CN112652794B - Cathode open type fuel cell thermal management system and method using time lag information - Google Patents
Cathode open type fuel cell thermal management system and method using time lag information Download PDFInfo
- Publication number
- CN112652794B CN112652794B CN202011513595.2A CN202011513595A CN112652794B CN 112652794 B CN112652794 B CN 112652794B CN 202011513595 A CN202011513595 A CN 202011513595A CN 112652794 B CN112652794 B CN 112652794B
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- temperature
- stack
- thermal management
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 146
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000008859 change Effects 0.000 claims abstract description 36
- 229910001868 water Inorganic materials 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000009529 body temperature measurement Methods 0.000 claims abstract description 8
- 238000007726 management method Methods 0.000 claims description 37
- 238000011161 development Methods 0.000 claims description 30
- 230000033228 biological regulation Effects 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 8
- 230000010287 polarization Effects 0.000 claims description 8
- 230000004913 activation Effects 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 238000013178 mathematical model Methods 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 230000003746 surface roughness Effects 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 230000000694 effects Effects 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000020411 cell activation Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04305—Modeling, demonstration models of fuel cells, e.g. for training purposes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04365—Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0432—Temperature; Ambient temperature
- H01M8/04373—Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04731—Temperature of other components of a fuel cell or fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
- H01M8/04738—Temperature of auxiliary devices, e.g. reformer, compressor, burner
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本发明涉及燃料电池热管理领域,特别是一种利用时滞信息的阴极开放式燃料电池热管理系统及方法。The invention relates to the field of fuel cell heat management, in particular to a cathode open fuel cell heat management system and method using time-lag information.
背景技术Background technique
当前,全球能源、环境问题日益严重,世界各国都在积极寻求应对方案,在汽车领域大力推进新能源汽车的目的也正是如此。新能源汽车有不同的类型,其中,燃料电池汽车不仅能够在燃料上实现对燃油的完全替代,而且具有“零排放”,能量转换效率高、燃料来源多样并可灵活取自于可再生能源等优势,因而被认为是实现未来汽车工业可持续发展的重要方向之一,也是解决全球能源和环境问题的理想方案之一。At present, global energy and environmental problems are becoming more and more serious, and countries all over the world are actively seeking solutions, and the purpose of vigorously promoting new energy vehicles in the automotive field is exactly the same. There are different types of new energy vehicles. Among them, fuel cell vehicles can not only completely replace fuel in fuel, but also have "zero emissions", high energy conversion efficiency, diverse fuel sources, and flexible renewable energy sources. Therefore, it is considered to be one of the important directions to realize the sustainable development of the automobile industry in the future, and also one of the ideal solutions to solve global energy and environmental problems.
燃料电池是一种以电化学反应方式将燃料与氧化剂的化学能转变为电能的能量转换装置。目前,全世界已有多种高性能燃料电池汽车产品初步进入了商业化应用阶段。其中,质子交换膜燃料电池具有高比功率、可快速启动、无腐蚀性、反应温度低、氧化剂需求低等优势,是当前燃料电池汽车的首选。其中,阴极开放式质子交换模燃料电池拥有极简的辅助系统,非常适合作为便携式移动电源应用。但质子交换膜的适宜工作温度范围相对而言较窄。若电堆温度太低,会降低质子交换膜中水分的蒸发,从而导致电化学反应速率变慢,使电池性能降低。然而,电堆温度过高,会使质子交换膜中的水分过度蒸发,导致湿度降低,这既降低了质子传导性,也会损害质子交换膜。A fuel cell is an energy conversion device that converts the chemical energy of fuel and oxidant into electrical energy by electrochemical reaction. At present, a variety of high-performance fuel cell vehicle products around the world have initially entered the stage of commercial application. Among them, proton exchange membrane fuel cells have the advantages of high specific power, fast start-up, non-corrosiveness, low reaction temperature, and low oxidant demand, and are currently the first choice for fuel cell vehicles. Among them, the cathode open proton exchange mode fuel cell has a minimal auxiliary system, which is very suitable for portable mobile power applications. However, the suitable working temperature range of proton exchange membrane is relatively narrow. If the stack temperature is too low, the evaporation of water in the proton exchange membrane will be reduced, resulting in slower electrochemical reaction rate and lower battery performance. However, if the temperature of the stack is too high, the water in the proton exchange membrane will evaporate excessively, resulting in a decrease in humidity, which will not only reduce the proton conductivity, but also damage the proton exchange membrane.
因此采用正确的控制策略才能为质子交换膜燃料电池提供适宜的工作温度。这对提高燃料电池的功率和延长寿命来说至关重要,也是本领域技术人员目前需要解决的问题。Therefore, the correct control strategy can provide a suitable working temperature for the proton exchange membrane fuel cell. This is very important for improving the power and prolonging the life of the fuel cell, and it is also a problem that those skilled in the art need to solve at present.
发明内容Contents of the invention
有鉴于此,本发明的目的是提供一种利用时滞信息的阴极开放式燃料电池热管理系统及方法,实现对燃料电池有效的热管理。In view of this, the object of the present invention is to provide a cathode open fuel cell thermal management system and method using time-lag information, so as to realize effective thermal management of the fuel cell.
本发明采用以下方案实现:一种利用时滞信息的阴极开放式燃料电池热管理系统,包括阴极开放式燃料电池、外接负载、PC上位机、Arduino Nano开发板、温度传感器、直流电机PWM调速模块和直流风扇组;所述阴极开放式燃料电池与外接负载连接,用以为外接负载供电;所述温度传感器用于读取所述阴极开放式燃料电池的温度信息;所述ArduinoNano开发板分别与所述温度传感器和所述上位机连接,用以将所述温度传感器读取的温度信息通过所述Arduino Nano开发板上传到所述PC上位机进行实时监控,并通过所述PC上位机将带有时滞信息的控制器计算程序下载至所述Arduino Nano开发板中以实时计算控制率;所述Arduino Nano开发板还与所述直流电机PWM调速模块连接,所述直流电机PWM调速模块还与所述直流风扇组连接,用以将Arduino Nano开发板实时计算的控制率以PWM信号传至直流电机PWM调速模块对所述直流风扇组进行转速控制,进而对电堆温度有效控制以实现燃料电池热管理。The present invention is realized by the following scheme: a cathode open fuel cell thermal management system utilizing time-delay information, including an open cathode fuel cell, an external load, a PC upper computer, an Arduino Nano development board, a temperature sensor, and a DC motor PWM speed regulation module and a DC fan group; the cathode open fuel cell is connected with an external load to supply power for the external load; the temperature sensor is used to read the temperature information of the cathode open fuel cell; the ArduinoNano development board is connected with The temperature sensor is connected with the host computer, in order to upload the temperature information read by the temperature sensor to the PC host computer through the Arduino Nano development board for real-time monitoring, and through the PC host computer will bring The controller calculation program of time-delay information is downloaded to the Arduino Nano development board to calculate the control rate in real time; the Arduino Nano development board is also connected with the DC motor PWM speed regulation module, and the DC motor PWM speed regulation module is also Connected with the DC fan group, it is used to transmit the control rate calculated in real time by the Arduino Nano development board to the DC motor PWM speed regulation module to control the speed of the DC fan group, and then effectively control the stack temperature to achieve Fuel cell thermal management.
