[go: up one dir, main page]

CN112505765A - Method for scanning seismic wave travel time by Lax Friedrichs - Google Patents

Method for scanning seismic wave travel time by Lax Friedrichs Download PDF

Info

Publication number
CN112505765A
CN112505765A CN202011294721.XA CN202011294721A CN112505765A CN 112505765 A CN112505765 A CN 112505765A CN 202011294721 A CN202011294721 A CN 202011294721A CN 112505765 A CN112505765 A CN 112505765A
Authority
CN
China
Prior art keywords
travel time
lax
friedrichs
factor
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011294721.XA
Other languages
Chinese (zh)
Other versions
CN112505765B (en
Inventor
黄光南
李红星
张华�
李泽林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Institute of Technology
Original Assignee
East China Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Institute of Technology filed Critical East China Institute of Technology
Priority to CN202011294721.XA priority Critical patent/CN112505765B/en
Publication of CN112505765A publication Critical patent/CN112505765A/en
Application granted granted Critical
Publication of CN112505765B publication Critical patent/CN112505765B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times
    • G01V1/305Travel times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明涉及一种Lax Friedrichs扫描地震波旅行时间的方法,该方法包括:通过引入慢度向量,建立地震波在各向异性TI介质中的程函方程;将程函方程的解分解为两个因子的乘积,并将两个因子的乘积带入所述程函方程中,转换为相应的哈密顿形式;根据慢度向量,求解群速度和相速度;利用Lax‑Friedrichs扫描格式数值,求解程函方程,确定地震波的旅行时间。本发明提供的Lax Friedrichs扫描地震波旅行时间的方法、装置及存储介质采用了因式求解和快速扫描的方式,保证了走时计算的准确性和快速性,以便进行有效的地质勘察。

Figure 202011294721

The invention relates to a Lax Friedrichs scanning seismic wave travel time method. The method comprises: establishing a seismic wave function equation in anisotropic TI medium by introducing a slowness vector; decomposing the solution of the function equation into two factors product, and bring the product of the two factors into the functional equation, and convert it into the corresponding Hamiltonian form; according to the slowness vector, solve the group velocity and phase velocity; use the Lax-Friedrichs scan format value to solve the functional equation , to determine the travel time of seismic waves. The method, device and storage medium for the Lax Friedrichs scanning seismic wave travel time provided by the present invention adopt the method of factoring and fast scanning, which ensures the accuracy and fastness of travel time calculation, so as to carry out effective geological survey.

Figure 202011294721

Description

Lax Friedrichs扫描地震波旅行时间的方法Lax Friedrichs' method for scanning the travel time of seismic waves

技术领域technical field

本发明涉及地质勘探技术领域,尤其涉及Lax Friedrichs扫描地震波旅行时间的方法。The invention relates to the technical field of geological exploration, in particular to a method for scanning the travel time of seismic waves by Lax Friedrichs.

背景技术Background technique

地震走时是指地震波从震源传到观测点所经过的时间,称为地震波的走时,又称旅行时间。通常我们通过地面传感器记录到地震波的走时,真实的反演地下地质体的真实位置,进而反演得到地下岩石的物理性质。因而,对地震波的旅行时间的计算能真实反映地质情况,是地质勘探技术领域的一种关键技术。Earthquake travel time refers to the time it takes for seismic waves to travel from the epicenter to the observation point, which is called the travel time of seismic waves, also known as travel time. Usually, we record the travel time of the seismic wave through the ground sensor, and invert the real position of the underground geological body, and then invert the physical properties of the underground rock. Therefore, the calculation of the travel time of seismic waves can truly reflect the geological situation, which is a key technology in the field of geological exploration technology.

地震波在各向同性和各向异性介质中传播时,其运动学和动力学特征有很大差异。各向同性介质中只有纵波和横波,其涉及各向异性介质中的三种波型,包括一个准纵波(qP)和两个准横波(qSV和qSH)。每个波模都有各自的波型和偏振方向。现有技术中,基于有限差分的程函求解器是一种最稳定、最高效的旅行时间计算方法,然而,缺乏利用各向异性介质进行有限差分程函求解器的方法,同时,源的奇异性在源点处引起较大的误差,误差会扩散到整个区域,导致精度较低。Seismic waves have very different kinematics and dynamics when propagating in isotropic and anisotropic media. There are only longitudinal and shear waves in isotropic media, which involves three wave modes in anisotropic media, including one quasi-longitudinal wave (qP) and two quasi-shear waves (qSV and qSH). Each wave mode has its own wave mode and polarization direction. In the prior art, the finite-difference-based equation solver is one of the most stable and efficient travel time calculation methods. However, there is a lack of methods for finite-difference equation solvers using anisotropic media. At the same time, the singularity of the source This property causes a large error at the source point, and the error spreads over the entire area, resulting in lower accuracy.

实际上,越来越多的商业地震处理软件(比如Landmark、CGG、Omega等)考虑了各向异性。此外,控制弱各向异性的方程要比控制强各向异性的方程简单得多,因而,弱各向异性假设被广泛应用于地震数据处理的各项技术中。这一假设使得地震数据处理的各项技术更容易实现。然而,现有技术中,利用弱各向异性对进行走时计算的方法往往缺乏准确性和快速性,如何提出一种快速、准确进行走时计算的方法是亟待解决的问题。In fact, more and more commercial seismic processing software (such as Landmark, CGG, Omega, etc.) takes anisotropy into account. In addition, the equations governing weak anisotropy are much simpler than those governing strong anisotropy, so the weak anisotropy assumption is widely used in various techniques of seismic data processing. This assumption makes various techniques of seismic data processing easier to implement. However, in the prior art, the method for calculating travel time by using weak anisotropy pairs often lacks accuracy and rapidity. How to propose a method for calculating travel time quickly and accurately is an urgent problem to be solved.

发明内容SUMMARY OF THE INVENTION

有鉴于此,有必要提供一种Lax Friedrichs扫描地震波旅行时间的方法,用以解决如何提出一种快速、准确进行走时计算的方法的问题。In view of this, it is necessary to provide a Lax Friedrichs method for scanning the travel time of seismic waves to solve the problem of how to propose a fast and accurate method for travel time calculation.

本发明提供了一种Lax Friedrichs扫描地震波旅行时间的方法,包括:The present invention provides a Lax Friedrichs method for scanning the travel time of seismic waves, comprising:

通过引入慢度向量,建立地震波在各向异性TI介质中的程函方程;By introducing the slowness vector, the function equation of seismic wave in anisotropic TI medium is established;

将所述程函方程的解分解为两个因子的乘积,并将所述两个因子的乘积带入所述程函方程中,转换为相应的哈密顿形式;Decompose the solution of the functional equation into a product of two factors, and bring the product of the two factors into the functional equation, and convert it into a corresponding Hamiltonian form;

根据所述慢度向量,求解群速度和相速度;According to the slowness vector, solve the group velocity and the phase velocity;

利用Lax-Friedrichs扫描格式数值,求解所述程函方程,确定所述地震波的旅行时间。The travel time of the seismic wave is determined by solving the functional equation using the Lax-Friedrichs scan format numerical values.

进一步地,将所述程函方程的解分解为第一因子和第二因子,所述第一因子和所述第二因子表示为:Further, the solution of the functional equation is decomposed into a first factor and a second factor, and the first factor and the second factor are expressed as:

Figure BDA0002784893810000021
Figure BDA0002784893810000021

其中,x,y,z为计算域中的坐标,T(x,y,z)为所述第一因子,s(x,y,z)为所述第二因子,T0(x,y,z)是预先确定捕捉源奇点的,u(x,y,z)为在源点附近平滑的未知因子,s0(x,y,z)为相位慢度模型,α(x,y,z)为所述相位慢度模型s0(x,y,z)对应的位置因子;Among them, x, y, z are the coordinates in the computational domain, T(x, y, z) is the first factor, s(x, y, z) is the second factor, T 0 (x, y) ,z) is pre-determined to capture the source singularity, u(x,y,z) is an unknown factor smoothed around the source point, s 0 (x,y,z) is the phase slowness model, α(x,y , z) is the position factor corresponding to the phase slowness model s 0 (x, y, z);

将所述第一因子和所述第二因子带入所述程函方程,并根据所述未知因子u(x,y,z)和T0(x,y,z)关于坐标x、y、z的导数进行公式转化,确定所述相应的哈密顿形式为:The first factor and the second factor are brought into the functional equation, and the coordinates x , y, The derivative of z is converted into a formula, and the corresponding Hamiltonian form is determined as:

Figure BDA0002784893810000022
Figure BDA0002784893810000022

f(x,y,z)=sm(P,Q,R),(m=1,2,3)f(x,y,z)=s m (P,Q,R),(m=1,2,3)

其中,(ux,uy,uz)是所述未知因子u(x,y,z)关于坐标x、y、z的导数,H(x,y,z,u,ux,uy,uz)为哈密顿算子,f(x,y,z)为对应的哈密顿导数函数,sm(P,Q,R)为带入P,Q,R后的相位慢度模型,P、Q和R为所述第一因子T(x,y,z)关于坐标x、y、z的导数。where (u x , u y , u z ) is the derivative of the unknown factor u(x, y, z) with respect to the coordinates x, y, z, H(x, y, z, u, u x , u y , u z ) is the Hamiltonian operator, f(x, y, z) is the corresponding Hamiltonian derivative function, s m (P, Q, R) is the phase slowness model brought into P, Q, R, P, Q and R are derivatives of the first factor T(x, y, z) with respect to the coordinates x, y, z.

进一步地,所述根据所述慢度向量,求解群速度和相速度包括:Further, calculating the group velocity and the phase velocity according to the slowness vector includes:

设定相位慢度方向和射线方向;Set the phase slowness direction and ray direction;

根据所述慢度向量和群速度向量之间的关系,确定所述群速度和所述相速度。The group velocity and the phase velocity are determined from the relationship between the slowness vector and the group velocity vector.

进一步地,所述相应的哈密顿形式中,所述旅行时间关于坐标轴x、y、z的导数的确定包括:Further, in the corresponding Hamiltonian form, the determination of the derivative of the travel time with respect to the coordinate axes x, y, and z includes:

确定所述旅行时间关于坐标轴x、y、z的导数的解析表达式,表示为:An analytical expression for determining the derivative of the travel time with respect to the coordinate axes x, y, and z is expressed as:

Figure BDA0002784893810000031
Figure BDA0002784893810000031

其中,v0为源点处的相速度函数,(p0,q0,r0)=(T0x,T0y,T0z),是所述旅行时间关于x,y,z的导数;Wherein, v 0 is the phase velocity function at the source point, (p 0 , q 0 , r 0 )=(T 0x , T 0y , T 0z ), which is the derivative of the travel time with respect to x, y, z;

从所述解析表达式的平方根中依次提取所述旅行时间关于x,y,z的导数p0,q0,r0,并通过代数运算,确定所述旅行时间关于x,y,z的导数p0,q0,r0的对应绝对值,表示为:The derivatives p 0 , q 0 , r 0 of the travel time with respect to x, y, z are sequentially extracted from the square root of the analytical expression, and through algebraic operations, the derivatives of the travel time with respect to x, y, z are determined The corresponding absolute values of p 0 , q 0 , r 0 are expressed as:

Figure BDA0002784893810000032
Figure BDA0002784893810000032

Figure BDA0002784893810000033
Figure BDA0002784893810000033

Figure BDA0002784893810000034
Figure BDA0002784893810000034

其中,

Figure BDA0002784893810000035
为相位慢度方向的的倾角和方位角。in,
Figure BDA0002784893810000035
are the inclination and azimuth of the phase slowness direction.

进一步地,所述利用Lax-Friedrichs扫描格式数值,求解所述程函方程包括:Further, described utilizing Lax-Friedrichs scanning format numerical value, solving described functional equation comprises:

建立所述相应的哈密顿形式的一阶Lax-Friedrichs格式;establishing a first-order Lax-Friedrichs scheme of the corresponding Hamiltonian form;

根据每个网格点对应的三阶迎风偏置WENO近似值,将网格点上的旅行时间值替换;Replace the travel time value on the grid point according to the approximation value of the third-order upwind bias WENO corresponding to each grid point;

将所述基于WENO的三阶Lax-Friedrichs格式的静态哈密顿-雅可比方程写成紧凑形式,根据所述紧凑形式对所述网格点上的旅行时间值进行更新。The static Hamiltonian-Jacobi equation based on the WENO third-order Lax-Friedrichs format is written in a compact form, and the travel time value on the grid point is updated according to the compact form.

进一步地,所述根据所述紧凑形式对所述网格点上的旅行时间值进行更新包括:Further, the updating the travel time value on the grid point according to the compact form includes:

对所述一阶Lax-Friedrichs格式中的网格点进行初始化赋值;initializing and assigning grid points in the first-order Lax-Friedrichs format;

用8次交替方向扫频的Gauss-Seidel迭代求解所述紧凑形式,并进行网格更新;Solve the compact form with 8 Gauss-Seidel iterations swept in alternating directions, and perform mesh updates;

在内部边界和外部边界的六个平面上,设置对应的多个极大、极小值条件,采用线性外推法确定域外点的数值解;On the six planes of the inner boundary and the outer boundary, set the corresponding maximum and minimum value conditions, and use the linear extrapolation method to determine the numerical solution of the point outside the domain;

判断两个连续迭代之间的解的L1范数差是否满足预设的精度条件,若满足,则终止迭代。It is judged whether the L1 norm difference of the solution between two consecutive iterations satisfies the preset accuracy condition, and if so, the iteration is terminated.

与现有技术相比,本发明的有益效果包括:可以计算三种波型的初至旅行时间,即qP-、qSV-、qSH-波,并采用因子分解方法处理有限差分程函求解器的逆风奇异性,将一般程函方程的解分解为两个因子的乘积,其中一个因子是均匀介质的走时,这个因子捕获了逆风奇点,而另一个因子(基础函数)是源点附近的一个必要修改。进一步采用Lax-Friedrichs有限差分格式,无论哈密顿函数是凸还是凹,都能保证迭代收敛,采用基于三阶加权本质非振荡格式(WENO)的快速扫频格式对基函数进行数值计算,且迭代次数与网格大小无关,随着网格大小趋近于0,数值解收敛于期望的弱解。综上,本发明提供的LaxFriedrichs扫描地震波旅行时间的方法、装置和存储介质,采用了因式求解和快速扫描的方式,保证了走时计算的准确性和快速性,以便进行有效的地质勘察。Compared with the prior art, the beneficial effects of the present invention include: the first arrival travel time of three wave modes, namely qP-, qSV-, and qSH-waves, can be calculated, and the factorization method is used to process the finite difference distance function solver. Headwind singularity, which decomposes the solution of the general equation of function into the product of two factors, one of which is the traveltime of the homogeneous medium, this factor captures the headwind singularity, and the other (the basis function) is a factor near the source point Modifications are necessary. The Lax-Friedrichs finite-difference scheme is further adopted, which can guarantee the iterative convergence regardless of whether the Hamiltonian function is convex or concave. The basis function is numerically calculated by the fast frequency sweep scheme based on the third-order weighted intrinsically non-oscillating scheme (WENO), and iteratively The degree is independent of the grid size, and as the grid size approaches 0, the numerical solution converges to the desired weak solution. To sum up, the method, device and storage medium for the LaxFriedrichs scanning seismic wave travel time provided by the present invention adopts the method of factoring and fast scanning, which ensures the accuracy and speed of travel time calculation, so as to carry out effective geological survey.

附图说明Description of drawings

图1为本发明提供的Lax Friedrichs扫描地震波旅行时间的方法的流程示意图;Fig. 1 is the schematic flow chart of the method for the Lax Friedrichs scanning seismic wave travel time provided by the present invention;

图2为本发明提供的因式分解的流程示意图;Fig. 2 is the schematic flow sheet of factorization provided by the present invention;

图3为本发明提供的求解群速度和相速度的流程示意图;3 is a schematic flow chart for solving group velocity and phase velocity provided by the present invention;

图4为本发明提供的Lax-Friedrichs扫描的流程示意图;4 is a schematic flow chart of Lax-Friedrichs scanning provided by the present invention;

图5为本发明提供的更新网格的流程示意图;5 is a schematic flowchart of updating grid provided by the present invention;

图6为本发明提供的qP波的走时示意图;6 is a schematic diagram of the travel time of the qP wave provided by the present invention;

图7为本发明提供的qSV波的走时示意图;Fig. 7 is the travel time schematic diagram of qSV wave provided by the present invention;

图8为本发明提供的qSH波的走时示意图;8 is a schematic diagram of the travel time of the qSH wave provided by the present invention;

图9为本发明提供的qP波的走时表示意图;9 is a schematic diagram of a travel time table of a qP wave provided by the present invention;

图10为本发明提供的qSV的走时表示意图;Fig. 10 is the travel time table schematic diagram of qSV provided by the present invention;

图11为本发明提供的qSH的走时表示意;Fig. 11 is the travel time representation of qSH provided by the present invention;

图12为本发明提供的各向异性的参数示意图;12 is a schematic diagram of anisotropy parameters provided by the present invention;

图13为本发明提供的Lax-Friedrichs扫描下的qP波的走时示意图;13 is a schematic diagram of the travel time of the qP wave under the Lax-Friedrichs scan provided by the present invention;

图14为本发明提供的Lax-Friedrichs扫描下的qSV波的走时示意图;14 is a schematic diagram of the travel time of the qSV wave under the Lax-Friedrichs scan provided by the present invention;

图15为本发明提供的Lax-Friedrichs扫描下的qSH波的走时示意图;15 is a schematic diagram of the travel time of the qSH wave under the Lax-Friedrichs scan provided by the present invention;

图16为本发明提供的qP波的三维旅行时间等值线图;16 is a three-dimensional travel time contour diagram of a qP wave provided by the present invention;

图17为本发明提供的qSV波的三维旅行时间等值线图;17 is a three-dimensional travel time contour map of a qSV wave provided by the present invention;

图18为本发明提供的qSH波的三维旅行时间等值线图;18 is a three-dimensional travel time contour map of a qSH wave provided by the present invention;

图19为本发明提供的Lax Friedrichs扫描地震波旅行时间的装置的结构示意图。FIG. 19 is a schematic structural diagram of the Lax Friedrichs device for scanning the travel time of seismic waves provided by the present invention.

具体实施方式Detailed ways

下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。The preferred embodiments of the present invention are specifically described below with reference to the accompanying drawings, wherein the accompanying drawings constitute a part of the present application, and together with the embodiments of the present invention, are used to explain the principles of the present invention, but are not used to limit the scope of the present invention.

实施例1Example 1

本发明实施例提供了一种Lax Friedrichs扫描地震波旅行时间的方法,结合图1来看,图1为本发明提供的Lax Friedrichs扫描地震波旅行时间的方法的流程示意图,上述Lax Friedrichs扫描地震波旅行时间的方法包括步骤S1至步骤S4,其中:An embodiment of the present invention provides a method for scanning the travel time of seismic waves by Lax Friedrichs. Referring to FIG. 1 , FIG. 1 is a schematic flowchart of the method for scanning travel time of seismic waves by Lax Friedrichs provided by the present invention. The method comprises steps S1 to S4, wherein:

在步骤S1中,通过引入慢度向量,建立地震波在各向异性TI介质中的程函方程;In step S1, by introducing the slowness vector, the function equation of the seismic wave in the anisotropic TI medium is established;

在步骤S2中,将程函方程的解分解为两个因子的乘积,并将两个因子的乘积带入程函方程中,转换为相应的哈密顿公式;In step S2, the solution of the function equation is decomposed into the product of two factors, and the product of the two factors is brought into the function equation, and converted into the corresponding Hamiltonian formula;

在步骤S3中,根据慢度向量,求解群速度和相速度;In step S3, according to the slowness vector, the group velocity and the phase velocity are solved;

在步骤S4中,利用Lax-Friedrichs扫描格式数值,求解程函方程。In step S4, the Lax-Friedrichs scanning format numerical value is used to solve the functional equation.

优选地,步骤S1具体包括如下步骤:Preferably, step S1 specifically includes the following steps:

根据克里斯托费尔方程,将慢度向量表示为下式:According to the Christoffel equation, the slowness vector is expressed as:

Figure BDA0002784893810000061
Figure BDA0002784893810000061

其中,

Figure BDA0002784893810000062
为波前法向向量,v为地震波的相速度,地震波包括qP波、qSV波和qSH波;in,
Figure BDA0002784893810000062
is the wavefront normal vector, v is the phase velocity of the seismic wave, and the seismic wave includes qP wave, qSV wave and qSH wave;

根据慢度向量,建立程函方程表示为下式:According to the slowness vector, the established program function equation is expressed as the following formula:

Figure BDA0002784893810000063
Figure BDA0002784893810000063

其中,T为旅行时间,

Figure BDA0002784893810000064
为旅行时间的倒数且与慢度向量相等,vm(m=1,2,3)为qP波、qSV波和qSH波的相速度,分别表示为下式:where T is the travel time,
Figure BDA0002784893810000064
is the inverse of the travel time and is equal to the slowness vector, v m (m=1,2,3) is the phase velocity of the qP wave, qSV wave and qSH wave, respectively expressed as the following equations:

Figure BDA0002784893810000071
Figure BDA0002784893810000071

Figure BDA0002784893810000072
Figure BDA0002784893810000072

其中,v1,2为qP波、qSV波的相速度,v3为qSH波的相速度,a44和a66为各向异性TI介质的弹性模量,

Figure BDA0002784893810000073
是由相慢度方向和各向异性TI介质的对称轴形成的,表示为下式:where v 1,2 are the phase velocities of the qP wave and qSV wave, v 3 is the phase velocity of the qSH wave, a 44 and a 66 are the elastic moduli of the anisotropic TI medium,
Figure BDA0002784893810000073
is formed by the phase slowness direction and the symmetry axis of the anisotropic TI medium and is expressed as:

Figure BDA0002784893810000074
Figure BDA0002784893810000074

其中,

Figure BDA0002784893810000075
为各向异性TI介质的对称轴的倾斜角和方位角,θ和
Figure BDA0002784893810000076
分别是相位慢度方向的切斜角和方位角,表示为下式:in,
Figure BDA0002784893810000075
are the inclination and azimuth angles of the symmetry axis of the anisotropic TI medium, θ and
Figure BDA0002784893810000076
are the shear angle and the azimuth angle in the phase slowness direction, respectively, and are expressed as:

Figure BDA0002784893810000077
Figure BDA0002784893810000077

Figure BDA0002784893810000078
Figure BDA0002784893810000078

其中,P=Tx,R=Tz和Q=Ty,Tx、Tz以及Ty是旅行时间T的偏导数。where P = Tx, R = Tz and Q = Ty , Tx, Tz and Ty are the partial derivatives of the travel time T.

其中,M和N表示为下式:where M and N are expressed as:

M=0.5(Q1+Q2)M=0.5(Q 1 +Q 2 )

N=Q1Q2-Q3 (7)N=Q 1 Q 2 -Q 3 (7)

其中,Q1、Q2、Q3表示为下式:Among them, Q 1 , Q 2 , Q 3 are represented by the following formulas:

Figure BDA0002784893810000079
Figure BDA0002784893810000079

其中,(a11,a22,a33,a44,a55,a66)是各向异性TI介质的弹性模量。where (a 11 , a 22 , a 33 , a 44 , a 55 , a 66 ) are the elastic moduli of anisotropic TI media.

优选地,结合图2来看,图2为本发明提供的因式分解的流程示意图,步骤S2包括步骤S21至步骤S22,其中:Preferably, with reference to FIG. 2, FIG. 2 is a schematic flowchart of the factorization provided by the present invention, and step S2 includes steps S21 to S22, wherein:

在步骤S21中,将程函方程的解分解为第一因子和第二因子;In step S21, the solution of the function equation is decomposed into a first factor and a second factor;

在步骤S22中,将第一因子和第二因子带入程函方程,并根据未知因子u(x,y,z)和T0(x,y,z)关于坐标x、y、z的导数进行公式转化,确定相应的哈密顿形式。In step S22, the first factor and the second factor are brought into the functional equation, and the derivatives of the unknown factors u(x, y, z) and T 0 (x, y, z) with respect to the coordinates x, y, z are used Convert the formula to determine the corresponding Hamiltonian form.

在本发明具体的实施例中,将式(2)的解分解为两个因子的乘积,表示为下式:In a specific embodiment of the present invention, the solution of formula (2) is decomposed into the product of two factors, which is expressed as the following formula:

Figure BDA0002784893810000081
Figure BDA0002784893810000081

其中,x,y,z为计算域中的坐标,T(x,y,z)为所述第一因子,s(x,y,z)为所述第二因子,T0(x,y,z)是预先确定捕捉源奇点的,u(x,y,z)为在源点附近平滑的未知因子,s0(x,y,z)为相位慢度模型,α(x,y,z)为所述相位慢度模型s0(x,y,z)对应的位置因子,第一个因子通过解析或数值计算来捕获源的奇异性,第二个因子是对第一个因子的必要修正,在源点附近是光滑的。考虑式(2)的分解,在均匀介质中,程函方程满足如下关系:Among them, x, y, z are the coordinates in the computational domain, T(x, y, z) is the first factor, s(x, y, z) is the second factor, T 0 (x, y) ,z) is predetermined to capture the source singularity, u(x,y,z) is an unknown factor smoothed around the source point, s 0 (x,y,z) is the phase slowness model, α(x,y ,z) is the position factor corresponding to the phase slowness model s 0 (x, y, z), the first factor captures the singularity of the source through analytical or numerical calculation, and the second factor is the first factor The necessary correction of , is smooth near the source point. Considering the decomposition of Equation (2), in a homogeneous medium, the function equation satisfies the following relationship:

Figure BDA0002784893810000082
Figure BDA0002784893810000082

其中,T0是预先确定捕捉源奇点的,u是在源点附近平滑的未知因子。s为相位慢度模型,s0为源点(x0,y0,z0)的相位慢度。它们都是关于相位慢度方向

Figure BDA0002784893810000083
的函数。where T 0 is pre-determined to capture the source singularity, and u is an unknown factor smoothed around the source point. s is the phase slowness model, and s 0 is the phase slowness of the source point (x 0 , y 0 , z 0 ). They are all about the phase slowness direction
Figure BDA0002784893810000083
The function.

将上式(9)代入上式(2),所得结果表示为下式:Substituting the above formula (9) into the above formula (2), the result obtained is expressed as the following formula:

Figure BDA0002784893810000084
Figure BDA0002784893810000084

有P=Tx,R=Tz和Q=Ty带入计算,所得结果表示为下式:With P=T x , R=T z and Q=T y brought into the calculation, the result obtained is expressed as the following formula:

P=T0xu+T0p (12-a)P=T 0x u+T 0 p (12-a)

Q=T0yu+T0q (12-b)Q=T 0y u+T 0 q (12-b)

R=T0zu+T0r (12-c)R=T 0z u+T 0 r (12-c)

其中,(p,q,r)=(ux,uy,uz)是u关于x、y、z的导数,T0x,T0y和T0z是T0关于x、y、z的导数,更进一步,式(11)可以写成哈密顿形式,表示为下式:where (p,q,r)=(u x ,u y ,u z ) is the derivative of u with respect to x, y, and z, and T 0x , T 0y and T 0z are the derivatives of T 0 with respect to x, y, and z , and further, equation (11) can be written in Hamiltonian form, expressed as the following equation:

Figure BDA0002784893810000091
Figure BDA0002784893810000091

f(x,y,z)=sm(P,Q,R),(m=1,2,3) (13-b)f(x,y,z)=s m (P,Q,R),(m=1,2,3) (13-b)

其中,(ux,uy,uz)是所述未知因子u(x,y,z)关于坐标x、y、z的导数,H(x,y,z,u,ux,uy,uz)为哈密顿算子,f(x,y,z)为对应的哈密顿导数函数,sm(P,Q,R)为带入P,Q,R后的相位慢度模型,P、Q和R为所述第一因子T(x,y,z)关于坐标x、y、z的导数,T0(x,y,z)是预先确定捕捉源奇点的,u(x,y,z)为在源点附近平滑的未知因子。where (u x , u y , u z ) is the derivative of the unknown factor u(x, y, z) with respect to the coordinates x, y, z, H(x, y, z, u, u x , u y , u z ) is the Hamiltonian operator, f(x, y, z) is the corresponding Hamiltonian derivative function, s m (P, Q, R) is the phase slowness model brought into P, Q, R, P, Q and R are the derivatives of the first factor T(x, y, z) with respect to the coordinates x, y, z, T 0 (x, y, z) is predetermined to capture the source singularity, u(x , y, z) are unknown factors smoothed around the source point.

优选地,结合图3来看,图3为本发明提供的求解群速度和相速度的流程示意图,步骤S3包括步骤S31至步骤S32,其中:Preferably, referring to Fig. 3, Fig. 3 is a schematic flowchart of solving the group velocity and phase velocity provided by the present invention, and step S3 includes steps S31 to S32, wherein:

在步骤S31中,设定相位慢度方向和射线方向;In step S31, the phase slowness direction and the ray direction are set;

在步骤S32中,根据慢度向量和群速度向量之间的关系,确定群速度和相速度。In step S32, the group velocity and the phase velocity are determined according to the relationship between the slowness vector and the group velocity vector.

由此,通过相位慢度方向和射线方向,有效地求解群速度和相速度,以便对程函方程的求解。Thus, through the phase slowness direction and the ray direction, the group velocity and the phase velocity are effectively solved in order to solve the equation of function.

在本发明的具体实施例中,步骤S3具体包括如下步骤:In a specific embodiment of the present invention, step S3 specifically includes the following steps:

根据式(13),T0仍然未知,可以计算为According to Eq. (13), T 0 is still unknown and can be calculated as

Figure BDA0002784893810000092
Figure BDA0002784893810000092

其中,

Figure BDA0002784893810000093
为计算域中的坐标,
Figure BDA0002784893810000094
为源位置的坐标,
Figure BDA0002784893810000095
为沿射线方向
Figure BDA0002784893810000096
的群速度。in,
Figure BDA0002784893810000093
are the coordinates in the computational domain,
Figure BDA0002784893810000094
are the coordinates of the source location,
Figure BDA0002784893810000095
along the ray direction
Figure BDA0002784893810000096
the group velocity.

其中,群速度

Figure BDA0002784893810000101
表达为下式:where the group velocity
Figure BDA0002784893810000101
Expressed as:

Figure BDA0002784893810000102
Figure BDA0002784893810000102

当qP波、qSV波和qSH波的相速度的倒数分别表示为下式:When the inverses of the phase velocities of the qP wave, qSV wave and qSH wave are respectively expressed as the following equations:

Figure BDA0002784893810000103
Figure BDA0002784893810000103

Figure BDA0002784893810000104
Figure BDA0002784893810000104

其中,M和N的导数表示为下式:where the derivatives of M and N are expressed as:

Figure BDA0002784893810000105
Figure BDA0002784893810000105

Figure BDA0002784893810000106
Figure BDA0002784893810000106

相位慢度方向

Figure BDA0002784893810000107
和夹角
Figure BDA0002784893810000108
是隐式定义的,它们依赖于解T=T0·u。在后续描述中,我们将给出一个数值程序来计算沿给定射线方向的群速度和相速度。Phase slowness direction
Figure BDA0002784893810000107
and angle
Figure BDA0002784893810000108
are implicitly defined and they depend on the solution T=T 0 ·u. In the following description, we will give a numerical procedure to calculate the group and phase velocities along a given ray direction.

需要说明的是,式(13)中,T0关于x、y、z的导数(T0x,T0y,T0z)也是未知数。与各向同性介质不同,由于波前不是标准圆/球时可能存在高频噪声,因此不能用高阶有限差分法进行计算。因此,我们给出了计算这三个变量的解析表达式,在均匀各向异性介质中,表示为下式:It should be noted that, in the formula (13), the derivatives of T 0 with respect to x, y, and z (T 0x , T 0y , T 0z ) are also unknowns. Unlike isotropic media, high-order finite difference methods cannot be used for calculations due to the possibility of high-frequency noise when the wavefront is not a perfect circle/sphere. Therefore, we give analytical expressions for computing these three variables, in a homogeneous anisotropic medium, as:

Figure BDA0002784893810000109
Figure BDA0002784893810000109

其中,v0为源点处的相速度函数,(p0,q0,r0)=(T0x,T0y,T0z)是T0关于x,y,z的导数。从方程(18)的平方根中依次提取p0,q0,r0并做一些代数运算,运算后得到结果表示如下:Among them, v 0 is the phase velocity function at the source point, (p 0 , q 0 , r 0 )=(T 0x , T 0y , T 0z ) is the derivative of T 0 with respect to x, y, and z. Extract p 0 , q 0 , r 0 from the square root of equation (18) in turn and do some algebraic operations. The result after the operation is expressed as follows:

Figure BDA00027848938100001010
Figure BDA00027848938100001010

Figure BDA0002784893810000111
Figure BDA0002784893810000111

Figure BDA0002784893810000112
Figure BDA0002784893810000112

需要说明的是,对于特定的射线方向,可以使用后续中演示的群速度的求解方法来确定θ和

Figure BDA0002784893810000113
根据θ和
Figure BDA0002784893810000114
的取值范围,我们可以确定这三个变量(p0,q0,r0)的符号。It should be noted that, for a specific ray direction, θ and θ can be determined using the group velocity solution method demonstrated in the following
Figure BDA0002784893810000113
According to θ and
Figure BDA0002784893810000114
The value range of , we can determine the sign of these three variables (p 0 , q 0 , r 0 ).

其中,在计算T0时,我们需要计算沿给定射线方向的群速度。然而,群速度是慢度矢量的函数,而不是射线方向的函数(19)。如果可以计算出射线方向的慢度矢量,则可以很容易地计算出群速度。前期工作研究了如何计算特定射线方向的慢度向量。Among them, when calculating T0 , we need to calculate the group velocity along a given ray direction. However, the group velocity is a function of the slowness vector, not the ray direction (19). The group velocity can be easily calculated if the slowness vector in the ray direction can be calculated. Previous work investigated how to calculate slowness vectors for specific ray directions.

如果给定相位慢度方向

Figure BDA0002784893810000115
和相位速度vm,则慢度矢量可以表示为下式:If the phase slowness direction is given
Figure BDA0002784893810000115
and the phase velocity v m , then the slowness vector can be expressed as:

Figure BDA0002784893810000116
Figure BDA0002784893810000116

慢度向量

Figure BDA0002784893810000117
和群速度向量
Figure BDA0002784893810000118
应满足以下关系:slowness vector
Figure BDA0002784893810000117
and the group velocity vector
Figure BDA0002784893810000118
The following relationship should be satisfied:

Figure BDA0002784893810000119
Figure BDA0002784893810000119

相位慢度方向

Figure BDA00027848938100001110
和射线方向
Figure BDA00027848938100001111
分别表示为下式:Phase slowness direction
Figure BDA00027848938100001110
and ray direction
Figure BDA00027848938100001111
They are respectively expressed as the following formulas:

Figure BDA00027848938100001112
Figure BDA00027848938100001112

式(28)两边同时除以

Figure BDA00027848938100001113
得到下式:Divide both sides of equation (28) by
Figure BDA00027848938100001113
get the following formula:

Figure BDA00027848938100001114
Figure BDA00027848938100001114

式(25)将用于计算沿给定射线方向的相速度和群速度。设射线方向为

Figure BDA00027848938100001115
相位慢度方向为
Figure BDA00027848938100001116
将式(25)改写为:Equation (25) will be used to calculate the phase and group velocities along a given ray direction. Let the ray direction be
Figure BDA00027848938100001115
The phase slowness direction is
Figure BDA00027848938100001116
Rewrite equation (25) as:

Figure BDA0002784893810000121
Figure BDA0002784893810000121

该方程可以用伪位置法或等分法等求解。一旦沿射线方向

Figure BDA0002784893810000122
计算相位慢度方向
Figure BDA0002784893810000123
则可分别由式(19)和式(3)计算群速度Um和相速度vm。该方法适用于任意各向异性介质中的三种波型。This equation can be solved by the pseudo-position method or the bisection method, etc. Once along the ray direction
Figure BDA0002784893810000122
Calculate the phase slowness direction
Figure BDA0002784893810000123
Then, the group velocity U m and the phase velocity v m can be calculated from equations (19) and (3), respectively. The method is applicable to three wave modes in any anisotropic medium.

优选地,结合图4来看,图4为本发明提供的Lax-Friedrichs扫描的流程示意图,步骤S4包括步骤S41至步骤S42,其中:Preferably, with reference to FIG. 4 , FIG. 4 is a schematic flowchart of Lax-Friedrichs scanning provided by the present invention, and step S4 includes steps S41 to S42, wherein:

在步骤S41中,建立相应的哈密顿形式的一阶Lax-Friedrichs格式;In step S41, the first-order Lax-Friedrichs format of the corresponding Hamiltonian form is established;

在步骤S42中,根据每个网格点对应的三阶迎风偏置WENO(三阶加权本质非振荡格式)近似值,将网格点上的旅行时间值替换,建立基于WENO的三阶Lax-Friedrichs格式的静态哈密顿-雅可比方程;In step S42, according to the approximation value of the third-order upwind bias WENO (third-order weighted intrinsic non-oscillation scheme) corresponding to each grid point, the travel time value on the grid point is replaced, and a third-order Lax-Friedrichs based on WENO is established The static Hamiltonian-Jacobi equation of the format;

在步骤S43中,将基于WENO的三阶Lax-Friedrichs格式的静态哈密顿-雅可比方程写成紧凑形式,根据紧凑形式对网格点上的旅行时间值进行更新。In step S43, the static Hamiltonian-Jacobi equation based on the third-order Lax-Friedrichs format of WENO is written in a compact form, and the travel time value on the grid point is updated according to the compact form.

由此,采用Lax-Friedrichs有限差分格式,无论哈密顿函数是凸还是凹,都能保证迭代收敛。利用基于三阶加权本质非振荡格式(WENO)的快速扫频格式对基函数进行数值计算,达到快速扫描的目的,其中,迭代次数与网格大小无关,随着网格大小趋近于0,数值解收敛于期望的弱解。Thus, using the Lax-Friedrichs finite difference scheme, iterative convergence can be guaranteed regardless of whether the Hamiltonian function is convex or concave. The basis function is numerically calculated by the fast frequency sweep scheme based on the third-order weighted intrinsically non-oscillating scheme (WENO) to achieve the purpose of fast sweep. The number of iterations has nothing to do with the grid size, and as the grid size approaches 0, The numerical solution converges to the expected weak solution.

在本发明的具体实施例中,将式(13)表示为下式:In a specific embodiment of the present invention, formula (13) is expressed as the following formula:

Figure BDA0002784893810000124
Figure BDA0002784893810000124

其中,αxy和αz为黏度系数。where α x , α y and α z are the viscosity coefficients.

将式(27)中,ui-1,j,k,ui+1,j,k,ui,j-1,k,ui,j+1,k,ui,j,k-1和ui,j,k+1替换为In formula (27), u i-1,j,k ,u i+1,j,k ,u i,j-1,k ,u i,j+1,k ,u i,j,k- 1 and u i,j,k+1 are replaced by

Figure BDA0002784893810000131
Figure BDA0002784893810000131

其中,

Figure BDA0002784893810000132
Figure BDA0002784893810000133
是ux的三阶迎风偏置WENO近似;
Figure BDA0002784893810000134
Figure BDA0002784893810000135
是uy的三阶迎风偏置WENO近似;
Figure BDA0002784893810000136
Figure BDA0002784893810000137
是uz的三阶迎风偏置WENO近似,其中:in,
Figure BDA0002784893810000132
and
Figure BDA0002784893810000133
is the third-order upwind bias WENO approximation of u x ;
Figure BDA0002784893810000134
and
Figure BDA0002784893810000135
is the third-order upwind bias WENO approximation of u y ;
Figure BDA0002784893810000136
and
Figure BDA0002784893810000137
is the third-order upwind bias WENO approximation of u z , where:

Figure BDA0002784893810000138
Figure BDA0002784893810000138

when

Figure BDA0002784893810000139
Figure BDA0002784893810000139

以及as well as

Figure BDA00027848938100001310
Figure BDA00027848938100001310

when

Figure BDA00027848938100001311
Figure BDA00027848938100001311

类似地,我们可以定义

Figure BDA00027848938100001312
Figure BDA00027848938100001313
的三阶WENO近似。ε是一个很小的正数,以避免除以0。Similarly, we can define
Figure BDA00027848938100001312
and
Figure BDA00027848938100001313
The third-order WENO approximation of . ε is a small positive number to avoid division by 0.

然后,基于WENO的三阶Lax-Friedrichs格式的静态哈密顿-雅可比方程可以写成紧凑形式:Then, the static Hamiltonian-Jacobi equation based on WENO's third-order Lax-Friedrichs format can be written in compact form:

Figure BDA00027848938100001314
Figure BDA00027848938100001314

Figure BDA0002784893810000141
Figure BDA0002784893810000141

其中,

Figure BDA0002784893810000142
为待更新的网格点(i,j,k)的数值解,
Figure BDA0002784893810000143
为同一点的旧数值解。in,
Figure BDA0002784893810000142
is the numerical solution of the grid point (i, j, k) to be updated,
Figure BDA0002784893810000143
for the old numerical solution for the same point.

优选地,结合图5来看,图5为本发明提供的更新网格的流程示意图,步骤S43包括步骤S431至步骤S434,其中:Preferably, with reference to FIG. 5, FIG. 5 is a schematic flowchart of updating grid provided by the present invention, and step S43 includes steps S431 to S434, wherein:

在步骤S431中,对一阶Lax-Friedrichs格式中的网格点进行初始化赋值;In step S431, initialize and assign the grid points in the first-order Lax-Friedrichs format;

在步骤S432中,用8次交替方向扫频的Gauss-Seidel(高斯-赛德尔迭代)迭代求解紧凑形式,并进行网格更新;In step S432, the compact form is solved iteratively with 8 Gauss-Seidel (Gauss-Seidel iteration) frequency sweeps in alternating directions, and the grid is updated;

在步骤S433中,在内部边界和外部边界的六个平面上,设置对应的多个极大、极小值条件,采用线性外推法确定域外点的数值解;In step S433, on the six planes of the inner boundary and the outer boundary, a plurality of corresponding maximum and minimum value conditions are set, and a linear extrapolation method is used to determine the numerical solution of the point outside the domain;

在步骤S434中,判断两个连续迭代之间的解的L1-norm差是否满足预设的精度条件,若满足,则终止迭代。In step S434, it is judged whether the L1-norm difference of the solution between two consecutive iterations satisfies the preset accuracy condition, and if so, the iteration is terminated.

由此,利用8次交替方向扫频的Gauss-Seidel迭代求解,达到快速扫描求解的目的,同时对域外点的数值解进行准确计算,保证网格更新的高效性。Therefore, the Gauss-Seidel iterative solution with 8 frequency sweeps in alternating directions is used to achieve the purpose of fast scanning and solution, and at the same time, the numerical solution of the out-of-domain point is accurately calculated to ensure the efficiency of grid update.

在本发明具体实施例中,用基于三阶WENO的Lax-Friedrichs格式(19)求解哈密顿-雅可比方程(13)。实施程序可概括如下(Zhang et al.,2006;Luo et al.,2012):In a specific embodiment of the present invention, the Hamilton-Jacobi equation (13) is solved using the Lax-Friedrichs scheme (19) based on the third-order WENO. The implementation procedure can be summarized as follows (Zhang et al., 2006; Luo et al., 2012):

算法示意图:各向异性因子程函方程的三阶Lax-Friedrichs扫描格式Algorithm Schematic: Third-Order Lax-Friedrichs Scan Format for Anisotropic Factorial Function Equations

初始化:在离源点距离小于等于2h的网格点上赋值,因为三阶WENO近似至少需要三个网格点。这些值将在迭代期间固定,并为所有其他网格点分配较大的正值。Initialization: Assign values on grid points with a distance less than or equal to 2h from the source point, because at least three grid points are required for the third-order WENO approximation. These values will be fixed during the iteration and all other grid points will be assigned large positive values.

Gauss-Seidel迭代:用8次交替方向扫频的Gauss-Seidel迭代求解离散化方程(33):Gauss-Seidel Iteration: Solve the discretized equation (33) with 8 Gauss-Seidel iterations swept in alternating directions:

Figure BDA0002784893810000151
Figure BDA0002784893810000151

在每个网格点(i,j,k),根据上面描述的方法进行更新。At each grid point (i,j,k), it is updated according to the method described above.

终止:如果两个连续迭代之间的解的L1-norm差小于指定的精度要求,则终止迭代。Terminate: Terminate an iteration if the L1-norm difference of the solution between two consecutive iterations is less than the specified accuracy requirement.

在执行三阶Lax-Friedrichs扫描方案时,在边界点附近和边界点处采用线性外推法。在内部边界的六个平面上,设置以下条件:When performing a third-order Lax-Friedrichs scanning scheme, linear extrapolation is employed near and at boundary points. On the six planes of the inner boundary, set the following conditions:

Figure BDA0002784893810000152
Figure BDA0002784893810000152

然后,在外边界的六个平面上,施加以下条件:Then, on the six planes of the outer boundary, the following conditions are imposed:

Figure BDA0002784893810000153
Figure BDA0002784893810000153

Figure BDA0002784893810000161
Figure BDA0002784893810000161

利用外推法、极大值法和极小值法计算出计算域外点的数值解。在快速扫频法的高斯-塞德尔迭代过程中,必须有效地求解(33)分解方程,并计算未知因子。Numerical solutions for points outside the computational domain are calculated by extrapolation, maximum and minimum methods. During the Gauss-Seidel iteration of the fast frequency sweep method, the (33) decomposition equation must be solved efficiently and the unknown factors calculated.

在本发明一个具体的实施例中,给出四个测试例进行说明:In a specific embodiment of the present invention, four test cases are given for description:

第一个实例是对正弦各向异性模型的测试。计算域为[-0.5,0.5]×[0.0,0.5]km矩形域,点源位于x=0.0km,y=0.0km处。模型的各向异性参数(a11(x),a13(x),a33(x),a44(x),a66(x),θ0(x))在表1中列出,表1如下所示:The first instance is a test of a sinusoidal anisotropy model. The computational domain is [-0.5,0.5]×[0.0,0.5]km rectangular domain, and the point source is located at x=0.0km, y=0.0km. The anisotropic parameters of the model (a11(x), a13(x), a33(x), a44(x), a66(x), θ0(x)) are listed in Table 1, which is shown below:

表1Table 1

各向异性参数Anisotropy parameter 生成各向异性参数的函数function to generate anisotropic parameters a<sub>11</sub>a<sub>11</sub> 5.2×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))}5.2×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))} a<sub>13</sub>a<sub>13</sub> 0.98×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))}0.98×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))} a<sub>33</sub>a<sub>33</sub> 4.0×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))}4.0×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))} a<sub>44</sub>a<sub>44</sub> 1.0×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))}1.0×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))} a<sub>66</sub>a<sub>66</sub> 1.0×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))}1.0×{1.5+0.5sin(0.4π(z+0.01))sin(3π(x+0.05))} θ<sub>0</sub>θ<sub>0</sub> 0<sup>0</sup>0<sup>0</sup>

参考解采用SPM模型在非常精细的网格1601×801上计算。该模型在101×51的网格上采样,用于Lax-Friedrichs扫描方法。表2列出了四种不同网格尺寸的L1范数误差和收敛顺序。收敛阶大于一阶,验证了Lax-Friedrichs扫描法求解源奇异性的有效性,表2如下所示:The reference solution is computed on a very fine grid 1601×801 using the SPM model. The model is sampled on a 101 × 51 grid for the Lax-Friedrichs scanning method. Table 2 lists the L1 norm error and convergence order for four different grid sizes. The convergence order is greater than the first order, which verifies the effectiveness of the Lax-Friedrichs scanning method to solve the source singularity. Table 2 is as follows:

表2Table 2

Figure BDA0002784893810000171
Figure BDA0002784893810000171

结合图6、图7、图8来看,图6为本发明提供的qP波的走时示意图,图7为本发明提供的qSV波的走时示意图,图8为本发明提供的qSH波的走时示意图。在图6、图7、图8中,我们比较了SPM和LAX方法所产生的三种波模的旅行时间。6, 7 and 8, FIG. 6 is a schematic diagram of the travel time of the qP wave provided by the present invention, FIG. 7 is a schematic diagram of the travel time of the qSV wave provided by the present invention, and FIG. 8 is a schematic diagram of the travel time of the qSH wave provided by the present invention. . In Figures 6, 7, and 8, we compare the travel times of the three modes produced by the SPM and LAX methods.

第二个实例对Hess VTI模型进行了测试,其矩形面积为[-16.0,16.0]×[0.0,12.0]km。点源位于x=0.0km处,y=0.0km处。有五个弹性模型(a11(x),a13(x),a33(x),a44(x),a66(x)),与θ0(x)=00(图4)。模型中存在陡断层和高速盐体。模型采用网格401×151重新采样。结合图9至图11来看,图9为本发明提供的qP波的走时表示意图,图10为本发明提供的qSV的走时表示意图,图11为本发明提供的qSH的走时表示意图,从图中可以看出,Lax-Friedrichs扫频法可以很好地计算qP、qSV和qSH波的走时表。The second instance tests the Hess VTI model with a rectangular area of [-16.0, 16.0] × [0.0, 12.0] km. The point source is located at x=0.0 km, y=0.0 km. There are five elastic models (a11(x), a13(x), a33(x), a44(x), a66(x)), with θ0(x) = 00 (Fig. 4). Steep faults and high velocity salt bodies are present in the model. The model is resampled with a grid of 401×151. 9 to 11, FIG. 9 is a schematic diagram of the travel time table of the qP wave provided by the present invention, FIG. 10 is a schematic diagram of the travel time table of the qSV provided by the present invention, and FIG. 11 is a schematic diagram of the travel time table of the qSH provided by the present invention. As can be seen from the figure, the Lax-Friedrichs frequency sweep method can calculate the travel time table of qP, qSV and qSH waves well.

第三个实例是在地层两侧倾角较大的背斜地层上进行的测试。该模型称为BP TTI模型的一部分。结合图12来看,图12为本发明提供的各向异性的参数示意图,从图可知,(a11(x),a13(x),a33(x),a44(x),a66(x))和倾斜角θ0(x),其中,计算区域为[-5.0,5.0]×[0.0,10.0]km矩形区域,源点位于x=0.0km,y=0.0km处。模型采用251×251网格采样。结合图13至图15来看,图13为本发明提供的Lax-Friedrichs扫描下的qP波的走时示意图,图14为本发明提供的Lax-Friedrichs扫描下的qSV波的走时示意图,图15为本发明提供的Lax-Friedrichs扫描下的qSH波的走时示意图,可以看出,Lax-Friedrichs扫描方法成功地生成了三个波模的旅行时间。The third example is a test performed on an anticline formation with large dips on both sides of the formation. This model is called part of the BP TTI model. Referring to Fig. 12, Fig. 12 is a schematic diagram of the parameters of anisotropy provided by the present invention. It can be seen from the figure that (a11(x), a13(x), a33(x), a44(x), a66(x)) and the inclination angle θ0(x), where the calculation area is [-5.0, 5.0]×[0.0, 10.0]km rectangular area, and the source point is located at x=0.0km, y=0.0km. The model is sampled with a 251×251 grid. 13 to 15, FIG. 13 is a schematic diagram of the travel time of the qP wave under the Lax-Friedrichs scan provided by the present invention, FIG. 14 is a schematic diagram of the travel time of the qSV wave under the Lax-Friedrichs scan provided by the present invention, and FIG. 15 is According to the travel time diagram of the qSH wave under the Lax-Friedrichs scanning provided by the present invention, it can be seen that the Lax-Friedrichs scanning method successfully generates the travel times of three wave modes.

第四个实例是在三层各向异性介质中测试了所提出的方法。模型中存在倾斜界面。各向异性参数(a11(x),a13(x),a33(x),a44(x),a66(x)),倾角θ0(x)和方位角度φ0(x)在表3中列出,表3如下所示:The fourth example is to test the proposed method in a three-layer anisotropic medium. A sloped interface exists in the model. Anisotropy parameters (a11(x), a13(x), a33(x), a44(x), a66(x)), inclination angle θ0(x) and azimuth angle φ0(x) are listed in Table 3, Table 3 is shown below:

表3table 3

Figure BDA0002784893810000181
Figure BDA0002784893810000181

结合图16至图18来看,图16为本发明提供的qP波的三维旅行时间等值线图,图17为本发明提供的qSV波的三维旅行时间等值线图,图18为本发明提供的qSH波的三维旅行时间等值线图。从图可知,所采用的二维模型的三维扩展用于计算弹性波的走时和射线路径,计算域为[-2.5,2.5]×[-1.0,1.0]×[0.0,5.0]km矩形域,源点位于x=0.0km,x=0.0km,z=0.0km处,Lax-Friedrichs扫描法的网格为101×41×101。分别在各向异性模型(a11(x)模型)和三维旅行时间立方体(图16-18)上绘制qP、qSV和qSH波的三维旅行时间等值线图。16 to 18, FIG. 16 is a three-dimensional travel time contour diagram of a qP wave provided by the present invention, FIG. 17 is a three-dimensional travel time contour diagram of a qSV wave provided by the present invention, and FIG. 18 is the present invention. Three-dimensional travel time contour plots of qSH waves are provided. It can be seen from the figure that the 3D extension of the adopted 2D model is used to calculate the travel time and ray path of elastic waves, and the computational domain is [-2.5, 2.5]×[-1.0, 1.0]×[0.0, 5.0]km rectangular domain, The source point is located at x=0.0km, x=0.0km, z=0.0km, and the grid of Lax-Friedrichs scanning method is 101×41×101. Three-dimensional travel time contour maps of qP, qSV, and qSH waves were plotted on the anisotropy model (a11(x) model) and the three-dimensional travel time cube (Figures 16-18), respectively.

实施例2Example 2

本发明实施例提供了一种Lax Friedrichs扫描地震波旅行时间的装置,结合图19来看,图19为本发明提供的Lax Friedrichs扫描地震波旅行时间的装置的结构示意图,上述装置1900包括:An embodiment of the present invention provides a Lax Friedrichs device for scanning the travel time of seismic waves. Referring to FIG. 19 , FIG. 19 is a schematic structural diagram of the device for scanning the travel time of seismic waves by Lax Friedrichs provided by the present invention. The above device 1900 includes:

建模单元1901,用于通过引入慢度向量,建立地震波在各向异性TI介质中的程函方程;The modeling unit 1901 is used to establish the function equation of seismic waves in anisotropic TI medium by introducing the slowness vector;

转换单元1902,用于将程函方程的解分解为两个因子的乘积,并将两个因子的乘积带入程函方程中,转换为相应的哈密顿形式;a conversion unit 1902, configured to decompose the solution of the functional equation into the product of two factors, and bring the product of the two factors into the functional equation, and convert it into a corresponding Hamiltonian form;

求解单元1903,用于根据慢度向量,求解群速度和相速度;The solving unit 1903 is used to solve the group velocity and the phase velocity according to the slowness vector;

扫描单元1904,用于利用Lax-Friedrichs扫描格式数值,求解程函方程,确定地震波的旅行时间。The scanning unit 1904 is configured to use the Lax-Friedrichs scanning format value to solve the functional equation and determine the travel time of the seismic wave.

实施例3Example 3

本发明实施例提供了一种计算机可读存储介质,其上存储有计算机程序,上述计算机该程序被处理器执行时,实现上述的Lax Friedrichs扫描地震波旅行时间的方法。An embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored. When the computer program is executed by a processor, the above-mentioned Lax Friedrichs scanning seismic wave travel time method is implemented.

本发明公开了一种Lax Friedrichs扫描地震波旅行时间的方法,可以计算三种波型的初至旅行时间,即qP-、qSV-、qSH-波,并采用因子分解方法处理有限差分程函求解器的逆风奇异性,将一般程函方程的解分解为两个因子的乘积,其中一个因子是均匀介质的走时,这个因子捕获了逆风奇点,而另一个因子(基础函数)是源点附近的一个必要修改。进一步采用Lax-Friedrichs有限差分格式,无论哈密顿函数是凸还是凹,都能保证迭代收敛,采用基于三阶加权本质非振荡格式(WENO)的快速扫频格式对基函数进行数值计算,且迭代次数与网格大小无关,随着网格大小趋近于0,数值解收敛于期望的弱解。因而,本发明利用有效因子分解方法,给出了TTI介质中qP-、qSV-和qSH-波的因子各向异性程函方程的哈密顿形式,设计了一种结合Lax-Friedrichs有限差分格式的快速扫描方法,保证了计算旅行时间的高效性和准确性。The invention discloses a Lax Friedrichs scanning seismic wave travel time method, which can calculate the first arrival travel time of three wave types, namely qP-, qSV- and qSH-waves, and uses a factor decomposition method to process a finite difference equation solver The headwind singularity of A necessary modification. The Lax-Friedrichs finite-difference scheme is further adopted, which can guarantee the iterative convergence regardless of whether the Hamiltonian function is convex or concave. The basis function is numerically calculated by the fast frequency sweep scheme based on the third-order weighted intrinsically non-oscillating scheme (WENO), and iteratively The degree is independent of the grid size, and as the grid size approaches 0, the numerical solution converges to the desired weak solution. Therefore, the present invention uses the effective factorization method to give the Hamiltonian form of the factorial anisotropy equations of qP-, qSV- and qSH-waves in TTI medium, and designs a combination of the Lax-Friedrichs finite difference scheme. The fast scanning method ensures efficient and accurate calculation of travel time.

本发明技术方案,采用了因式求解和快速扫描的方式,通过三阶加权基本非振荡近似和Lax-Friedrichs格式离散化各向异性程函方程的哈密顿形式,然后用快速扫描法迭代求解离散系统,可以计算出非常精确的初至时间。各向异性程函方程在相位和群速度上不存在弱的各向异性假设,因此该方法适用于具有任意各向异性的倾斜横观各向同性(TTI)介质,灵活性强、泛化度高,兼具正确性和有效性,保证了走时计算的准确性和快速性,以便进行有效的地质勘察。The technical scheme of the present invention adopts the method of factoring and fast scanning, discretizes the Hamiltonian form of the anisotropic functional equation through the third-order weighted basic non-oscillation approximation and Lax-Friedrichs format, and then uses the fast scanning method to iteratively solve the discrete system that can calculate very precise first arrival times. The anisotropic functional equation does not have weak anisotropy assumptions in phase and group velocity, so this method is suitable for inclined transversely isotropic (TTI) media with arbitrary anisotropy, with strong flexibility and generalization. High, both correctness and effectiveness, ensure the accuracy and rapidity of travel time calculation, so as to carry out effective geological survey.

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention.

Claims (6)

1.一种Lax Friedrichs扫描地震波旅行时间的方法,其特征在于,包括:1. a method for Lax Friedrichs scanning seismic wave travel time, is characterized in that, comprises: 通过引入慢度向量,建立地震波在各向异性TI介质中的程函方程;By introducing the slowness vector, the function equation of seismic wave in anisotropic TI medium is established; 将所述程函方程的解分解为两个因子的乘积,并将所述两个因子的乘积带入所述程函方程中,转换为相应的哈密顿形式;Decompose the solution of the functional equation into a product of two factors, and bring the product of the two factors into the functional equation, and convert it into a corresponding Hamiltonian form; 根据所述慢度向量,求解群速度和相速度;According to the slowness vector, solve the group velocity and the phase velocity; 利用Lax-Friedrichs扫描格式数值,求解所述程函方程,确定所述地震波的旅行时间。The travel time of the seismic wave is determined by solving the functional equation using the Lax-Friedrichs scan format numerical values. 2.根据权利要求1所述的Lax Friedrichs扫描地震波旅行时间的方法,其特征在于,所述将所述程函方程的解分解为两个因子的乘积,并将所述两个因子的乘积带入所述程函方程中,转换为相应的哈密顿形式包括:2. The method for scanning the travel time of seismic waves by Lax Friedrichs according to claim 1, wherein the solution of the functional equation is decomposed into the product of two factors, and the product of the two factors is banded Into the functional equation, the conversion to the corresponding Hamiltonian form includes: 将所述程函方程的解分解为第一因子和第二因子,所述第一因子和所述第二因子表示为:The solution of the functional equation is decomposed into a first factor and a second factor, and the first factor and the second factor are expressed as:
Figure FDA0002784893800000011
Figure FDA0002784893800000011
其中,x,y,z为计算域中的坐标,T(x,y,z)为所述第一因子,s(x,y,z)为所述第二因子,T0(x,y,z)是预先确定捕捉源奇点的,u(x,y,z)为在源点附近平滑的未知因子,s0(x,y,z)为相位慢度模型,α(x,y,z)为所述相位慢度模型s0(x,y,z)对应的位置因子;Among them, x, y, z are the coordinates in the computational domain, T(x, y, z) is the first factor, s(x, y, z) is the second factor, T 0 (x, y) ,z) is predetermined to capture the source singularity, u(x,y,z) is an unknown factor smoothed around the source point, s 0 (x,y,z) is the phase slowness model, α(x,y , z) is the position factor corresponding to the phase slowness model s 0 (x, y, z); 将所述第一因子和所述第二因子带入所述程函方程,并根据所述未知因子u(x,y,z)和所述预先确定捕捉源奇点的T0(x,y,z)关于坐标x、y、z的导数进行公式转化,确定所述相应的哈密顿形式为:Bring the first factor and the second factor into the functional equation, and capture the source singularity T 0 (x, y) according to the unknown factor u(x, y, z) and the predetermined , z) formula transformation is carried out on the derivatives of the coordinates x, y, and z, and it is determined that the corresponding Hamiltonian form is:
Figure FDA0002784893800000012
Figure FDA0002784893800000012
f(x,y,z)=sm(P,Q,R),(m=1,2,3)f(x,y,z)=s m (P,Q,R),(m=1,2,3) 其中,(ux,uy,uz)分别是所述未知因子u(x,y,z)关于坐标x、y、z的导数,T0是预先确定捕捉源奇点的,H(x,y,z,u,ux,uy,uz)为哈密顿算子,f(x,y,z)为对应的哈密顿导数函数,sm(P,Q,R)为带入P,Q,R后的相位慢度模型,P、Q和R为所述第一因子T(x,y,z)关于坐标x、y、z的导数。Among them, (u x , u y , u z ) are the derivatives of the unknown factor u(x, y, z) with respect to the coordinates x, y, z respectively, T 0 is predetermined to capture the source singularity, H(x ,y,z,u,u x ,u y ,u z ) is the Hamiltonian operator, f(x,y,z) is the corresponding Hamiltonian derivative function, s m (P,Q,R) is the bring-in Phase slowness model after P, Q, R, where P, Q and R are derivatives of the first factor T(x, y, z) with respect to coordinates x, y, z.
3.根据权利要求2所述的Lax Friedrichs扫描地震波旅行时间的方法,其特征在于,所述根据所述慢度向量,求解群速度和相速度包括:3. The method for Lax Friedrichs scanning seismic wave travel time according to claim 2, wherein, according to the slowness vector, solving the group velocity and the phase velocity comprises: 设定相位慢度方向和射线方向;Set the phase slowness direction and ray direction; 根据所述慢度向量和群速度向量之间的关系,确定所述群速度和所述相速度。The group velocity and the phase velocity are determined from the relationship between the slowness vector and the group velocity vector. 4.根据权利要求3所述的Lax Friedrichs扫描地震波旅行时间的方法,其特征在于,在所述相应的哈密顿形式中,所述旅行时间关于坐标轴x、y、z的导数的确定包括:4. The method for Lax Friedrichs scanning seismic wave travel time according to claim 3, wherein, in the corresponding Hamiltonian form, the determination of the derivative of the travel time with respect to the coordinate axes x, y, and z comprises: 确定所述旅行时间关于坐标轴x、y、z的导数的解析表达式,表示为:The analytical expression for determining the derivative of the travel time with respect to the coordinate axes x, y, and z is expressed as:
Figure FDA0002784893800000021
Figure FDA0002784893800000021
其中,v0为源点处的相速度函数,(p0,q0,r0)=(T0x,T0y,T0z),分别为所述旅行时间关于x,y,z的导数;Wherein, v 0 is the phase velocity function at the source point, (p 0 , q 0 , r 0 )=(T 0x , T 0y , T 0z ), which are the derivatives of the travel time with respect to x, y, and z, respectively; 从所述解析表达式的平方根中依次提取所述旅行时间关于x,y,z的导数p0,q0,r0,并通过代数运算,确定所述旅行时间关于x,y,z的导数p0,q0,r0的对应绝对值,表示为:The derivatives p 0 , q 0 , r 0 of the travel time with respect to x, y, z are sequentially extracted from the square root of the analytical expression, and through algebraic operations, the derivatives of the travel time with respect to x, y, z are determined The corresponding absolute values of p 0 , q 0 , r 0 are expressed as:
Figure FDA0002784893800000022
Figure FDA0002784893800000022
Figure FDA0002784893800000031
Figure FDA0002784893800000031
Figure FDA0002784893800000032
Figure FDA0002784893800000032
其中,
Figure FDA0002784893800000033
为相位慢度方向的倾斜角和方位角。
in,
Figure FDA0002784893800000033
are the tilt and azimuth angles in the direction of phase slowness.
5.根据权利要求4所述的Lax Friedrichs扫描地震波旅行时间的方法,其特征在于,所述利用Lax-Friedrichs扫描格式数值,求解所述程函方程包括:5. the method for Lax Friedrichs scanning seismic wave travel time according to claim 4, is characterized in that, described utilizing Lax-Friedrichs scanning format numerical value, solving described function equation comprises: 建立所述相应的哈密顿形式的一阶Lax-Friedrichs格式;establishing a first-order Lax-Friedrichs scheme of the corresponding Hamiltonian form; 根据每个网格点对应的三阶迎风偏置WENO近似值,将网格点上的旅行时间值替换,建立基于WENO的三阶Lax-Friedrichs格式的静态哈密顿-雅可比方程;According to the approximation value of the third-order upwind bias WENO corresponding to each grid point, the travel time value on the grid point is replaced, and the static Hamiltonian-Jacobi equation of the third-order Lax-Friedrichs format based on WENO is established; 将所述基于WENO的三阶Lax-Friedrichs格式的静态哈密顿-雅可比方程写成紧凑形式,根据所述紧凑形式对所述网格点上的旅行时间值进行更新。The static Hamiltonian-Jacobi equation based on the WENO third-order Lax-Friedrichs format is written in a compact form, and the travel time values on the grid points are updated according to the compact form. 6.根据权利要求5所述的Lax Friedrichs扫描地震波旅行时间的方法,其特征在于,所述根据所述紧凑形式对所述网格点上的旅行时间值进行更新包括:6. The method for scanning travel time of seismic waves by Lax Friedrichs according to claim 5, wherein the updating the travel time value on the grid point according to the compact form comprises: 对所述一阶Lax-Friedrichs格式中的网格点进行初始化赋值;initializing and assigning grid points in the first-order Lax-Friedrichs format; 用8次交替方向扫频的Gauss-Seidel迭代求解所述紧凑形式,并进行网格更新;Solve the compact form with 8 Gauss-Seidel iterations swept in alternating directions, and perform mesh updates; 在内部边界和外部边界的六个平面上,设置对应的多个极大、极小值条件,采用线性外推法确定域外点的数值解;On the six planes of the inner boundary and the outer boundary, set the corresponding maximum and minimum value conditions, and use the linear extrapolation method to determine the numerical solution of the point outside the domain; 判断两个连续迭代之间的解的L1范数差是否满足预设的精度条件,若满足,则终止迭代。It is judged whether the L1 norm difference of the solution between two consecutive iterations satisfies the preset accuracy condition, and if so, the iteration is terminated.
CN202011294721.XA 2020-11-18 2020-11-18 Lax Friedrichs Method for Scanning Seismic Travel Time Active CN112505765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011294721.XA CN112505765B (en) 2020-11-18 2020-11-18 Lax Friedrichs Method for Scanning Seismic Travel Time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011294721.XA CN112505765B (en) 2020-11-18 2020-11-18 Lax Friedrichs Method for Scanning Seismic Travel Time

Publications (2)

Publication Number Publication Date
CN112505765A true CN112505765A (en) 2021-03-16
CN112505765B CN112505765B (en) 2023-05-09

Family

ID=74956908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011294721.XA Active CN112505765B (en) 2020-11-18 2020-11-18 Lax Friedrichs Method for Scanning Seismic Travel Time

Country Status (1)

Country Link
CN (1) CN112505765B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779337A (en) * 2022-04-20 2022-07-22 核工业北京地质研究院 Method and system for calculating seismic first-motion wave travel time under three-dimensional medium condition

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062086A (en) * 1990-08-27 1991-10-29 Conoco Inc. Calculation of raypaths and wavepaths from traveltime tables for the tomographic estimation of transmission velocities
US5394325A (en) * 1993-04-07 1995-02-28 Exxon Production Research Company Robust, efficient three-dimensional finite-difference traveltime calculations
US20030195705A1 (en) * 2002-04-10 2003-10-16 Scott Leaney Method and apparatus for anisotropic vector plane wave decomposition for 3D vertical seismic profile data
AU2013206119A1 (en) * 2007-10-30 2013-06-20 University Of Utah Research Foundation Fast iterative method for processing Hamilton-Jacobi equations
CN105388518A (en) * 2014-09-04 2016-03-09 中国石油化工股份有限公司 Centroid frequency and spectral ratio integrated borehole seismic quality factor inversion method
US20160202375A1 (en) * 2013-09-20 2016-07-14 Westerngeco Llc Eikonal Solver for Quasi P-Waves in Anisotropic Media
CN106154325A (en) * 2016-06-20 2016-11-23 吉林大学 Relief surface based on ray theory combination source wavefield orientation method
CN107966729A (en) * 2016-10-19 2018-04-27 中国石油化工股份有限公司 A kind of three-dimensional TTI media ray-tracing procedure and system
CN108363101A (en) * 2018-02-02 2018-08-03 西安石油大学 A kind of inclined shaft crosshole seismic Gaussian beam pre-stack depth migration imaging method
CN109784724A (en) * 2019-01-15 2019-05-21 常州大学 A kind of subsea production system equipment fault diagnosis method based on Bayesian network
CN110568497A (en) * 2019-09-26 2019-12-13 核工业北京地质研究院 An Accurate Calculation Method of Earthquake First Arrival Travel Time in Complex Medium Conditions
CN110674893A (en) * 2019-10-30 2020-01-10 江苏方天电力技术有限公司 Self-adaptive correction method for diagnosis experience in rotary machine fault diagnosis knowledge base

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062086A (en) * 1990-08-27 1991-10-29 Conoco Inc. Calculation of raypaths and wavepaths from traveltime tables for the tomographic estimation of transmission velocities
US5394325A (en) * 1993-04-07 1995-02-28 Exxon Production Research Company Robust, efficient three-dimensional finite-difference traveltime calculations
US20030195705A1 (en) * 2002-04-10 2003-10-16 Scott Leaney Method and apparatus for anisotropic vector plane wave decomposition for 3D vertical seismic profile data
AU2013206119A1 (en) * 2007-10-30 2013-06-20 University Of Utah Research Foundation Fast iterative method for processing Hamilton-Jacobi equations
US20160202375A1 (en) * 2013-09-20 2016-07-14 Westerngeco Llc Eikonal Solver for Quasi P-Waves in Anisotropic Media
CN105388518A (en) * 2014-09-04 2016-03-09 中国石油化工股份有限公司 Centroid frequency and spectral ratio integrated borehole seismic quality factor inversion method
CN106154325A (en) * 2016-06-20 2016-11-23 吉林大学 Relief surface based on ray theory combination source wavefield orientation method
CN107966729A (en) * 2016-10-19 2018-04-27 中国石油化工股份有限公司 A kind of three-dimensional TTI media ray-tracing procedure and system
CN108363101A (en) * 2018-02-02 2018-08-03 西安石油大学 A kind of inclined shaft crosshole seismic Gaussian beam pre-stack depth migration imaging method
CN109784724A (en) * 2019-01-15 2019-05-21 常州大学 A kind of subsea production system equipment fault diagnosis method based on Bayesian network
CN110568497A (en) * 2019-09-26 2019-12-13 核工业北京地质研究院 An Accurate Calculation Method of Earthquake First Arrival Travel Time in Complex Medium Conditions
CN110674893A (en) * 2019-10-30 2020-01-10 江苏方天电力技术有限公司 Self-adaptive correction method for diagnosis experience in rotary machine fault diagnosis knowledge base

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAO等: "Lax–Friedrichs sweeping scheme for static Hamilton–Jacobi equations", 《JOURNAL OF COMPUTATIONAL PHYSICS》 *
何雷宇等: "Lax Friedrichs", 《地球物理学进展》 *
李文杰 等: "一种改进的利用程函方程计算旅行时的方法", 《石油地球物理勘探》 *
胡秋萍: "基于因式分解形式程函方程的地震走时层析成像方法研究", 《中国优秀硕士学位论文全文数据库基础科学辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779337A (en) * 2022-04-20 2022-07-22 核工业北京地质研究院 Method and system for calculating seismic first-motion wave travel time under three-dimensional medium condition

Also Published As

Publication number Publication date
CN112505765B (en) 2023-05-09

Similar Documents

Publication Publication Date Title
Waheed et al. A fast sweeping algorithm for accurate solution of the tilted transversely isotropic eikonal equation using factorization
EP2869096B1 (en) Systems and methods of multi-scale meshing for geologic time modeling
CN113671570B (en) A joint inversion method and system of seismic surface wave traveltime and gravity anomaly
CN112925012A (en) Seismic full-waveform inversion method and device
Cameron et al. Seismic velocity estimation from time migration
WO2017162731A1 (en) Method of operating a data-processing system for the simulation of the acoustic wave propagation in the transversely isotropic media comprising an hydrocarbon reservoir
CN106199742A (en) A kind of Frequency-domain AEM 2.5 ties up band landform inversion method
EP2803043B1 (en) 3-d surface-based waveform inversion
Zhang et al. An iterative fast sweeping method for the eikonal equation in 2D anisotropic media on unstructured triangular meshes
Li et al. A robust approach to time‐to‐depth conversion and interval velocity estimation from time migration in the presence of lateral velocity variations
CN109946742A (en) A pure qP wave seismic data simulation method in TTI medium
Paulino et al. A methodology for adaptive finite element analysis: towards an integrated computational environment
Zhou et al. An iterative factored topography-dependent eikonal solver for anisotropic media
CN113221392B (en) Construction method of non-uniform viscous acoustic wave propagation model in infinite domain
CN108303736A (en) Anisotropy TI medium Shortest path ray tracing forward modeling methods
CN103698810A (en) Hybrid network minimum travel time ray tracing tomography method
CN111239822A (en) Fault lower speed modeling method for eliminating well seismic closure difference and processing terminal
Guo et al. Topography-dependent eikonal tomography based on the fast-sweeping scheme and the adjoint-state technique
Zhou et al. A topography-dependent eikonal solver for accurate and efficient computation of traveltimes and their derivatives in 3D heterogeneous media
CN110568497A (en) An Accurate Calculation Method of Earthquake First Arrival Travel Time in Complex Medium Conditions
CN112505765A (en) Method for scanning seismic wave travel time by Lax Friedrichs
CN109164488B (en) Trapezoidal grid finite difference seismic wave field simulation method
CN110826283A (en) Preprocessor and three-dimensional finite difference electromagnetic forward modeling calculation method based on preprocessor
CN114966831A (en) Viscoacoustic full waveform inversion method based on velocity-attenuation decoupling
CN106353801A (en) Simulation method and device for 3D Laplace domain acoustic wave equation value

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant