CN112599602B - Semiconductor device and method for manufacturing the same - Google Patents
Semiconductor device and method for manufacturing the same Download PDFInfo
- Publication number
- CN112599602B CN112599602B CN202011445253.1A CN202011445253A CN112599602B CN 112599602 B CN112599602 B CN 112599602B CN 202011445253 A CN202011445253 A CN 202011445253A CN 112599602 B CN112599602 B CN 112599602B
- Authority
- CN
- China
- Prior art keywords
- trench
- filling structure
- region
- substrate
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims description 18
- 239000000758 substrate Substances 0.000 claims abstract description 113
- 210000000746 body region Anatomy 0.000 claims description 37
- 230000015556 catabolic process Effects 0.000 abstract description 15
- 238000002955 isolation Methods 0.000 description 19
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 6
- 239000000969 carrier Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/028—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
- H10D30/0281—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs
- H10D30/0289—Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of lateral DMOS [LDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/65—Lateral DMOS [LDMOS] FETs
- H10D30/658—Lateral DMOS [LDMOS] FETs having trench gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明提供了一种半导体器件及其制造方法,所述半导体器件包括:衬底,所述衬底中形成有第一沟槽填充结构围成的有源区;第二沟槽填充结构和位于所述第二沟槽填充结构一侧的至少一个第三沟槽,形成于所述有源区的衬底中,所述第三沟槽的底壁高于所述第一沟槽填充结构的底面;栅介质层,形成于所述第三沟槽的内壁以及所述第三沟槽外围的衬底上;以及,栅极层,形成于所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上。本发明的技术方案使得能够在不降低击穿电压的同时,还能使得导通电阻降低。
The present invention provides a semiconductor device and a manufacturing method thereof. The semiconductor device includes: a substrate in which an active region surrounded by a first trench filling structure is formed; At least one third trench on one side of the second trench filling structure is formed in the substrate of the active region, and the bottom wall of the third trench is higher than that of the first trench filling structure a bottom surface; a gate dielectric layer, formed on the inner wall of the third trench and the substrate on the periphery of the third trench; and a gate layer, formed on the gate dielectric layer and close to the third trench part of the trench on the second trench fill structure. The technical solution of the present invention can reduce the on-resistance without reducing the breakdown voltage.
Description
技术领域technical field
本发明涉及半导体集成电路制造领域,特别涉及一种半导体器件及其制造方法。The invention relates to the field of semiconductor integrated circuit manufacturing, in particular to a semiconductor device and a manufacturing method thereof.
背景技术Background technique
横向双扩散金属氧化物半导体(LDMOS,lateral double-diffused MOS)现在被广泛应用于功率集成电路(power ICs)中,LDMOS最重要的参数是导通电阻(Ron)和击穿电压(BV),导通电阻越小越好,击穿电压越大越好,二者是相互矛盾的。当通过调整离子注入条件、场板区的大小以及器件尺寸等方式优化了导通电阻和击穿电压之后,若要进一步降低导通电阻,则会导致击穿电压降低,若要进一步提高击穿电压,则会导致导通电阻增大。Lateral double-diffused metal oxide semiconductor (LDMOS, lateral double-diffused MOS) is now widely used in power integrated circuits (power ICs). The most important parameters of LDMOS are on-resistance (Ron) and breakdown voltage (BV), The smaller the on-resistance, the better, and the larger the breakdown voltage, the better. The two are contradictory. When the on-resistance and breakdown voltage are optimized by adjusting the ion implantation conditions, the size of the field plate region, and the device size, if the on-resistance is to be further reduced, the breakdown voltage will decrease. voltage, it will cause the on-resistance to increase.
例如图1a和图1b所示的是含浅沟槽隔离结构(STI)的LDMOS,根据版图定义出有源区A1,LDMOS包括衬底10、位于有源区的衬底10中的体区11和漂移区12、位于体区11中的体接触区15和源极区16以及位于漂移区12中的漏极区17,LDMOS还包括依次位于衬底10上的栅介质层13和栅极层14以及位于有源区A1的衬底10中的浅沟槽隔离结构18。浅沟槽隔离结构18为LDMOS的场氧层,浅沟槽隔离结构18位于栅介质层13的一侧,栅极层14的一部分位于沟道上方,另一部分则横向扩展至浅沟槽隔离结构18的上方,该栅极层14位于沟道上方的这部分构成了该LDMOS的栅极区,而延伸至浅沟槽隔离结构18的部分构成了场板。浅沟槽隔离结构18的深度与有源区A1外围的浅沟槽隔离结构(未图示)的深度相同,栅介质层13和栅极层14从体区11延伸至漂移区12上,漂移区12包围浅沟槽隔离结构18,漏极区17位于浅沟槽隔离结构18的远离栅极层14的一侧的漂移区12中,体接触区15和源极区16位于栅极层14的远离浅沟槽隔离结构18的一侧的体区11中。图1a和图1b所示的含浅沟槽隔离结构的LDMOS虽然因浅沟槽隔离结构18部分位于栅极层14的下方而具有很高的击穿电压,但是电流通过较深的浅沟槽隔离结构18的底部,会产生较高的导通电阻。For example, as shown in FIG. 1a and FIG. 1b is an LDMOS with a shallow trench isolation structure (STI), an active region A1 is defined according to the layout, and the LDMOS includes a
因此,如何在保证击穿电压不变的同时,还能进一步降低导通电阻是目前亟需解决的问题。Therefore, how to further reduce the on-resistance while keeping the breakdown voltage unchanged is an urgent problem to be solved at present.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种半导体器件及其制造方法,能够在不降低击穿电压的同时,还能使得导通电阻降低。The object of the present invention is to provide a semiconductor device and a method for manufacturing the same, which can reduce the on-resistance without reducing the breakdown voltage.
为实现上述目的,本发明提供了一种半导体器件,包括:To achieve the above object, the present invention provides a semiconductor device, comprising:
衬底,所述衬底中形成有第一沟槽填充结构围成的有源区;a substrate, in which an active region surrounded by a first trench filling structure is formed;
第二沟槽填充结构和位于所述第二沟槽填充结构一侧的至少一个第三沟槽,形成于所述有源区的衬底中,所述第三沟槽的底壁高于所述第一沟槽填充结构的底面;A second trench filling structure and at least one third trench on one side of the second trench filling structure are formed in the substrate of the active region, and the bottom wall of the third trench is higher than all the the bottom surface of the first trench filling structure;
栅介质层,形成于所述第三沟槽的内壁以及所述第三沟槽外围的衬底上;以及,a gate dielectric layer formed on the inner wall of the third trench and the substrate on the periphery of the third trench; and,
栅极层,形成于所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上。A gate layer is formed on the gate dielectric layer and on a portion of the second trench filling structure close to the third trench.