进一步地,所述温度传感器采用的是微型热电偶。Further, the temperature sensor is a miniature thermocouple.
进一步地,所述直流电机PWM调速模块采用的是型号为XH-M222的调速模块。Further, the PWM speed regulation module of the DC motor adopts a speed regulation module whose model is XH-M222.
进一步地,本发明还提供一种利用时滞信息的阴极开放式燃料电池热管理方法,包括以下步骤:Further, the present invention also provides a method for thermal management of an open-cathode fuel cell using time-lag information, comprising the following steps:
步骤S1:针对阴极开放式燃料电池热特性,搭建考虑阴极开放式燃料电池电堆电压与含水量关系的电堆温度动态描述模型,用以描述电堆温度的动态变化特性;Step S1: Aiming at the thermal characteristics of the open-cathode fuel cell, build a dynamic description model of the stack temperature considering the relationship between the stack voltage and water content of the open-cathode fuel cell to describe the dynamic change characteristics of the stack temperature;
步骤S2:通过电堆温度动态描述模型中可测物理量包括电堆温度和控制输入的时滞信息设计燃料电池电堆热管理控制器,利用时滞信息能够消除燃料电池温度数学模型中的不确定性和包括环境温度和工作电流在内的已知干扰与未知扰动;Step S2: Design the fuel cell stack thermal management controller by using the measurable physical quantities in the dynamic description model of the stack temperature, including the stack temperature and the time-delay information of the control input, and use the time-delay information to eliminate the uncertainty in the mathematical model of the fuel cell temperature and known and unknown disturbances including ambient temperature and operating current;
步骤S3:采用燃料电池电堆温度及其变化率观测系统,来估计燃料电池电堆温度及其变化率,,并将观测后的电堆温度及其变化率代入燃料电池电堆热管理控制器控制率中以减小温度测量噪声对阴极开放式燃料电池热稳定性的影响。Step S3: Use the fuel cell stack temperature and its change rate observation system to estimate the fuel cell stack temperature and its change rate, and substitute the observed stack temperature and its change rate into the fuel cell stack thermal management controller control rate to reduce the effect of temperature measurement noise on the thermal stability of an open-cathode fuel cell.
进一步地,步骤S1中所述阴极开放式燃料电池电堆电压与含水量两者关系为:Further, the relationship between the cathode open fuel cell stack voltage and water content in step S1 is:
其中,Vact为活化极化电压,R,a,n,和F均为系统常数,iref是内部电流密度,Tref是参考环境温度,Aopt和Sopt分别是最佳电极表面粗糙度和最佳液态水饱和度,ΔG是电池活化阻抗。Among them, V act is the activation polarization voltage, R, a, n, and F are system constants, i ref is the internal current density, T ref is the reference ambient temperature, A opt and S opt are the optimum electrode surface roughness, respectively and optimal liquid water saturation, ΔG is the cell activation impedance.
进一步地,步骤S1中所述阴极开放式燃料电池电堆温度动态描述模型为:Further, the dynamic description model of the cathode open fuel cell stack temperature in step S1 is:
其中,mst和Cst分别是燃料电池电堆质量和比热容,和分别为电堆热传递速率、总产热速率、辐射散热速率和对流散热速率。Among them, m st and C st are fuel cell stack mass and specific heat capacity respectively, and They are stack heat transfer rate, total heat production rate, radiation heat dissipation rate and convection heat dissipation rate.
进一步地,步骤S2中所述通过电堆温度动态描述模型中可测物理量包括电堆温度和控制输入的时滞信息设计燃料电池电堆热管理控制器的内容为:Further, in step S2, the content of designing the thermal management controller of the fuel cell stack through the stack temperature dynamic description model including the stack temperature and the delay information of the control input is as follows:
步骤Sa:将燃料电池电堆温度动态描述模型写成如下形式:Step Sa: write the fuel cell stack temperature dynamic description model as follows:
其中,f(Tst(t),t)为电堆温度动态变化函数,u(t)为电堆温度控制输入,B(Tst(t),t)为控制输入函数,d(t)为电堆温度控制干扰量;Among them, f(T st (t), t) is the dynamic change function of the stack temperature, u(t) is the control input of the stack temperature, B(T st (t), t) is the control input function, d(t) Control the amount of disturbance for the stack temperature;
f(Tst(t),t)=-5.971824×10-6IstTst-2.932364×10-6Tst 2-2.38557×10-3Tst f(T st (t),t)=-5.971824×10 -6 I st T st -2.932364×10 -6 T st 2 -2.38557×10 -3 T st
B(Tst(t),t)=(Tamb-Tst)/3137.4B(T st (t),t)=(T amb -T st )/3137.4
u(t)=64.92898ufan 2+81.48939ufan+3.9394u(t)=64.92898u fan 2 +81.48939u fan +3.9394
工作电流Ist和环境温度Tamb为温度控制系统的已知干扰量,d(t)为未知扰动;The working current I st and the ambient temperature T amb are the known disturbance quantities of the temperature control system, and d(t) is the unknown disturbance;
步骤Sb:根据性能指标的要求选定温度参考模型为:Step Sb: the selected temperature reference model according to the requirements of the performance index is:
其中,M为整数,r(t)为追踪变量,Tref(t)和Tm(t)分别为追踪温度和参考模型温度;Among them, M is an integer, r(t) is the tracking variable, T ref (t) and T m (t) are the tracking temperature and the reference model temperature, respectively;
步骤Sc:求取控制作用的u(t)使系统状态跟踪参考模型状态的误差e,满足误差动态方程得出初始控制率u0(t)为:Step Sc: Find the u(t) of the control action to make the system state track the error e of the reference model state, satisfying the error dynamic equation The initial control rate u 0 (t) is obtained as:
u0(t)=B+(Tst(t),t)(-MTst(t)+MTref(t)-d(t)); u0 (t)=B + ( Tst (t),t)(- MTst (t)+ MTref (t)-d(t));
步骤Sd:设计基于时滞信息的外扰观测器:Step Sd: Design an external disturbance observer based on time-delay information:
并将其代入初始控制率u0(t)中,得到控制器的控制率u1(t)。And substitute it into the initial control rate u 0 (t) to get the control rate u 1 (t) of the controller.
进一步地,步骤Sd中所述控制率u1(t)为:Further, the control rate u 1 (t) in step Sd is:
其中u1(t-L)为控制输入时滞信息,为温度变化率时滞信息。where u 1 (tL) is the control input delay information, is the time-lag information of the temperature change rate.
