CN112658271B - Efficient combined type gas atomization powder preparation device and method - Google Patents
Efficient combined type gas atomization powder preparation device and method Download PDFInfo
- Publication number
- CN112658271B CN112658271B CN202011486531.8A CN202011486531A CN112658271B CN 112658271 B CN112658271 B CN 112658271B CN 202011486531 A CN202011486531 A CN 202011486531A CN 112658271 B CN112658271 B CN 112658271B
- Authority
- CN
- China
- Prior art keywords
- gas
- atomization
- powder
- chamber
- vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims abstract description 108
- 238000009689 gas atomisation Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims description 7
- 238000002844 melting Methods 0.000 claims abstract description 65
- 230000008018 melting Effects 0.000 claims abstract description 65
- 238000000889 atomisation Methods 0.000 claims abstract description 56
- 229910052751 metal Inorganic materials 0.000 claims abstract description 51
- 239000002184 metal Substances 0.000 claims abstract description 51
- 230000001681 protective effect Effects 0.000 claims abstract description 34
- 238000003723 Smelting Methods 0.000 claims abstract description 32
- 239000002245 particle Substances 0.000 claims abstract description 29
- 238000001816 cooling Methods 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 13
- 238000010298 pulverizing process Methods 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims description 123
- 239000007788 liquid Substances 0.000 claims description 43
- 229910045601 alloy Inorganic materials 0.000 claims description 42
- 239000000956 alloy Substances 0.000 claims description 42
- 230000008569 process Effects 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 8
- 230000009471 action Effects 0.000 claims description 7
- 230000005484 gravity Effects 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 229910002804 graphite Inorganic materials 0.000 claims description 2
- 239000010439 graphite Substances 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims 3
- 238000007254 oxidation reaction Methods 0.000 claims 3
- 229910052582 BN Inorganic materials 0.000 claims 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims 1
- 238000012387 aerosolization Methods 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 229910001928 zirconium oxide Inorganic materials 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 abstract description 17
- 238000010891 electric arc Methods 0.000 abstract description 12
- 238000009826 distribution Methods 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 9
- 238000013461 design Methods 0.000 abstract description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 229910005347 FeSi Inorganic materials 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 229910001111 Fine metal Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 4
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明涉及气雾化制粉技术领域,尤其涉及一种高效复合式气雾化制粉装置及方法,包括依次连接的真空熔炼系统、雾化系统和粉末收集室;所述真空熔炼系统包括真空熔炼室、高频熔炼线圈、熔炼坩埚、第一真空系统、第一保护气氛气路和第一冷却系统;所述雾化系统包括雾化室、高压非氧化气路、气雾化喷嘴、电极枪、第二真空系统、第二保护气氛气路、Ar气路和第二冷却系统;所述气雾化喷嘴设有中心孔,所述中心孔装有导向装置。本发明将气雾化和电弧放电两种技术融为一体,将两个过程合并为一个连续制粉过程;通过电弧放电技术弥补气雾化技术常见的堵塞喷嘴、颗粒不够细化、颗粒粒径分布广、高压气路出口与金属液滴角度设计等技术性问题。The present invention relates to the technical field of gas atomization powder making, in particular to a high-efficiency composite gas atomization powder making device and method, comprising a vacuum smelting system, an atomization system and a powder collection chamber connected in sequence; the vacuum smelting system includes a vacuum Melting chamber, high-frequency melting coil, melting crucible, first vacuum system, first protective atmosphere gas path and first cooling system; the atomization system includes atomization chamber, high-pressure non-oxidizing gas path, gas atomization nozzle, electrode A gun, a second vacuum system, a second protective atmosphere gas path, an Ar gas path and a second cooling system; the gas atomization nozzle is provided with a central hole, and the central hole is equipped with a guide device. The present invention integrates the two technologies of gas atomization and arc discharge into one continuous pulverizing process; through the arc discharge technology, the common problems of gas atomization technology, such as clogged nozzles, insufficient fineness of particles, and particle size Technical issues such as wide distribution, high-pressure gas path outlet, and metal droplet angle design.
Description
技术领域technical field
本发明涉及气雾化制粉技术领域,尤其涉及一种高效复合式气雾化制粉装置及方法。The invention relates to the technical field of gas atomization powder making, in particular to an efficient composite gas atomization powder making device and method.
背景技术Background technique
气雾化制粉技术历史起源于10世纪20年代,其制粉的原理是利用高速气流作用于熔融液流,使气体动能转化为熔体表面能,进而形成细小的液滴并凝固成粉末颗粒。气雾化制粉技术具有环境污染小、粉末球形度高、氧含量低以及冷却速度大等优点,目前已经成为生产金属及合金粉末的主要方法。随着粉末材料在化工、电子器件制备、表面工程及军事等工业中的应用,对于粉末在纯度、尺寸、球形度等方面的要求不断提高,促进气雾化制备装置进一步的发展。The history of gas atomization pulverization technology originated in the 10th century. The principle of pulverization is to use high-speed airflow to act on the molten liquid flow, so that the kinetic energy of the gas is converted into the surface energy of the melt, and then small droplets are formed and solidified into powder particles. . Gas atomization powder making technology has the advantages of less environmental pollution, high powder sphericity, low oxygen content and high cooling rate, and has become the main method for producing metal and alloy powders. With the application of powder materials in chemical industry, electronic device preparation, surface engineering and military industries, the requirements for powder purity, size and sphericity are constantly increasing, which promotes the further development of gas atomization preparation devices.