可选的,所述第三沟槽的靠近所述第二沟槽填充结构的一侧暴露出所述第二沟槽填充结构。Optionally, a side of the third trench close to the second trench filling structure exposes the second trench filling structure.
可选的,所有的所述第三沟槽在垂直于所述第二沟槽填充结构的所述一侧的边缘方向上的长度大于在平行于所述第二沟槽填充结构的所述一侧的边缘方向上的长度。Optionally, the length of all the third trenches in the edge direction perpendicular to the side of the second trench filling structure is greater than that of the one side parallel to the second trench filling structure. The length in the edge direction of the side.
可选的,所述半导体器件包括至少两个第三沟槽,所有的所述第三沟槽沿着平行于所述第二沟槽填充结构的所述一侧的边缘方向依次排列。Optionally, the semiconductor device includes at least two third trenches, and all the third trenches are sequentially arranged along an edge direction parallel to the one side of the second trench filling structure.
可选的,所述第二沟槽填充结构的底面与所述第一沟槽填充结构的底面齐平;或者,所述第二沟槽填充结构的底面与所述第三沟槽的底壁齐平。Optionally, the bottom surface of the second trench filling structure is flush with the bottom surface of the first trench filling structure; or, the bottom surface of the second trench filling structure is flush with the bottom wall of the third trench flush.
可选的,所述第二沟槽填充结构的两端与所述第一沟槽填充结构的侧壁接触;所述栅极层的两端从所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上延伸至所述第一沟槽填充结构上。Optionally, both ends of the second trench filling structure are in contact with sidewalls of the first trench filling structure; both ends of the gate layer are located on the gate dielectric layer and close to the third A portion of the trench extends above the second trench filling structure to the first trench filling structure.
可选的,所述半导体器件还包括形成于所述有源区的衬底中的体区和漂移区,所述体区与所述漂移区的交界处位于所述栅极层的下方,且所述漂移区包围所述第二沟槽填充结构,所述第三沟槽从所述漂移区延伸至所述体区。Optionally, the semiconductor device further includes a body region and a drift region formed in the substrate of the active region, a boundary between the body region and the drift region is located below the gate layer, and The drift region surrounds the second trench fill structure, and the third trench extends from the drift region to the body region.
可选的,所述半导体器件还包括源极区和漏极区,所述源极区位于所述栅极层的远离所述第二沟槽填充结构的体区中,所述漏极区位于所述第二沟槽填充结构的背向所述源极区一侧的漂移区中。Optionally, the semiconductor device further includes a source region and a drain region, the source region is located in a body region of the gate layer away from the second trench filling structure, and the drain region is located in in the drift region of the second trench filling structure on the side facing away from the source region.
可选的,所述第三沟槽的背向所述第二沟槽填充结构的一端超出所述栅极层的背向所述第二沟槽填充结构的一端,且所述第三沟槽的背向所述第二沟槽填充结构的一端延伸至所述源极区上。Optionally, an end of the third trench facing away from the second trench filling structure exceeds an end of the gate layer facing away from the second trench filling structure, and the third trench One end of the one facing away from the second trench filling structure extends to the source region.
本发明还提供了一种半导体器件的制造方法,包括:The present invention also provides a method for manufacturing a semiconductor device, comprising:
提供一衬底;providing a substrate;
形成第一沟槽、第二沟槽和至少一个第三沟槽于所述衬底中,所述第一沟槽在所述衬底中围成一有源区,所述第二沟槽形成于所述有源区的衬底中,所述至少一个第三沟槽形成于所述第二沟槽一侧的有源区的衬底中,所述第三沟槽的深度小于所述第一沟槽的深度;A first trench, a second trench and at least one third trench are formed in the substrate, the first trench encloses an active area in the substrate, and the second trench is formed In the substrate of the active region, the at least one third trench is formed in the substrate of the active region on one side of the second trench, and the depth of the third trench is smaller than that of the first trench. the depth of a groove;
形成第一沟槽填充结构于所述第一沟槽中以及形成第二沟槽填充结构于所述第二沟槽中;forming a first trench filling structure in the first trench and forming a second trench filling structure in the second trench;
形成栅介质层于所述第三沟槽的内壁以及所述第三沟槽外围的衬底上;以及,forming a gate dielectric layer on the inner wall of the third trench and the substrate on the periphery of the third trench; and,
形成栅极层于所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上。A gate layer is formed on the gate dielectric layer and on a portion of the second trench filling structure close to the third trench.
可选的,所述第三沟槽的靠近所述第二沟槽的一侧与所述第二沟槽连通。Optionally, a side of the third groove close to the second groove communicates with the second groove.
可选的,所有的所述第三沟槽在垂直于所述第二沟槽的所述一侧的边缘方向上的长度大于在平行于所述第二沟槽的所述一侧的边缘方向上的长度。Optionally, the length of all the third grooves in the edge direction perpendicular to the side of the second groove is greater than the edge direction parallel to the side of the second groove on the length.
可选的,形成所述第一沟槽、所述第二沟槽和所述至少一个第三沟槽于所述衬底中的步骤包括:Optionally, the step of forming the first trench, the second trench and the at least one third trench in the substrate includes:
先形成第一沟槽于所述衬底中,再同时形成第二沟槽和至少一个第三沟槽于所述衬底中,所述第二沟槽的深度与所述第三沟槽的深度相同;First, a first trench is formed in the substrate, and then a second trench and at least one third trench are simultaneously formed in the substrate. The depth of the second trench is the same as the depth of the third trench. same depth;
或者,先同时形成第一沟槽和第二沟槽于所述衬底中,再形成至少一个第三沟槽于所述衬底中,所述第二沟槽的深度与所述第一沟槽的深度相同。Alternatively, a first trench and a second trench are simultaneously formed in the substrate, and then at least one third trench is formed in the substrate, and the depth of the second trench is the same as that of the first trench. The grooves have the same depth.
可选的,形成所述第一沟槽填充结构于所述第一沟槽中以及形成所述第二沟槽填充结构于所述第二沟槽中的步骤包括:Optionally, the steps of forming the first trench filling structure in the first trench and forming the second trench filling structure in the second trench include:
形成绝缘介质层填充于所述第一沟槽、所述第二沟槽和所述第三沟槽中;以及,forming an insulating dielectric layer to fill the first trench, the second trench and the third trench; and,
去除所述第三沟槽中的绝缘介质层,以在所述第一沟槽中形成第一沟槽填充结构以及在所述第二沟槽中形成第二沟槽填充结构。The insulating dielectric layer in the third trench is removed to form a first trench filling structure in the first trench and a second trench filling structure in the second trench.
可选的,所述第二沟槽的两端与所述第一沟槽的侧壁连通;所述栅极层的两端从所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上延伸至所述第一沟槽填充结构上。Optionally, both ends of the second trench are communicated with the sidewalls of the first trench; both ends of the gate layer are connected from the gate dielectric layer and a portion close to the third trench. The second trench filling structure extends over the first trench filling structure.
可选的,所述半导体器件的制造方法还包括形成体区和漂移区于所述有源区的衬底中;所述体区与所述漂移区的交界处位于所述栅极层的下方,所述漂移区包围所述第二沟槽,所述第三沟槽从所述漂移区延伸至所述体区。Optionally, the manufacturing method of the semiconductor device further includes forming a body region and a drift region in the substrate of the active region; the boundary between the body region and the drift region is located below the gate layer , the drift region surrounds the second trench, and the third trench extends from the drift region to the body region.
可选的,所述半导体器件的制造方法还包括形成源极区和漏极区,所述源极区位于所述栅极层的远离所述第二沟槽填充结构的体区中,所述漏极区位于所述第二沟槽填充结构的背向所述源极区一侧的漂移区中。Optionally, the manufacturing method of the semiconductor device further includes forming a source region and a drain region, the source region is located in a body region of the gate layer that is far away from the second trench filling structure, the The drain region is located in the drift region on the side of the second trench filling structure facing away from the source region.
与现有技术相比,本发明的技术方案具有以下有益效果:Compared with the prior art, the technical scheme of the present invention has the following beneficial effects:
1、本发明的半导体器件,由于包括位于所述第二沟槽填充结构一侧的至少一个第三沟槽,且所述第三沟槽的底壁高于第一沟槽填充结构的底面,以及形成于栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上的栅极层,使得能够在不降低击穿电压的同时,还能使得导通电阻降低。1. The semiconductor device of the present invention includes at least one third trench on one side of the second trench filling structure, and the bottom wall of the third trench is higher than the bottom surface of the first trench filling structure, and the gate layer formed on the gate dielectric layer and the part of the second trench filling structure close to the third trench, so that the on-resistance can be reduced without reducing the breakdown voltage.
2、本发明的半导体器件的制造方法,通过形成第一沟槽、第二沟槽和至少一个第三沟槽于衬底中,所述第一沟槽在所述衬底中围成一有源区,所述第二沟槽形成于所述有源区的衬底中,所述至少一个第三沟槽形成于所述第二沟槽一侧的有源区的衬底中,所述第三沟槽的深度小于所述第一沟槽的深度;形成第一沟槽填充结构于所述第一沟槽中以及形成第二沟槽填充结构于所述第二沟槽中;形成栅介质层于所述第三沟槽的内壁以及所述第三沟槽外围的衬底上;以及,形成栅极层于所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上,使得能够在不降低击穿电压的同时,还能使得导通电阻降低。2. The method for manufacturing a semiconductor device of the present invention comprises forming a first trench, a second trench and at least one third trench in a substrate, wherein the first trench is surrounded by a source region, the second trench is formed in the substrate of the active region, the at least one third trench is formed in the substrate of the active region on one side of the second trench, the The depth of the third trench is less than the depth of the first trench; forming a first trench filling structure in the first trench and forming a second trench filling structure in the second trench; forming a gate A dielectric layer is formed on the inner wall of the third trench and the substrate on the periphery of the third trench; and a gate layer is formed on the gate dielectric layer and a portion of the first trench close to the third trench. On the two trench filling structures, the on-resistance can be reduced without reducing the breakdown voltage.
附图说明Description of drawings
图1a是现有的一种含浅沟槽隔离结构的LDMOS的版图;1a is a layout of an existing LDMOS with a shallow trench isolation structure;
图1b是图1a所示的含浅沟槽隔离结构的LDMOS沿AA’方向的剖面示意图;Fig. 1b is a schematic cross-sectional view of the LDMOS with the shallow trench isolation structure shown in Fig. 1a along the AA' direction;
图2a是本发明一实施例的半导体器件的版图;2a is a layout of a semiconductor device according to an embodiment of the present invention;
图2b是图2a所示的半导体器件沿BB’方向的剖面示意图;Fig. 2b is a schematic cross-sectional view of the semiconductor device shown in Fig. 2a along the BB' direction;
图2c是图2a所示的半导体器件沿CC’方向的剖面示意图;Figure 2c is a schematic cross-sectional view of the semiconductor device shown in Figure 2a along the CC' direction;
图2d是图2a所示的半导体器件沿DD’方向的剖面示意图;Fig. 2d is a schematic cross-sectional view of the semiconductor device shown in Fig. 2a along the DD' direction;
图2e是图2a所示的半导体器件沿EE’方向的剖面示意图;Figure 2e is a schematic cross-sectional view of the semiconductor device shown in Figure 2a along the EE' direction;
图2f是本发明另一实施例的半导体器件的版图;2f is a layout of a semiconductor device according to another embodiment of the present invention;
图2g是图2f所示的半导体器件沿FF’方向的剖面示意图;Fig. 2g is a schematic cross-sectional view of the semiconductor device shown in Fig. 2f along the FF' direction;
图3是本发明一实施例的半导体器件的制造方法的流程图;3 is a flowchart of a method for manufacturing a semiconductor device according to an embodiment of the present invention;
图4a~图4m是图3所示的半导体器件的制造方法中的器件示意图。4a to 4m are device schematic diagrams in the method for manufacturing the semiconductor device shown in FIG. 3 .
其中,附图1a~图4m的附图标记说明如下:Wherein, the reference signs in Fig. 1a to Fig. 4m are described as follows:
10-衬底;11-体区;12-漂移区;13-栅介质层;14-栅极层;15-体接触区;16-源极区;17-漏极区;18-浅沟槽隔离结构;20-衬底;201-垫氧化层;202-氮化硅层;203-绝缘介质层;21-第一沟槽填充结构;211-第一沟槽;22-第二沟槽填充结构;221-第二沟槽;23-第三沟槽;24-栅介质层;25-栅极层;26-体区;261-源极区;262-体接触区;27-漂移区;271-漏极区;28-导电接触插栓。10-substrate; 11-body region; 12-drift region; 13-gate dielectric layer; 14-gate layer; 15-body contact region; 16-source region; 17-drain region; 18-shallow trench Isolation structure; 20-substrate; 201-pad oxide layer; 202-silicon nitride layer; 203-insulating dielectric layer; 21-first trench filling structure; 211-first trench; 22-second trench filling 221-second trench; 23-third trench; 24-gate dielectric layer; 25-gate layer; 26-body region; 261-source region; 262-body contact region; 27-drift region; 271-drain region; 28-conductive contact plug.
具体实施方式Detailed ways
为使本发明的目的、优点和特征更加清楚,以下结合附图对本发明提出的半导体器件及其制造方法作进一步详细说明。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。In order to make the objects, advantages and features of the present invention clearer, the semiconductor device and its manufacturing method proposed by the present invention will be further described in detail below with reference to the accompanying drawings. It should be noted that, the accompanying drawings are all in a very simplified form and in inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.
本发明一实施例提供了一种半导体器件,参阅图2a~图2g,所述半导体器件包括衬底20、第二沟槽填充结构22、至少一个第三沟槽23、栅介质层24和栅极层25,所述衬底20中形成有第一沟槽填充结构21围成的有源区A2;所述第二沟槽填充结构22和位于所述第二沟槽填充结构22一侧的所述至少一个第三沟槽23形成于所述有源区A2的衬底20中,所述第三沟槽23的底壁高于所述第一沟槽填充结构21的底面;所述栅介质层24形成于所述第三沟槽23的内壁以及所述第三沟槽23外围的衬底20上;所述栅极层25形成于所述栅介质层24上以及靠近所述第三沟槽23的部分所述第二沟槽填充结构22上。An embodiment of the present invention provides a semiconductor device, referring to FIGS. 2 a to 2 g , the semiconductor device includes a
下面参阅图2a~图2g详细描述本实施例提供的半导体器件。The semiconductor device provided by this embodiment will be described in detail below with reference to FIGS. 2a to 2g.
所述衬底20中形成有第一沟槽填充结构21围成的有源区A2。An active region A2 surrounded by the first
所述衬底20的材质可以为本领域技术人员熟知的任意合适的底材。The material of the
所述第二沟槽填充结构22和位于所述第二沟槽填充结构22一侧的所述至少一个第三沟槽23形成于所述有源区A2的衬底20中,所述第三沟槽23的底壁高于所述第一沟槽填充结构21的底面。The second
所述第一沟槽填充结构21和所述第二沟槽填充结构22的顶面可以与所述衬底20的顶面齐平,或者,所述第一沟槽填充结构21和所述第二沟槽填充结构22的顶面可以高于所述衬底20的顶面。所述第一沟槽填充结构21和所述第二沟槽填充结构22均起到隔离的作用。The top surfaces of the first
所述第二沟槽填充结构22的底面可以与所述第一沟槽填充结构21的底面齐平,所述第三沟槽23的深度小于所述第一沟槽填充结构21和所述第二沟槽填充结构22的位于所述衬底20中的部分的深度,所述第三沟槽23的深度可以为所述第一沟槽填充结构21和所述第二沟槽填充结构22的位于所述衬底20中的部分的深度可以为 The bottom surface of the second
或者,所述第二沟槽填充结构22的底面与所述第三沟槽23的底壁齐平,即所述第二沟槽填充结构22的位于所述衬底20中的部分的深度和所述第三沟槽23的深度均小于所述第一沟槽填充结构21的位于所述衬底20中的部分的深度,所述第二沟槽填充结构22的位于所述衬底20中的部分的深度和所述第三沟槽23的深度可以为所述第一沟槽填充结构21的位于所述衬底20中的部分的深度可以为 Alternatively, the bottom surface of the second
若所述第三沟槽23的深度小于所述第一沟槽填充结构21和所述第二沟槽填充结构22的位于所述衬底20中的部分的深度,则所述第三沟槽23的靠近所述第二沟槽填充结构22的一侧暴露出所述第二沟槽填充结构22的侧壁顶部,所述第二沟槽填充结构22的两端的整个侧壁与所述第一沟槽填充结构21的侧壁接触;若所述第二沟槽填充结构22的位于所述衬底20中的部分的深度和所述第三沟槽23的深度均小于所述第一沟槽填充结构21的位于所述衬底20中的部分的深度,则所述第三沟槽23的靠近所述第二沟槽填充结构22的一侧的整个侧壁与所述第二沟槽填充结构22的侧壁接触,所述第二沟槽填充结构22的两端与所述第一沟槽填充结构21的侧壁顶部接触。If the depth of the
所述半导体器件可以包括至少两个第三沟槽23,所有的所述第三沟槽23沿着平行于所述第二沟槽填充结构22的所述一侧的边缘方向依次排列。The semiconductor device may include at least two
所述栅介质层24形成于所述第三沟槽23的内壁以及所述第三沟槽23外围的衬底20上。所述栅介质层24的靠近所述第二沟槽填充结构22的一侧与所述第二沟槽填充结构22接触,所述栅介质层24的在平行于所述第二沟槽填充结构22的所述一侧的边缘方向的两端与所述第一沟槽填充结构21接触。The
所述栅极层25形成于所述栅介质层24上以及靠近所述第三沟槽23的部分所述第二沟槽填充结构22上。所述栅极层25的两端(即平行于所述第二沟槽填充结构22的所述一侧的边缘方向上的两端)从所述栅介质层24上以及靠近所述第三沟槽23的部分所述第二沟槽填充结构22上延伸至所述第一沟槽填充结构21上。其中,所述第二沟槽填充结构22为半导体器件的场氧化层,所述栅极层25的位于版图定义的沟道区上方的部分构成了半导体器件的栅极区,而延伸至所述第二沟槽填充结构22上的部分构成了场板。The
其中,所述栅极层25可以覆盖所有的所述第三沟槽23,即所述第三沟槽23的背向所述第二沟槽填充结构22的一端未超出所述栅极层25的背向所述第二沟槽填充结构22的一端,如图2a所示;或者,所述栅极层25可以仅覆盖部分的所述第三沟槽23,即所述第三沟槽23的背向所述第二沟槽填充结构22的一端可以超出所述栅极层25的背向所述第二沟槽填充结构22的一端,如图2f所示。The
所述半导体器件还包括形成于所述有源区A2的衬底20中的体区26和漂移区27,所述体区26与所述漂移区27的交界处位于所述栅极层25的下方,所述漂移区27包围所述第二沟槽填充结构22,所述第三沟槽23从所述漂移区27延伸至所述体区26。The semiconductor device further includes a
所述半导体器件还包括源极区261和漏极区271,所述源极区261位于所述栅极层25的远离所述第二沟槽填充结构22的体区26中,所述漏极区271位于所述第二沟槽填充结构22的背向所述源极区261一侧的漂移区27中。在形成所述源极区261和所述漏极区271的同时,还可形成体接触区262于所述体区26中,所述体接触区262位于所述源极区261的背向所述栅极层25一侧的体区26中,且所述体接触区262和所述源极区261之间还间隔有第一沟槽填充结构21。The semiconductor device further includes a
如图2a和图2f所示,所述半导体器件还包括形成于所述源极区261、所述漏极区271、所述体接触区262和所述栅极层25上的导电接触插栓28,且所述栅极层25上的导电接触插栓28位于所述第一沟槽填充结构21的上方;且如图2f和图2g所示,所述第三沟槽23的背向所述第二沟槽填充结构22的一端可以延伸至所述源极区261上,所述导电接触插栓28的底部与所述第三沟槽23下方的源极区261接触。As shown in FIGS. 2 a and 2 f , the semiconductor device further includes conductive contact plugs formed on the
另外,所有的所述第三沟槽23在垂直于所述第二沟槽填充结构22的所述一侧的边缘方向上的长度大于在平行于所述第二沟槽填充结构22的所述一侧的边缘方向上的长度,使得版图定义的沟道区的宽度的增大幅度大于沟道区的长度的增大幅度。由于所述源极区261和所述漏极区271之间的位于所述栅介质层24下方的部分为沟道区,所述源极区261和所述漏极区271之间的方向为沟道区的长度方向,则所述沟道区的长度方向为垂直于所述第二沟槽填充结构22的所述一侧的边缘所在的方向,所述沟道区的宽度方向为平行于所述第二沟槽填充结构22的所述一侧的边缘所在的方向,那么,所有的所述第三沟槽23在所述沟道区的长度方向上的长度大于在所述沟道区的宽度方向上的长度。In addition, the lengths of all the
具体的,参阅图2a、图2b和图2e,所述第三沟槽23的横向剖面图形为长方形,所述第三沟槽23的沿BB’和EE’方向的剖面图形均为倒梯形,长方形的短边与所述第二沟槽填充结构22的所述一侧连接,长方形的长边垂直于所述第二沟槽填充结构22的所述一侧;定义所述第三沟槽23的在所述沟道区的长度方向上的底壁的长度为L1,所述第三沟槽23的在所述沟道区的长度方向上的侧壁的长度为L3,所述第三沟槽23的在所述沟道区的宽度方向上的底壁的长度为L2,所述第三沟槽23的在所述沟道区的宽度方向上的侧壁的长度为L4,当形成有一个所述第三沟槽23时,所述沟道区的长度增加一个长度L3(由于所述第三沟槽23的靠近所述第二沟槽填充结构22一侧的整个侧壁暴露出所述第二沟槽填充结构22,使得所述第三沟槽23的靠近所述第二沟槽填充结构22一侧的侧壁未能使得沟道区的长度增加),所述沟道区的宽度增加两个长度L4,由于L3=L4,那么,所述沟道区的长度增加的量小于所述沟道区的宽度增加的量,且L1>L2,因此,所述沟道区的宽度增加的百分比(两个L4的长度基于L2的长度增加的比例)大于所述沟道区的长度增加的百分比(一个L3的长度基于L1的长度增加的比例),即所述沟道区的宽度增加的幅度大于所述沟道区的长度增加的幅度;所述第三沟槽23的数量越多,则所述沟道区的宽度增加的量越多,所述沟道区的宽度增大的幅度越大,使得在不降低击穿电压的同时使得导通电阻大幅度的降低。2a, 2b and 2e, the transverse cross-sectional pattern of the
尤其对于图2f和图2g所示的实施例,由于所述第三沟槽23的背向所述第二沟槽填充结构22的一端延伸至所述源极区261上且暴露出所述第一沟槽填充结构21的侧壁,使得所述第三沟槽23的背向所述第二沟槽填充结构22的一端无法使得所述沟道区的长度增加,进一步使得所述沟道区的宽度的增大幅度大于所述沟道区的长度的增大幅度。Especially for the embodiments shown in FIG. 2f and FIG. 2g, since the end of the
从上述内容可知,由于在所述第二沟槽填充结构22的一侧形成有至少一个所述第三沟槽23,所述至少一个第三沟槽23从所述漂移区27延伸至所述体区26,使得在不改变版图的宽度的情况下增大了所述沟道区的宽度,例如,所述体区26的位于所述栅极层25下方的部分为有效的沟道区,有效的沟道区的宽度增大了50%~100%,沟道反型的载流子数量增加50%~100%,进而使得在不降低击穿电压的同时使得导通电阻大幅度的降低。From the above content, since at least one
并且,若所述第二沟槽填充结构22的位于所述衬底20中的部分的厚度与所述第三沟槽23的深度相同且二者均小于所述第一沟槽填充结构21的位于所述衬底20中的部分的厚度,则所述第二沟槽填充结构22位于所述衬底20中的厚度得到减小,使得导通电阻得到进一步的降低。Furthermore, if the thickness of the portion of the second
综上所述,本发明提供的半导体器件,包括:衬底,所述衬底中形成有第一沟槽填充结构围成的有源区;一第二沟槽填充结构和位于所述第二沟槽填充结构一侧的至少一个第三沟槽,形成于所述有源区的衬底中,所述第三沟槽的底壁高于所述第一沟槽填充结构的底面;栅介质层,形成于所述第三沟槽的内壁以及所述第三沟槽外围的衬底上;以及,栅极层,形成于所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上。本发明的半导体器件能够在不降低击穿电压的同时,还能使得导通电阻降低。To sum up, the semiconductor device provided by the present invention includes: a substrate in which an active region surrounded by a first trench filling structure is formed; a second trench filling structure and a At least one third trench on one side of the trench filling structure is formed in the substrate of the active region, and the bottom wall of the third trench is higher than the bottom surface of the first trench filling structure; gate dielectric layer, formed on the inner wall of the third trench and the substrate on the periphery of the third trench; and a gate layer, formed on the gate dielectric layer and on the part close to the third trench on the second trench filling structure. The semiconductor device of the present invention can reduce the on-resistance without reducing the breakdown voltage.
本发明一实施例提供一种半导体器件的制造方法,参阅图3,图3是本发明一实施例的半导体器件的制造方法的流程图,所述半导体器件的制造方法包括:An embodiment of the present invention provides a method for manufacturing a semiconductor device. Referring to FIG. 3 , FIG. 3 is a flowchart of a method for manufacturing a semiconductor device according to an embodiment of the present invention. The method for manufacturing a semiconductor device includes:
步骤S1、提供一衬底;Step S1, providing a substrate;
步骤S2、形成第一沟槽、第二沟槽和至少一个第三沟槽于所述衬底中,所述第一沟槽在所述衬底中围成一有源区,所述第二沟槽形成于所述有源区的衬底中,所述至少一个第三沟槽形成于所述第二沟槽一侧的有源区的衬底中,所述第三沟槽的深度小于所述第一沟槽的深度;Step S2, forming a first trench, a second trench and at least one third trench in the substrate, the first trench enclosing an active region in the substrate, the second trench A trench is formed in the substrate of the active region, the at least one third trench is formed in the substrate of the active region on one side of the second trench, and the depth of the third trench is less than the depth of the first groove;
步骤S3、形成第一沟槽填充结构于所述第一沟槽中以及形成第二沟槽填充结构于所述第二沟槽中;Step S3, forming a first trench filling structure in the first trench and forming a second trench filling structure in the second trench;
步骤S4、形成栅介质层于所述第三沟槽的内壁以及所述第三沟槽外围的衬底上;Step S4, forming a gate dielectric layer on the inner wall of the third trench and the substrate on the periphery of the third trench;
步骤S5、形成栅极层于所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上。Step S5 , forming a gate layer on the gate dielectric layer and on a portion of the second trench filling structure close to the third trench.
下面参阅图4a~图4m更为详细的介绍本实施例提供的半导体器件的制造方法,图4a、图4b、图4d、图4f、图4h、图4j和图4l是制造图2a所示的半导体器件沿BB’方向的剖面示意图,图4c、图4e、图4g、图4i、图4k和图4m是制造图2a所示的半导体器件沿CC’方向的剖面示意图,图4c、图4e、图4g、图4i、图4k和图4m依次对应图4b、图4d、图4f、图4h、图4j和图4l。The manufacturing method of the semiconductor device provided by the present embodiment will be described in more detail below with reference to FIGS. 4a to 4m. 4c, 4e, 4g, 4i, 4k, and 4m are schematic cross-sectional views of the semiconductor device along the direction of CC', and Figures 4c, 4e, Figure 4g, Figure 4i, Figure 4k, and Figure 4m correspond to Figure 4b, Figure 4d, Figure 4f, Figure 4h, Figure 4j, and Figure 4l in turn.
按照步骤S1,提供一衬底20,所述衬底20的材质可以为本领域技术人员熟知的任意合适的底材。According to step S1, a
按照步骤S2,形成第一沟槽211、第二沟槽221和至少一个第三沟槽23于所述衬底20中,所述第一沟槽211在所述衬底20中围成一有源区(即图2a和图2f中所示的有源区A2),所述第二沟槽221形成于所述有源区A2的衬底20中,所述至少一个第三沟槽23形成于所述第二沟槽221一侧的有源区A2的衬底20中,所述第三沟槽23的深度小于所述第一沟槽211的深度。According to step S2 , a
形成所述第一沟槽211、所述第二沟槽221和所述至少一个第三沟槽23于所述衬底20中的步骤包括:The step of forming the
先形成第一沟槽211于所述衬底20中,再同时形成一第二沟槽221和至少一个第三沟槽23于所述衬底20中。具体地,可以先覆盖垫氧化层201和氮化硅层202于所述衬底20上;然后,如图4a所示,依次对所述氮化硅层202、所述垫氧化层201和部分厚度的所述衬底20进行刻蚀,以在所述衬底20中形成第一沟槽211,所述第一沟槽211围成一有源区A2;然后,如图4b和图4c所示,对所述第一沟槽211所围成的有源区A2的衬底20以及其上方的所述氮化硅层202和所述垫氧化层201进行刻蚀,以形成一第二沟槽221和至少一个第三沟槽23,所述第二沟槽221的深度与所述第三沟槽23的深度相同,所述第二沟槽221和所述第三沟槽23的深度小于所述第一沟槽211的深度,所述衬底20中的所述第二沟槽221的深度与所述第三沟槽23的深度可以为所述衬底20中的所述第一沟槽211的深度可以为 First, a
或者,先同时形成第一沟槽211和第二沟槽221于所述衬底20中,再形成至少一个第三沟槽23于所述衬底20中,也是采用光刻和刻蚀形成相应的所述第一沟槽211、所述第二沟槽221和所述第三沟槽23,且所述第二沟槽221的深度与所述第一沟槽211的深度相同,所述第三沟槽23的深度小于所述第一沟槽211和所述第二沟槽221的深度,所述衬底20中的所述第三沟槽23的深度可以为所述衬底20中的所述第一沟槽211和所述第二沟槽221的深度可以为 Alternatively, the
若所述第二沟槽221的深度与所述第三沟槽23的深度相同且所述第二沟槽221和所述第三沟槽23的深度小于所述第一沟槽211的深度,则所述第三沟槽23的靠近所述第二沟槽221的一侧的整个侧壁与所述第二沟槽221连通(如图4c所示),所述第二沟槽221的两端与所述第一沟槽211的侧壁顶部连通;若所述第二沟槽221的深度与所述第一沟槽211的深度相同且所述第三沟槽23的深度小于所述第一沟槽211和所述第二沟槽221的深度,则所述第三沟槽23的靠近所述第二沟槽221的一侧与所述第二沟槽221的侧壁顶部连通,所述第二沟槽221的两端的整个侧壁与所述第一沟槽211连通。If the depth of the
所述半导体器件的制造方法可以包括形成至少两个所述第三沟槽23于所述有源区A2的衬底20中,所有的所述第三沟槽23沿着平行于所述第二沟槽221的所述一侧的边缘方向依次排列。The manufacturing method of the semiconductor device may include forming at least two of the
按照步骤S3,形成第一沟槽填充结构21于所述第一沟槽211中以及形成第二沟槽填充结构22于所述第二沟槽221中。所述第一沟槽填充结构21和所述第二沟槽填充结构22均起到隔离的作用。其步骤包括:According to step S3 , a first
首先,形成绝缘介质层203填充于所述第一沟槽211、所述第二沟槽221和所述第三沟槽23中,所述绝缘介质层203将所述氮化硅层202掩埋在内;然后,采用化学机械研磨工艺平坦化所述绝缘介质层203,直至暴露出所述氮化硅层202的顶面,如图4d和图4e所示,所述第一沟槽211中的绝缘介质层203与所述第二沟槽221中的绝缘介质层203连接;然后,去除所述氮化硅层202和所述垫氧化层201,如图4f和图4g所示,剩余的所述绝缘介质层203的顶面高于所述衬底20的顶面;接着,采用干法刻蚀或者湿法刻蚀去除所述第三沟槽23中的绝缘介质层203,以在所述第一沟槽211中形成第一沟槽填充结构21以及在所述第二沟槽221中形成第二沟槽填充结构22,如图4h和图4i所示,为了便于区分,将所述第一沟槽填充结构21和所述第二沟槽填充结构22采用与所述绝缘介质层203不同的填充图案。First, an insulating
所述第一沟槽填充结构21和所述第二沟槽填充结构22的顶面可以与所述衬底20的顶面齐平,或者,所述第一沟槽填充结构21和所述第二沟槽填充结构22的顶面可以高于所述衬底20的顶面(如图4h和图4i所示)。The top surfaces of the first
按照步骤S4,形成栅介质层24于所述第三沟槽23的内壁以及所述第三沟槽23外围的衬底20上,如图4j和图4k所示。可以采用沉积或热氧化的工艺形成所述栅介质层24。所述栅介质层24的靠近所述第二沟槽221的一侧与所述第二沟槽填充结构22接触(如图2d和图2e所示),所述栅介质层24的在平行于所述第二沟槽221的所述一侧的边缘方向的两端与所述第一沟槽填充结构21接触(如图4j所示)。According to step S4, a
按照步骤S5,形成栅极层25于所述栅介质层24上以及靠近所述第三沟槽23的部分所述第二沟槽填充结构22上,如图4l、图2d和图2e所示。并且,如图4l和图4m所示,所述栅极层25的两端(即平行于所述第二沟槽221的所述一侧的边缘方向上的两端)从所述栅介质层24上以及靠近所述第三沟槽23的部分所述第二沟槽填充结构22上延伸至所述第一沟槽填充结构21上。可以采用常规的沉积、光刻和刻蚀工艺形成所述栅极层25。According to step S5, a
其中,所述第二沟槽填充结构22为半导体器件的场氧化层,所述栅极层25的位于版图定义的沟道区上方的部分构成了半导体器件的栅极区,而延伸至所述第二沟槽填充结构22上的部分构成了场板。The second
其中,所述栅极层25可以覆盖所有的所述第三沟槽23,即所述第三沟槽23的背向所述第二沟槽221的一端未超出所述栅极层25的背向所述第二沟槽221的一端,如图2a所示;或者,所述栅极层25可以仅覆盖部分的所述第三沟槽23,即所述第三沟槽23的背向所述第二沟槽221的一端可以超出所述栅极层25的背向所述第二沟槽221的一端,如图2f所示。The
另外,在形成所述第一沟槽211、所述第二沟槽221和所述至少一个第三沟槽23于所述衬底20中之后且在形成所述第一沟槽填充结构21于所述第一沟槽211中以及形成所述第二沟槽填充结构22于所述第二沟槽221中之前,所述半导体器件的制造方法还包括形成体区26和漂移区27于所述有源区A2的衬底20中。或者,所述体区26和所述漂移区27也可以在形成所述第一沟槽211之前形成。In addition, after forming the
如图2d和图2e所示,所述体区26与所述漂移区27的交界处位于所述栅极层25的下方,所述漂移区27包围所述第二沟槽221,所述第三沟槽23从所述漂移区27延伸至所述体区26。As shown in FIG. 2d and FIG. 2e, the boundary between the
另外,形成所述栅极层25之后,所述半导体器件的制造方法还包括形成源极区261和漏极区271,所述源极区261位于所述栅极层25的远离所述第二沟槽填充结构22的体区26中,所述漏极区271位于所述第二沟槽填充结构22的背向所述源极区261一侧的漂移区27中。在形成所述源极区261和所述漏极区271的同时,还可形成体接触区262于所述体区26中,所述体接触区262位于所述源极区261的背向所述栅极层25一侧的体区26中,且所述体接触区262和所述源极区261之间还间隔有第一沟槽填充结构21。In addition, after forming the
如图2a和图2f所示,所述半导体器件的制造方法还包括形成导电接触插栓28于所述源极区261、所述漏极区271、所述体接触区262和所述栅极层25上,且所述栅极层25上的导电接触插栓28位于所述第一沟槽填充结构21的上方;且如图2f和图2g所示,所述第三沟槽23的背向所述第二沟槽221的一端可以延伸至所述源极区261上,所述导电接触插栓28的底部与所述第三沟槽23下方的源极区261接触。As shown in FIG. 2a and FIG. 2f, the manufacturing method of the semiconductor device further includes forming conductive contact plugs 28 on the
另外,所有的所述第三沟槽23在垂直于所述第二沟槽221(即垂直于所述第二沟槽填充结构22)的所述一侧的边缘方向上的长度大于在平行于所述第二沟槽221(即垂直于所述第二沟槽填充结构22)的所述一侧的边缘方向上的长度,使得版图定义的沟道区的宽度的增大幅度大于沟道区的长度的增大幅度。由于所述源极区261和所述漏极区271之间的位于所述栅介质层24下方的部分为沟道区,所述源极区261和所述漏极区271之间的方向为沟道区的长度方向,则所述沟道区的长度方向为垂直于所述第二沟槽填充结构22的所述一侧的边缘所在的方向,所述沟道区的宽度方向为平行于所述第二沟槽填充结构22的所述一侧的边缘所在的方向,那么,所有的所述第三沟槽23在所述沟道区的长度方向上的长度大于在所述沟道区的宽度方向上的长度。具体参阅上述的所述半导体器件中的说明,在此不再赘述。In addition, the length of all the
从上述步骤可知,通过在所述第二沟槽填充结构22的一侧形成至少一个所述第三沟槽23,所述至少一个第三沟槽23从所述漂移区27延伸至所述体区26,使得在不改变版图的宽度的情况下增大了所述有效沟道区的宽度,例如,所述体区26的位于所述栅极层25下方的部分为有效的沟道区,有效的沟道区的宽度增大了50%~100%,沟道反型的载流子数量增加50%~100%,进而使得在不降低击穿电压的同时使得导通电阻大幅度的降低。It can be known from the above steps that by forming at least one
并且,若所述第二沟槽221的深度与所述第三沟槽23的深度相同且二者均小于所述第一沟槽211的深度,则所述第二沟槽填充结构22位于所述衬底20中的厚度得到减小,使得导通电阻得到进一步的降低。Moreover, if the depth of the
另外,上述的半导体器件的制造方法中的各个步骤不仅限于上述的形成顺序,各个步骤的先后顺序可适应性的进行调整。In addition, each step in the above-mentioned manufacturing method of a semiconductor device is not limited to the above-mentioned formation sequence, and the sequence of each step can be adjusted adaptively.
综上所述,本发明提供的半导体器件的制造方法,包括:提供一衬底;形成第一沟槽、第二沟槽和至少一个第三沟槽于所述衬底中,所述第一沟槽在所述衬底中围成一有源区,所述第二沟槽形成于所述有源区的衬底中,所述至少一个第三沟槽形成于所述第二沟槽一侧的有源区的衬底中,所述第三沟槽的深度小于所述第一沟槽的深度;形成第一沟槽填充结构于所述第一沟槽中以及形成第二沟槽填充结构于所述第二沟槽中;形成栅介质层于所述第三沟槽的内壁以及所述第三沟槽外围的衬底上;以及,形成栅极层于所述栅介质层上以及靠近所述第三沟槽的部分所述第二沟槽填充结构上。本发明的半导体器件的制造方法能够在不降低击穿电压的同时,还能使得导通电阻降低。To sum up, the method for manufacturing a semiconductor device provided by the present invention includes: providing a substrate; forming a first trench, a second trench and at least one third trench in the substrate, the first trench A trench encloses an active region in the substrate, the second trench is formed in the substrate of the active region, and the at least one third trench is formed on a side of the second trench. In the substrate of the active region on the side, the depth of the third trench is smaller than the depth of the first trench; a first trench filling structure is formed in the first trench and a second trench filling structure is formed structure in the second trench; forming a gate dielectric layer on the inner wall of the third trench and the substrate on the periphery of the third trench; and forming a gate layer on the gate dielectric layer and on a portion of the second trench filling structure close to the third trench. The manufacturing method of the semiconductor device of the present invention can reduce the on-resistance without reducing the breakdown voltage.
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。The above description is only a description of the preferred embodiments of the present invention, and is not intended to limit the scope of the present invention. Any changes and modifications made by those of ordinary skill in the field of the present invention based on the above disclosure all belong to the protection scope of the claims.
Claims (15)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011445253.1A CN112599602B (en) | 2020-12-08 | 2020-12-08 | Semiconductor device and method for manufacturing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011445253.1A CN112599602B (en) | 2020-12-08 | 2020-12-08 | Semiconductor device and method for manufacturing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112599602A CN112599602A (en) | 2021-04-02 |
| CN112599602B true CN112599602B (en) | 2022-09-30 |
Family
ID=75191856
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011445253.1A Active CN112599602B (en) | 2020-12-08 | 2020-12-08 | Semiconductor device and method for manufacturing the same |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112599602B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114068534B (en) * | 2021-11-15 | 2024-11-29 | 武汉新芯集成电路股份有限公司 | Semiconductor device and method for manufacturing the same |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4590884B2 (en) * | 2003-06-13 | 2010-12-01 | 株式会社デンソー | Semiconductor device and manufacturing method thereof |
| JP5280056B2 (en) * | 2008-01-10 | 2013-09-04 | シャープ株式会社 | MOS field effect transistor |
| KR101128716B1 (en) * | 2009-11-17 | 2012-03-23 | 매그나칩 반도체 유한회사 | Semiconductor device |
| CN111933713B (en) * | 2020-09-24 | 2021-02-05 | 晶芯成(北京)科技有限公司 | Semiconductor device and method of manufacturing the same |
-
2020
- 2020-12-08 CN CN202011445253.1A patent/CN112599602B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN112599602A (en) | 2021-04-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102123344B1 (en) | Semiconductor structure and associated fabricating method | |
| KR0169275B1 (en) | Semiconductor device with trench structure for device isolation area | |
| KR100745917B1 (en) | Manufacturing Method of Semiconductor Device | |
| US6511886B2 (en) | Method for manufacturing trench-gate type power semiconductor device | |
| CN106033777A (en) | LDMOS device and method of forming the same | |
| US20080296694A1 (en) | Semiconductor Device with Field Plate and Method | |
| CN111769160A (en) | Semiconductor device and method of manufacturing the same | |
| CN104347625A (en) | Integrated circuit and method of manufacturing an integrated circuit | |
| CN112599602B (en) | Semiconductor device and method for manufacturing the same | |
| CN112490293B (en) | Semiconductor device and method of manufacturing the same | |
| US7537986B2 (en) | Semiconductor device and method for manufacturing the same | |
| CN112599601B (en) | Semiconductor device and method for manufacturing the same | |
| US7923330B2 (en) | Method for manufacturing a semiconductor device | |
| KR20080010885A (en) | Method of forming a semiconductor device | |
| TWI802305B (en) | Semiconductor structure and method for manufacturing buried field plates | |
| CN108074974B (en) | Method of forming semiconductor device | |
| CN118335782A (en) | Semiconductor device and method for manufacturing the same | |
| KR100275484B1 (en) | Method for manufacturing a power device having a trench gate electrode | |
| CN118471926B (en) | Semiconductor device and method for manufacturing the same | |
| CN114765221B (en) | Semiconductor structure and forming method thereof | |
| KR101088818B1 (en) | Method of manufacturing semiconductor device | |
| KR100673109B1 (en) | Recess gate forming method of semiconductor device | |
| CN115472692A (en) | Semiconductor structures and methods of forming them | |
| KR101078725B1 (en) | Semiconductor device and method of manufacturing the same | |
| CN119364811A (en) | Extended drain metal oxide semiconductor device with dual thickness gate dielectric layer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: 430205 No.18, Gaoxin 4th Road, Donghu Development Zone, Wuhan City, Hubei Province Patentee after: Wuhan Xinxin Integrated Circuit Co.,Ltd. Country or region after: China Address before: 430205 No.18, Gaoxin 4th Road, Donghu Development Zone, Wuhan City, Hubei Province Patentee before: Wuhan Xinxin Semiconductor Manufacturing Co.,Ltd. Country or region before: China |