进一步地,步骤S3中所述燃料电池电堆温度及其变化率观测系统为:Further, the fuel cell stack temperature and its change rate observation system described in step S3 is:
其中r(t)=Tref(t),和分为Tst和的观测值。in r(t)= Tref (t), and Divided into T st and observation value.
进一步地,步骤S3中所述将观测后的电堆温度及其变化率时滞信息代入燃料电池电堆热管理控制器的控制率u1(t)后的最终控制率u(t)为:Further, the final control rate u(t) after substituting the observed stack temperature and its change rate time lag information into the control rate u 1 (t) of the fuel cell stack thermal management controller in step S3 is:
u(t)=u(t-L)+B+(z1(t),t)(-Mz1(t)+MTref(t)-z2(t-L))。u(t)=u(tL)+B + (z1(t), t )(- Mz1 (t)+ MTref (t) -z2 (tL)).
其中z1(t)为观测后的电堆温度,z2(t-L)为观测后的电堆温度变化率时滞信息。将所得到的最终控制率进行编译并写入Arduino Nano开发板中以将实时计算的控制率以PWM信号发送至直流电机PWM调速模块进而对所述直流风扇组进行转速控制以有效控制电堆温度,最终实现燃料电池热管理。Where z 1 (t) is the observed stack temperature, and z 2 (tL) is the time-lag information of the observed stack temperature change rate. Compile the obtained final control rate and write it into the Arduino Nano development board to send the real-time calculated control rate to the DC motor PWM speed control module as a PWM signal to control the speed of the DC fan group to effectively control the stack temperature, and ultimately fuel cell thermal management.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明所应用的目标为燃料电池,由于燃料电池在运行过程中燃料电池电堆电压会随着燃料电池含水量的改变而发生改变,从而导致燃料电池温度模型发生改变。在对燃料电池电堆温度进行建模时考虑到含水量,能够更建立更精确的燃料电池温度模型,以达到更准确的控制效果。(1) The target of the present invention is the fuel cell. Since the fuel cell stack voltage changes with the water content of the fuel cell during the operation of the fuel cell, the temperature model of the fuel cell changes. Considering the water content when modeling the fuel cell stack temperature, a more accurate fuel cell temperature model can be established to achieve a more accurate control effect.
(2)本发明所采用的控制器通过电堆温度动态描述模型中可测物理量(包括电堆温度和控制输入)的时滞信息设计燃料电池电堆热管理控制器,通过建立温度参考模型有效的消除系统干扰对控制效果的影响,包括工作电流及环境温度这些已知干扰和未知干扰,且控制器能够补偿系统不确定性,降低了控制器对系统模型精确性的要求,表现出优秀的动态控制性能和鲁棒性,能够很好的适应燃料电池非线性特性。(2) The controller adopted in the present invention designs the fuel cell stack thermal management controller through the time-lag information of the measurable physical quantity (comprising the stack temperature and control input) in the dynamic description model of the stack temperature, and is effective by establishing a temperature reference model Eliminate the influence of system disturbance on the control effect, including known and unknown disturbances such as operating current and ambient temperature, and the controller can compensate system uncertainty, reducing the controller's requirements for the accuracy of the system model, showing excellent performance Dynamic control performance and robustness can well adapt to the nonlinear characteristics of fuel cells.
(3)本发明采用燃料电池电堆温度及其变化率观测系统来估计燃料电池电堆温度及其变化率,并将观测后的电堆温度及其变化率代入燃料电池热管理控制器控制率中,能够有效地降低温度测量噪声对控制器的影响,增加了燃料电池热稳定性,提高系统抗干扰能力。(3) The present invention uses the fuel cell stack temperature and its rate of change observation system to estimate the fuel cell stack temperature and its rate of change, and substitutes the observed stack temperature and its rate of change into the control rate of the fuel cell thermal management controller Among them, it can effectively reduce the influence of temperature measurement noise on the controller, increase the thermal stability of the fuel cell, and improve the anti-interference ability of the system.
附图说明Description of drawings
图1为本发明实施例的利用时滞信息的阴极开放式燃料电池热管理方法的原理图。FIG. 1 is a schematic diagram of an open-cathode fuel cell thermal management method using time-lag information according to an embodiment of the present invention.
图2为本发明实施例的燃料电池温度动态描述模型中工作电流、含水量、电堆温度的变化图。Fig. 2 is a change diagram of working current, water content and stack temperature in the fuel cell temperature dynamic description model of the embodiment of the present invention.
图3为本发明实施例的用于在噪音干扰控制温度的效果图。FIG. 3 is an effect diagram for controlling temperature under noise interference according to an embodiment of the present invention.
图4为本发明实施例的系统原理图,其中,1为阴极开放式燃料电池,2为外接负载,3为温度传感器,4为直流电机PWM调速模块,5为直流风扇组。4 is a schematic diagram of the system of the embodiment of the present invention, wherein 1 is an open-cathode fuel cell, 2 is an external load, 3 is a temperature sensor, 4 is a DC motor PWM speed control module, and 5 is a DC fan group.
具体实施方式Detailed ways
下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be pointed out that the following detailed description is exemplary and intended to provide further explanation to the present application. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
如图4所示,本实施例提供一种利用时滞信息的阴极开放式燃料电池热管理系统,包括阴极开放式燃料电池1、外接负载2、PC上位机、Arduino Nano开发板、温度传感器3、直流电机PWM调速模块4和直流风扇组5;所述阴极开放式燃料电池1与外接负载2连接,用以为外接负载供电;所述温度传感器3用于读取所述阴极开放式燃料电池1的温度信息;所述Arduino Nano开发板分别与所述温度传感器3和所述上位机连接,用以将所述温度传感器3读取的温度信息通过所述Arduino Nano开发板上传到所述PC上位机进行实时监控,并通过所述PC上位机将带有时滞信息的控制器计算程序下载至所述Arduino Nano开发板中以实时计算控制率;所述Arduino Nano开发板还与所述直流电机PWM调速模块4连接,所述直流电机PWM调速模块4还与所述直流风扇组5连接,用以将Arduino Nano开发板实时计算的控制率以PWM信号传至直流电机PWM调速模块对所述直流风扇组5进行转速控制,进而对电堆温度有效控制以实现一种利用时滞信息的阴极开放式燃料电池热管理。As shown in Figure 4, this embodiment provides an open-cathode fuel cell thermal management system using time-lag information, including an open-cathode fuel cell 1, an external load 2, a PC host computer, an Arduino Nano development board, and a temperature sensor 3 , a DC motor PWM speed control module 4 and a DC fan group 5; the open-cathode fuel cell 1 is connected to an external load 2 to provide power for the external load; the temperature sensor 3 is used to read the open-cathode fuel cell 1 temperature information; the Arduino Nano development board is connected with the temperature sensor 3 and the host computer respectively, in order to upload the temperature information read by the temperature sensor 3 to the PC by the Arduino Nano development board The upper computer performs real-time monitoring, and downloads the controller calculation program with time lag information to the Arduino Nano development board to calculate the control rate in real time through the PC upper computer; the Arduino Nano development board is also connected with the DC motor The PWM speed control module 4 is connected, and the DC motor PWM speed control module 4 is also connected with the DC fan group 5, so as to transmit the control rate calculated in real time by the Arduino Nano development board to the DC motor PWM speed control module with a PWM signal. The
具体原理为:风扇是阴极开放式燃料电池热管理系统的执行器,风扇转速是时滞控制器控制输入,是需要控制的量,风扇转速对应着散热量,因此这里对所述风扇组进行转速控制是控制电堆温度进而对燃料电池进行热管理。The specific principle is: the fan is the actuator of the cathode open fuel cell thermal management system, and the fan speed is the control input of the time-delay controller, which is the quantity to be controlled. The fan speed corresponds to the heat dissipation, so the speed of the fan group is calculated here Control is to control the temperature of the stack and then perform thermal management on the fuel cell.