传统的雾化工艺中,金属液经流漏嘴进入喷嘴进行雾化,但是因为是超音速的气体轰击金属液,在整个雾化过程中的气场比较混乱,在轰击完成后会形成尺寸不同的金属颗粒,其中,大颗粒的散热速度较慢,需要较长的时间完成固化过程,而小颗粒尺寸较大颗粒的固化需要的时间就会短很多,在高速紊乱的气流中,就会发生已经完成凝固的小颗粒撞击到未完全凝固的大颗粒的表面,导致表面缺陷。同时,喷嘴易堵塞,导致生产过程无法正常进行。In the traditional atomization process, the molten metal enters the nozzle through the leakage nozzle for atomization, but because the supersonic gas bombards the molten metal, the gas field in the whole atomization process is relatively chaotic, and after the bombardment is completed, particles of different sizes will be formed. Metal particles, among them, the heat dissipation rate of large particles is slow, and it takes a long time to complete the curing process, while the curing time of small particles with larger sizes will be much shorter. In the high-speed turbulent air flow, it will occur The small particles that have completely solidified impinge on the surface of the large particles that have not completely solidified, causing surface defects. At the same time, the nozzles are easy to block, causing the production process to fail to proceed normally.
目前,传统的气雾化设备熔炼与限流浇注系统分离,在粉末制备过程中与氧气会有一定接触,导致粉末含氧量高,影响粉末使用性能。一些气雾化制粉设备是熔炼与浇注一体化,但结构过于复杂,操作麻烦,价格昂贵,维修困难,限制了其大规模应用。同时,国内普遍采用非限制性雾化喷嘴,制备粉末细化困难。虽然有些特殊喷嘴设计,但是结构相对复杂。At present, the traditional gas atomization equipment is separated from the smelting and flow-limiting pouring system, and there will be some contact with oxygen during the powder preparation process, resulting in high oxygen content in the powder and affecting the performance of the powder. Some gas atomization powder making equipment integrates smelting and pouring, but the structure is too complicated, the operation is troublesome, the price is expensive, and the maintenance is difficult, which limits its large-scale application. At the same time, non-restrictive atomizing nozzles are widely used in China, which makes it difficult to prepare powder refinement. Although there are some special nozzle designs, the structure is relatively complicated.
中国专利文献上公开了“一种一体式感应熔炼气雾化制粉装置及气雾化制粉的方法”,其申请公布号为CN107116225A,该发明的装置的喷嘴的轴线与石英管的轴线垂直,避免了喷嘴处的堵塞。但是这种设计无法形成持续的工业化生产。The Chinese patent literature discloses "an integrated induction melting gas atomization powder making device and a method for gas atomization powder making". , to avoid clogging at the nozzle. But this design cannot form sustainable industrial production.
中国专利文献上公开了“一种气雾化制备球形钛粉及钛合金粉末的装置及方法”,其申请公布号为CN104475744A,该发明将原材料高频熔炼和气雾化制粉融为一体,将两个过程合并位一个连续的粉末制备过程,实现连续生产钛及钛合金粉末。但是这种装置仅面向钛及钛合金粉末的连续生产,对于含有低熔点金属如Al的合金,易导致喷嘴堵塞。"A device and method for preparing spherical titanium powder and titanium alloy powder by gas atomization" is disclosed in the Chinese patent literature, and its application publication number is CN104475744A. The two processes are combined into a continuous powder preparation process to realize continuous production of titanium and titanium alloy powder. However, this device is only suitable for the continuous production of titanium and titanium alloy powders, and for alloys containing low melting point metals such as Al, it is easy to cause nozzle blockage.
中国专利文献上公开了“一种利用气雾化法制备球形金属粉末的组合装置”,其申请公布号为CN109848429A,该发明包括两个以上不同类型的气雾化熔炉,该装置不受单一气雾化熔炉和雾化塔生产条件的限制,在同一个生产系统内能够进行多类粉末的生产,提高了生产效率。这种装置制备的粉末尺寸偏大且分布范围大,粉末表面不洁净。The Chinese patent literature discloses "a combination device for preparing spherical metal powder by gas atomization method", and its application publication number is CN109848429A. This invention includes more than two different types of gas atomization melting furnaces. Due to the limitation of the production conditions of the atomization furnace and the atomization tower, various types of powder can be produced in the same production system, which improves the production efficiency. The powder prepared by this device has a large size and a large distribution range, and the powder surface is not clean.
发明内容Contents of the invention
本发明为了克服上述现有技术中存在的问题,提供了一种气雾化和电弧放电连续制粉、有效避免喷嘴处漏嘴堵塞的高效复合式气雾化制粉装置。In order to overcome the above-mentioned problems in the prior art, the present invention provides a high-efficiency compound gas atomization powder making device which can continuously make powder by gas atomization and arc discharge, and effectively avoid clogging of the nozzle at the nozzle.
本发明还提供了一种利用上述装置气雾化制粉的方法,该方法制得的粉末颗粒球化率高,球形度好,颗粒直径小,表面质量好,可实现在密闭、高真空、工业化条件下生产,有利于大规模工业化生产。The present invention also provides a method for making powder by gas atomization using the above-mentioned device. The powder particles produced by the method have high spheroidization rate, good sphericity, small particle diameter and good surface quality, and can be realized in airtight, high vacuum, Production under industrial conditions is conducive to large-scale industrial production.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种高效复合式气雾化制粉装置,包括依次连接的真空熔炼系统、雾化系统和粉末收集室;所述真空熔炼系统包括真空熔炼室、位于所述真空熔炼室内的高频熔炼线圈、熔炼坩埚、第一真空系统、第一保护气氛气路和第一冷却系统;所述熔炼坩埚处于高频熔炼线圈的正下方且中心线处于同一轴线上;所述雾化系统包括雾化室、位于所述雾化室内的高压非氧化气路、气雾化喷嘴、电极枪、第二真空系统、第二保护气氛气路、Ar气路和第二冷却系统;所述气雾化喷嘴设有中心孔,所述中心孔装有导向装置;所述电极枪位于气雾化喷嘴的下方。A high-efficiency compound gas atomization powder making device, including a vacuum smelting system, an atomization system, and a powder collection chamber connected in sequence; the vacuum smelting system includes a vacuum smelting chamber, a high-frequency melting coil located in the vacuum smelting chamber, The melting crucible, the first vacuum system, the first protective atmosphere gas path and the first cooling system; the melting crucible is located directly below the high-frequency melting coil and the centerline is on the same axis; the atomization system includes an atomization chamber, The high-pressure non-oxidizing gas path, gas atomization nozzle, electrode gun, second vacuum system, second protective atmosphere gas path, Ar gas path and second cooling system located in the atomization chamber; the gas atomization nozzle is provided with A central hole, the central hole is equipped with a guide; the electrode gun is located below the gas atomization nozzle.
本发明创造性的在金属或合金液滴下面添加电极枪,通过高温等离子电弧缓解高压非氧化出气口对金属或合金液滴的冲击性。本发明的复合式气雾化制粉装置,将气雾化和电弧放电两种技术融为一体,将两个过程合并为一个连续制粉过程。通过电弧放电技术弥补气雾化技术常见的堵塞喷嘴、颗粒不够细化、颗粒粒径分布广、高压气路出口与金属液滴角度设计等技术性问题。The invention creatively adds an electrode gun under the metal or alloy droplet, and relieves the impact of the high-pressure non-oxidizing gas outlet on the metal or alloy droplet through a high-temperature plasma arc. The composite gas atomization powder making device of the present invention integrates the two technologies of gas atomization and arc discharge, and combines the two processes into one continuous powder making process. The arc discharge technology is used to make up for the common technical problems of gas atomization technology, such as clogged nozzles, insufficient particle size, wide particle size distribution, high-pressure gas outlet and metal droplet angle design.
作为优选,所述高压非氧化气路的出气口与金属或合金液流呈0~90o。由于液滴下方的偶数式高能电弧支撑作用,能让熔融金属在气雾化喷嘴中停留一段时间,因此,对高压非氧化气路出气口与液滴的角度没有过多限制,0~90o之间均可,这样创造性设计可以促进气雾化粉末粒径细化和均匀分布。Preferably, the gas outlet of the high-pressure non-oxidizing gas path is at an angle of 0-90 ° to the metal or alloy liquid flow. Due to the even-numbered high-energy arc support function under the droplet, the molten metal can stay in the gas atomization nozzle for a period of time. Therefore, there is not much restriction on the angle between the outlet of the high-pressure non-oxidizing gas path and the droplet, 0~90 o Both are available, so the creative design can promote the finer particle size and uniform distribution of the aerosolized powder.
作为优选,所述气雾化喷嘴、中心孔、导向装置、高频熔炼线圈和电极枪中心点在同一轴线上。Preferably, the gas atomization nozzle, the central hole, the guiding device, the high-frequency melting coil and the central point of the electrode gun are on the same axis.
作为优选,所述电极枪位于气雾化喷嘴下边缘3~5mm处。Preferably, the electrode gun is located at 3-5 mm from the lower edge of the gas atomization nozzle.
作为优选,所述电极枪至少两个且同圆心呈偶数对称排列,所述电极枪包括电极,所述电极距离圆心3~5mm,所述电极的材料为钨、石墨或铌。Preferably, there are at least two electrode guns arranged symmetrically with the center of the circle, the electrode guns include electrodes, the distance between the electrodes is 3-5mm from the center of the circle, and the material of the electrodes is tungsten, graphite or niobium.
一种利用上述任一所述的装置进行气雾化制粉的方法,包括以下步骤:A method for aerosolized powder production using any of the above-mentioned devices, comprising the following steps:
(1)将待制粉金属或合金投入高频熔炼线圈内,密封好真空熔炼室,通过第一真空系统和第二真空系统对整个装置进行抽真空,将第一保护气体通过第一保护气氛气路通入到真空熔炼室内,将第二保护气体通过第二保护气氛气路通入到雾化室和粉末收集室内;高纯Ar气通过Ar气路反冲入雾化室;(1) Put the metal or alloy to be pulverized into the high-frequency melting coil, seal the vacuum melting chamber, vacuumize the whole device through the first vacuum system and the second vacuum system, and pass the first protective gas through the first protective atmosphere The gas path is led into the vacuum melting chamber, and the second protective gas is passed into the atomization chamber and the powder collection chamber through the second protective atmosphere gas path; the high-purity Ar gas is recoiled into the atomization chamber through the Ar gas path;
(2)用高频熔炼线圈对待制粉金属或合金进行熔化,待其熔化后熔体温度超过待制粉金属或合金的熔点100~300 oC后,形成稳定连续的金属或合金液流;(2) Use a high-frequency melting coil to melt the metal or alloy to be powdered, and after melting, the melt temperature exceeds the melting point of the metal or alloy to be powdered by 100~300 o C, forming a stable and continuous metal or alloy liquid flow;
(3)步骤(2)得到的金属或合金液流在重力的作用下自由下落,同时,对电极枪施加电压进行起弧放电,当液流离开气雾化喷嘴时,同步被高能等离子电弧和喷嘴产生的惰性气流破碎成细小的金属液滴;该步骤通过电离Ar气,获得几千度的高温等离子,实现对金属或合金液体持续加热,颠覆了传统感应线圈对喷嘴处加热温度仅高于熔点100-300℃,从而避免喷嘴处漏嘴堵塞;(3) The metal or alloy liquid flow obtained in step (2) falls freely under the action of gravity. At the same time, a voltage is applied to the electrode gun for arc discharge. When the liquid flow leaves the gas atomization nozzle, it is simultaneously charged by high-energy plasma arc and The inert airflow generated by the nozzle is broken into fine metal droplets; this step obtains thousands of degrees of high-temperature plasma by ionizing Ar gas, which realizes continuous heating of the metal or alloy liquid, subverting the traditional induction coil to heat the nozzle at a temperature only higher than The melting point is 100-300°C, so as to avoid the clogging of the nozzle at the nozzle;
(4)金属或合金液滴在下降过程中经过第二冷却系统冷却凝固,得气雾化粉末,落入设备下端的粉末收集室中;(4) The metal or alloy droplets are cooled and solidified by the second cooling system during the descent process, and aerosolized powder is obtained, which falls into the powder collection chamber at the lower end of the equipment;
(5)待气雾化粉末充分冷却至室温后,即可进行筛选和包装。(5) After the aerosolized powder is fully cooled to room temperature, it can be screened and packaged.
本发明气雾化制粉的方法,工艺简单,所制得粉末具有粒度更细、分布更窄、球形度更高,制粉过程中不会出现液体堵塞喷嘴现象,同时可以改变通入气体的压力和施加电极枪上的压力,来改变制备粉末的粒径及粒径分布比。The gas atomization pulverization method of the present invention has a simple process, and the prepared powder has finer particle size, narrower distribution, and higher sphericity, and there will be no phenomenon of liquid clogging the nozzle during the pulverization process, and at the same time, the flow rate of the gas can be changed. The pressure and the pressure on the electrode gun are used to change the particle size and particle size distribution ratio of the prepared powder.
作为优选,步骤(3)中,电极枪施加电压为30~100 V,雾化气体压力为0.5~20 MPa。本发明可以通过雾化气体压力和电极枪施加电压来调控粉末的颗粒尺寸和尺寸分布,实现小尺寸(低至0.1μm)且分布均匀的粉末大规模工业化制备。Preferably, in step (3), the voltage applied to the electrode gun is 30-100 V, and the atomizing gas pressure is 0.5-20 MPa. The present invention can regulate the particle size and size distribution of the powder through the atomization gas pressure and the applied voltage of the electrode gun, and realize the large-scale industrial preparation of powder with small size (down to 0.1 μm) and uniform distribution.
作为优选,步骤(4)中,所述气雾化粉末的粒度为0.1~50μm,氧含量为100~1000ppm。Preferably, in step (4), the particle size of the gas-atomized powder is 0.1-50 μm, and the oxygen content is 100-1000 ppm.
因此,本发明具有如下有益效果:Therefore, the present invention has following beneficial effect:
(1)本发明的复合式气雾化制粉装置,将气雾化和电弧放电两种技术融为一体,将两个过程合并为一个连续制粉过程;通过电弧放电技术弥补气雾化技术常见的堵塞喷嘴、颗粒不够细化、颗粒粒径分布广、高压气路出口与金属液滴角度设计等技术性问题;(1) The composite gas atomization pulverizing device of the present invention integrates the two technologies of gas atomization and arc discharge, and combines the two processes into one continuous pulverization process; Common technical problems such as blocked nozzles, insufficient particle size, wide particle size distribution, high-pressure gas outlet and metal droplet angle design;
(2)采用本发明的装置气雾化制粉的方法工艺简单,所制得粉末具有粒度更细、分布更窄、球形度更高,制粉过程中不会出现液体堵塞喷嘴现象,同时可以改变通入气体的压力和施加电极枪上的压力,来改变制备粉末的粒径及粒径分布比。(2) The process of using the device of the present invention to make powder by gas atomization is simple, and the obtained powder has finer particle size, narrower distribution, and higher sphericity, and there will be no phenomenon of liquid clogging the nozzle during the powder making process. At the same time, it can Change the pressure of the gas and the pressure on the electrode gun to change the particle size and particle size distribution ratio of the prepared powder.
附图说明Description of drawings
图1是实施例1的高效复合式气雾化制粉装置的结构示意图。Fig. 1 is a schematic structural view of the high-efficiency composite gas atomization pulverizing device of Example 1.
图2是图1中电极枪的位置示意图。Fig. 2 is a schematic diagram of the position of the electrode gun in Fig. 1 .
图中:真空熔炼室1,高频熔炼线圈2,熔炼坩埚3,导向装置4,高压非氧化气路5,气雾化喷嘴6,电极枪7,雾化室8,粉末收集室9,第一真空系统10,观察窗11,Ar气路12,第二保护气氛气路13,第一冷却系统14,第一保护气氛气路15,第二真空系统16,第二冷却系统17。In the figure: vacuum melting chamber 1, high-
具体实施方式Detailed ways
下面通过具体实施例,并结合附图,对本发明的技术方案作进一步具体的说明。The technical solutions of the present invention will be further specifically described below through specific embodiments and in conjunction with the accompanying drawings.
在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。In the present invention, unless otherwise specified, all equipment and raw materials can be purchased from the market or commonly used in this industry. The methods in the following examples, unless otherwise specified, are conventional methods in this field.
实施例1Example 1
如图1所示,一种高效复合式气雾化制粉装置,包括依次连接的真空熔炼系统、雾化系统和粉末收集室9。As shown in Figure 1, a high-efficiency composite gas atomization powder making device includes a vacuum smelting system, an atomization system and a
真空熔炼系统包括真空熔炼室1、位于真空熔炼室内的高频熔炼线圈2、熔炼坩埚3、第一真空系统10、第一保护气氛气路15和第一冷却系统14;熔炼坩埚处于高频熔炼线圈的正下方且中心线处于同一轴线上;高频熔炼线圈内、外安装有带中心孔的材质为氧化钇的陶瓷防护罩。The vacuum melting system includes a vacuum melting chamber 1, a high-
真容熔炼室1通过第一真空系统10抽取真空,然后通过第一保护气氛气路15将高纯惰性气体反冲入真空熔炼室1。整个真空熔炼室1通过第一冷却系统14保持温度,带走热量。The vacuum smelting chamber 1 is vacuumed through the first vacuum system 10 , and then the high-purity inert gas is recoiled into the vacuum smelting chamber 1 through the first protective atmosphere gas path 15 . The temperature of the entire vacuum melting chamber 1 is maintained by the first cooling system 14 to remove heat.
雾化系统包括外壁开设有观察窗11的雾化室8、位于所述雾化室内的高压非氧化气路5、气雾化喷嘴6、电极枪7、第二真空系统16、第二保护气氛气路13、Ar气路12和第二冷却系统17;气雾化喷嘴设有中心孔,中心孔装有导向装置4,电极枪位于气雾化喷嘴的下方4mm处。高压非氧化气路的出气口与金属或合金液流呈0o,气雾化喷嘴、中心孔、导向装置、高频熔炼线圈和电极枪中心点在同一轴线上。The atomization system includes an
如图2所示,电极枪有4个且同圆心对称排列,电击枪的电极材料为钨,距离圆心3~5mm。雾化室8通过第二真空系统16抽取真空,然后通过保护气氛13和Ar气路12分别将高纯惰性气体和Ar气反冲入雾化室8。整个雾化室8通过第二冷却系统17保持温度,带走热量。通过观察窗11来观察雾化室8中的情况。金属或合金液滴在下降过程中经过冷却凝固,最后落入设备下端的粉末收集室9。待粉末充分冷却至室温后,即可进行粉末的筛选和包装。As shown in Figure 2, there are four electrode guns arranged symmetrically with the center of the circle. The electrode material of the stun gun is tungsten, and the distance from the center of the circle is 3-5mm. The
一种利用上述装置进行气雾化制粉的方法,包括以下步骤:A method for making powder by gas atomization using the above-mentioned device, comprising the following steps:
(1)选取Fe, Si,Al三种金属投入高频熔炼线圈2内,密封好真空熔炼室1,通过第一真空系统10和第二真空系统16对整个装置进行抽真空,抽真空后的装置内的真空度至少达到1×10-3Pa;将高纯N2气通过第一保护气氛气路15通入到真空熔炼室1内,将高纯N2气通过第二保护气氛气路13通入到雾化室8和粉末收集室9内,真空熔炼室、雾化室和粉末收集室的气体压力为0.10 MPa;高纯Ar气通过Ar气路反冲入雾化室,雾化室内部高纯Ar气的压力为0.01 MPa;(1) Select Fe, Si, and Al into the high-
(2)用功率为10kW的高频熔炼线圈对Fe, Si,Al三种金属进行熔化,待其熔化后熔体温度超过FeSi合金的熔点100 oC后,形成稳定连续的FeSi合金液流;(2) Use a high-frequency melting coil with a power of 10kW to melt Fe, Si, and Al. After melting, the melt temperature exceeds the melting point of FeSi alloy by 100 o C, forming a stable and continuous FeSi alloy liquid flow;
(3)步骤(2)得到的FeSiAl合金液流在重力的作用下自由下落,高压非氧化气路的出气口与FeSi合金液流呈0o,同时,对电极枪7施加电压进行起弧放电,当液流离开气雾化喷嘴时,同步被高能等离子电弧和喷嘴产生的惰性气流破碎成细小的金属液滴;电极枪施加电压为30 V,雾化气体为高纯N2气,雾化气体压力为0.5MPa;;(3) The FeSiAl alloy liquid flow obtained in step (2) falls freely under the action of gravity, and the gas outlet of the high-pressure non-oxidizing gas circuit is 0 o to the FeSi alloy liquid flow. At the same time, a voltage is applied to the
(4)FeSi合金液流在下降过程中经过第二冷却系统冷却凝固,得气雾化粉末,落入设备下端的粉末收集室9中,气雾化粉末的粒度为21μm,氧含量为350 ppm;(4) The FeSi alloy liquid flow is cooled and solidified by the second cooling system during the descending process to obtain gas atomized powder, which falls into the
(5)待气雾化粉末充分冷却至室温后,即可进行筛选和包装。(5) After the aerosolized powder is fully cooled to room temperature, it can be screened and packaged.
实施例2Example 2
实施例2的高效复合式气雾化制粉装置与实施例1的区别在于:高压非氧化气路的出气口与金属或合金液流呈90o;电极枪有8个且同圆心对称排列,电击枪的电极材料为钨,距离圆心3mm,其余结构完全相同。The difference between the high-efficiency composite gas atomization powder making device of Example 2 and Example 1 is that: the gas outlet of the high-pressure non-oxidizing gas circuit is at 90 ° to the metal or alloy liquid flow; there are 8 electrode guns arranged symmetrically with the center of the circle, The electrode material of the stun gun is tungsten, the distance from the center of the circle is 3mm, and the rest of the structure is exactly the same.
一种利用上述装置进行气雾化制粉的方法,包括以下步骤:A method for making powder by gas atomization using the above-mentioned device, comprising the following steps:
(1)将Fe和 Si两种金属投入高频熔炼线圈2内,密封好真空熔炼室1,通过第一真空系统10和第二真空系统16对整个装置进行抽真空,抽真空后的装置内的真空度至少达到1×10-4Pa;将高纯氮气通过第一保护气氛气路15通入到真空熔炼室1内,将高纯氮气通过第二保护气氛气路13通入到雾化室8和粉末收集室9内,真空熔炼室、雾化室和粉末收集室的气体压力为0.5 MPa;高纯Ar气通过Ar气路反冲入雾化室,雾化室内部高纯Ar气的压力为0.05 MPa;(1) Put two kinds of metals, Fe and Si, into the high-
(2)用功率为300 kW的高频熔炼线圈对Fe和 Si两种金属进行熔化,待其熔化后熔体温度超过FeSi合金的熔点300 oC后,形成稳定连续的Fe Si合金液流;(2) Use a high-frequency melting coil with a power of 300 kW to melt the two metals, Fe and Si, and after the melt temperature exceeds the melting point of the FeSi alloy by 300 o C, a stable and continuous FeSi alloy liquid flow is formed;
(3)步骤(2)得到的Fe Si合金液流在重力的作用下自由下落,高压非氧化气路的出气口与FeSi合金液流呈90o,同时,对电极枪7施加电压进行起弧放电,当液流离开气雾化喷嘴时,同步被高能等离子电弧和喷嘴产生的惰性气流破碎成细小的金属液滴;电极枪施加电压为100 V,雾化气体压力为20 MPa;(3) The FeSi alloy liquid flow obtained in step (2) falls freely under the action of gravity, and the gas outlet of the high-pressure non-oxidizing gas circuit is at 90 ° to the FeSi alloy liquid flow. At the same time, a voltage is applied to the
(4)Fe Si合金液流在下降过程中经过第二冷却系统冷却凝固,得气雾化粉末,落入设备下端的粉末收集室9中,气雾化粉末的形貌为球形,粒度为33μm,氧含量为660 ppm;(4) The Fe Si alloy liquid flow is cooled and solidified by the second cooling system during the descending process, and the gas atomized powder is obtained, which falls into the
(5)待气雾化粉末充分冷却至室温后,即可进行筛选和包装。(5) After the aerosolized powder is fully cooled to room temperature, it can be screened and packaged.
实施例3Example 3
实施例3的高效复合式气雾化制粉装置与实施例1的区别在于:高压非氧化气路的出气口与金属或合金液流呈45o;电极枪有2个且同圆心对称排列,电击枪的电极材料为钨,距离圆心5mm,其余结构完全相同。The difference between the high-efficiency compound gas atomization powder making device of Example 3 and Example 1 is that: the gas outlet of the high-pressure non-oxidizing gas circuit is at 45 ° to the metal or alloy liquid flow; there are two electrode guns arranged symmetrically with the center of the circle, The electrode material of the stun gun is tungsten, the distance from the center of the circle is 5mm, and the rest of the structure is exactly the same.
一种利用上述装置进行气雾化制粉的方法,包括以下步骤:A method for making powder by gas atomization using the above-mentioned device, comprising the following steps:
(1)将Ti金属投入高频熔炼线圈2内,密封好真空熔炼室1,通过第一真空系统10和第二真空系统16对整个装置进行抽真空,抽真空后的装置内的真空度至少达到5×10-4Pa;将高纯氮气通过第一保护气氛气路15通入到真空熔炼室1内,将高纯氮气通过第二保护气氛气路13通入到雾化室8和粉末收集室9内,真空熔炼室、雾化室和粉末收集室的气体压力为0.3 MPa;高纯Ar气通过Ar气路反冲入雾化室,雾化室内部高纯Ar气的压力为0.03 MPa;(1) Put Ti metal into the high-
(2)用功率为200 kW的高频熔炼线圈对Ti金属进行熔化,待其熔化后熔体温度超过待制粉金属或合金的熔点200 oC后,形成稳定连续的Ti金属液流;(2) Melt Ti metal with a high-frequency melting coil with a power of 200 kW, and form a stable and continuous Ti metal liquid flow after the melt temperature exceeds the melting point of the metal or alloy to be powdered by 200 o C after melting;
(3)步骤(2)得到的Ti金属液流在重力的作用下自由下落,高压非氧化气路的出气口与Ti金属液流呈45o;同时,对电极枪7施加电压进行起弧放电,当液流离开气雾化喷嘴时,同步被高能等离子电弧和喷嘴产生的惰性气流破碎成细小的金属液滴;电极枪施加电压为80V,雾化气体压力为10MPa;(3) The Ti metal liquid flow obtained in step (2) falls freely under the action of gravity, and the gas outlet of the high-pressure non-oxidizing gas circuit is 45 o to the Ti metal liquid flow; at the same time, a voltage is applied to the
(4)Ti金属液流在下降过程中经过第二冷却系统冷却凝固,得气雾化粉末,落入设备下端的粉末收集室9中,气雾化粉末的形貌为球形,粒度为29μm,氧含量为410ppm;(4) The Ti metal liquid flow is cooled and solidified by the second cooling system during the descending process, and the gas atomized powder is obtained, which falls into the
(5)待气雾化粉末充分冷却至室温后,即可进行筛选和包装。(5) After the aerosolized powder is fully cooled to room temperature, it can be screened and packaged.
实施例4Example 4
实施例4的高效复合式气雾化制粉装置与实施例1的区别在于:高压非氧化气路的出气口与金属或合金液流呈60o;电极枪有6个且同圆心对称排列,电击枪的电极材料为钨,距离圆心3.5mm,其余结构完全相同。The difference between the high-efficiency composite gas atomization pulverizing device of Example 4 and Example 1 is that: the gas outlet of the high-pressure non-oxidizing gas circuit is at 60 ° to the metal or alloy liquid flow; there are 6 electrode guns arranged symmetrically with the center of the circle, The electrode material of the stun gun is tungsten, the distance from the center of the circle is 3.5mm, and the rest of the structure is exactly the same.
一种利用上述装置进行气雾化制粉的方法,包括以下步骤:A method for making powder by gas atomization using the above-mentioned device, comprising the following steps:
(1)将Mo金属投入高频熔炼线圈2内,密封好真空熔炼室1,通过第一真空系统10和第二真空系统16对整个装置进行抽真空,抽真空后的装置内的真空度至少达到7×10-4Pa;将高纯氮气通过第一保护气氛气路15通入到真空熔炼室1内,将高纯氮气通过第二保护气氛气路13通入到雾化室8和粉末收集室9内,真空熔炼室、雾化室和粉末收集室的气体压力为0.2 MPa;高纯Ar气通过Ar气路反冲入雾化室,雾化室内部高纯Ar气的压力为0.02 MPa;(1) Put Mo metal into the high-
(2)用功率为100kW的高频熔炼线圈对待Mo金属进行熔化,待其熔化后熔体温度超过Mo金属的熔点150 oC后,形成稳定连续的Mo金属液流;(2) Use a high-frequency melting coil with a power of 100kW to melt the Mo metal to be melted. After the melt temperature exceeds the melting point of the Mo metal by 150 o C, a stable and continuous Mo metal liquid flow is formed;
(3)步骤(2)得到的Mo金属液流在重力的作用下自由下落,高压非氧化气路的出气口与金属或合金液流呈60o;同时,对电极枪7施加电压进行起弧放电,当液流离开气雾化喷嘴时,同步被高能等离子电弧和喷嘴产生的惰性气流破碎成细小的金属液滴;电极枪施加电压为70V,雾化气体压力为15 MPa;(3) The Mo metal liquid flow obtained in step (2) falls freely under the action of gravity, and the gas outlet of the high-pressure non-oxidizing gas circuit is at 60 ° to the metal or alloy liquid flow; at the same time, a voltage is applied to the
(4)Mo金属液滴在下降过程中经过第二冷却系统冷却凝固,得气雾化粉末,落入设备下端的粉末收集室9中,气雾化粉末的粒度为28μm,氧含量为380 ppm;(4) Mo metal droplets are cooled and solidified by the second cooling system during the descending process to obtain gas atomized powder, which falls into the
(5)待气雾化粉末充分冷却至室温后,即可进行筛选和包装。(5) After the aerosolized powder is fully cooled to room temperature, it can be screened and packaged.
实施例5Example 5
实施例5的高效复合式气雾化制粉装置与实施例1的区别在于:高压非氧化气路的出气口与金属或合金液流呈70o;电极枪有4个且同圆心对称排列,电击枪的电极材料为钨,距离圆心4.5mm,其余结构完全相同。The difference between the high-efficiency composite gas atomization powder making device of Example 5 and Example 1 is that: the gas outlet of the high-pressure non-oxidizing gas circuit is at 70 ° to the metal or alloy liquid flow; there are 4 electrode guns arranged symmetrically with the center of the circle, The electrode material of the stun gun is tungsten, the distance from the center of the circle is 4.5mm, and the rest of the structure is exactly the same.
一种利用上述装置进行气雾化制粉的方法,包括以下步骤:A method for making powder by gas atomization using the above-mentioned device, comprising the following steps:
(1)将Fe,Si,Cr三种金属投入高频熔炼线圈2内,密封好真空熔炼室1,通过第一真空系统10和第二真空系统16对整个装置进行抽真空,抽真空后的装置内的真空度至少达到2×10-4Pa;将高纯氮气通过第一保护气氛气路15通入到真空熔炼室1内,将高纯氮气通过第二保护气氛气路13通入到雾化室8和粉末收集室9内,真空熔炼室、雾化室和粉末收集室的气体压力为0.3 MPa;高纯Ar气通过Ar气路反冲入雾化室,雾化室内部高纯Ar气的压力为0.04 MPa;(1) Put Fe, Si, and Cr into the high-
(2)用功率为80kW的高频熔炼线圈对Fe,Si,Cr三种金属进行熔化,待其熔化后熔体温度超过FeSiCr合金的熔点180 oC后,形成稳定连续的FeSiCr合金液流;(2) Use a high-frequency melting coil with a power of 80kW to melt the three metals Fe, Si, and Cr. After the melt temperature exceeds the melting point of the FeSiCr alloy by 180 o C, a stable and continuous FeSiCr alloy liquid flow is formed;
(3)步骤(2)得到的FeSiCr合金液流在重力的作用下自由下落,高压非氧化气路的出气口与FeSiCr合金液流呈70o;同时,对电极枪7施加电压进行起弧放电,当液流离开气雾化喷嘴时,同步被高能等离子电弧和喷嘴产生的惰性气流破碎成细小的金属液滴;电极枪施加电压为60V,雾化气体压力为10 MPa;(3) The FeSiCr alloy liquid flow obtained in step (2) falls freely under the action of gravity, and the gas outlet of the high-pressure non-oxidizing gas circuit is 70 o to the FeSiCr alloy liquid flow; at the same time, apply voltage to the
(4)FeSiCr合金液流在下降过程中经过第二冷却系统冷却凝固,得气雾化粉末,落入设备下端的粉末收集室9中,气雾化粉末的形貌为球形,粒度为30μm,氧含量为340ppm;(4) The FeSiCr alloy liquid flow is cooled and solidified by the second cooling system during the descending process to obtain gas atomized powder, which falls into the
(5)待气雾化粉末充分冷却至室温后,即可进行筛选和包装。(5) After the aerosolized powder is fully cooled to room temperature, it can be screened and packaged.
以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention in any form. There are other variations and modifications on the premise of not exceeding the technical solutions described in the claims.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011486531.8A CN112658271B (en) | 2020-12-16 | 2020-12-16 | Efficient combined type gas atomization powder preparation device and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011486531.8A CN112658271B (en) | 2020-12-16 | 2020-12-16 | Efficient combined type gas atomization powder preparation device and method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112658271A CN112658271A (en) | 2021-04-16 |
| CN112658271B true CN112658271B (en) | 2023-04-25 |
Family
ID=75405609
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011486531.8A Active CN112658271B (en) | 2020-12-16 | 2020-12-16 | Efficient combined type gas atomization powder preparation device and method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112658271B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115509266B (en) * | 2022-09-26 | 2025-04-25 | 北京科技大学 | A control device for quickly responding to and adjusting melt flow, a control method and its application |
| CN116765410B (en) * | 2023-08-25 | 2023-11-21 | 畅的新材料科技(上海)有限公司 | A kind of nanopowder production method |
| CN117840444B (en) * | 2024-03-07 | 2024-05-28 | 季华实验室 | Inert gas heating gas atomizing equipment |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2603210A1 (en) * | 1986-08-28 | 1988-03-04 | Serole Bernard | Jet for liquid metal spray - includes electrodes delivering high current via arc to provide additional heating of atomised metal |
| JPH02218431A (en) * | 1989-02-21 | 1990-08-31 | Tdk Corp | Powder for plasma pulverizing and its supply method |
| US6398125B1 (en) * | 2001-02-10 | 2002-06-04 | Nanotek Instruments, Inc. | Process and apparatus for the production of nanometer-sized powders |
| TW200410777A (en) * | 2002-12-27 | 2004-07-01 | Ind Tech Res Inst | Nanostructured metal powder and the method of fabricating the same |
| CN108213449A (en) * | 2013-07-11 | 2018-06-29 | 中国科学院福建物质结构研究所 | A kind of device for preparing matrix powder material |
| CN109023213A (en) * | 2018-10-12 | 2018-12-18 | 淄博高新区中乌等离子技术研究院 | Supersonic electric arc torch spray gun and its application method |
| CN110076347A (en) * | 2019-06-06 | 2019-08-02 | 南京工业大学 | Combined powder preparation method and device based on plasma smelting and disc rotary atomization |
| TW201936295A (en) * | 2018-01-26 | 2019-09-16 | 日商日清工程股份有限公司 | Method for producing fine particles and fine particles |
| CN111712342A (en) * | 2017-07-21 | 2020-09-25 | 加拿大派罗杰尼斯有限公司 | Method for cost-effective production of ultrafine spherical powders at large scale using thruster-assisted plasma atomization |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63219511A (en) * | 1987-03-09 | 1988-09-13 | Nkk Corp | Metal powder manufacturing equipment |
| US5935461A (en) * | 1996-07-25 | 1999-08-10 | Utron Inc. | Pulsed high energy synthesis of fine metal powders |
| US8859931B2 (en) * | 2006-03-08 | 2014-10-14 | Tekna Plasma Systems Inc. | Plasma synthesis of nanopowders |
| TW201714685A (en) * | 2015-10-28 | 2017-05-01 | Shenmao Tech Inc | Spherical metal powder and manufacturing method thereof and manufacturing apparatus thereof capable of allowing the fine metal particles to converge into a spherical shape in a relatively long time to achieve the purpose of improving the metal powder roundness |
| CN106378460B (en) * | 2016-09-22 | 2018-05-11 | 成都优材科技有限公司 | Prepare the plasma atomization method and equipment of spherical pure titanium or titanium alloy powder |
| CN109808049A (en) * | 2019-04-01 | 2019-05-28 | 四川大学 | A kind of method for preparing spherical powder by high temperature gas atomization |
-
2020
- 2020-12-16 CN CN202011486531.8A patent/CN112658271B/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2603210A1 (en) * | 1986-08-28 | 1988-03-04 | Serole Bernard | Jet for liquid metal spray - includes electrodes delivering high current via arc to provide additional heating of atomised metal |
| JPH02218431A (en) * | 1989-02-21 | 1990-08-31 | Tdk Corp | Powder for plasma pulverizing and its supply method |
| US6398125B1 (en) * | 2001-02-10 | 2002-06-04 | Nanotek Instruments, Inc. | Process and apparatus for the production of nanometer-sized powders |
| TW200410777A (en) * | 2002-12-27 | 2004-07-01 | Ind Tech Res Inst | Nanostructured metal powder and the method of fabricating the same |
| CN108213449A (en) * | 2013-07-11 | 2018-06-29 | 中国科学院福建物质结构研究所 | A kind of device for preparing matrix powder material |
| CN111712342A (en) * | 2017-07-21 | 2020-09-25 | 加拿大派罗杰尼斯有限公司 | Method for cost-effective production of ultrafine spherical powders at large scale using thruster-assisted plasma atomization |
| TW201936295A (en) * | 2018-01-26 | 2019-09-16 | 日商日清工程股份有限公司 | Method for producing fine particles and fine particles |
| CN109023213A (en) * | 2018-10-12 | 2018-12-18 | 淄博高新区中乌等离子技术研究院 | Supersonic electric arc torch spray gun and its application method |
| CN110076347A (en) * | 2019-06-06 | 2019-08-02 | 南京工业大学 | Combined powder preparation method and device based on plasma smelting and disc rotary atomization |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112658271A (en) | 2021-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112658271B (en) | Efficient combined type gas atomization powder preparation device and method | |
| US20210164090A1 (en) | Method for Preparing Target Material and Target Material | |
| CN107900367B (en) | Novel atomizer of titanium and titanium alloy powder for 3D printing | |
| CN204396886U (en) | For the preparation facilities of spherical rare metal powder | |
| CN204449311U (en) | For the preparation of the device of fine grain hypoxemia spherical titanium and titanium alloy powder | |
| CN109808049A (en) | A kind of method for preparing spherical powder by high temperature gas atomization | |
| CN105397100B (en) | A kind of preparation method of refining metallic powder and the equipment for realizing this method | |
| CN107900366B (en) | Device and method for continuously preparing titanium or titanium alloy powder for 3D printing through gas atomization | |
| CN112658272B (en) | High-cooling gradient plasma arc-gas atomization composite powder preparation device and method | |
| CN105252009B (en) | A kind of manufacture method of micro-fine spherical titanium powder | |
| CN104308168B (en) | The preparation method of a kind of fine grain hypoxemia spherical titanium and titanium alloy powder | |
| CN104475743A (en) | Manufacturing method of micro spherical titanium and titanium alloy powder | |
| CN101992301A (en) | Method for producing spherical stainless steel powder material by using high pressure water atomization method | |
| CN101391307A (en) | A method for preparing fine spherical tungsten powder | |
| CN108031855A (en) | A kind of sensing heating and radio frequency plasma combined atomizing pulverized coal preparation system | |
| CN113134617B (en) | Plasma spheroidization deoxidation 3D printing metal powder preparation device | |
| CN113145855A (en) | Device and method for preparing high-melting-point alloy powder by electric arc | |
| CN110181066A (en) | High sphericity 3D printing tantalum powder, preparation method and application | |
| CN112643038B (en) | Device and method for preparing core-shell structure soft magnetic material through gas atomization | |
| CN113134618B (en) | Metal-based ceramic 3D printing composite powder plasma preparation device | |
| WO2019024420A1 (en) | Alloy powder and preparation method therefor | |
| TWI798989B (en) | Device for preparing ultrafine powder by plasma arc atomization method | |
| CN104588675A (en) | Device and method for preparing spherical rare metal powder | |
| CN115625339B (en) | A device and method for preparing spherical powder using radio frequency plasma | |
| CN207971424U (en) | A kind of sensing heating and radio frequency plasma combined atomizing pulverized coal preparation system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |