围和移动速度,直至达到迭代收敛条件,确定迭代收敛时得到的全局最佳位置为目标全局最佳位置,并将此时缺陷预测模型中的输出值确定为软件缺陷数量的最小值。The range and moving speed of the decision variables are updated for the first time with the initial global best position and the initial individual best position, and the latest global best position and individual best position are determined. After the first update, it is detected whether the iterative convergence condition is reached, If not, continue to update the range and moving speed of the decision variable according to the latest global best position and individual best position until the iterative convergence condition is reached, determine the global best position obtained during the iteration convergence as the target global best position, and The output value in the defect prediction model at this time is determined as the minimum value of the number of software defects.
本实施例中,将缺陷预测模型作为优化算法模型的适应度函数,该优化算法模型中包括决策变量的范围和移动速度,决策变量为软件质量的影响因素中的参数值为非固定值的影响因素,然后初始化优化算法模型的优化参数,并基于初始全局最佳位置和初始个体最佳位置,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到目标全局最佳位置,最后将得到目标全局最佳位置时,缺陷预测模型中的输出值确定为软件缺陷数量的最小值。由于该方法中,对缺陷预测模型采用优化算法进行优化,通过对缺陷预测模型的输出求最小值,得到目标软件影响因素的目标参数值,通过该目标参数值可以对目标软件测试前期准备工作进行合理规划和资源分配,对测试前期工作不合理的地方进行调整,减少了软件测试产品的测试成本,且提高了软件产品的质量。In this embodiment, the defect prediction model is used as the fitness function of the optimization algorithm model. The optimization algorithm model includes the range and moving speed of the decision variable, and the decision variable is the influence factor of the software quality. The parameter value is the influence of the non-fixed value. factor, and then initialize the optimization parameters of the optimization algorithm model, and based on the initial global best position and the initial individual best position, iteratively update the range and moving speed of the decision variables until the iteration converges to obtain the target global best position, and finally the target will be obtained. When the global best position is reached, the output value in the defect prediction model is determined as the minimum value of the number of software defects. Because in this method, the defect prediction model is optimized by an optimization algorithm, and the target parameter value of the influencing factors of the target software is obtained by calculating the minimum value of the output of the defect prediction model. Through the target parameter value, the preparatory work of the target software test can be carried out. Reasonable planning and resource allocation, adjust the unreasonable parts of the pre-test work, reduce the test cost of software test products, and improve the quality of software products.
在一个实施例中,如图6所示,上述基于初始全局最佳位置和初始个体最佳位置,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到目标全局最佳位置的过程包括:In one embodiment, as shown in FIG. 6 , the above-mentioned process of iteratively updating the range and moving speed of the decision variable based on the initial global best position and the initial individual best position until the iteration converges, and obtaining the target global best position includes:
S501,以初始全局最佳位置和初始个体最佳位置为初始值,更新决策变量的范围和移动速度。S501, update the range and moving speed of the decision variable with the initial global best position and the initial individual best position as initial values.
上述优化参数中,初始全局最佳位置为gbest(0),初始个体最佳位置为pbest(0),以初始值开始,更新决策变量的范围和移动速度。In the above optimization parameters, the initial global best position is gbest(0), and the initial individual best position is pbest(0). Starting from the initial value, the range and moving speed of the decision variables are updated.
S502,根据更新后的决策变量的范围和移动速度,计算每个更新后的决策变量在缺陷预测模型中的输出值,并比较所有输出值,确定当前次的全局最佳位置。S502: Calculate the output value of each updated decision variable in the defect prediction model according to the updated range and moving speed of the decision variable, and compare all output values to determine the current global best position.
更新了决策变量的范围和移动速度后,计算每个更新后的决策变量在缺陷预测模型中的输出值,比较这些决策变量在缺陷预测模型中的输出值,根据比较结果确定新的全局最佳位置和个体最佳位置。即初始全局最佳位置和初始个体最佳位置时候,pbest(k)和pbest(k)中的K=0,更新一次确定了新的全局最佳位置和个体最佳位置后,pbest(k)和pbest(k)中的k=1,那么,以此类推,更新第二次后的k=2,直至K=kImax。After updating the range and moving speed of the decision variables, calculate the output value of each updated decision variable in the defect prediction model, compare the output values of these decision variables in the defect prediction model, and determine the new global optimum according to the comparison results. location and individual optimal location. That is, when the initial global best position and the initial individual best position, K=0 in pbest(k) and pbest(k), after the new global best position and the individual best position are determined once updated, pbest(k) and k=1 in pbest(k), then, and so on, update k=2 after the second time until K=k Imax .
S503,若达到预设的迭代收敛条件,确定当前次的全局最佳位置为目标全局最佳位置;若未达到迭代收敛条件,继续获取下一次的全局最佳位置,直至达到迭代收敛条件,得到目标全局最佳位置。可选地,迭代收敛条件包括:初始迭代索引达到迭代最大次数,或者初始停止索引达到最大停止索引。S503, if the preset iterative convergence condition is reached, determine the current global best position as the target global best position; if the iterative convergence condition is not met, continue to obtain the next global best position until the iterative convergence condition is reached, and obtain Target global best position. Optionally, the iteration convergence condition includes: the initial iteration index reaches the maximum number of iterations, or the initial stop index reaches the maximum stop index.
上述K=kImax时即表示达到了设定的迭代收敛条件,也即是说迭代收敛条件是初始迭代索引达到迭代最大次数。在迭代优化参数包括停止索引的情况下,还可以通过初始停止索引达到最大停止索引来判断是否达到迭代收敛条件。那么在每获得新的全局最佳位置后,判断新的全局最佳位置与上一次的全局最佳位置是否相等,例如gbest(k)=gbest(k-1),如若不相等,停止索引加1,ns=ns+1,但如若相等,则停止索引继续取0。When the above K=k Imax , it means that the set iterative convergence condition is reached, that is to say, the iterative convergence condition is that the initial iteration index reaches the maximum number of iterations. When the iterative optimization parameter includes a stop index, it can also be judged whether the iterative convergence condition is reached by the initial stop index reaching the maximum stop index. Then after each new global best position is obtained, judge whether the new global best position is equal to the previous global best position, for example gbest(k)=gbest(k-1), if not, stop the index adding 1, ns = ns +1, but if they are equal, stop the index and continue to take 0.
在判断是否达到迭代收敛条件时,k<kImax和ns<NSmax,若不满足二者任一条件则停止迭代。停止迭代后,确定停止迭代时得到的全局最佳位置gbest(k)即为目标全局最佳位置,即软件缺陷yo最小值,该目标全局最佳位置对应的决策变量的值即为目标软件的影响因素的目标参数值。When judging whether the iterative convergence condition is reached, k<k Imax and ns < NSmax , if either condition is not met, the iteration is stopped. After stopping the iteration, it is determined that the global best position gbest( k ) obtained when the iteration is stopped is the target global best position, that is, the minimum value of the software defect yo, and the value of the decision variable corresponding to the target global best position is the target software. The target parameter value of the influencing factor.
本实施例中以初始全局最佳位置和初始个体最佳位置为初始值,更新决策变量的范围和移动速度,根据更新后的决策变量的范围和移动速度,计算每个更新后的决策变量在缺陷预测模型中的输出值,并比较所有输出值,确定当前次的全局最佳位置,若达到预设的迭代收敛条件,确定当前次的全局最佳位置为目标全局最佳位置;若未达到迭代收敛条件,继续获取下一次的全局最佳位置,直至达到迭代收敛条件,得到目标全局最佳位置。以初始全局最佳位置和初始个体最佳位置为初始值,反复的更新决策变量的范围和移动速度,直至更新迭代收敛,得到目标软件的影响因素的目标参数值,这样就获得最佳参数值,将目标参数值作为该目标软件的测试指导数据对目标软件进行质量测试,可以保证该目标软件的缺陷最少,参考该最佳参数值进行测试工作前期准备,对测试前期工作不合理的地方进行调整,有效地降低测试成本和提高软件系统质量In this embodiment, the initial global best position and the initial individual best position are used as initial values, the range and moving speed of the decision variable are updated, and each updated decision variable is calculated according to the range and moving speed of the updated decision variable. The output value in the defect prediction model is compared, and all output values are compared to determine the current global best position. If the preset iterative convergence condition is reached, the current global best position is determined as the target global best position; Continue to obtain the next global best position until the iterative convergence condition is reached, and obtain the target global best position. Taking the initial global best position and the initial individual best position as the initial values, the range and moving speed of the decision variables are repeatedly updated until the update iteration converges, and the target parameter values of the influencing factors of the target software are obtained, so as to obtain the best parameter values. , using the target parameter value as the test guidance data of the target software to test the quality of the target software, which can ensure that the target software has the fewest defects, refer to the best parameter value for the preliminary preparation of the test work, and carry out the pre-test work for the unreasonable places. Adjustments to effectively reduce testing costs and improve software system quality
如图7所示,还提供了一种软件质量影响因素确定方法的实施例,该实施例包括:As shown in FIG. 7 , an embodiment of a method for determining a software quality influencing factor is also provided, and the embodiment includes:
S1、获取影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量。S1. Obtain historical parameter values of the influencing factors and the number of historical software defects of the software version to which each historical parameter value belongs.
S2、对影响因素进行相关性分析,获取影响因素与软件的缺陷数量之间的相关性值。S2. Perform a correlation analysis on the influencing factors, and obtain the correlation value between the influencing factors and the number of defects of the software.
S3、将相关性值大于预设阈值的影响因素确定为样本影响因素。S3. Determine the influence factor whose correlation value is greater than the preset threshold as the sample influence factor.
S4、将样本影响因素的历史参数值和样本影响因素所属软件版本的历史软件缺陷数量,确定为模型样本数据集。S4. Determine the historical parameter value of the sample influencing factor and the historical software defect quantity of the software version to which the sample influencing factor belongs as the model sample data set.
S5、根据模型样本数据集构建缺陷预测模型。S5. Build a defect prediction model according to the model sample data set.
S6、将缺陷预测模型作为优化算法模型的适应度函数;优化算法模型中包括决策变量的范围和移动速度,决策变量为软件质量的影响因素中的参数值为非固定值的影响因素。S6. Use the defect prediction model as the fitness function of the optimization algorithm model; the optimization algorithm model includes the range and moving speed of the decision variables, the decision variables are the influencing factors of software quality, and the parameter values are non-fixed value influencing factors.
S7、初始化优化算法模型的优化参数。S7, initialize the optimization parameters of the optimization algorithm model.
S8、以初始全局最佳位置和初始个体最佳位置为初始值,更新决策变量的范围和移动速度。S8. Update the range and moving speed of the decision variable with the initial global best position and the initial individual best position as initial values.
S9、根据更新后的决策变量的范围和移动速度,计算每个更新后的决策变量在缺陷预测模型中的输出值,并比较所有输出值,确定当前次的全局最佳位置。S9. Calculate the output value of each updated decision variable in the defect prediction model according to the range and moving speed of the updated decision variable, and compare all the output values to determine the current global best position.
S10、若达到预设的迭代收敛条件,确定当前次的全局最佳位置为目标全局最佳位置。S10. If a preset iterative convergence condition is reached, determine the current global best position as the target global best position.
S11、若未达到迭代收敛条件,继续获取下一次的全局最佳位置,直至达到迭代收敛条件,得到目标全局最佳位置。S11. If the iterative convergence condition is not reached, continue to obtain the next global best position until the iterative convergence condition is reached, and the target global best position is obtained.
S12、将得到目标全局最佳位置时,缺陷预测模型中的输出值确定为软件缺陷数量的最小值。S12. When the target global best position is obtained, the output value in the defect prediction model is determined as the minimum value of the number of software defects.
S13、根据软件缺陷数量的最小值,确定目标软件质量的影响因素的目标参数值。S13, according to the minimum value of the software defect quantity, determine the target parameter value of the influencing factor of the target software quality.
本实施例提供的软件质量影响因素确定方法中各步骤,其实现原理和技术效果与前面各软件质量影响因素确定方法实施例中类似,在此不再赘述。图7实施例中各步骤的实现方式只是一种举例,对各实现方式不作限定,各步骤的顺序在实际应用中可进行调整,只要可以实现各步骤的目的即可。The implementation principles and technical effects of the steps in the method for determining a software quality influencing factor provided by this embodiment are similar to those in the previous embodiments of the software quality influencing factor determining method, and are not repeated here. The implementation manner of each step in the embodiment of FIG. 7 is only an example, and each implementation manner is not limited, and the sequence of each step can be adjusted in practical application, as long as the purpose of each step can be achieved.
应该理解的是,虽然图2-7的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-7中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the steps in the flowcharts of FIGS. 2-7 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIGS. 2-7 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. These sub-steps or stages are not necessarily completed at the same time. The order of execution of the steps is not necessarily sequential, but may be performed alternately or alternately with other steps or at least a part of sub-steps or stages of other steps.
在一个实施例中,如图8所示,提供了一种软件质量影响因素确定装置,包括:构建模块10、优化模块11和确定模块12,其中,In one embodiment, as shown in FIG. 8, a software quality influencing factor determination device is provided, including: a building module 10, an optimization module 11 and a determination module 12, wherein,
构建模块10,用于根据目标软件质量的影响因素的历史参数值,构建所述目标软件的缺陷预测模型;所述缺陷预测模型用于根据软件质量的影响因素的参数值预测对应的软件缺陷数量;The building module 10 is used to construct a defect prediction model of the target software according to the historical parameter values of the influencing factors of the target software quality; the defect prediction model is used to predict the corresponding software defect quantity according to the parameter values of the influencing factors of the software quality ;
优化模块11,用于采用预设的优化算法模型,求取所述缺陷预测模型输出的软件缺陷数量的最小值;An optimization module 11, configured to use a preset optimization algorithm model to obtain the minimum value of the number of software defects output by the defect prediction model;
确定模块12,用于根据所述软件缺陷数量的最小值,确定所述目标软件质量的影响因素的目标参数值。The determining module 12 is configured to determine the target parameter value of the influencing factor of the target software quality according to the minimum value of the software defect quantity.
在一个实施例中,上述构建模块10包括:In one embodiment, the building blocks 10 described above include:
获取单元,用于获取影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量;an acquisition unit, used to acquire the historical parameter values of the influencing factors and the number of historical software defects of the software version to which each historical parameter value belongs;
确定单元,用于从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集;A determination unit for determining a model sample data set from historical parameter values and historical software defect counts of influencing factors;
构建单元,用于根据模型样本数据集构建缺陷预测模型。The building unit is used to build a defect prediction model based on the model sample data set.
在一个实施例中,上述确定单元包括:In one embodiment, the above-mentioned determining unit includes:
分析子单元,用于对影响因素进行相关性分析,获取影响因素与软件的缺陷数量之间的相关性值;The analysis subunit is used to perform correlation analysis on the influencing factors, and obtain the correlation value between the influencing factors and the number of defects in the software;
因素确定子单元,用于将相关性值大于预设阈值的影响因素确定为样本影响因素;The factor determination subunit is used to determine the influence factor whose correlation value is greater than the preset threshold as the sample influence factor;
数据集确定子单元,用于将样本影响因素的历史参数值和样本影响因素所属软件版本的历史软件缺陷数量,确定为模型样本数据集。The data set determination subunit is used to determine the historical parameter value of the sample influencing factor and the historical software defect quantity of the software version to which the sample influencing factor belongs as the model sample data set.
在一个实施例中,上述优化模块11包括:In one embodiment, the above-mentioned optimization module 11 includes:
函数确定单元,用于将缺陷预测模型作为优化算法模型的适应度函数;优化算法模型中包括决策变量的范围和移动速度,决策变量为软件质量的影响因素中的参数值为非固定值的影响因素;The function determination unit is used to use the defect prediction model as the fitness function of the optimization algorithm model; the optimization algorithm model includes the range and moving speed of the decision variables, and the decision variables are the influencing factors of software quality. factor;
参数初始化单元,用于初始化优化算法模型的优化参数;The parameter initialization unit is used to initialize the optimization parameters of the optimization algorithm model;
更新单元,用于基于初始化的优化参数,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到软件缺陷数量的最小值。The updating unit is used to iteratively update the range and moving speed of the decision variables based on the initialized optimization parameters, until the iteration converges, and the minimum value of the number of software defects is obtained.
在一个实施例中,上述优化参数包括初始全局最佳位置、初始个体最佳位置;则上述更新单元包括:In one embodiment, the above-mentioned optimization parameters include an initial global optimal position and an initial individual optimal position; then the above-mentioned updating unit includes:
更新子单元,用于基于初始全局最佳位置和初始个体最佳位置,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到目标全局最佳位置;The update subunit is used to iteratively update the range and moving speed of the decision variable based on the initial global best position and the initial individual best position, until the iteration converges, and the target global best position is obtained;
最小值确定子单元,用于将得到目标全局最佳位置时,缺陷预测模型中的输出值确定为软件缺陷数量的最小值。The minimum value determination subunit is used to determine the output value in the defect prediction model as the minimum value of the software defect quantity when the target global optimal position is obtained.
在一个实施例中,上述更新子单元,具体用于以初始全局最佳位置和初始个体最佳位置为初始值,更新决策变量的范围和移动速度;根据更新后的决策变量的范围和移动速度,计算每个更新后的决策变量在缺陷预测模型中的输出值,并比较所有输出值,确定当前次的全局最佳位置;若达到预设的迭代收敛条件,确定当前次的全局最佳位置为目标全局最佳位置;若未达到迭代收敛条件,继续获取下一次的全局最佳位置,直至达到迭代收敛条件,得到目标全局最佳位置。In one embodiment, the above-mentioned update subunit is specifically used to update the range and moving speed of the decision variable with the initial global best position and the initial individual best position as initial values; according to the updated range and moving speed of the decision variable , calculate the output value of each updated decision variable in the defect prediction model, and compare all output values to determine the current global best position; if the preset iterative convergence condition is reached, determine the current global best position is the target global best position; if the iterative convergence condition is not reached, continue to obtain the next global best position until the iterative convergence condition is reached, and the target global best position is obtained.
在一个实施例中,上述优化参数还包括初始迭代索引、迭代最大次数、初始停止索引、最大停止索引;则迭代收敛条件包括:初始迭代索引达到迭代最大次数,或者初始停止索引达到最大停止索引。In one embodiment, the above optimization parameters further include an initial iteration index, a maximum number of iterations, an initial stop index, and a maximum stop index; then the iteration convergence conditions include: the initial iteration index reaches the maximum number of iterations, or the initial stop index reaches the maximum stop index.
关于软件质量影响因素确定装置的具体限定可以参见上文中对于软件质量影响因素确定方法的限定,在此不再赘述。上述软件质量影响因素确定装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitation of the software quality influencing factor determination device, please refer to the above limitation on the software quality influencing factor determination method, which will not be repeated here. Each module in the above software quality influencing factor determination device may be implemented in whole or in part by software, hardware and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图9所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种软件质量影响因素确定方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。In one embodiment, a computer device is provided, and the computer device may be a terminal, and its internal structure diagram may be as shown in FIG. 9 . The computer equipment includes a processor, memory, a network interface, a display screen, and an input device connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system and a computer program. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The network interface of the computer device is used to communicate with an external terminal through a network connection. The computer program, when executed by the processor, implements a software quality influencing factor determination method. The display screen of the computer equipment may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer equipment may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the computer equipment , or an external keyboard, trackpad, or mouse.
本领域技术人员可以理解,图9中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 9 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:In one embodiment, a computer device is provided, including a memory and a processor, a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
根据目标软件质量的影响因素的历史参数值,构建目标软件的缺陷预测模型;缺陷预测模型用于根据软件质量的影响因素的参数值预测对应的软件缺陷数量;According to the historical parameter values of the influencing factors of the target software quality, a defect prediction model of the target software is constructed; the defect prediction model is used to predict the corresponding software defect quantity according to the parameter values of the influencing factors of the software quality;
采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值;Use a preset optimization algorithm model to obtain the minimum number of software defects output by the defect prediction model;
根据软件缺陷数量的最小值,确定目标软件质量的影响因素的目标参数值。According to the minimum value of the number of software defects, the target parameter values of the influencing factors of the target software quality are determined.
在一个实施例中,该处理器执行计算机程序时实现以下步骤:In one embodiment, the processor implements the following steps when executing a computer program:
获取影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量;Obtain the historical parameter values of the influencing factors and the number of historical software defects of the software version to which each historical parameter value belongs;
从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集;Determine the model sample data set from the historical parameter values of the influencing factors and the number of historical software defects;
根据模型样本数据集构建缺陷预测模型。Build a defect prediction model from the model sample dataset.
在一个实施例中,该处理器执行计算机程序时实现以下步骤:In one embodiment, the processor implements the following steps when executing a computer program:
对影响因素进行相关性分析,获取影响因素与软件的缺陷数量之间的相关性值;Perform correlation analysis on the influencing factors to obtain the correlation value between the influencing factors and the number of software defects;
将相关性值大于预设阈值的影响因素确定为样本影响因素;Determine the influence factor whose correlation value is greater than the preset threshold as the sample influence factor;
将样本影响因素的历史参数值和样本影响因素所属软件版本的历史软件缺陷数量,确定为模型样本数据集。The historical parameter values of the sample influencing factors and the number of historical software defects of the software version to which the sample influencing factors belong are determined as the model sample data set.
在一个实施例中,该处理器执行计算机程序时实现以下步骤:In one embodiment, the processor implements the following steps when executing a computer program:
将缺陷预测模型作为优化算法模型的适应度函数;优化算法模型中包括决策变量的范围和移动速度,决策变量为软件质量的影响因素中的参数值为非固定值的影响因素;The defect prediction model is used as the fitness function of the optimization algorithm model; the optimization algorithm model includes the range and moving speed of the decision variables, the decision variables are the influencing factors of software quality, and the parameter values are the influencing factors of non-fixed values;
初始化优化算法模型的优化参数;Initialize the optimization parameters of the optimization algorithm model;
基于初始化的优化参数,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到软件缺陷数量的最小值。Based on the initialized optimization parameters, the range and moving speed of the decision variables are updated iteratively until the iteration converges, and the minimum number of software defects is obtained.
在一个实施例中,该处理器执行计算机程序时实现以下步骤:In one embodiment, the processor implements the following steps when executing a computer program:
基于初始全局最佳位置和初始个体最佳位置,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到目标全局最佳位置;Based on the initial global best position and the initial individual best position, iteratively update the range and moving speed of the decision variable until the iteration converges, and the target global best position is obtained;
将得到目标全局最佳位置时,缺陷预测模型中的输出值确定为软件缺陷数量的最小值。When the target global best position is obtained, the output value in the defect prediction model is determined as the minimum value of the number of software defects.
在一个实施例中,该处理器执行计算机程序时实现以下步骤:In one embodiment, the processor implements the following steps when executing a computer program:
以初始全局最佳位置和初始个体最佳位置为初始值,更新决策变量的范围和移动速度;Using the initial global best position and the initial individual best position as the initial values, update the range and moving speed of the decision variable;
根据更新后的决策变量的范围和移动速度,计算每个更新后的决策变量在缺陷预测模型中的输出值,并比较所有输出值,确定当前次的全局最佳位置;According to the range and moving speed of the updated decision variable, calculate the output value of each updated decision variable in the defect prediction model, and compare all output values to determine the current global best position;
若达到预设的迭代收敛条件,确定当前次的全局最佳位置为目标全局最佳位置;If the preset iterative convergence condition is reached, determine the current global best position as the target global best position;
若未达到迭代收敛条件,继续获取下一次的全局最佳位置,直至达到迭代收敛条件,得到目标全局最佳位置。If the iterative convergence condition is not reached, continue to obtain the next global best position until the iterative convergence condition is reached, and the target global best position is obtained.
在一个实施例中,上述优化参数还包括初始迭代索引、迭代最大次数、初始停止索引、最大停止索引;In one embodiment, the above-mentioned optimization parameters further include an initial iteration index, a maximum number of iterations, an initial stop index, and a maximum stop index;
则迭代收敛条件包括:初始迭代索引达到迭代最大次数,或者初始停止索引达到最大停止索引。Then the iteration convergence condition includes: the initial iteration index reaches the maximum number of iterations, or the initial stop index reaches the maximum stop index.
上述实施例提供的一种计算机设备,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。The implementation principle and technical effect of the computer device provided by the above-mentioned embodiment are similar to those of the above-mentioned method embodiment, which will not be repeated here.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:In one embodiment, a computer-readable storage medium is provided on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
根据目标软件质量的影响因素的历史参数值,构建目标软件的缺陷预测模型;缺陷预测模型用于根据软件质量的影响因素的参数值预测对应的软件缺陷数量;According to the historical parameter values of the influencing factors of the target software quality, a defect prediction model of the target software is constructed; the defect prediction model is used to predict the corresponding software defect quantity according to the parameter values of the influencing factors of the software quality;
采用预设的优化算法模型,求取缺陷预测模型输出的软件缺陷数量的最小值;Use a preset optimization algorithm model to obtain the minimum number of software defects output by the defect prediction model;
根据软件缺陷数量的最小值,确定目标软件质量的影响因素的目标参数值。According to the minimum value of the number of software defects, the target parameter values of the influencing factors of the target software quality are determined.
在一个实施例中,计算机程序被处理器执行时实现以下步骤:In one embodiment, the computer program, when executed by a processor, implements the following steps:
获取影响因素的历史参数值和各历史参数值所属软件版本的历史软件缺陷数量;Obtain the historical parameter values of the influencing factors and the number of historical software defects of the software version to which each historical parameter value belongs;
从影响因素的历史参数值和历史软件缺陷数量中确定模型样本数据集;Determine the model sample data set from the historical parameter values of the influencing factors and the number of historical software defects;
根据模型样本数据集构建缺陷预测模型。Build a defect prediction model from the model sample dataset.
在一个实施例中,计算机程序被处理器执行时实现以下步骤:In one embodiment, the computer program, when executed by a processor, implements the following steps:
对影响因素进行相关性分析,获取影响因素与软件的缺陷数量之间的相关性值;Perform correlation analysis on the influencing factors to obtain the correlation value between the influencing factors and the number of software defects;
将相关性值大于预设阈值的影响因素确定为样本影响因素;Determine the influence factor whose correlation value is greater than the preset threshold as the sample influence factor;
将样本影响因素的历史参数值和样本影响因素所属软件版本的历史软件缺陷数量,确定为模型样本数据集。The historical parameter values of the sample influencing factors and the number of historical software defects of the software version to which the sample influencing factors belong are determined as the model sample data set.
在一个实施例中,计算机程序被处理器执行时实现以下步骤:In one embodiment, the computer program, when executed by a processor, implements the following steps:
将缺陷预测模型作为优化算法模型的适应度函数;优化算法模型中包括决策变量的范围和移动速度,决策变量为软件质量的影响因素中的参数值为非固定值的影响因素;The defect prediction model is used as the fitness function of the optimization algorithm model; the optimization algorithm model includes the range and moving speed of the decision variables, the decision variables are the influencing factors of software quality, and the parameter values are the influencing factors of non-fixed values;
初始化优化算法模型的优化参数;Initialize the optimization parameters of the optimization algorithm model;
基于初始化的优化参数,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到软件缺陷数量的最小值。Based on the initialized optimization parameters, the range and moving speed of the decision variables are updated iteratively until the iteration converges, and the minimum number of software defects is obtained.
在一个实施例中,计算机程序被处理器执行时实现以下步骤:In one embodiment, the computer program, when executed by a processor, implements the following steps:
基于初始全局最佳位置和初始个体最佳位置,迭代更新决策变量的范围和移动速度,直至迭代收敛,得到目标全局最佳位置;Based on the initial global best position and the initial individual best position, iteratively update the range and moving speed of the decision variable until the iteration converges, and the target global best position is obtained;
将得到目标全局最佳位置时,缺陷预测模型中的输出值确定为软件缺陷数量的最小值。When the target global best position is obtained, the output value in the defect prediction model is determined as the minimum value of the number of software defects.
在一个实施例中,计算机程序被处理器执行时实现以下步骤:In one embodiment, the computer program, when executed by a processor, implements the following steps:
以初始全局最佳位置和初始个体最佳位置为初始值,更新决策变量的范围和移动速度;Using the initial global best position and the initial individual best position as the initial values, update the range and moving speed of the decision variable;
根据更新后的决策变量的范围和移动速度,计算每个更新后的决策变量在缺陷预测模型中的输出值,并比较所有输出值,确定当前次的全局最佳位置;According to the range and moving speed of the updated decision variable, calculate the output value of each updated decision variable in the defect prediction model, and compare all output values to determine the current global best position;
若达到预设的迭代收敛条件,确定当前次的全局最佳位置为目标全局最佳位置;If the preset iterative convergence condition is reached, determine the current global best position as the target global best position;
若未达到迭代收敛条件,继续获取下一次的全局最佳位置,直至达到迭代收敛条件,得到目标全局最佳位置。If the iterative convergence condition is not reached, continue to obtain the next global best position until the iterative convergence condition is reached, and the target global best position is obtained.
在一个实施例中,上述优化参数还包括初始迭代索引、迭代最大次数、初始停止索引、最大停止索引;In one embodiment, the above-mentioned optimization parameters further include an initial iteration index, a maximum number of iterations, an initial stop index, and a maximum stop index;
则迭代收敛条件包括:初始迭代索引达到迭代最大次数,或者初始停止索引达到最大停止索引。Then the iteration convergence condition includes: the initial iteration index reaches the maximum number of iterations, or the initial stop index reaches the maximum stop index.
上述实施例提供的一种计算机可读存储介质,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。The implementation principle and technical effect of the computer-readable storage medium provided by the above-mentioned embodiments are similar to those of the above-mentioned method embodiments, and details are not described herein again.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer-readable storage In the medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other medium used in the various embodiments provided in this application may include non-volatile and/or volatile memory. Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, all It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011342772.5A CN112416783B (en) | 2020-11-25 | 2020-11-25 | Method, device, equipment and storage medium for determining software quality influence factors |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011342772.5A CN112416783B (en) | 2020-11-25 | 2020-11-25 | Method, device, equipment and storage medium for determining software quality influence factors |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112416783A CN112416783A (en) | 2021-02-26 |
| CN112416783B true CN112416783B (en) | 2022-05-20 |
Family
ID=74842438
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011342772.5A Active CN112416783B (en) | 2020-11-25 | 2020-11-25 | Method, device, equipment and storage medium for determining software quality influence factors |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112416783B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113805544B (en) * | 2021-09-14 | 2023-10-31 | 武汉联影医疗科技有限公司 | Method, device, computer equipment and storage medium for determining operation parameters |
| CN115640933B (en) * | 2022-11-03 | 2023-10-13 | 昆山润石智能科技有限公司 | Automatic defect management method, device and equipment for production line and storage medium |
| CN116311581B (en) * | 2023-03-21 | 2024-07-12 | 赋桦科技(深圳)有限公司 | Parameter testing system and method for chip |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102622510A (en) * | 2012-01-31 | 2012-08-01 | 龚波 | System and method for quantitative management of software defects |
| CN106354640A (en) * | 2016-08-29 | 2017-01-25 | 江苏科技大学 | Software reliability model parameter estimation method based on improved PSO (particle swarm optimization) |
| CN106991047A (en) * | 2017-03-27 | 2017-07-28 | 中国电力科学研究院 | A kind of method and system for being predicted to object-oriented software defect |
| CN109634833A (en) * | 2017-10-09 | 2019-04-16 | 北京京东尚科信息技术有限公司 | A kind of Software Defects Predict Methods and device |
| CN109976998A (en) * | 2017-12-28 | 2019-07-05 | 航天信息股份有限公司 | A kind of Software Defects Predict Methods, device and electronic equipment |
| CN111143222A (en) * | 2019-12-30 | 2020-05-12 | 军事科学院系统工程研究院系统总体研究所 | Software evaluation method based on defect prediction |
| CN111290967A (en) * | 2020-03-10 | 2020-06-16 | 武汉联影医疗科技有限公司 | Software defect prediction method, device, equipment and storage medium |
| CN111522736A (en) * | 2020-03-26 | 2020-08-11 | 中南大学 | A software defect prediction method, device, electronic device and computer storage medium |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7599819B2 (en) * | 2007-01-18 | 2009-10-06 | Raytheon Company | Method and system for generating a predictive analysis of the performance of peer reviews |
| US10929268B2 (en) * | 2018-09-26 | 2021-02-23 | Accenture Global Solutions Limited | Learning based metrics prediction for software development |
-
2020
- 2020-11-25 CN CN202011342772.5A patent/CN112416783B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102622510A (en) * | 2012-01-31 | 2012-08-01 | 龚波 | System and method for quantitative management of software defects |
| CN106354640A (en) * | 2016-08-29 | 2017-01-25 | 江苏科技大学 | Software reliability model parameter estimation method based on improved PSO (particle swarm optimization) |
| CN106991047A (en) * | 2017-03-27 | 2017-07-28 | 中国电力科学研究院 | A kind of method and system for being predicted to object-oriented software defect |
| CN109634833A (en) * | 2017-10-09 | 2019-04-16 | 北京京东尚科信息技术有限公司 | A kind of Software Defects Predict Methods and device |
| CN109976998A (en) * | 2017-12-28 | 2019-07-05 | 航天信息股份有限公司 | A kind of Software Defects Predict Methods, device and electronic equipment |
| CN111143222A (en) * | 2019-12-30 | 2020-05-12 | 军事科学院系统工程研究院系统总体研究所 | Software evaluation method based on defect prediction |
| CN111290967A (en) * | 2020-03-10 | 2020-06-16 | 武汉联影医疗科技有限公司 | Software defect prediction method, device, equipment and storage medium |
| CN111522736A (en) * | 2020-03-26 | 2020-08-11 | 中南大学 | A software defect prediction method, device, electronic device and computer storage medium |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112416783A (en) | 2021-02-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112416783B (en) | Method, device, equipment and storage medium for determining software quality influence factors | |
| CN111126668B (en) | Spark job time prediction method and device based on graph convolutional network | |
| CN111130839B (en) | A traffic demand matrix forecasting method and system | |
| US11650968B2 (en) | Systems and methods for predictive early stopping in neural network training | |
| EP3525139A1 (en) | Automatically scaling neural networks based on load | |
| CN116050600A (en) | Method and system for forecasting spare parts demand based on combined model of CNN-GA-BP | |
| CN115545334B (en) | Land utilization type prediction method and device, electronic equipment and storage medium | |
| CN109409739B (en) | Crowdsourcing platform task allocation method based on POMDP model | |
| US20240094057A1 (en) | Method and system for adapting to specific target paint application processes | |
| CN118604632B (en) | A method for predicting the service life of lithium batteries for embedded devices | |
| Zu et al. | α-SN curve: a novel SN curve modeling method under small-sample test data using uncertainty theory | |
| CN114372862A (en) | Data processing method, data processing device, computer equipment and storage medium | |
| CN117292756B (en) | Virus property prediction model training method and virus property prediction method | |
| CN113282470A (en) | Performance prediction method and device | |
| CN112580885A (en) | Method, device and equipment for predicting accessory qualification rate and storage medium | |
| CN116362894A (en) | Multi-objective learning method, multi-objective learning device, electronic equipment and computer readable storage medium | |
| CN112669893B (en) | Method, system, device and equipment for determining read voltage to be used | |
| CN115423186A (en) | Cost prediction method, device, medium and equipment based on neural network model | |
| CN114358260A (en) | A neural network model building method, device, equipment and storage medium | |
| Liu et al. | A Graph Neural Network Approach to Conceptual Cost Estimation | |
| CN111260191A (en) | Test bed maturity quantification method, apparatus, computer equipment and storage medium | |
| CN120407198B (en) | Prediction method, device, computer equipment and medium for cross-border business compliance | |
| CN111833199A (en) | Community structure division method, apparatus, device and computer readable medium | |
| CN112257215A (en) | Maximum likelihood estimation solving method and system for product life distribution parameters | |
| CN112990520B (en) | Method, device, computer equipment and storage medium for predicting net point connection piece quantity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right |
Effective date of registration: 20250714 Address after: 4th Floor, Building 10, No. 66 Huiyuan Road, Jiading District, Shanghai, 201815 Patentee after: Shanghai Lianying Zhiyuan Medical Technology Co.,Ltd. Country or region after: China Address before: B1-7, 818 Gaoxin Avenue, Donghu hi tech Development Zone, Hongshan District, Wuhan City, Hubei Province 430206 Patentee before: WUHAN UNITED IMAGING HEALTHCARE Co.,Ltd. Country or region before: China |