在本实施例中,所述温度传感器3采用的是微型热电偶。In this embodiment, the
在本实施例中,所述直流电机PWM调速模块4采用的是型号为XH-M222的调速模块。In this embodiment, the DC motor PWM
如图1所示,本实施例还提供一种利用时滞信息的阴极开放式燃料电池热管理方法,包括以下步骤:As shown in FIG. 1 , this embodiment also provides a method for thermal management of an open-cathode fuel cell using time-lag information, including the following steps:
步骤S1:燃料电池的热量主要来源于电化学反应产生的不可逆热,该部分热量使电堆温度呈非线性变化,本实施例针对阴极开放式燃料电池热特性,搭建考虑阴极开放式燃料电池电堆电压与含水量关系的电堆温度动态描述模型,用以描述电堆温度的动态变化特性;Step S1: The heat of the fuel cell mainly comes from the irreversible heat generated by the electrochemical reaction, and this part of the heat causes the temperature of the stack to change nonlinearly. This embodiment considers the thermal characteristics of the open-cathode fuel cell and builds a battery with an open-cathode fuel cell. The stack temperature dynamic description model of the relationship between the stack voltage and the water content is used to describe the dynamic change characteristics of the stack temperature;
步骤S2:通过电堆温度动态描述模型中可测物理量包括电堆温度和控制输入的时滞信息设计燃料电池电堆热管理控制器,利用时滞信息能够消除燃料电池温度数学模型中的不确定性和包括环境温度和工作电流在内的已知干扰与未知扰动;Step S2: Design the fuel cell stack thermal management controller by using the measurable physical quantities in the dynamic description model of the stack temperature, including the stack temperature and the time-delay information of the control input, and use the time-delay information to eliminate the uncertainty in the mathematical model of the fuel cell temperature and known and unknown disturbances including ambient temperature and operating current;
燃料电池热模型,温度模型都是现有技术说法,这里描述为燃料电池温度数学模型能与下方建立的阴极开放式燃料电池电堆温度动态描述模型相对应,这里的温度动态描述模型实际上就是描述燃料电池温度的一种数学模型。The thermal model and temperature model of the fuel cell are the existing technical terms. The mathematical model of the fuel cell temperature described here can correspond to the dynamic description model of the open cathode fuel cell stack temperature established below. The dynamic description model of the temperature here is actually A mathematical model describing the temperature of a fuel cell.
步骤S3:采用燃料电池电堆温度及其变化率观测系统,来估计燃料电池电堆温度及其变化率,,并将观测后的电堆温度及其变化率代入燃料电池电堆热管理控制器控制率中以减小温度测量噪声对阴极开放式燃料电池热稳定性的影响。Step S3: Use the fuel cell stack temperature and its change rate observation system to estimate the fuel cell stack temperature and its change rate, and substitute the observed stack temperature and its change rate into the fuel cell stack thermal management controller control rate to reduce the effect of temperature measurement noise on the thermal stability of an open-cathode fuel cell.
在本实施例中,步骤S1中所述阴极开放式燃料电池电堆电压与含水量两者关系为:In this embodiment, the relationship between the cathode open fuel cell stack voltage and water content in step S1 is:
其中,Vact为活化极化电压,R,a,n,和F均为系统常数,iref是内部电流密度,Tref是参考环境温度,Aopt和Sopt分别是最佳电极表面粗糙度和最佳液态水饱和度,ΔG是电池活化阻抗。Among them, V act is the activation polarization voltage, R, a, n, and F are system constants, i ref is the internal current density, T ref is the reference ambient temperature, A opt and S opt are the optimum electrode surface roughness, respectively and optimal liquid water saturation, ΔG is the cell activation impedance.
在本实施例中,步骤S1中所述阴极开放式燃料电池电堆温度动态描述模型为:In this embodiment, the dynamic description model of the cathode open fuel cell stack temperature in step S1 is:
其中,mst和Cst分别是燃料电池电堆质量和比热容,和分别为电堆热传递速率、总产热速率、辐射散热速率和对流散热速率。Among them, m st and C st are fuel cell stack mass and specific heat capacity respectively, and They are stack heat transfer rate, total heat production rate, radiation heat dissipation rate and convection heat dissipation rate.
在本实施例中,步骤S2中所述通过电堆温度动态描述模型中可测物理量包括电堆电温度和控制输入的时滞信息设计燃料电池电堆热管理控制器的内容为:In this embodiment, the measurable physical quantities in the dynamic description model of the stack temperature described in step S2 include the stack temperature and the delay information of the control input to design the fuel cell stack thermal management controller as follows:
步骤Sa:将燃料电池电堆温度动态描述模型写成如下形式:Step Sa: write the fuel cell stack temperature dynamic description model as follows:
其中,f(Tst(t),t)为电堆温度动态变化函数,u(t)为电堆温度控制输入,B(Tst(t),t)为控制输入函数,d(t)为电堆温度控制干扰量;Among them, f(T st (t), t) is the dynamic change function of the stack temperature, u(t) is the control input of the stack temperature, B(T st (t), t) is the control input function, d(t) Control the amount of disturbance for the stack temperature;
f(Tst(t),t)=-5.971824×10-6IstTst-2.932364×10-6Tst 2-2.38557×10-3Tst f(T st (t),t)=-5.971824×10 -6 I st T st -2.932364×10 -6 T st 2 -2.38557×10 -3 T st
B(Tst(t),t)=(Tamb-Tst)/3137.4B(T st (t),t)=(T amb -T st )/3137.4
u(t)=64.92898ufan 2+81.48939ufan+3.9394u(t)=64.92898u fan 2 +81.48939u fan +3.9394
工作电流Ist和环境温度Tamb为温度控制系统的已知干扰量,d(t)为未知扰动;The working current I st and the ambient temperature T amb are the known disturbance quantities of the temperature control system, and d(t) is the unknown disturbance;
步骤Sb:根据性能指标的要求选定温度参考模型为:Step Sb: the selected temperature reference model according to the requirements of the performance index is:
其中,M为整数,r(t)为追踪变量,Tref(t)和Tm(t)分别为追踪温度和参考模型温度;Among them, M is an integer, r(t) is the tracking variable, T ref (t) and T m (t) are the tracking temperature and the reference model temperature, respectively;
步骤Sc:求取控制作用的u(t)使系统状态跟踪参考模型状态的误差e,满足误差动态方程得出初始控制率u0(t)为:Step Sc: Find the u(t) of the control action to make the system state track the error e of the reference model state, satisfying the error dynamic equation The initial control rate u 0 (t) is obtained as:
u0(t)=B+(Tst(t),t)(-MTst(t)+MTref(t)-d(t)); u0 (t)=B + ( Tst (t),t)(- MTst (t)+ MTref (t)-d(t));
步骤Sd:设计基于时滞信息的外扰观测器:Step Sd: Design an external disturbance observer based on time-delay information:
并将其代入初始控制率u0(t)中,得到控制器的控制率u1(t)。And substitute it into the initial control rate u 0 (t) to get the control rate u 1 (t) of the controller.
在本实施例中,步骤Sd中所述控制率u1(t)为:In this embodiment, the control rate u 1 (t) in step Sd is:
其中u1(t-L)为控制输入时滞信息,为温度变化率时滞信息。where u 1 (tL) is the control input delay information, is the time-lag information of the temperature change rate.
在本实施例中,步骤S3中所述燃料电池电堆温度及其变化率观测系统为:In this embodiment, the fuel cell stack temperature and its rate of change observation system described in step S3 is:
其中r(t)=Tref(t),和分为Tst和的观测值。in r(t)= Tref (t), and Divided into T st and observation value.
在本实施例中,步骤S3中所述将观测后的电堆温度及其变化率时滞信息代入燃料电池电堆热管理控制器的控制率u1(t)后的最终控制率u(t)为:In this embodiment, the final control rate u(t) after substituting the observed stack temperature and its change rate time-lag information into the control rate u 1 (t) of the fuel cell stack thermal management controller described in step S3 )for:
u(t)=u(t-L)+B+(z1(t),t)(-Mz1(t)+MTref(t)-z2(t-L))。u(t)=u(tL)+B + (z1(t), t )(- Mz1 (t)+ MTref (t) -z2 (tL)).
其中z1(t)为观测后的电堆温度,z2(t-L)为观测后的电堆温度变化率时滞信息;将所得到的最终控制率进行编译并写入Arduino Nano开发板中以将实时计算的控制率以PWM信号发送至直流电机PWM调速模块进而对所述直流风扇组进行转速控制以有效控制电堆温度,最终实现一种利用时滞信息的阴极开放式燃料电池热管理。Where z 1 (t) is the observed stack temperature, z 2 (tL) is the time-lag information of the observed stack temperature change rate; compile the obtained final control rate and write it into the Arduino Nano development board to The real-time calculated control rate is sent to the DC motor PWM speed control module as a PWM signal, and then the speed of the DC fan group is controlled to effectively control the stack temperature, and finally realize a cathode open fuel cell thermal management using time-delay information .
根据不同功率等级燃料电池,基于以上本发明所设计的热管理控制器控制率,可以将燃料电池电堆温度有效稳定控制在合适的温度参考值,以提高燃料电池工作的稳定性和耐久性。According to fuel cells of different power levels, based on the control rate of the thermal management controller designed in the present invention, the temperature of the fuel cell stack can be effectively and stably controlled at a suitable temperature reference value, so as to improve the stability and durability of the fuel cell operation.
本实施例通过所设计的时滞控制器控制率作为控制输入以将燃料电池电堆温度控制在所设温度参考值,“对阴极开放式燃料电池热管理”的目的在于通过本实施例可以将燃料电池电堆温度有效稳定控制在合适的值以提高燃料电池工作的稳定性和耐久性。In this embodiment, the designed control rate of the time-delay controller is used as the control input to control the temperature of the fuel cell stack at the set temperature reference value. The temperature of the fuel cell stack is effectively and stably controlled at an appropriate value to improve the stability and durability of the fuel cell operation.
其中:区别于控制率u1(t),此时电堆温度信息(电堆温度及其时滞变化率)采用观测系统的观测值而不是电堆温度直接测量信息,原因为温度测量时若存在噪声,而采用含有噪声干扰的控制率会对电堆温度控制性能及燃料电池热稳定性产生影响。Among them: different from the control rate u 1 (t), the stack temperature information (stack temperature and its time-delay change rate) at this time uses the observed value of the observation system instead of the direct measurement information of the stack temperature. The reason is that if the temperature measurement There is noise, and the control rate with noise interference will affect the stack temperature control performance and fuel cell thermal stability.
较佳的,在本实施例中,所述阴极开放式燃料电池通过供气阀连接氢气罐,并通过排气阀将反应未完全气体排出到大气中。Preferably, in this embodiment, the cathode open fuel cell is connected to the hydrogen tank through the gas supply valve, and the incompletely reacted gas is discharged into the atmosphere through the exhaust valve.
较佳的,在本实施例中,所述Arduino Nano开发板通过USB接口与PC上位机相连并与上位机进行信号传输并可将带有时滞信息的控制器计算程序下载至Arduino Nano开发板中以实时计算控制率。Preferably, in this embodiment, the Arduino Nano development board is connected to the PC host computer through the USB interface and performs signal transmission with the host computer and can download the controller calculation program with time lag information to the Arduino Nano development board Calculate the control rate in real time.
较佳的,在本实施例中,以一款额定功率1kW的H-1000阴极开放式燃料电池为例,为控制阴极开放式燃料电池风扇组转速,在H-1000阴极开放式燃料电池系统中加入直流电机PWM调速模块,通过调制PWM占空比进而改变风扇的转速,所述的直流电机PWM调速模块为XH-M222。Preferably, in this embodiment, an H-1000 cathode open fuel cell with a rated power of 1kW is taken as an example, in order to control the speed of the cathode open fuel cell fan group, in the H-1000 cathode open fuel cell system A DC motor PWM speed control module is added to change the fan speed by modulating the PWM duty cycle. The DC motor PWM speed control module is XH-M222.
在本实施例中,所述的温度传感器采用微型热电偶并将探测头布置于阴极开放式燃料电池电堆内部气道中,将读取到的温度信息通过Arduino Nano开发板上传至PC上位机以进行实时监控,同时Arduino Nano开发板根据实时读取的温度数据做进一步计算。In this embodiment, the temperature sensor uses a miniature thermocouple and the detection head is arranged in the internal gas channel of the fuel cell stack with an open cathode, and the read temperature information is uploaded to the PC host computer through the Arduino Nano development board for further analysis. Real-time monitoring is carried out, and the Arduino Nano development board makes further calculations based on the temperature data read in real time.
在本实施例中,Arduino Nano开发板通过USB接口与PC上位机相连并与上位机进行信号传输,PC上位机可将带有时滞信息的控制器计算程序下载至Arduino Nano开发板中以实时计算控制率。所述的微型热电偶与Arduino Nano开发板模拟接口(A)相连,直流电机PWM调速模块PWM输入端与Arduino Nano开发板数字接口(D)相连以将Arduino Nano开发板实时计算的控制率以脉冲宽度调制的形式对直流风扇组进行转速控制,其中直流电机PWM调速模块电源输入端需外接13V直流电源或蓄电池以对直流风扇组进行供电。所述的外接负载可为用电设备或电阻,其两端分别与阴极开放式燃料电池正负极相连。In this embodiment, the Arduino Nano development board is connected to the PC host computer through the USB interface and performs signal transmission with the host computer. The PC host computer can download the controller calculation program with time lag information to the Arduino Nano development board for real-time calculation control rate. Described miniature thermocouple is connected with Arduino Nano development board analog interface (A), and DC motor PWM speed control module PWM input end is connected with Arduino Nano development board digital interface (D) so that the control rate calculated in real time by Arduino Nano development board is The pulse width modulation is used to control the speed of the DC fan group, and the power input terminal of the DC motor PWM speed control module needs to be connected to an external 13V DC power supply or battery to supply power to the DC fan group. The external load can be electrical equipment or a resistor, and its two ends are respectively connected to the positive and negative poles of the open-cathode fuel cell.
较佳的,本实施例搭建温度动态描述模型特别考虑了阴极开放式燃料电池电堆电压与含水量关系,精确地描述电堆温度的动态特性,并通过电堆温度动态描述模型中可测物理量(包括电堆温度和控制输入)的时滞信息设计燃料电池电堆热管理控制器,利用时滞信息能够消除系统建模不确定性以及消除包括环境温度和工作电流在内的已知干扰与未知扰动,且所述的燃料电池热管理控制器结合燃料电池电堆温度及其变化率观测系统能够在有噪声干扰下较为准确地估计燃料电池电堆温度及其变化率,同时减小温度测量噪声对热稳定性的影响进而较好地控制电堆温度。Preferably, this embodiment builds a temperature dynamic description model, especially considering the relationship between the stack voltage and water content of the open-cathode fuel cell, accurately describes the dynamic characteristics of the stack temperature, and describes the measurable physical quantities in the model through the dynamic description of the stack temperature (including stack temperature and control input) time-delay information to design fuel cell stack thermal management controller, the use of time-delay information can eliminate system modeling uncertainty and eliminate known disturbances including ambient temperature and operating current Unknown disturbance, and the fuel cell thermal management controller combined with the fuel cell stack temperature and its rate of change observation system can more accurately estimate the fuel cell stack temperature and its rate of change under noise interference, while reducing the temperature measurement The effect of noise on thermal stability and thus better control of the stack temperature.
较佳的,本实施例一具体示例如下:以一个1000W的阴极开放式燃料电池为例,Preferably, a specific example of this embodiment is as follows: Take a 1000W cathode open fuel cell as an example,
阴极开放式燃料电池电堆是由多个燃料电池单体串联而成,因此燃料电池电堆电压Vst可以描述如下The open-cathode fuel cell stack is composed of multiple fuel cell cells connected in series, so the fuel cell stack voltage V st can be described as follows
Vst=ncellVcell=ncell(Enernst(Tst)-Vact(Tst,ist,sCCL)-Vohm(Tst,ist)-Vcon(ist));V st =n cell V cell =n cell (E nernst (T st )-V act (T st ,i st ,s CCL )-V ohm (T st ,i st )-V con (i st ));
其中,ncell是单体燃料电池数量,Vcell是单体燃料电池电压,Tst是电堆温度,ist是电堆电流,SCCL是阴极催化层含水量,Enernst、Vact、Vohm和Vcon分别是能斯特电压、活化极化电压、欧姆极化电压和浓度极化电压,采用以下公式描述Among them, n cell is the number of single fuel cells, V cell is the voltage of single fuel cells, T st is the stack temperature, ist is the stack current, S CCL is the water content of the cathode catalytic layer, E nernst , V act , V ohm and V con are the Nernst voltage, activation polarization voltage, ohmic polarization voltage and concentration polarization voltage respectively, described by the following formula
Vohm(Tst,ist)=ist(RM(ist,Tst)+RC);V ohm (T st ,i st )=i st (R M (i st ,T st )+R C );
Vcon(ist)=-Cln(1-ist/imax);V con (i st )=-Cln(1-i st /i max );
其中,PH2是氢气压强,PO2是氧气压强,R,a,n,C和F均为系统常数,RM和RC分别是电子和质子穿过膜时的阻抗,i0(Tst,SCCL)是交换电流密度,通过以下公式确定Among them, P H2 is the pressure of hydrogen, P O2 is the pressure of oxygen, R, a, n, C and F are system constants, R M and R C are the impedance when electrons and protons pass through the membrane respectively, i 0 (T st ,S CCL ) is the exchange current density, determined by
其中,R,a,n,和F均为系统常数,iref是内部电流密度,Tref是参考环境温度,Aopt和Sopt分别是最佳电极表面粗糙度和最佳液态水饱和度,ΔG是电池活化阻抗。Among them, R, a, n, and F are system constants, i ref is the internal current density, T ref is the reference ambient temperature, A opt and S opt are the optimum electrode surface roughness and optimum liquid water saturation, respectively, ΔG is the battery activation impedance.
通过能量传递方程可得出燃料电池电堆温度动态描述模型为Through the energy transfer equation, the fuel cell stack temperature dynamic description model can be obtained as
其中,mst和Cst分别是燃料电池电堆质量和比热容,和分别为电堆热传递速率、总产热速率、辐射散热速率和对流散热速率,采用以下公式描述Among them, m st and C st are fuel cell stack mass and specific heat capacity respectively, and are the stack heat transfer rate, total heat production rate, radiation heat dissipation rate and convective heat dissipation rate, described by the following formula
其中,Tamb为环境温度,MH2,rea、MO2,rea和MH2O,pro分别是氢气、氧气和水的摩尔质量,和分别是氢气、氧气和水的质量比生成焓,ΔhH2、ΔhO2和ΔhH2O分别是氢气、氧气和水的质量比焓,hnat和hfor分别是自然热对流系数和强制热对流系数,Ast、Anat和Afor分别是电堆面积、自然热对流面积和强制热对流面积,ρair是空气密度,a1、a2、b1和b2是实验确定的常数,ufan为散热风扇的控制电压。Wherein, T amb is the ambient temperature, M H2,rea , M O2,rea and M H2O,pro are the molar masses of hydrogen, oxygen and water respectively, and are the mass specific enthalpy of hydrogen, oxygen, and water, respectively, Δh H2 , Δh O2 , and Δh H2O are the mass specific enthalpy of hydrogen, oxygen, and water, respectively, h nat and h for are the coefficients of natural heat convection and forced heat convection, respectively, A st , A nat and A for are stack area, natural heat convection area and forced heat convection area respectively, ρ air is air density, a 1 , a 2 , b 1 and b 2 are constants determined by experiments, u fan is Cooling fan control voltage.
如图2所示,本实施例给出了燃料电池温度动态描述模型描述1000W阴极开放式燃料电池电堆电压、电堆温度和含水量结果图。As shown in FIG. 2 , this embodiment presents a result graph describing the stack voltage, stack temperature and water content of a 1000W cathode open-type fuel cell by a fuel cell temperature dynamic description model.
在实际状况下,燃料电池电流、电压以及外界温度等物理量存在干扰,为了更精确的描述燃料电池温度,将燃料电池温度动态描述模型写成如下形式In actual conditions, there is interference in physical quantities such as fuel cell current, voltage, and external temperature. In order to describe the fuel cell temperature more accurately, the fuel cell temperature dynamic description model is written as follows
其中in
f(Tst(t),t)=-5.971824×10-6IstTst-2.932364×10-6Tst 2-2.38557×10-3Tst f(T st (t),t)=-5.971824×10 -6 I st T st -2.932364×10 -6 T st 2 -2.38557×10 -3 T st
B(Tst(t),t)=(Tamb-Tst)/3137.4B(T st (t),t)=(T amb -T st )/3137.4
u(t)=64.92898ufan 2+81.48939ufan+3.9394u(t)=64.92898u fan 2 +81.48939u fan +3.9394
工作电流Ist和环境温度Tamb为温度控制系统的已知干扰量,d(t)为未知扰动。根据性能指标的要求选定参考模型为The operating current I st and the ambient temperature T amb are known disturbance quantities of the temperature control system, and d(t) is an unknown disturbance. According to the requirements of performance indicators, the selected reference model is
其中,M是大整数,r(t)是追踪变量,Tref(t)和Tm(t)分别是追踪温度和参考模型温度。求取控制作用的u(t)使系统状态跟踪参考模型状态的误差Wherein, M is a large integer, r(t) is a tracking variable, T ref (t) and T m (t) are tracking temperature and reference model temperature, respectively. Calculate the u(t) of the control action to make the system state track the error of the reference model state
e=Tm(t)-Tst(t);e=T m (t)-T st (t);
满足误差动态方程satisfy the error dynamic equation
为了简化控制器的设计,取K=0。将追踪温度和参考模型温度代入误差式中,并与误差动态方程比较,得出初始控制率u0(t)为In order to simplify the design of the controller, take K=0. Substituting the tracking temperature and reference model temperature into the error formula, and comparing with the error dynamic equation, the initial control rate u 0 (t) can be obtained as
u0(t)=B+(Tst(t),t)(-MTst(t)+MTref(t)-d(t))u 0 (t)=B + (T st (t),t)(-MT st (t)+MT ref (t)-d(t))
其中,B+(Tst(t),t)=3137.4/(Tamb-Tst)是B(Tst(t),t)的伪逆,需满足如下结构约束条件,才能获得满意的误差动态性能和状态跟踪性能Among them, B + (T st (t),t)=3137.4/(T amb -T st ) is the pseudo-inverse of B(T st (t),t), and the following structural constraints must be satisfied to obtain a satisfactory error Dynamic performance and state tracking performance
(I-B(Tst(t),t)B+(Tst(t),t))(-MTst(t)+MTref(t)-d(t))=0;(IB(T st (t),t)B + (T st (t),t))(-MT st (t)+MT ref (t)-d(t))=0;
假设对于足够小的时间L,系统的外部干扰变化不大,则可以用过去时刻t-L的信息来估计时刻t的外部干扰,得到基于时滞信息的外扰观测器为:Assuming that for a sufficiently small time L, the external disturbance of the system does not change much, the information of the past time t-L can be used to estimate the external disturbance at time t, and the external disturbance observer based on time-delay information is obtained as:
将外扰观测器代入初始控制率u0(t),得到控制器的控制率u1(t)为Substituting the external disturbance observer into the initial control rate u 0 (t), the control rate u 1 (t) of the controller is obtained as
由于在实际控制燃料电池温度过程中,温度传感器的反馈信息存在噪声,严重影响控制器的控制效果,故对控制器的控制率中的燃料电池温度Tst及其变化率进一步设计观测器如下In the process of actually controlling the temperature of the fuel cell, there is noise in the feedback information of the temperature sensor, which seriously affects the control effect of the controller. Therefore, the fuel cell temperature T st and its change rate in the control rate of the controller Further design the observer as follows
其中r(t)=Tref(t),和分为Tst和的观测值。in r(t)= Tref (t), and Divided into T st and observation value.
将Tst和的观测值代入控制器的控制率u1(t)中,得到观测后的最终控制率u(t)为Combine T st and The observed value of is substituted into the control rate u 1 (t) of the controller, and the final control rate u(t) obtained after observation is
u(t)=u(t-L)+B+(z1(t),t)(-Mz1(t)+MTref(t)-z2(t-L))u(t)=u(tL)+B + (z 1 (t),t)(-Mz 1 (t)+MT ref (t)-z 2 (tL))
以上控制器输出控制信息以PWM波的形式输出到PWM直流电机调速器,该调速器即能实现对风扇电机转速的调节,从而实现了对阴极开放式燃料电池温度的控制。The control information output by the above controller is output to the PWM DC motor governor in the form of PWM waves, and the governor can realize the adjustment of the fan motor speed, thereby realizing the control of the cathode open fuel cell temperature.
如图3所示,本实施例中给出了1000W阴极开放式燃料电池在温度测量噪音下固定追踪温度的控制结果图。As shown in FIG. 3 , in this embodiment, a graph of the control results of a 1000W open-cathode fuel cell under temperature measurement noise with constant tracking temperature is given.
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011513595.2A CN112652794B (en) | 2020-12-18 | 2020-12-18 | Cathode open type fuel cell thermal management system and method using time lag information |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011513595.2A CN112652794B (en) | 2020-12-18 | 2020-12-18 | Cathode open type fuel cell thermal management system and method using time lag information |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112652794A CN112652794A (en) | 2021-04-13 |
| CN112652794B true CN112652794B (en) | 2022-11-11 |
Family
ID=75358839
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011513595.2A Active CN112652794B (en) | 2020-12-18 | 2020-12-18 | Cathode open type fuel cell thermal management system and method using time lag information |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112652794B (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114325398B (en) * | 2021-11-08 | 2024-06-28 | 淮阴工学院 | A fault detection method for proton exchange membrane fuel cell system |
| CN114744258B (en) * | 2022-05-26 | 2023-05-09 | 电子科技大学 | A temperature control method for air-cooled fuel cells based on perturbation and observation |
| CN116130713B (en) * | 2023-01-19 | 2023-11-28 | 上海氢晨新能源科技有限公司 | A method for analyzing water content inside fuel cells |
| CN116335877A (en) * | 2023-04-27 | 2023-06-27 | 三一重能股份有限公司 | Wind generating set control method and device and wind generating set |
| CN116613354B (en) * | 2023-05-24 | 2025-07-04 | 扬州大学 | Design method of cathode controller of proton exchange membrane fuel cell |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111009674A (en) * | 2019-12-13 | 2020-04-14 | 湖南理工学院 | Proton exchange membrane fuel cell humidity control method based on active disturbance rejection control method |
| CN111029624A (en) * | 2019-12-12 | 2020-04-17 | 东风汽车集团有限公司 | System and method for online monitoring and recovery of fuel cell water status |
| CN111199122A (en) * | 2020-01-02 | 2020-05-26 | 西南交通大学 | Multiphysics-based fault diagnosis method for proton exchange membrane fuel cell flooding |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001035517A (en) * | 1999-07-15 | 2001-02-09 | Mitsubishi Kakoki Kaisha Ltd | Temperature control method for reforming device and temperature control device thereof |
| JP2003109629A (en) * | 2001-09-28 | 2003-04-11 | Matsushita Electric Ind Co Ltd | Method for producing gas diffusion layer, electrolyte membrane / electrode assembly using the same, and polymer electrolyte fuel cell |
| JP3979057B2 (en) * | 2001-10-16 | 2007-09-19 | 日産自動車株式会社 | Control device for fuel cell system |
| CN101165506A (en) * | 2006-10-17 | 2008-04-23 | 上海博能同科燃料电池系统有限公司 | Fuel battery test system based on network study control |
| CN100452512C (en) * | 2007-04-27 | 2009-01-14 | 新源动力股份有限公司 | Control method and control system for power output of fuel cell power generation system |
| CN206725732U (en) * | 2017-05-24 | 2017-12-08 | 重庆大学 | The long-range Monitoring and control system of fuel cell |
| CN110137543A (en) * | 2018-02-08 | 2019-08-16 | 向得夫 | A kind of test macro suitable for Wind-cooling type hydrogen fuel cell |
| CN109167085B (en) * | 2018-08-02 | 2025-01-24 | 浙江高成绿能科技有限公司 | A fuel cell hybrid power source energy flow control device |
| CN109065919A (en) * | 2018-08-15 | 2018-12-21 | 武汉理工大学 | It is a kind of can automatic detection performance proton exchange membrane fuel cell structure |
| CN109818016B (en) * | 2019-01-29 | 2021-09-28 | 福州大学 | Temperature self-regulating method for cathode open type fuel cell |
| CN110071308B (en) * | 2019-05-08 | 2022-03-11 | 福州大学 | Temperature prediction control system and method for cathode open type fuel cell |
| CN111082104B (en) * | 2019-12-31 | 2021-01-01 | 中国汽车技术研究中心有限公司 | Fuel cell stopping purging control method |
| CN111261903B (en) * | 2020-01-21 | 2021-03-26 | 同济大学 | Model-based proton exchange membrane fuel cell impedance online estimation method |
| CN112046338A (en) * | 2020-08-05 | 2020-12-08 | 长城汽车股份有限公司 | High-voltage power-down method of fuel cell vehicle and battery system |
-
2020
- 2020-12-18 CN CN202011513595.2A patent/CN112652794B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111029624A (en) * | 2019-12-12 | 2020-04-17 | 东风汽车集团有限公司 | System and method for online monitoring and recovery of fuel cell water status |
| CN111009674A (en) * | 2019-12-13 | 2020-04-14 | 湖南理工学院 | Proton exchange membrane fuel cell humidity control method based on active disturbance rejection control method |
| CN111199122A (en) * | 2020-01-02 | 2020-05-26 | 西南交通大学 | Multiphysics-based fault diagnosis method for proton exchange membrane fuel cell flooding |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112652794A (en) | 2021-04-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112652794B (en) | Cathode open type fuel cell thermal management system and method using time lag information | |
| CN109524693B (en) | Model Predictive Control Method for Fuel Cell Air Supply System | |
| CN110414157B (en) | Multi-target sliding mode control method for proton exchange membrane fuel cell system | |
| CN108091909B (en) | A fuel cell air flow control method based on optimal peroxygen ratio | |
| CN110335646B (en) | Control method of hydrogen excess ratio of vehicle fuel cell based on deep learning-predictive control | |
| CN109818016B (en) | Temperature self-regulating method for cathode open type fuel cell | |
| CN114156510B (en) | Fuel cell power tracking control method based on model predictive control | |
| CN111029625A (en) | A kind of solid oxide fuel cell output power and temperature control method | |
| CN112290056A (en) | Control method of cathode air supply system of hydrogen fuel cell | |
| KR20190063313A (en) | Apparatus for controlling fan of open cathode type fuel cell | |
| CN112713288B (en) | A fuel cell bubbling humidifier control system and control method | |
| CN113839065A (en) | A fuel cell cooling water circuit thermal compensation temperature control system and control method | |
| CN111403779B (en) | Model reference self-adaptive control method applied to fuel cell thermal management system | |
| CN115692797A (en) | Optimization method for water heat management system of vehicle fuel cell | |
| CN114488821A (en) | Method and system for prediction control of interval economic model of fuel cell oxygen ratio | |
| CN118983471A (en) | An intelligent automobile cold start control method | |
| CN117867587B (en) | Alkaline solution electrolysis bath variable-temperature operation control method for improving efficiency of hydrogen production system | |
| CN118782841A (en) | A temperature control method for proton exchange membrane fuel cell based on neural network | |
| CN110174909A (en) | Fuel battery negative pole stoichiometry digital control method based on screw air compressor | |
| CN110071308A (en) | A kind of open fuel battery temperature Predictive Control System of cathode and method | |
| CN104466213B (en) | Water-cooled PEMFC air excess coefficient control system and method | |
| CN115534764A (en) | Vehicle-mounted fuel cell system control method and system based on deep reinforcement learning | |
| CN116154238A (en) | Fuel cell air supply system control method based on fusion model prediction | |
| CN115441017A (en) | Water-cooled fuel cell stack low-temperature starting method based on optimal energy efficiency | |
| Zhang et al. | Research on Output Characteristics of the Proton Exchange Membrane Fuel Cell Based on Model Reference Adaptive Control |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |