CN112559129B - Device and method for testing load balancing function and performance of virtualization platform - Google Patents
Device and method for testing load balancing function and performance of virtualization platform Download PDFInfo
- Publication number
- CN112559129B CN112559129B CN202011489323.3A CN202011489323A CN112559129B CN 112559129 B CN112559129 B CN 112559129B CN 202011489323 A CN202011489323 A CN 202011489323A CN 112559129 B CN112559129 B CN 112559129B
- Authority
- CN
- China
- Prior art keywords
- test
- performance
- cluster
- load balancing
- virtualization platform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/45562—Creating, deleting, cloning virtual machine instances
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/4557—Distribution of virtual machine instances; Migration and load balancing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/45591—Monitoring or debugging support
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/455—Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
- G06F9/45533—Hypervisors; Virtual machine monitors
- G06F9/45558—Hypervisor-specific management and integration aspects
- G06F2009/45595—Network integration; Enabling network access in virtual machine instances
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Debugging And Monitoring (AREA)
- Test And Diagnosis Of Digital Computers (AREA)
Abstract
Description
技术领域technical field
本发明属于物理技术领域,更进一步涉及自动化测试技术领域中的一种虚拟化平台负载均衡功能和性能的测试装置及方法。本发明可用于虚拟化平台负载均衡功能及性能的测试。The invention belongs to the field of physical technology, and further relates to a testing device and method for the load balancing function and performance of a virtualization platform in the field of automatic testing technology. The invention can be used for testing the load balancing function and performance of the virtualization platform.
背景技术Background technique
近年来,云平台逐渐成为各软件厂商部署服务的首要选择。云平台的底层实现是基于虚拟化技术,因此云平台是虚拟化平台的一个具体实例,虚拟化平台是云平台的泛化。虚拟化平台是一个资源共享、按需消费、动态扩展、负载均衡的平台。对于该平台,负载均衡功能是其提供的主要功能之一,其中涉及到两种角色,分别为虚拟化平台服务商与虚拟化平台服务购买者。对于虚拟化平台服务商,负载均衡功能是其研究的重要方向,为了使负载均衡功能达到更好的性能,虚拟化平台服务商会不断优化其负载均衡功能的算法;对于虚拟化平台服务购买者,其需要根据业务需求比较不同虚拟化平台负载均衡功能的好坏,从而选择最适合的虚拟化平台负载均衡服务。In recent years, cloud platforms have gradually become the primary choice for software vendors to deploy services. The underlying implementation of the cloud platform is based on virtualization technology, so the cloud platform is a specific instance of the virtualization platform, and the virtualization platform is the generalization of the cloud platform. The virtualization platform is a platform for resource sharing, on-demand consumption, dynamic expansion, and load balancing. For this platform, the load balancing function is one of the main functions it provides, which involves two roles, namely the virtualization platform service provider and the virtualization platform service buyer. For virtualization platform service providers, the load balancing function is an important research direction. In order to achieve better performance of the load balancing function, the virtualization platform service provider will continuously optimize the algorithm of its load balancing function; for virtualization platform service buyers, It needs to compare the load balancing functions of different virtualization platforms according to business requirements, so as to select the most suitable virtualization platform load balancing service.
综上所述,合理的负载均衡测试方法至关重要。然而,目前国内外对虚拟化服务平台的测试方法,多关注于对其整体性能的测评;对虚拟化平台的负载均衡功能测评也仅处于较为简单的测试阶段。因此,需要客观公正的负载均衡测试方法来评价负载均衡功能的好坏。To sum up, a reasonable load balancing testing method is very important. However, the current testing methods for virtualization service platforms at home and abroad focus more on the evaluation of its overall performance; the evaluation of the load balancing function of the virtualization platform is only in a relatively simple testing stage. Therefore, an objective and fair load balancing test method is needed to evaluate the quality of the load balancing function.
苏州浪潮智能科技有限公司在其申请的专利文献“负载均衡特性的测试方法、装置、系统、设备”(专利申请号201910290965.1申请公开号:CN109981419 A)中公开了一种对虚拟化平台负载均衡特性的自动化测试方法和装置。该专利文献公开的装置包括请求接收模块、脚本上传模块、测试结果分析模块。请求接收模块用于接收对负载均衡特性测试的测试请求,并组建测试集群;脚本上传模块用于将测试脚本上传至所述测试集群,并在集群中运行脚本,得到集群各节点的测试日志;测试结果分析模块包含负载值确定单元与结果判定单元,在接受测试日志后,根据确定的负载值判定负载均衡特性测试是否成功。该装置存在的不足之处在于:由于测试结果分析模块直接通过脚本上传模块获取各节点测试结果,得到的测试数据无法持久化存储,不利于测试人员在测试其他平台负载均衡功能时,根据历史测试数据进行不同负载均衡功能的比较与评价。该自动化测试方法对负载均衡特性测试的步骤是,首先管理节点根据用户的测试请求,确定配置文件,包括测试预设阈值、测试集群大小、负载类型、负载大小,并根据配置文件构建测试集群;然后将测试负载均衡特性的测试脚本上传至所述测试集群,使测试集群运行测试脚本,并根据节点负载情况,均衡分配负载请求,得到每个节点的负载日志;最后接收测试集群的测试日志,利用所述测试日志中记载的各个节点的最终负载状态,判断各个节点是否负载均衡。该自动化测试方法的不足之处在于:需要测试人员手动配置负载均衡的预定阈值,而预定阈值是决定负载均衡特性测试是否成功的关键参数,因此测试会受到极大的人为因素干扰;通过检测最大负载值和最小负载值的差值是否大于预定阈值来判断负载均衡特性是否符合需求,仅能使测试人员判断该虚拟化平台负载均衡服务是否可用,但在多种虚拟化平台负载均衡服务均可用的情况下,难以进一步比较不同虚拟化服务平台负载均衡服务的好坏,无法选择最适合的负载均衡服务。Suzhou Inspur Intelligent Technology Co., Ltd. disclosed a load balancing feature of virtualization platform in its patent document "Testing method, device, system, and equipment of load balancing feature" (patent application number 201910290965.1 application publication number: CN109981419 A). Automated testing methods and devices. The device disclosed in this patent document includes a request receiving module, a script uploading module, and a test result analyzing module. The request receiving module is used to receive the test request to the load balancing characteristic test, and builds a test cluster; the script upload module is used to upload the test script to the test cluster, and run the script in the cluster to obtain the test log of each node of the cluster; The test result analysis module includes a load value determination unit and a result determination unit. After receiving the test log, it determines whether the load balancing characteristic test is successful or not according to the determined load value. The disadvantage of this device is that: since the test result analysis module directly obtains the test results of each node through the script upload module, the obtained test data cannot be stored persistently, which is not conducive to testers when testing the load balancing function of other platforms. Compare and evaluate different load balancing functions based on the data. The steps of the automated testing method for testing the load balancing feature are: first, the management node determines the configuration file according to the user's test request, including the test preset threshold, the size of the test cluster, the load type, and the size of the load, and builds a test cluster according to the configuration file; Then upload the test script of the test load balancing feature to the test cluster, make the test cluster run the test script, and according to the node load situation, evenly distribute the load request to obtain the load log of each node; finally receive the test log of the test cluster, Using the final load status of each node recorded in the test log, it is judged whether each node is load balanced. The disadvantage of this automated testing method is that the tester needs to manually configure the predetermined threshold of load balancing, and the predetermined threshold is a key parameter to determine whether the test of load balancing characteristics is successful, so the test will be greatly disturbed by human factors; Whether the difference between the load value and the minimum load value is greater than the predetermined threshold to determine whether the load balancing feature meets the requirements can only enable testers to determine whether the load balancing service of the virtualization platform is available, but the load balancing service is available on various virtualization platforms Under such circumstances, it is difficult to further compare the quality of load balancing services of different virtualization service platforms, and it is impossible to choose the most suitable load balancing service.
MR Mesbahi等人在其发表的论文“Performance Evaluation and Analysis ofLoad Balancing Alogorithms in Cloud Computing Environments”(InternationalConference on Web Research,pp145-pp151,2016年)中提到了一种对云平台负载均衡算法性能的测试方法。该测试方法的步骤是,首先在云平台模拟器配置用于处理用户库和数据中心之间的流量路由策略,包括最近数据中心、优化响应时间、动态重新配置负载三种策略;然后在用于模拟数据中心负载调度的组件VMLoadBalancer上选择不同的负载均衡策略,包括轮询、节流、平均分配当前执行负载三种策略;按照实际测试需求对上述两步进行配置后,最多可以获得九种常见的云平台负载均衡策略组合,每次测试均按照用户测试需求向云平台模拟器发送同样类型、同样大小的负载,并获取各节点的响应时间;最终分别计算各个算法的平均响应时间与成本开销,从而对各个负载均衡算法进行对比与评价。该测试方法存在的不足之处在于:选取的性能测试指标过于简单,仅以平均响应时间与成本开销对负载均衡功能进行评价,在上述因素并非测试人员需要考虑的主要因素时,测试人员难以根据测试结果比较负载均衡服务的好坏;将每个性能测试指标单独进行对比,未将测试指标聚合形成整体的负载均衡性能评估模型与评价体系,无法综合评价虚拟化服务平台负载均衡功能。In their paper "Performance Evaluation and Analysis of Load Balancing Alogorithms in Cloud Computing Environments" (International Conference on Web Research, pp145-pp151, 2016), MR Mesbahi et al. mentioned a method for testing the performance of cloud platform load balancing algorithms. . The steps of the test method are: firstly configure the traffic routing strategy between the user database and the data center in the cloud platform simulator, including the nearest data center, optimize the response time, and dynamically reconfigure the load; Choose different load balancing strategies on VMLoadBalancer, a component that simulates data center load scheduling, including three strategies: polling, throttling, and evenly distributing the current execution load; after configuring the above two steps according to actual test requirements, you can get up to nine common The cloud platform load balancing strategy combination, each test sends the same type and size of load to the cloud platform simulator according to the user test requirements, and obtains the response time of each node; finally calculates the average response time and cost of each algorithm respectively , so as to compare and evaluate each load balancing algorithm. The shortcomings of this test method are: the selected performance test indicators are too simple, and only the average response time and cost overhead are used to evaluate the load balancing function. When the above factors are not the main factors that testers need to consider, it is difficult for testers to The test results compare the quality of the load balancing service; each performance test indicator is compared separately, and the test indicators are not aggregated to form an overall load balancing performance evaluation model and evaluation system, and it is impossible to comprehensively evaluate the load balancing function of the virtualized service platform.
发明内容Contents of the invention
本发明的目的是针对上述现有技术存在的问题,提出一种虚拟化平台负载均衡功能和性能的测试装置及方法,用于解决现有方法主要集中于对虚拟化平台负载均衡功能的基础性能数据的评价,且没有形成适用于不同虚拟化平台负载均衡功能的测评体系,难以在虚拟化平台服务商与虚拟化平台服务购买者实际生产使用过程中对虚拟化平台负载均衡功能提供较为客观测试的技术支持的问题。The purpose of the present invention is to solve the problems existing in the above-mentioned prior art, and propose a test device and method for the load balancing function and performance of a virtualization platform, which is used to solve the problem that the existing methods mainly focus on the basic performance of the load balancing function of the virtualization platform It is difficult to provide a more objective test of the virtualization platform load balancing function in the actual production and use process of virtualization platform service providers and virtualization platform service buyers. technical support questions.
实现本发明目的的思路是,从虚拟化平台服务商与虚拟化平台服务购买者在实际生产环境中对虚拟化平台负载均衡功能的关注角度出发,结合虚拟化平台的特性以及现有负载均衡性能测试技术的优点,提出四个可以间接反映虚拟化平台负载均衡能力的性能测试指标,所述性能测试指标可由测试集群在接收负载时的基础性能数据计算得到,并通过熵值法确定性能测试指标中每个指标的权值。The idea of realizing the purpose of the present invention is to start from the perspective of virtualization platform service providers and virtualization platform service buyers paying attention to the virtualization platform load balancing function in the actual production environment, combining the characteristics of the virtualization platform and the existing load balancing performance Based on the advantages of the test technology, four performance test indicators that can indirectly reflect the load balancing capability of the virtualization platform are proposed. The performance test indicators can be calculated from the basic performance data of the test cluster when receiving the load, and the performance test indicators are determined by the entropy method The weight of each indicator in .
为实现上述目的,本发明的装置包括环境配置模块、数据采集模块、数据存储模块、负载发送模块和分析评价模块。To achieve the above object, the device of the present invention includes an environment configuration module, a data collection module, a data storage module, a load sending module and an analysis and evaluation module.
所述环境配置模块,用于读取测试配置文件;通过与虚拟化平台的认证服务交互,获取虚拟化平台管理权限,再通过该权限与虚拟化平台进行交互,创建一台负载均衡器;根据配置文件中的测试集群虚拟机规模、测试集群虚拟机数量、测试集群虚拟机镜像,调用虚拟化平台提供的接口,创建多个虚拟机作为测试集群,并将测试集群IP地址加入到负载均衡器的负载均衡池中;The environment configuration module is used to read the test configuration file; by interacting with the authentication service of the virtualization platform, obtain the management authority of the virtualization platform, and then interact with the virtualization platform through the authority to create a load balancer; according to In the configuration file, the test cluster virtual machine scale, the number of test cluster virtual machines, the test cluster virtual machine image, call the interface provided by the virtualization platform, create multiple virtual machines as a test cluster, and add the test cluster IP address to the load balancer in the load balancing pool;
所述数据采集模块,用于对测试集群进行基准性能数据测试,在未发送任务请求时,通过虚拟化平台监控系统采集测试集群的基础性能数据作为负载均衡功能的基准性能数据;在负载均衡器接收任务请求时,通过虚拟化平台监控系统采集测试集群的基础性能数据;The data acquisition module is used to test the benchmark performance data of the test cluster. When the task request is not sent, the basic performance data of the test cluster is collected by the virtualization platform monitoring system as the benchmark performance data of the load balancing function; in the load balancer When receiving a task request, collect the basic performance data of the test cluster through the monitoring system of the virtualization platform;
所述数据存储模块,用于将测得的基准性能数据存入数据库中,进行持久化存储;The data storage module is used to store the measured benchmark performance data in a database for persistent storage;
所述负载发送模块,用于根据配置文件中任务请求总数量、任务请求类型、不同类型任务请求占任务请求总数量百分比,生成HTTP GET类型的请求,通过预设好的任务请求类型与url地址的一一映射关系,修改HTTP GET请求中url地址,持续构建不同类型的任务请求,并将已构建的任务请求发送至负载均衡器;对已构建的每一类型任务请求的数量分别进行统计,若该类任务请求数量占配置文件中任务请求总数量的百分比满足配置文件中该类型任务请求占任务请求总数量百分比,则停止构建该类请求;判断负载发送轮数是否等于配置文件中预设的最大测试轮数,若是,则进入下一步骤计算负载均衡性能,否则,将负载发送轮数的值加1后重复执行负载发送步骤;The load sending module is used to generate a request of HTTP GET type according to the total number of task requests in the configuration file, the type of task requests, and the percentage of different types of task requests in the total number of task requests, through the preset task request type and url address One-to-one mapping relationship, modify the url address in the HTTP GET request, continue to build different types of task requests, and send the built task requests to the load balancer; count the number of each type of task requests that have been built, If the percentage of the number of task requests of this type to the total number of task requests in the configuration file satisfies the percentage of the number of task requests of this type in the total number of task requests in the configuration file, stop building this type of request; determine whether the number of load sending rounds is equal to the preset in the configuration file If so, go to the next step to calculate the load balancing performance, otherwise, add 1 to the value of the number of load sending rounds and repeat the load sending step;
所述分析评价模块,用于计算每个测试轮次测试集群在接收任务请求时的性能损失;计算每个测试轮次测试集群在接收任务请求时的响应性;计算每个测试轮次测试集群在接收任务请求时的资源均衡程度;计算每个测试轮次测试集群在接收任务请求时的总时间块无效请求率;根据配置文件中的权值测试轮数,选取该权值测试轮数所对应的性能测试指标,通过熵值法确定性能测试指标中每个指标的权值;用最大测试轮数减去权值测试轮数作为剩余测试轮数,对该剩余测试轮数所对应的性能测试指标进行算术平均值加权求和,得到虚拟化平台负载均衡性能评分;在前端虚拟化平台监控页面生成虚拟化平台负载均衡功能测试的测试报告。The analysis and evaluation module is used to calculate the performance loss of each test round test cluster when receiving a task request; calculate the responsiveness of each test round test cluster when receiving a task request; calculate each test round test cluster The degree of resource balance when receiving task requests; calculate the invalid request rate of the total time block of the test cluster for each test round when receiving task requests; according to the number of weight test rounds in the configuration file, select the number of weight test rounds For the corresponding performance test index, the weight of each index in the performance test index is determined by the entropy method; the maximum number of test rounds minus the number of weight test rounds is used as the remaining number of test rounds, and the performance corresponding to the remaining number of test rounds The test indicators are weighted and summed by the arithmetic mean value to obtain the load balancing performance score of the virtualization platform; the test report of the load balancing function test of the virtualization platform is generated on the front-end virtualization platform monitoring page.
本发明的方法包括如下步骤:Method of the present invention comprises the steps:
(1)环境配置模块读取测试配置文件;(1) The environment configuration module reads the test configuration file;
(2)初始化测试环境:(2) Initialize the test environment:
(2a)环境配置模块通过与虚拟化平台的认证服务交互,获取虚拟化平台管理权限,再通过该权限与虚拟化平台进行交互,创建一台负载均衡器;(2a) The environment configuration module obtains the management authority of the virtualization platform by interacting with the authentication service of the virtualization platform, and then interacts with the virtualization platform through the authority to create a load balancer;
(2b)环境配置模块根据配置文件中的测试集群虚拟机规模、测试集群虚拟机数量、测试集群虚拟机镜像,调用虚拟化平台提供的接口,创建多个虚拟机作为测试集群,并将测试集群IP地址加入到负载均衡器的负载均衡池中;(2b) The environment configuration module calls the interface provided by the virtualization platform according to the test cluster virtual machine scale, the number of test cluster virtual machines, and the test cluster virtual machine image in the configuration file, creates multiple virtual machines as test clusters, and transfers the test cluster The IP address is added to the load balancing pool of the load balancer;
(3)采集存储测试集群的基准性能数据:(3) Collect benchmark performance data of the storage test cluster:
数据采集模块对测试集群进行基准性能数据测试,在未发送任务请求时,通过虚拟化平台监控系统采集测试集群的基础性能数据作为负载均衡功能的基准性能数据,数据存储模块将测得的基准性能数据存入数据库中,进行持久化存储;The data acquisition module tests the benchmark performance data of the test cluster. When no task request is sent, the basic performance data of the test cluster is collected through the virtualization platform monitoring system as the benchmark performance data of the load balancing function. The data storage module stores the measured benchmark performance The data is stored in the database for persistent storage;
(4)向负载均衡器发送任务请求:(4) Send a task request to the load balancer:
负载发送模块根据配置文件中任务请求总数量、任务请求类型、不同类型任务请求占任务请求总数量百分比,生成HTTP GET类型的请求,通过预设好的任务请求类型与url地址的一一映射关系,修改HTTP GET请求中url地址,持续构建不同类型的任务请求,并将已构建的任务请求发送至负载均衡器;对已构建的每一类型任务请求的数量分别进行统计,若该类任务请求数量占配置文件中任务请求总数量的百分比满足配置文件中该类型任务请求占任务请求总数量百分比,则停止构建该类请求;The load sending module generates HTTP GET type requests according to the total number of task requests, task request types, and the percentage of different types of task requests in the total number of task requests in the configuration file, and uses the one-to-one mapping relationship between preset task request types and url addresses , modify the url address in the HTTP GET request, continuously construct different types of task requests, and send the constructed task requests to the load balancer; separately count the number of constructed task requests of each type, if the task requests of this type If the percentage of the total number of task requests in the configuration file meets the percentage of the total number of task requests of this type in the configuration file, then stop building this type of request;
(5)采集存储测试集群接收任务请求时的基础性能数据:(5) Collect basic performance data when the storage test cluster receives task requests:
数据采集模块在负载均衡器接收任务请求时,通过虚拟化平台监控系统采集测试集群的基础性能数据;数据存储模块将测得的基础性能数据存入数据库中,进行持久化存储;The data acquisition module collects the basic performance data of the test cluster through the virtualization platform monitoring system when the load balancer receives the task request; the data storage module stores the measured basic performance data into the database for persistent storage;
(6)负载发送模块判断负载发送轮数是否等于配置文件中预设的最大测试轮数,若是,则执行步骤(7),否则,将负载发送轮数的值加1后执行步骤(4);(6) The load sending module judges whether the number of load sending rounds is equal to the preset maximum number of test rounds in the configuration file, if so, execute step (7), otherwise, add 1 to the value of the load sending rounds and then execute step (4) ;
(7)计算负载均衡性能:(7) Calculate load balancing performance:
(7a)按照下式,分析评价模块计算每个测试轮次测试集群在接收任务请求时的性能损失:(7a) According to the following formula, the analysis and evaluation module calculates the performance loss of each test round when the test cluster receives task requests:
其中,lp表示第p个测试轮次测试集群在接收任务请求时的性能损失,np表示第p个测试轮次测试集群接收任务请求的持续时间,i表示第p个测试轮次测试集群接收任务请求持续时间的时间序列中的序号,b表示测试集群的基准性能,所述基准性能的取值为基准性能数据中的CPU利用率、内存利用率、网络流入带宽利用率、网络流出带宽利用率的平均值,qpi表示第p个测试轮次第i秒时测试集群的实际性能,所述实际性能的取值为基础测试数据中第p个测试轮次第i秒时的CPU利用率、内存利用率、网络流入带宽利用率、网络流出带宽利用率的平均值,lp的值越小,虚拟化平台负载均衡性能越好;Among them, l p represents the performance loss of the test cluster in the pth test round when receiving the task request, n p represents the duration of the task request received by the test cluster in the pth test round, and i represents the test cluster in the pth test round Receive the serial number in the time series of the task request duration, b represents the benchmark performance of the test cluster, and the value of the benchmark performance is the CPU utilization rate, memory utilization rate, network inflow bandwidth utilization rate, and network outflow bandwidth in the benchmark performance data The average value of the utilization rate, q pi represents the actual performance of the test cluster at the i-th second of the p-th test round, and the value of the actual performance is the CPU utilization at the i-th second of the p-th test round in the basic test data, The average value of memory utilization, network inflow bandwidth utilization, and network outflow bandwidth utilization, the smaller the value of lp , the better the load balancing performance of the virtualization platform;
(7b)按照下式,分析评价模块计算每个测试轮次测试集群在接收任务请求时的响应性:(7b) According to the following formula, the analysis and evaluation module calculates the responsiveness of each test round test cluster when receiving task requests:
其中,rp表示第p个测试轮次测试集群在接收任务请求时的响应性,e表示自然常数,Dp表示第p个测试轮次测试集群在接收任务请求时丢包的任务请求数,Q表示负载发送模块构建的任务请求总数量,rp的值越小,虚拟化平台负载均衡性能越好;Among them, r p represents the responsiveness of the p-th test round test cluster when receiving task requests, e represents a natural constant, and D p represents the number of task requests that the p-th test round test cluster loses packets when receiving task requests, Q represents the total number of task requests constructed by the load sending module, the smaller the value of r p , the better the load balancing performance of the virtualization platform;
(7c)按照下式,分析评价模块计算每个测试轮次测试集群在接收任务请求时的资源均衡度:(7c) According to the following formula, the analysis and evaluation module calculates the resource balance degree of each test round test cluster when receiving task requests:
其中,dp表示第p个测试轮次测试集群在接收任务请求时的资源分布均衡度,cp表示第p个测试轮次测试集群在接收任务请求时的CPU利用率标准差,mp表示第p个测试轮次测试集群在接收任务请求时的内存利用率标准差,wp表示第p个测试轮次测试集群在接收任务请求时的网络流入带宽利用率标准差,op表示第p个测试轮次测试集群在接收任务请求时的网络流入带宽利用率标准差,dp越小,测试集群负载均衡性能越好;Among them, d p represents the resource distribution balance degree of the p-th test round test cluster when receiving task requests, c p represents the standard deviation of CPU utilization of the p-th test round test cluster when receiving task requests, and m p represents The standard deviation of the memory utilization rate of the p-th test round test cluster when receiving task requests, w p represents the standard deviation of the network inflow bandwidth utilization rate of the p-th test round test cluster when receiving task requests, o p represents the p-th test round The standard deviation of the network inflow bandwidth utilization rate of the test cluster when receiving task requests in each test round, the smaller the dp , the better the load balancing performance of the test cluster;
(7d)分析评价模块计算每个测试轮次测试集群在接收任务请求时的总时间块无效请求率,在接收任务请求时测试集群的基础性能数据中的每秒超时任务请求数与请求总数的比值,作为该测试轮次每秒无效请求率;对每个测试轮次的持续时间内的所有无效请求率求算术平均值,作为该测试轮次测试集群总时间块无效请求率,总时间块无效请求率越小,测试集群负载均衡性能越好;(7d) The analysis and evaluation module calculates the total time block invalid request rate of each test round test cluster when receiving task requests, and the ratio of the number of overtime task requests per second and the total number of requests in the basic performance data of the test cluster when receiving task requests Ratio, as the invalid request rate per second of the test round; calculate the arithmetic mean of all invalid request rates within the duration of each test round, as the invalid request rate of the total time block of the test cluster in the test round, the total time block The smaller the invalid request rate, the better the load balancing performance of the test cluster;
(7e)分析评价模块根据配置文件中的权值测试轮数,选取该剩余测试轮数所对应的性能测试指标,通过熵值法确定性能测试指标中每个指标的权值;用最大测试轮数减去权值测试轮数作为剩余测试轮数,对该剩余测试轮数所对应的性能测试指标进行算术平均值加权求和,得到虚拟化平台负载均衡性能评分;(7e) The analysis and evaluation module selects the performance test index corresponding to the remaining test rounds according to the weight test rounds in the configuration file, and determines the weight of each index in the performance test index by the entropy method; use the largest test round The number of test rounds minus the weight value is used as the number of remaining test rounds, and the arithmetic mean weighted summation is performed on the performance test indicators corresponding to the remaining number of test rounds to obtain the load balancing performance score of the virtualization platform;
(8)生成测试报告:(8) Generate a test report:
分析评价模块在前端虚拟化平台监控页面生成虚拟化平台负载均衡功能测试的测试报告。The analysis and evaluation module generates a test report for the load balancing function test of the virtualization platform on the front-end virtualization platform monitoring page.
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
第一,由于本发明装置中的数据存储模块能够持久化存储基础测试数据,并支持查看历史测试数据,装置操作对测试人员友好,克服了现有技术测试人员每次测试需要对已进行测试的虚拟化平台重复测试的问题,使得本发明的装置具有了减少测试人员繁杂冗余的重复测试工作,提高对虚拟化平台负载均衡功能测试的效率的优点。First, because the data storage module in the device of the present invention can persistently store basic test data and support viewing of historical test data, the operation of the device is friendly to testers, which overcomes the need for testers in the prior art to test the data that has been tested for each test. The problem of repeated testing of the virtualization platform makes the device of the present invention have the advantages of reducing the complicated and redundant repeated testing work of testers and improving the efficiency of the load balancing function test of the virtualization platform.
第二,由于本发明的方法以虚拟化平台服务商和虚拟化服务购买者的角度,选取性能损失、可用性、资源均衡度、总时间块无效请求率作为性能测试指标,并明确提出了负载均衡性能公式,对虚拟化服务平台的负载均衡功能进行定量综合评价,克服了现有技术评价指标过于简单、难以量化的问题,使得本发明的方法具有定量比较不同虚拟化平台负载均衡功能的实用性的优点。Second, since the method of the present invention selects performance loss, availability, resource balance, and total time block invalid request rate as performance test indicators from the perspective of virtualization platform service providers and virtualization service buyers, and clearly proposes load balancing The performance formula, quantitatively and comprehensively evaluates the load balancing function of the virtualized service platform, overcomes the problem that the evaluation index in the prior art is too simple and difficult to quantify, and makes the method of the present invention have the practicability of quantitatively comparing the load balancing functions of different virtualized platforms The advantages.
附图说明Description of drawings
图1是本发明装置的方框图;Fig. 1 is the block diagram of device of the present invention;
图2是本发明方法的流程图。Figure 2 is a flow chart of the method of the present invention.
具体实施方式Detailed ways
下面结合附图对本发明做进一步的详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
参照附图1,对本发明的装置进行清楚、完整地描述。Referring to accompanying drawing 1, the device of the present invention is clearly and completely described.
本发明的装置包括环境配置模块、数据采集模块、数据存储模块、负载发送模块和分析评价模块。The device of the invention includes an environment configuration module, a data collection module, a data storage module, a load sending module and an analysis and evaluation module.
所述环境配置模块,用于读取测试配置文件;通过与虚拟化平台的认证服务交互,获取虚拟化平台管理权限,再通过该权限与虚拟化平台进行交互,创建一台负载均衡器;根据配置文件中的测试集群虚拟机规模、测试集群虚拟机数量、测试集群虚拟机镜像,调用虚拟化平台提供的接口,创建多个虚拟机作为测试集群,并将测试集群IP地址加入到负载均衡器的负载均衡池中。The environment configuration module is used to read the test configuration file; by interacting with the authentication service of the virtualization platform, obtain the management authority of the virtualization platform, and then interact with the virtualization platform through the authority to create a load balancer; according to In the configuration file, the test cluster virtual machine scale, the number of test cluster virtual machines, the test cluster virtual machine image, call the interface provided by the virtualization platform, create multiple virtual machines as a test cluster, and add the test cluster IP address to the load balancer in the load balancing pool.
所述数据采集模块,用于对测试集群进行基准性能数据测试,在未发送任务请求时,通过虚拟化平台监控系统采集测试集群的基础性能数据作为负载均衡功能的基准性能数据;在负载均衡器接收任务请求时,通过虚拟化平台监控系统采集测试集群的基础性能数据。The data acquisition module is used to test the benchmark performance data of the test cluster. When the task request is not sent, the basic performance data of the test cluster is collected by the virtualization platform monitoring system as the benchmark performance data of the load balancing function; in the load balancer When receiving a task request, the basic performance data of the test cluster is collected through the monitoring system of the virtualization platform.
所述数据存储模块,用于将测得的基准性能数据存入数据库中,进行持久化存储。The data storage module is used to store the measured benchmark performance data in a database for persistent storage.
所述负载发送模块,用于根据配置文件中任务请求总数量、任务请求类型、不同类型任务请求占任务请求总数量百分比,生成HTTP GET类型的请求,通过预设好的任务请求类型与url地址的一一映射关系,修改HTTP GET请求中url地址,持续构建不同类型的任务请求,并将已构建的任务请求发送至负载均衡器;对已构建的每一类型任务请求的数量分别进行统计,若该类任务请求数量占配置文件中任务请求总数量的百分比满足配置文件中该类型任务请求占任务请求总数量百分比,则停止构建该类请求;判断负载发送轮数是否等于配置文件中预设的最大测试轮数,若是,则进入下一步骤计算负载均衡性能,否则,将负载发送轮数的值加1后重复执行负载发送步骤。The load sending module is used to generate a request of HTTP GET type according to the total number of task requests in the configuration file, the type of task requests, and the percentage of different types of task requests in the total number of task requests, through the preset task request type and url address One-to-one mapping relationship, modify the url address in the HTTP GET request, continue to build different types of task requests, and send the built task requests to the load balancer; count the number of each type of task requests that have been built, If the percentage of the number of task requests of this type to the total number of task requests in the configuration file satisfies the percentage of the number of task requests of this type in the total number of task requests in the configuration file, stop building this type of request; determine whether the number of load sending rounds is equal to the preset in the configuration file If it is the maximum number of test rounds, enter the next step to calculate the load balancing performance; otherwise, add 1 to the value of the number of load sending rounds and repeat the load sending step.
所述分析评价模块,用于计算每个测试轮次测试集群在接收任务请求时的性能损失;计算每个测试轮次测试集群在接收任务请求时的响应性;计算每个测试轮次测试集群在接收任务请求时的资源均衡程度;计算每个测试轮次测试集群在接收任务请求时的总时间块无效请求率;根据配置文件中的权值测试轮数,选取该权值测试轮数所对应的性能测试指标,通过熵值法确定性能测试指标中每个指标的权值;用最大测试轮数减去权值测试轮数作为剩余测试轮数,对该剩余测试轮数所对应的性能测试指标进行算术平均值加权求和,得到虚拟化平台负载均衡性能评分;在前端虚拟化平台监控页面生成虚拟化平台负载均衡功能测试的测试报告。The analysis and evaluation module is used to calculate the performance loss of each test round test cluster when receiving a task request; calculate the responsiveness of each test round test cluster when receiving a task request; calculate each test round test cluster The degree of resource balance when receiving task requests; calculate the invalid request rate of the total time block of the test cluster for each test round when receiving task requests; according to the number of weight test rounds in the configuration file, select the number of weight test rounds For the corresponding performance test index, the weight of each index in the performance test index is determined by the entropy method; the maximum number of test rounds minus the number of weight test rounds is used as the remaining number of test rounds, and the performance corresponding to the remaining number of test rounds The test indicators are weighted and summed by the arithmetic mean value to obtain the load balancing performance score of the virtualization platform; the test report of the load balancing function test of the virtualization platform is generated on the front-end virtualization platform monitoring page.
参照附图2对本发明的方法做进一步的详细描述。The method of the present invention is described in further detail with reference to accompanying drawing 2.
步骤1,环境配置模块读取测试配置文件。Step 1, the environment configuration module reads the test configuration file.
步骤2,初始化测试环境。Step 2, initialize the test environment.
环境配置模块通过与虚拟化平台的认证服务交互,获取虚拟化平台管理权限,再通过该权限与虚拟化平台进行交互,创建一台负载均衡器。The environment configuration module obtains the management authority of the virtualization platform by interacting with the authentication service of the virtualization platform, and then interacts with the virtualization platform through the authority to create a load balancer.
环境配置模块根据配置文件中的测试集群虚拟机规模、测试集群虚拟机数量、测试集群虚拟机镜像,调用虚拟化平台提供的接口,创建多个虚拟机作为测试集群,并将测试集群IP地址加入到负载均衡器的负载均衡池中。The environment configuration module calls the interface provided by the virtualization platform according to the test cluster virtual machine scale, the number of test cluster virtual machines, and the test cluster virtual machine image in the configuration file, creates multiple virtual machines as the test cluster, and adds the test cluster IP address to to the load balancing pool of the load balancer.
步骤3,采集存储测试集群的基准性能数据。Step 3, collecting benchmark performance data of the storage test cluster.
数据采集模块对测试集群进行基准性能数据测试,在未发送任务请求时,通过虚拟化平台监控系统采集测试集群的基础性能数据作为负载均衡功能的基准性能数据,数据存储模块将测得的基准性能数据存入数据库中,进行持久化存储,所述基础性能数据包括CPU利用率、内存利用率、网络流入带宽利用率、网络流出带宽利用率、丢包任务请求数、任务请求总数、超时任务请求数。The data acquisition module tests the benchmark performance data of the test cluster. When no task request is sent, the basic performance data of the test cluster is collected through the virtualization platform monitoring system as the benchmark performance data of the load balancing function. The data storage module stores the measured benchmark performance The data is stored in the database for persistent storage. The basic performance data includes CPU utilization, memory utilization, network inflow bandwidth utilization, network outflow bandwidth utilization, packet loss task requests, total task requests, timeout task requests number.
由于未发送任务请求,此时虚拟化平台性能必然较高,接近虚拟化平台理想情况下的性能水平,通过这种方式获取到的虚拟化平台性能可以视为该虚拟化平台的基准性能。Since no task request is sent, the performance of the virtualization platform must be high at this time, which is close to the performance level of the virtualization platform under ideal conditions. The performance of the virtualization platform obtained in this way can be regarded as the benchmark performance of the virtualization platform.
步骤4,向负载均衡器发送任务请求。Step 4, send a task request to the load balancer.
负载发送模块根据配置文件中任务请求总数量、任务请求类型、不同类型任务请求占任务请求总数量百分比,生成HTTP GET类型的请求,通过预设好的任务请求类型与url地址的一一映射关系,修改HTTP GET请求中url地址,持续构建不同类型的任务请求,所述任务请求类型包括计算密集型任务请求、IO密集型任务请求、内存密集型任务请求,并将已构建的任务请求发送至负载均衡器;对已构建的每一类型任务请求的数量分别进行统计,若该类任务请求数量占配置文件中任务请求总数量的百分比满足配置文件中该类型任务请求占任务请求总数量百分比,则停止构建该类请求。The load sending module generates HTTP GET type requests according to the total number of task requests, task request types, and the percentage of different types of task requests in the total number of task requests in the configuration file, and uses the one-to-one mapping relationship between preset task request types and url addresses , modify the url address in the HTTP GET request, continuously build different types of task requests, the task request types include computing-intensive task requests, IO-intensive task requests, and memory-intensive task requests, and send the constructed task requests to Load balancer; count the number of each type of task requests that have been constructed separately. If the percentage of the number of task requests of this type in the total number of task requests in the configuration file meets the percentage of task requests of this type in the total number of task requests in the configuration file, then stop building that type of request.
步骤5,采集存储测试集群的基础性能数据。Step 5, collecting basic performance data of the storage test cluster.
数据采集模块在负载均衡器接收任务请求时,通过虚拟化平台监控系统采集测试集群的基础性能数据;数据存储模块将测得的基础性能数据存入数据库中,进行持久化存储。The data acquisition module collects the basic performance data of the test cluster through the virtualization platform monitoring system when the load balancer receives the task request; the data storage module stores the measured basic performance data in the database for persistent storage.
步骤6,负载发送模块判断负载发送轮数是否等于配置文件中预设的最大测试轮数,若是,则执行步骤7,否则,将负载发送轮数的值加1后执行步骤4。Step 6, the load sending module judges whether the number of load sending rounds is equal to the maximum number of test rounds preset in the configuration file, if so, execute step 7, otherwise, add 1 to the value of the load sending rounds and execute step 4.
步骤7,计算负载均衡性能。Step 7, calculate load balancing performance.
由于虚拟化平台的存在,虚拟化平台的服务器资源可以更加高效地进行分配、管理,这让虚拟化平台具有了快速伸缩的能力,虚拟化平台服务购买者可以在任意时间申请任意大小的服务器资源,负载均衡功能则用于在服务器资源快速伸缩的过程中保持虚拟化平台服务购买者应用性能的稳定性。与虚拟化平台负载均衡功能相关的有两类角色,分别为虚拟化平台服务提供商与虚拟化平台服务购买者,从虚拟化平台服务提供商角度出发,虚拟化平台服务提供商会更关注其对外提供服务的性能损失和资源均衡度;从虚拟化平台服务购买者角度出发,虚拟化平台服务购买者会更关注其购买服务的响应性和总时间块无效请求率。综上所述,本发明提出了用于间接反映虚拟化平台负载均衡功能的四个性能测试指标,包括性能损失、响应性、资源均衡度和总时间块无效请求率。Due to the existence of the virtualization platform, the server resources of the virtualization platform can be allocated and managed more efficiently, which enables the virtualization platform to have the ability of rapid scaling, and the buyer of the virtualization platform service can apply for server resources of any size at any time , the load balancing function is used to maintain the stability of the application performance of the virtualization platform service buyer during the rapid scaling of server resources. There are two types of roles related to the load balancing function of the virtualization platform, namely the virtualization platform service provider and the virtualization platform service buyer. From the perspective of the virtualization platform service provider, the virtualization platform service provider will pay more attention to its external The performance loss and resource balance of providing services; from the perspective of virtualization platform service buyers, virtualization platform service buyers will pay more attention to the responsiveness of their purchased services and the invalid request rate of the total time block. To sum up, the present invention proposes four performance test indicators for indirectly reflecting the load balancing function of the virtualization platform, including performance loss, responsiveness, resource balance degree and total time block invalid request rate.
按照下式,分析评价模块计算每个测试轮次测试集群在接收任务请求时的性能损失:According to the following formula, the analysis and evaluation module calculates the performance loss of each test round when the test cluster receives task requests:
其中,lp表示第p个测试轮次测试集群在接收任务请求时的性能损失,np表示第p个测试轮次测试集群接收任务请求的持续时间,i表示第p个测试轮次测试集群接收任务请求持续时间的时间序列中的序号,b表示测试集群的基准性能,所述基准性能的取值为基准性能数据中的CPU利用率、内存利用率、网络流入带宽利用率、网络流出带宽利用率的平均值,qpi表示第p个测试轮次第i秒时测试集群的实际性能,所述实际性能的取值为基础测试数据中第p个测试轮次第i秒时的CPU利用率、内存利用率、网络流入带宽利用率、网络流出带宽利用率的平均值,lp的值越小,虚拟化平台负载均衡性能越好。Among them, l p represents the performance loss of the test cluster in the pth test round when receiving the task request, n p represents the duration of the task request received by the test cluster in the pth test round, and i represents the test cluster in the pth test round Receive the serial number in the time series of the task request duration, b represents the benchmark performance of the test cluster, and the value of the benchmark performance is the CPU utilization rate, memory utilization rate, network inflow bandwidth utilization rate, and network outflow bandwidth in the benchmark performance data The average value of the utilization rate, q pi represents the actual performance of the test cluster at the i-th second of the p-th test round, and the value of the actual performance is the CPU utilization at the i-th second of the p-th test round in the basic test data, The average value of memory utilization, network inflow bandwidth utilization, and network outflow bandwidth utilization. The smaller the value of lp , the better the load balancing performance of the virtualization platform.
按照下式,分析评价模块计算每个测试轮次测试集群在接收任务请求时的响应性:According to the following formula, the analysis and evaluation module calculates the responsiveness of each test round when the test cluster receives task requests:
其中,rp表示第p个测试轮次测试集群在接收任务请求时的响应性,e表示自然常数,Dp表示第p个测试轮次测试集群在接收任务请求时丢包的任务请求数,Q表示负载发送模块构建的任务请求总数量,rp的值越小,虚拟化平台负载均衡性能越好。Among them, r p represents the responsiveness of the p-th test round test cluster when receiving task requests, e represents a natural constant, and D p represents the number of task requests that the p-th test round test cluster loses packets when receiving task requests, Q represents the total number of task requests constructed by the load sending module, the smaller the value of r p , the better the load balancing performance of the virtualization platform.
按照下式,分析评价模块计算每个测试轮次测试集群在接收任务请求时的资源均衡度:According to the following formula, the analysis and evaluation module calculates the resource balance of each test round when the test cluster receives task requests:
其中,dp表示第p个测试轮次测试集群在接收任务请求时的资源分布均衡度,cp表示第p个测试轮次测试集群在接收任务请求时的CPU利用率标准差,mp表示第p个测试轮次测试集群在接收任务请求时的内存利用率标准差,wp表示第p个测试轮次测试集群在接收任务请求时的网络流入带宽利用率标准差,op表示第p个测试轮次测试集群在接收任务请求时的网络流入带宽利用率标准差,dp越小,测试集群负载均衡性能越好。Among them, d p represents the resource distribution balance degree of the p-th test round test cluster when receiving task requests, c p represents the standard deviation of CPU utilization of the p-th test round test cluster when receiving task requests, and m p represents The standard deviation of the memory utilization rate of the p-th test round test cluster when receiving task requests, w p represents the standard deviation of the network inflow bandwidth utilization rate of the p-th test round test cluster when receiving task requests, o p represents the p-th test round The standard deviation of the network inflow bandwidth utilization rate of the test cluster when receiving task requests for each test round, the smaller the dp , the better the load balancing performance of the test cluster.
分析评价模块计算每个测试轮次测试集群在接收任务请求时的总时间块无效请求率,在接收任务请求时测试集群的基础性能数据中的每秒超时任务请求数与请求总数的比值,作为该测试轮次每秒无效请求率;对每个测试轮次的持续时间内的所有无效请求率求算术平均值,作为该测试轮次测试集群总时间块无效请求率,总时间块无效请求率越小,测试集群负载均衡性能越好。The analysis and evaluation module calculates the total time block invalid request rate of each test round test cluster when receiving task requests, and the ratio of the number of overtime task requests per second to the total number of requests in the basic performance data of the test cluster when receiving task requests, as The invalid request rate per second of the test round; calculate the arithmetic mean of all invalid request rates within the duration of each test round as the total time block invalid request rate of the test cluster in this test round, and the total time block invalid request rate The smaller the value, the better the load balancing performance of the test cluster.
分析评价模块根据配置文件中的权值测试轮数,选取该剩余测试轮数所对应的性能测试指标,所述性能测试指标包括性能损失、响应性、资源分布均衡度、总时间块无效请求率,通过熵值法确定性能测试指标中每个指标的权值,所述熵值法是在综合评价领域被广泛运用的客观赋权法,其根据各项指标观测值所提供的信息的大小来确定指标权重,降低了人为因素对评价结果的干扰;用最大测试轮数减去权值测试轮数作为剩余测试轮数,对该剩余测试轮数所对应的性能测试指标进行算术平均值加权求和,得到虚拟化平台负载均衡性能评分。The analysis and evaluation module selects the performance test indicators corresponding to the remaining test rounds according to the weight test rounds in the configuration file, and the performance test indicators include performance loss, responsiveness, resource distribution balance, and invalid request rate of total time blocks , the weight of each index in the performance test index is determined by the entropy method. The entropy method is an objective weighting method widely used in the field of comprehensive evaluation. Determining the weight of the index reduces the interference of human factors on the evaluation results; using the maximum number of test rounds minus the number of weight test rounds as the remaining number of test rounds, the arithmetic mean weighted calculation of the performance test indicators corresponding to the remaining number of test rounds is carried out. and to get the load balancing performance score of the virtualization platform.
步骤8,生成测试报告。Step 8, generate a test report.
分析评价模块在前端虚拟化平台监控页面生成虚拟化平台负载均衡功能测试的测试报告。The analysis and evaluation module generates a test report for the load balancing function test of the virtualization platform on the front-end virtualization platform monitoring page.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011489323.3A CN112559129B (en) | 2020-12-16 | 2020-12-16 | Device and method for testing load balancing function and performance of virtualization platform |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011489323.3A CN112559129B (en) | 2020-12-16 | 2020-12-16 | Device and method for testing load balancing function and performance of virtualization platform |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112559129A CN112559129A (en) | 2021-03-26 |
| CN112559129B true CN112559129B (en) | 2023-03-10 |
Family
ID=75064854
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011489323.3A Active CN112559129B (en) | 2020-12-16 | 2020-12-16 | Device and method for testing load balancing function and performance of virtualization platform |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112559129B (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113392029B (en) * | 2021-07-27 | 2022-12-02 | 西安电子科技大学 | Comprehensive performance testing device and method for different levels of container cloud platform |
| CN114218060A (en) * | 2022-02-22 | 2022-03-22 | 龙旗电子(惠州)有限公司 | Performance test method and device of terminal equipment |
| CN115277708B (en) * | 2022-07-18 | 2023-10-24 | 齐鲁工业大学 | A dynamic distribution method of streaming media server load |
| CN115277506B (en) * | 2022-07-23 | 2023-05-23 | 杭州迪普科技股份有限公司 | Load balancing equipment testing method and system |
| CN116248558A (en) * | 2023-02-14 | 2023-06-09 | 上海观测未来信息技术有限公司 | Reference test method, device and system for observability data gateway |
| CN116795552B (en) * | 2023-07-07 | 2024-06-14 | 哈尔滨工业大学 | A large-scale load testing method based on MapReduce and its evaluation method |
| CN119025289B (en) * | 2024-10-28 | 2025-07-22 | 天津东疆星链数字科技有限公司 | System performance optimization platform construction method and system based on big data |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106557353A (en) * | 2016-11-04 | 2017-04-05 | 天津轻工职业技术学院 | A kind of container carries the server performance index Evaluation Method of service application |
| CN109582461A (en) * | 2018-11-14 | 2019-04-05 | 中国科学院计算技术研究所 | A kind of calculation resource disposition method and system for linux container |
| CN109981419A (en) * | 2019-04-11 | 2019-07-05 | 苏州浪潮智能科技有限公司 | Test method, device, system, equipment and the storage medium of load balancing characteristic |
| US10673952B1 (en) * | 2014-11-10 | 2020-06-02 | Turbonomic, Inc. | Systems, apparatus, and methods for managing computer workload availability and performance |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9699251B2 (en) * | 2014-05-13 | 2017-07-04 | Nutanix, Inc. | Mechanism for providing load balancing to an external node utilizing a clustered environment for storage management |
| US10387208B2 (en) * | 2014-07-15 | 2019-08-20 | Technion Research & Development Foundation Limited | Distributed cloud computing elasticity |
-
2020
- 2020-12-16 CN CN202011489323.3A patent/CN112559129B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10673952B1 (en) * | 2014-11-10 | 2020-06-02 | Turbonomic, Inc. | Systems, apparatus, and methods for managing computer workload availability and performance |
| CN106557353A (en) * | 2016-11-04 | 2017-04-05 | 天津轻工职业技术学院 | A kind of container carries the server performance index Evaluation Method of service application |
| CN109582461A (en) * | 2018-11-14 | 2019-04-05 | 中国科学院计算技术研究所 | A kind of calculation resource disposition method and system for linux container |
| CN109981419A (en) * | 2019-04-11 | 2019-07-05 | 苏州浪潮智能科技有限公司 | Test method, device, system, equipment and the storage medium of load balancing characteristic |
Non-Patent Citations (4)
| Title |
|---|
| Load balancing strategy for optimal peak hour performance in cloud datacenters;Ashwin Kumar Kulkarni等;《2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES)》;20150423;全文 * |
| 云平台负载均衡能力研究与测评;宋超建;《中国优秀硕士学位论文全文数据库》;中国学术期刊(光盘版)电子杂志社;20200215(第2期);第5.2节、表5.2 * |
| 基于云计算的弹性负载均衡方案;朱志祥等;《西安邮电大学学报》;20131110(第06期);全文 * |
| 面向IaaS云平台基础性能测评框架的设计与实现;李耿;《中国优秀硕士学位论文全文数据库(信息科技辑)》;中国学术期刊(光盘版)电子杂志社;20200215(第2期);第3.1.1节、第3.2节、第3.3.2节、第4.1.1节、第4.1.4节、4.1.5节 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112559129A (en) | 2021-03-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112559129B (en) | Device and method for testing load balancing function and performance of virtualization platform | |
| CN109918198B (en) | Simulation cloud platform load scheduling system and method based on user characteristic prediction | |
| US10841241B2 (en) | Intelligent placement within a data center | |
| US8756441B1 (en) | Data center energy manager for monitoring power usage in a data storage environment having a power monitor and a monitor module for correlating associative information associated with power consumption | |
| CN110149395A (en) | One kind is based on dynamic load balancing method in the case of mass small documents high concurrent | |
| CN113392029B (en) | Comprehensive performance testing device and method for different levels of container cloud platform | |
| CN112835698A (en) | A Dynamic Load Balancing Method Based on Heterogeneous Cluster Request Classification Processing | |
| CN108182140A (en) | Determine the performance capability with monitoring computer resource service | |
| WO2012033909A2 (en) | Method and system of simulating a data center | |
| CN108322548A (en) | A kind of industrial process data analyzing platform based on cloud computing | |
| CN106385468A (en) | Method for balancing predictable dynamic load of Web clusters | |
| CN109460348A (en) | The pressure of game server surveys method and apparatus | |
| CN111061561A (en) | Full-stage load sharing comprehensive optimization method of cloud computing management platform | |
| CN116567059A (en) | Micro-service deployment method, device and storage medium | |
| CN116700920A (en) | Cloud primary hybrid deployment cluster resource scheduling method and device | |
| CN118158092B (en) | A computing power network scheduling method, device and electronic equipment | |
| CN110471761A (en) | Control method, user equipment, storage medium and the device of server | |
| CN117149424A (en) | Resource capacity expansion method, device, equipment and storage medium | |
| CN102929693B (en) | Performance evaluation method and device for servers of whole equipment cabinet | |
| CN115314500B (en) | Dynamic load balancing method based on improved TOPSIS model | |
| CN114430384B (en) | Network speed measuring method and device based on distributed architecture | |
| Khomonenko et al. | Probabilistic models for evaluating the performance of cloud computing systems with web interface | |
| Preetham et al. | Resource provisioning in cloud using ARIMA and LSTM technique | |
| Li et al. | Cloud Load Balancing Algorithms Performance Evaluation Using a Unified Testing Platform | |
| Duan et al. | Simulation of Cloud Computing Resource Allocation Optimization Model Based on Graph Neural Network |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |