CN112668751B - A method and device for establishing an optimal scheduling model for a unit - Google Patents
A method and device for establishing an optimal scheduling model for a unit Download PDFInfo
- Publication number
- CN112668751B CN112668751B CN202011344914.1A CN202011344914A CN112668751B CN 112668751 B CN112668751 B CN 112668751B CN 202011344914 A CN202011344914 A CN 202011344914A CN 112668751 B CN112668751 B CN 112668751B
- Authority
- CN
- China
- Prior art keywords
- interval
- sub
- unit
- output
- random energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000005457 optimization Methods 0.000 claims abstract description 87
- 238000002485 combustion reaction Methods 0.000 claims abstract description 6
- 238000009987 spinning Methods 0.000 claims description 63
- 239000000446 fuel Substances 0.000 claims description 24
- 230000009977 dual effect Effects 0.000 claims description 22
- 230000011218 segmentation Effects 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 14
- 238000004088 simulation Methods 0.000 description 7
- 230000009194 climbing Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明公开了一种机组优化调度模型的建立方法及装置,属于新能源机组的调度领域,建立方法包括:基于区间分段鲁棒优化方法,构建随机能源出力波动子区间;利用历史的随机能源场站的预测出力数据与实际出力数据,设置各子区间分段鲁棒优化参数;利用各子区间分段鲁棒优化参数,以火电机组燃烧成本及启停成本最小为目标函数,结合约束条件,建立机组优化调度模型。本发明在考虑子区间内随机能源波动情况的同时可以更好的平衡电力系统运行的鲁棒性和经济性。同时本发明采用历史样本概率信息进行子区间分段鲁棒优化参数设置的方法,该方法只需设置分段系数即可确定每个子区间中不确定变量个数的最大值和最小值,从而使优化结果更加客观。
The invention discloses a method and a device for establishing an optimal dispatch model of a unit, belonging to the field of dispatching of new energy units. The establishment method includes: constructing a random energy output fluctuation sub-interval based on an interval segmented robust optimization method; using historical random energy The predicted output data and actual output data of the station are used to set the segmented robust optimization parameters of each sub-interval; using the segmented robust optimization parameters of each sub-interval, the objective function is to minimize the combustion cost and start-stop cost of thermal power units, combined with constraints , to establish a unit optimal scheduling model. The present invention can better balance the robustness and economy of the operation of the power system while considering the random energy fluctuations in the sub-intervals. At the same time, the present invention uses the historical sample probability information to set the sub-interval segmented robust optimization parameters. The method only needs to set the segment coefficient to determine the maximum and minimum number of uncertain variables in each sub-interval, so as to make The optimization results are more objective.
Description
技术领域technical field
本发明属于新能源机组的调度领域,更具体地,涉及一种机组优化调度模型的建立方法及装置。The invention belongs to the field of dispatching of new energy generating units, and more particularly relates to a method and device for establishing an optimal dispatching model for generating units.
背景技术Background technique
目前,大规模新能源并网给电力系统运行与调度带来了较大的挑战,研究能够应对新能源发电不确定性的电力系统机组组合模型和方法,对新能源发电大规模并网以及保证电力系统安全稳定运行具有重要意义。对随机能源随机性的处理方法主要有两类,一类是基于随机能源功率预测的方法,另一类是基于含不确定变量优化问题的方法。At present, large-scale new energy grid connection has brought great challenges to the operation and dispatch of the power system. To study the power system unit combination model and method that can cope with the uncertainty of new energy power generation, the large-scale grid connection of new energy power generation and the guarantee The safe and stable operation of the power system is of great significance. There are two main methods for dealing with the randomness of stochastic energy, one is the method based on random energy power prediction, and the other is the method based on the optimization problem with uncertain variables.
随机规划是求解含不确定变量优化问题的方法。它认为不确定量的变化规律服从一定概率分布,并通过对约束或目标函数的概率化建模进行求解。常规的概率分布函数难以准确描述风速的分布特性。场景生成方法、场景削减方法的提出,为电力系统中随机能源等不确定性因素的描述和建模提供了新的思路。尽管基于场景的不确定性建模方法能够描述系统中的不确定性因素,但其受到计算规模的限制,难以阐述清楚削减后的场景对不确定性的表达程度。Stochastic programming is a method for solving optimization problems with uncertain variables. It considers that the change law of uncertain quantities obeys a certain probability distribution, and solves it by probabilistic modeling of constraints or objective functions. Conventional probability distribution functions are difficult to accurately describe the distribution characteristics of wind speed. The proposal of the scene generation method and the scene reduction method provides a new idea for the description and modeling of uncertain factors such as random energy in the power system. Although the scenario-based uncertainty modeling method can describe the uncertainty factors in the system, it is limited by the calculation scale, and it is difficult to clearly describe the degree of uncertainty expressed by the reduced scenarios.
鲁棒优化是求解含不确定变量优化问题的另一种成熟理论。求解电力系统含不确定变量优化问题的基本思想是给出一个包含不确定变量所有可能值的不确定集,然后找到一个对不确定集中的所有可能值都可行的解。目前现有的鲁棒优化在解决机组调度问题中仅能考虑随机能源波动区间极限情况,虽然可以采用不确定度参数Γi调节优化结果的鲁棒性,但是不确定度参数Γi的设置过于主观,无法有效的兼顾电力系统运行的鲁棒性与经济性。为此亟需一种能够同时考虑随机能源波动区间中极限情况与一般情况的鲁棒优化方法,从而更加客观的调度机组,兼顾电力系统运行的鲁棒性与经济性。Robust optimization is another mature theory for solving optimization problems with uncertain variables. The basic idea of solving optimization problems with uncertain variables in power systems is to give an uncertain set containing all possible values of uncertain variables, and then find a feasible solution for all possible values in the uncertain set. At present, the existing robust optimization can only consider the limit of the random energy fluctuation interval in solving the unit scheduling problem. Although the uncertainty parameter Γ i can be used to adjust the robustness of the optimization result, the setting of the uncertainty parameter Γ i is too high. Subjective, it cannot effectively take into account the robustness and economy of power system operation. Therefore, there is an urgent need for a robust optimization method that can simultaneously consider the limit and general conditions in the random energy fluctuation range, so as to more objectively dispatch units and take into account the robustness and economy of power system operation.
发明内容SUMMARY OF THE INVENTION
针对现有技术的缺陷,本发明的目的在于提供一种机组优化调度模型的建立方法及装置,旨在解决目前的考虑随机能源不确定性的机组优化调度中,仅能够考虑随机能源出力波动的极端情况,无法客观调节电力系统运行的鲁棒性与经济性的问题。Aiming at the defects of the prior art, the purpose of the present invention is to provide a method and device for establishing an optimal dispatching model for units, which aims to solve the problem that in the current optimal dispatching of units considering the uncertainty of random energy, only the output fluctuation of random energy can be considered. In extreme cases, it is impossible to objectively adjust the robustness and economy of power system operation.
为实现上述目的,本发明提供了一种机组优化调度模型的建立方法,包括以下步骤:In order to achieve the above purpose, the present invention provides a method for establishing an optimal scheduling model for a unit, comprising the following steps:
S1:基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;S1: Based on the interval segmented robust optimization method, the output fluctuation interval of random energy is represented by segments, and a sub-interval of random energy output fluctuation is constructed;
S2:利用随机能源场站的历史预测出力与历史实际出力数据,设置子区间分段鲁棒优化参数;S2: Use the historical predicted output and historical actual output data of random energy stations to set sub-interval robust optimization parameters;
S3:利用各子区间分段鲁棒优化参数以及对偶变量,建立线性化约束条件,并以火电机组燃烧成本与启停成本之和最小为目标函数,建立机组优化调度模型。S3: Use the segmented robust optimization parameters and dual variables of each sub-interval to establish linearization constraints, and take the minimum sum of the combustion cost and the start-stop cost of the thermal power unit as the objective function to establish the unit optimization scheduling model.
优选地,步骤S3具体包括:Preferably, step S3 specifically includes:
建立火电机组燃料成本与启停成本之和最小的目标函数,并利用子区间分段鲁棒优化参数,建立确定性约束条件;Establish an objective function that minimizes the sum of fuel cost and start-stop cost of thermal power units, and use sub-interval segmented robust optimization parameters to establish deterministic constraints;
采用分段线性化方法将目标函数进行线性化;Use piecewise linearization method to linearize the objective function;
通过引入对偶变量,将正旋转备用约束和负旋转备用约束转化线性化,完成机组优化调度模型。By introducing dual variables, the positive spinning reserve constraint and the negative spinning reserve constraint are transformed and linearized to complete the optimal scheduling model of the unit.
优选地,子区间分段鲁棒优化参数包括各子区间的偏差倍数的个数上限和下限。Preferably, the sub-interval segmented robust optimization parameters include an upper limit and a lower limit of the number of deviation multiples of each sub-interval.
优选地,获取子区间分段鲁棒优化参数的方法,包括以下步骤:Preferably, the method for obtaining sub-interval segmented robust optimization parameters includes the following steps:
将随机能源场站的历史实际出力与历史预测出力作比值,获取随机能源场站出力的历史偏差倍数;Compare the historical actual output of the random energy station with the historical predicted output to obtain the historical deviation multiple of the output of the random energy station;
比较子区间分段内各时段中偏差倍数的个数,筛选出各子区间对应的偏差倍数个数的最大值和最小值;Compare the number of deviation multiples in each time period in the sub-interval segment, and filter out the maximum and minimum values of the deviation multiples corresponding to each sub-interval;
将偏差倍数个数的最大值和最小值均除以时段,获取各子区间的偏差倍数的个数上限和下限。优选地,约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束、正旋转备用约束和负旋转备用约束。Divide the maximum and minimum number of deviation multiples by the time period to obtain the upper and lower limits of the number of deviation multiples for each sub-interval. Preferably, the constraints include power balance constraints, upper and lower limits of unit output, unit ramp constraints, unit start-stop logic constraints, positive spinning reserve constraints and negative spinning reserve constraints.
优选地,随机能源的出力波动区间分段表示为:Preferably, the output fluctuation interval of the random energy source is expressed as follows:
其中, 为第k个随机能源场站在第t时段的出力偏差,且满足条件: 为第k个随机能源场站在第t时段的实际出力;为第k个随机能源场站在第t时段的预测出力;M为区间分段鲁棒优化方法的分段系数;Q为m的编号集合;Nw为系统中随机能源场站的个数;T为总调度时段。in, is the output deviation of the kth random energy station in the tth period, and it satisfies the conditions: is the actual output of the kth random energy station in the tth period; Output for the prediction of the kth random energy station in the tth period; M is the segment coefficient of the interval segment robust optimization method; Q is the numbered set of m; N w is the number of random energy stations in the system; T is the total dispatch period.
优选地,线性化后的目标函数为:Preferably, the linearized objective function is:
δl,g,t≤Hl,g-Hl-1,g,l∈NLg, δ l,g,t ≤H l,g -H l-1,g , l∈NLg ,
δl,g,t≥0,l∈NLg, δ l,g,t ≥0 ,l∈NLg ,
其中,δl,g,t为附加变量,代表机组g在时段t的第l段的输出功率;NLg为机组g燃料成本特性曲线分段线性化的分段数;Ag为机组g在开机状态的最小燃料成本;Fl,g为机组g的燃料成本二次曲线在第l段的斜率;Hl,g为机组g的第l段的分段点;为机组g的出力下限;为机组g的出力上限;fG为机组燃料成本;NG系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态。Among them, δ l, g, t is an additional variable, representing the output power of unit g in the first section of time period t; NL g is the segment number of the piecewise linearization of the fuel cost characteristic curve of unit g; A g is the unit g in the The minimum fuel cost in the starting state; F l,g is the slope of the fuel cost quadratic curve of the unit g in the first section; H l,g is the segment point of the first section of the unit g; is the lower output limit of unit g; is the output upper limit of unit g; f G is the fuel cost of the unit; the set of thermal power units in the NG system; a g , b g , and c g are the secondary, primary and constant cost coefficients of thermal power units; is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment.
优选地,转化为确定性约束的正旋转备用约束为:Preferably, the positive spinning reserve constraint translated into a deterministic constraint is:
其中,为对偶变量;为t时段系统的正旋转备用容量需求;为时段t全系统的负荷需求;ug,t为第g台火电机组在第t时刻的运行状态;为第k个随机能源场站在第t时段的出力偏差;为第k个随机能源场站在第t时段的预测出力;为机组g的出力上限;和分别为偏差倍数在各子区间分段的个数上限和下限。in, is a dual variable; is the positive spinning reserve capacity requirement of the system in period t; is the load demand of the whole system in the period t; u g,t is the operating state of the gth thermal power unit at the tth time; is the output deviation of the kth random energy station in the tth period; Output for the prediction of the kth random energy station in the tth period; is the output upper limit of unit g; and are the upper and lower limits of the number of segments of the deviation multiple in each sub-interval, respectively.
基于上述提供的机组优化调度模型的建立方法,本发明提供了相应的机组优化调度模型的建立装置,包括:顺次连接的子区间构建模块、参数设置模块和模型建立模块;Based on the above-mentioned method for establishing an optimal dispatching model for a unit, the present invention provides a corresponding device for establishing an optimal dispatching model for a unit, including: a sub-interval construction module, a parameter setting module and a model construction module connected in sequence;
子区间构建模块用于基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;The sub-interval building module is used to represent the output fluctuation interval of random energy in segments based on the interval segment robust optimization method, and construct a random energy output fluctuation sub-interval;
参数设置模块用于利用随机能源场站的历史预测出力数据与随机能源场站的历史实际出力数据,设置各子区间分段鲁棒优化参数;The parameter setting module is used to set the segmented robust optimization parameters of each sub-interval by using the historical predicted output data of the random energy station and the historical actual output data of the random energy station;
模型建立模块用于利用各子区间分段鲁棒优化参数以及对偶变量,建立线性化约束条件,并以火电机组燃烧成本与启停成本之和最小为目标函数,建立机组优化调度模型。The model building module is used to establish the linearization constraints by using the segmented robust optimization parameters and dual variables of each sub-interval, and establish the optimal scheduling model of the unit with the minimum sum of the combustion cost and the start-stop cost of the thermal power unit as the objective function.
优选地,模型建立模块包括目标函数建立单元、约束条件处理器、线性化处理器和转化器;目标函数建立单元与线性化处理器连接;转化器与约束条件处理器连接;Preferably, the model establishment module includes an objective function establishment unit, a constraint condition processor, a linearization processor and a converter; the objective function establishment unit is connected with the linearization processor; the converter is connected with the constraint condition processor;
目标函数建立模块用于建立火电机组燃料成本与启停成本之和最小的目标函数;The objective function establishment module is used to establish the objective function that minimizes the sum of the fuel cost and the start-stop cost of the thermal power unit;
约束条件处理器用于利用各子区间分段鲁棒优化参数,建立确定性约束条件;The constraint condition processor is used to use each sub-interval segmented robust optimization parameters to establish deterministic constraints;
线性化处理器用于采用分段线性化方法将目标函数进行线性化;The linearization processor is used to linearize the objective function using a piecewise linearization method;
转化器用于通过引入对偶变量,将正旋转备用约束和负旋转备用约束线性化,建立机组优化调度模型。The converter is used to linearize the positive spinning reserve constraint and the negative spinning reserve constraint by introducing dual variables to establish the optimal scheduling model of the unit.
优选地,子区间分段鲁棒优化参数包括各子区间的偏差倍数的个数上限和下限。Preferably, the sub-interval segmented robust optimization parameters include an upper limit and a lower limit of the number of deviation multiples of each sub-interval.
优选地,约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束、正旋转备用约束和负旋转备用约束。Preferably, the constraints include power balance constraints, upper and lower limits of unit output, unit ramp constraints, unit start-stop logic constraints, positive spinning reserve constraints and negative spinning reserve constraints.
优选地,随机能源的出力波动区间分段表示为:Preferably, the output fluctuation interval of the random energy source is expressed as follows:
其中, 为第k个随机能源场站在第t时段的出力偏差,且满足条件: 为第k个随机能源场站在第t时段的实际出力;为第k个随机能源场站在第t时段的预测出力; in, is the output deviation of the kth random energy station in the tth period, and it satisfies the conditions: is the actual output of the kth random energy station in the tth period; Output for the prediction of the kth random energy station in the tth period;
优选地,线性化后的目标函数为:Preferably, the linearized objective function is:
δl,g,t≤Hl,g-Hl-1,g,l∈NLg, δ l,g,t ≤H l,g -H l-1,g , l∈NLg ,
δl,g,t≥0,l∈NLg, δ l,g,t ≥0 ,l∈NLg ,
其中,δl,g,t为附加变量,代表机组g在时段t的第l段的输出功率;NLg为机组g燃料成本特性曲线分段线性化的分段数;Ag为机组g在开机状态的最小燃料成本;Fl,g为机组g的燃料成本二次曲线在第l段的斜率;Hl,g为机组g的第l段的分段点;为机组g的出力下限;为机组g的出力上限;fG为机组燃料成本;NG系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态。Among them, δ l, g, t is an additional variable, representing the output power of unit g in the first section of time period t; NL g is the segment number of the piecewise linearization of the fuel cost characteristic curve of unit g; A g is the unit g in the The minimum fuel cost in the starting state; F l,g is the slope of the fuel cost quadratic curve of the unit g in the first section; H l,g is the segment point of the first section of the unit g; is the lower output limit of unit g; is the output upper limit of unit g; f G is the fuel cost of the unit; the set of thermal power units in the NG system; a g , b g , and c g are the secondary, primary and constant cost coefficients of thermal power units; is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment.
优选地,转化为确定性约束的正旋转备用约束为:Preferably, the positive spinning reserve constraint translated into a deterministic constraint is:
其中,为对偶变量;为t时段系统的正旋转备用容量需求;为时段t全系统的负荷需求;ug,t为第g台火电机组在第t时刻的运行状态;为第k个随机能源场站在第t时段的出力偏差;为第k个随机能源场站在第t时段的预测出力;为机组g的出力上限;和分别为偏差倍数在各子区间分段的个数上限和下限。in, is a dual variable; is the positive spinning reserve capacity requirement of the system in period t; is the load demand of the whole system in the period t; u g,t is the operating state of the gth thermal power unit at the tth time; is the output deviation of the kth random energy station in the tth period; Output for the prediction of the kth random energy station in the tth period; is the output upper limit of unit g; and are the upper and lower limits of the number of segments of the deviation multiple in each sub-interval, respectively.
本发明公开的机组优化调度模型的建立方法可存储在计算机可读存储介质中,计算机程序被处理器执行时可实现本发明提供的机组优化调度模型的建立方法。The method for establishing an optimal scheduling model of a unit disclosed in the present invention can be stored in a computer-readable storage medium, and when a computer program is executed by a processor, the method for establishing an optimal scheduling model for a unit provided by the present invention can be implemented.
通过本发明所构思的以上技术方案,与现有技术相比,能够取得以下有益效果:Through the above technical solutions conceived by the present invention, compared with the prior art, the following beneficial effects can be achieved:
本发明提供了机组优化调度模型的建立方法,该方法基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;同时利用历史的随机能源场站的预测出力与实际出力,设置子区间分段鲁棒优化参数,利用各子区间分段鲁棒优化参数,建立基于随机能源场站出力波动子区间的正旋转备用与负旋转备用约束,该正旋转备用约束与负旋转备用约束中采用随机能源场站出力波动子区间替代随机能源场站出力,实现了不确定性的旋转备用约束转化为确定性的旋转备用约束。此外,基于对偶变换引入对偶变量,将确定性的旋转备用约束中的非线性部分转化为线性部分,实现了具有非线性部分的确定性旋转备用约束向确定性线性旋转备用约束的转化。相比于现有的不确定性旋转备用约束,确定性线性旋转备用约束可以避免旋转备用过量而引起的火电机组燃料成本浪费,有效提高系统运行经济性;此外,确定性线性旋转备用约束可以避免旋转备用不足而引起的系统失负荷及弃风光,有效的提升系统运行的鲁棒性。因此本发明在考虑子区间内随机能源波动情况的同时可以更好的平衡电力系统运行的鲁棒性和经济性。The invention provides a method for establishing an optimal dispatching model of a unit. The method is based on an interval segmented robust optimization method. The output fluctuation interval of random energy is represented in segments to construct a random energy output fluctuation sub-interval; at the same time, the historical random energy field is used. According to the predicted output and actual output of the station, set the sub-interval robust optimization parameters, and use the sub-interval sub-interval robust optimization parameters to establish positive spinning reserve and negative spinning reserve constraints based on the sub-intervals of random energy station output fluctuations. In the positive spinning reserve constraint and the negative spinning reserve constraint, the random energy station output fluctuation sub-interval is used to replace the random energy station output, which realizes the transformation of the uncertain spinning reserve constraint into the deterministic spinning reserve constraint. In addition, the dual variable is introduced based on the dual transformation, and the nonlinear part of the deterministic spinning reserve constraint is converted into a linear part, which realizes the transformation from the deterministic spinning reserve constraint with nonlinear part to the deterministic linear spinning reserve constraint. Compared with the existing uncertain spinning reserve constraint, the deterministic linear spinning reserve constraint can avoid the waste of fuel cost of thermal power units caused by excessive spinning reserve, and effectively improve the operating economy of the system; in addition, the deterministic linear spinning reserve constraint can avoid System load loss and abandoned scenery caused by insufficient spinning reserve effectively improve the robustness of system operation. Therefore, the present invention can better balance the robustness and economy of the operation of the power system while considering the random energy fluctuations in the sub-intervals.
本发明基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,同时涵盖了随机能源波动的极端情况与一般情况,弥补了极限鲁棒优化与Seng-CheolKang鲁棒优化仅能考虑随机能源的极端波动情况的不足。Based on the interval segmented robust optimization method, the invention expresses the output fluctuation interval of random energy in segments, covers the extreme and general situations of random energy fluctuations, and makes up for the limit robust optimization and Seng-CheolKang robust optimization only. The insufficiency of being able to account for extreme fluctuations in stochastic energy.
本发明采用历史样本概率信息进行子区间分段鲁棒优化参数设置的方法,该方法只需设置分段系数即可确定每个子区间中不确定变量个数的最大值和最小值,避免了传统的区间分段鲁棒优化需要设置太多参数的缺点,并且使优化结果更加客观。The present invention adopts the historical sample probability information for sub-interval segment robust optimization parameter setting method, the method only needs to set segment coefficients to determine the maximum and minimum number of uncertain variables in each sub-interval, avoiding the traditional The interval piecewise robust optimization has the disadvantage that too many parameters need to be set, and makes the optimization results more objective.
附图说明Description of drawings
图1是本发明提供的机组优化调度模型的建立方法流程图;Fig. 1 is the flow chart of the establishment method of the unit optimization scheduling model provided by the present invention;
图2是实施例提供的方案一中SCK-RO与MBU-RO的机组出力对比示意图;Fig. 2 is the schematic diagram of the unit output comparison of SCK-RO and MBU-RO in the scheme one provided by the embodiment;
图3是实施例提供的方案一中SCK-RO与MBU-RO的系统旋转备用示意图;Fig. 3 is the schematic diagram of the system rotation standby of SCK-RO and MBU-RO in scheme one provided by the embodiment;
图4是实施例提供的方案一中CRO、SCK-RO与MBU-RO的系统运行成本对比示意图;4 is a schematic diagram showing the comparison of system operating costs of CRO, SCK-RO and MBU-RO in scheme one provided by the embodiment;
图5(a)是实施例提供的方案一中CRO、SCK-RO与MBU-RO的平均弃风量对比图;Fig. 5 (a) is the average abandoned air volume comparison diagram of CRO, SCK-RO and MBU-RO in the scheme one provided by the embodiment;
图5(b)是实施例提供的方案一中CRO、SCK-RO与MBU-RO的平均弃风次数对比图;Fig. 5(b) is a comparison diagram of the average number of abandoned winds of CRO, SCK-RO and MBU-RO in the scheme one provided by the embodiment;
图5(c)是实施例提供的方案一中CRO、SCK-RO与MBU-RO的平均调节量对比图;Fig. 5 (c) is the average adjustment amount comparison diagram of CRO, SCK-RO and MBU-RO in the scheme one provided by the embodiment;
图6是实施例提供的方案二中SCK-RO与MBU-RO的系统运行成本对比示意图;Fig. 6 is the system operating cost comparison schematic diagram of SCK-RO and MBU-RO in
图7(a)实施例提供的方案二中CRO、SCK-RO与MBU-RO的平均弃风量对比图;Figure 7 (a) the comparison diagram of the average abandoned air volume of CRO, SCK-RO and MBU-RO in the second scheme provided by the embodiment;
图7(b)是实施例提供的方案二中CRO、SCK-RO与MBU-RO的平均弃风次数对比图;Fig. 7(b) is a comparison chart of the average number of wind abandonment times of CRO, SCK-RO and MBU-RO in
图7(c)是实施例提供的方案二中CRO、SCK-RO与MBU-RO的平均调节量对比图。Figure 7(c) is a comparison diagram of the average adjustment amount of CRO, SCK-RO and MBU-RO in the second solution provided by the embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
如图1所示,本发明提出了一种机组优化调度模型的建立方法,包括以下步骤:As shown in Figure 1, the present invention proposes a method for establishing an optimal scheduling model of a unit, including the following steps:
S1:基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;S1: Based on the interval segmented robust optimization method, the output fluctuation interval of random energy is represented by segments, and a sub-interval of random energy output fluctuation is constructed;
具体为:Specifically:
随机能源出力可以表示为:The random energy output can be expressed as:
其中,Nw为随机能源场站的个数;T为总调度时段;为第k个随机能源场站在第t时段的实际出力;为第k个随机能源场站在第t时段的预测出力;为相对于的偏差倍数;d-M为负偏差百分比;dM为正偏差百分比;的区间形式表示如下:Among them, N w is the number of random energy stations; T is the total dispatch period; is the actual output of the kth random energy station in the tth period; Output for the prediction of the kth random energy station in the tth period; for relative to the deviation multiple; d- M is the negative deviation percentage; d M is the positive deviation percentage; The interval form of is as follows:
其中,[d-M,dM]称为相对于的偏差百分比区间;基于区间分段鲁棒优化方法,[d-M,dM]可表示为如下多个子区间形式:where [d - M ,d M ] is called relative to The deviation percentage interval of ; based on the interval piecewise robust optimization method, [d -M ,d M ] can be expressed as the following multiple sub-interval forms:
d-M<…<dm-1<dm<…<dM d -M <…<d m-1 <d m <…<d M
其中,M为区间分段鲁棒优化方法的分段系数,m为每个子区间的编号,并且有m∈{Q|-M,…,-1,0,1,…,M},Q为m的编号集合;Among them, M is the segment coefficient of the interval piecewise robust optimization method, m is the number of each subinterval, and there is m∈{Q|-M,…,-1,0,1,…,M}, and Q is the numbered set of m;
当m=-M时,子区间为单独一个数d-M;当m∈{-M+1,…,-1,0,1,…,M}时,子区间为(dm-1,dm];特别地,当m=0时,d0=0,即对于未发生偏差;基于以上,的子区间形式可以表示为:When m=-M, the subinterval is a single number d- M ; when m∈{-M+1,...,-1,0,1,...,M}, the subinterval is (d m-1 , d m ]; in particular, when m=0, d 0 =0, i.e. for No deviation occurred; based on the above, The subinterval form of can be expressed as:
其中,当时,相对于未发生偏差;当时,相对于发生偏差,因此,可简化表示为:in, when hour, relative to No deviation occurs; when hour, relative to deviation occurs, therefore, It can be simplified as:
其中, 为第k个随机能源场站在第t时段的出力偏差上限,且满足下面的条件:in, is the upper limit of the output deviation of the kth random energy station in the tth period, and meets the following conditions:
以上完成了随机能源的出力波动区间分段,构造了随机能源出力的子区间;The above completes the output fluctuation interval segmentation of random energy, and constructs the sub-interval of random energy output;
S2:设置子区间分段鲁棒优化参数:S2: Set sub-interval segment robust optimization parameters:
分段系数M将[d-M,dM]分为2M+1个子区间,定义lm代表属于子区间(1+dm-1,1+dm]的偏差倍数的个数下限,定义um代表属于子区间(1+dm-1,1+dm]的偏差倍数的个数上限,并且有0<lm<um<NWT;基于的历史数据即可确定每个子区间(1+dm-1,1+dm]的lm与um值;假设是的历史样本,是的历史样本,d是样本天的编号,D是样本天的集合,确定lm与um的具体步骤如下:The segmentation coefficient M divides [d - M , d M ] into 2M+1 sub-intervals, and defines lm to represent The lower limit of the number of deviation multiples belonging to the sub-interval (1+d m-1 , 1+d m ], which defines um to represent The upper limit of the number of deviation multiples belonging to the subinterval (1+d m-1 , 1+d m ], and 0<l m <u m <N W T; based on historical data of The lm and um values of each subinterval (1+d m-1 , 1+ d m ] can be determined; suppose Yes historical samples, Yes The historical samples of , d is the number of the sample day, D is the set of sample days, the specific steps to determine lm and um are as follows:
S2.1:基于与的值采用下列计算的历史值 S2.1: Based on and The value of is calculated using the following historical value of
S2.2:计算每个子区间(1+dm-1,1+dm]各时段中的个数Nd,m,并筛选出各子区间对应的偏差倍数个数的最大值和最小值 和代表了每个子区间(1+dm -1,1+dm]在时段中的个数上限与个数下限;一般时段以一天作为一个时段;S2.2: Calculate each time period in each sub-interval (1+d m-1 ,1+d m ] N d,m , and filter out the maximum number of deviation multiples corresponding to each sub-interval and minimum and represents each subinterval (1+d m -1 ,1+d m ] in the period The upper limit and lower limit of the number of ; the general period takes one day as a period;
S2.3:计算每个子区间(1+dm-1,1+dm]在时段内的最大发生概率与最小发生概率若时段以一天为基准,则T=24h;S2.3: Calculate the maximum probability of occurrence of each sub-interval (1+d m-1 , 1+d m ] within the time period with minimum probability of occurrence If the time period is based on one day, then T=24h;
S2.4:计算每个子区间(1+dm-1,1+dm]的偏差倍数的lm与um值;S2.4: Calculate the lm and um values of the deviation multiples of each sub-interval (1+d m-1 , 1+ d m ];
从上述步骤可知,基于随机能源的历史数据,完成了区间分段鲁棒优化的参数设置,可以直观地发现,仅需设置分段系数M即可确定lm与um的值;此外,lm与um由随机能源的历史概率信息确定,使得鲁棒优化的结果更加客观;It can be seen from the above steps that based on the historical data of random energy, the parameter setting of interval segment robust optimization is completed. It can be intuitively found that the values of lm and um can be determined only by setting the segment coefficient M ; m and um are determined by the historical probability information of random energy, which makes the result of robust optimization more objective;
S3:基于区间分段鲁棒优化方法的随机能源出力不确定性,建立区间分段鲁棒模型;S3: Based on the uncertainty of stochastic energy output based on the interval piecewise robust optimization method, an interval piecewise robust model is established;
基于区间分段鲁棒优化方法的随机能源出力不确定性,建立的机组优化模型的目标函数是以火电机组燃料成本及启停成本最小为目标;目标函数的约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束以及正负旋转备用约束;Based on the uncertainty of stochastic energy output of the interval piecewise robust optimization method, the objective function of the established unit optimization model is to minimize the fuel cost and start-stop cost of thermal power units; the constraints of the objective function include power balance constraints, unit output Upper and lower limit constraints, unit climbing constraints, unit start-stop logic constraints, and positive and negative rotation reserve constraints;
目标函数如下:The objective function is as follows:
fUC=min(fG+fC)f UC =min(f G +f C )
上述目标函数中,fUC为系统运行总成本;fG为机组燃料成本;fC为机组启停成本;系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态;为第g台火电机组的总开机次数;第g台火电机组在第t时刻开机成本;第g台火电机组的总关机次数;第g台火电机组在第t时刻关机成本;In the above objective function, f UC is the total cost of system operation; f G is the fuel cost of the unit; f C is the start and stop cost of the unit; Set of thermal power units in the system; a g , b g , c g are the secondary, primary and constant cost coefficients of thermal power units; is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment; is the total startup times of the gth thermal power unit; The startup cost of the gth thermal power unit at the tth moment; The total shutdown times of the gth thermal power unit; The shutdown cost of the gth thermal power unit at the tth time;
为了降低机组优化调度模型的求解难度,采用分段线性化方法将目标函数进行线性化,由二次目标函数降为一次目标函数;In order to reduce the difficulty of solving the optimal scheduling model of the unit, the piecewise linearization method is used to linearize the objective function, and the objective function is reduced from the quadratic objective function to the primary objective function;
δl,g,t≤Hl,g-Hl-1,g,l∈NLg, δ l,g,t ≤H l,g -H l-1,g , l∈NLg ,
δl,g,t≥0,l∈NLg, δ l,g,t ≥0 ,l∈NLg ,
其中,δl,g,t为附加变量,代表机组g在时段t的第l段的输出功率;NLg为机组g燃料成本特性曲线分段线性化的分段数;Ag为机组g在开机状态下的最小燃料成本;Fl,g为机组g的燃料成本二次曲线在第l段的斜率;Hl,g为机组g的第l段的分段点;为机组g的出力下限;为机组g的出力上限;fG为机组燃料成本;NG系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态。Among them, δ l, g, t is an additional variable, representing the output power of unit g in the first section of time period t; NL g is the segment number of the piecewise linearization of the fuel cost characteristic curve of unit g; A g is the unit g in the The minimum fuel cost in the power-on state; F l,g is the slope of the fuel cost quadratic curve of the unit g in the first section; H l,g is the segment point of the first section of the unit g; is the lower output limit of unit g; is the output upper limit of unit g; f G is the fuel cost of the unit; the set of thermal power units in the NG system; a g , b g , and c g are the secondary, primary and constant cost coefficients of thermal power units; is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment.
约束条件:Restrictions:
功率平衡约束:Power Balance Constraints:
其中,为时段t全系统的负荷需求;in, is the load demand of the whole system in period t;
功率平衡约束要求在时段t,系统中火电机组的总出力与随机能源的总出力之和等于系统负荷需求;The power balance constraint requires that in the time period t, the sum of the total output of thermal power units and the total output of random energy in the system is equal to the system load demand;
机组出力上下限约束:Unit output upper and lower limit constraints:
其中,为机组g的出力下限;为机组g的出力上限;该约束条件要求火电机组的出力满足机组出力上下限;in, is the lower output limit of unit g; is the output upper limit of unit g; this constraint requires that the output of the thermal power unit meets the upper and lower output limits of the unit;
机组爬坡约束:Crew climbing constraints:
其中,为火电机组g的向下爬坡功率;为火电机组g的向上爬坡功率;机组爬坡约束的物理含义为:机组的在前后时段的功率变化量满足机组自身的爬坡功率;in, is the downhill power of the thermal power unit g; is the upward climbing power of the thermal power unit g; the physical meaning of the unit's climbing constraint is: the power change of the unit in the front and rear periods meets the unit's own climbing power;
机组启停逻辑约束:Unit start-stop logic constraints:
其中,为机组g的连续运行时间;为机组g的最小连续运行时间;为机组g的连续停机时间;为机组g的最小连续停机时间;机组启停逻辑约束的物理含义为:在时,机组状态必开机;在时,机组状态必关机;除此之外的情况不强制限制机组状态;in, is the continuous running time of unit g; is the minimum continuous running time of unit g; is the continuous shutdown time of unit g; is the minimum continuous shutdown time of unit g; the physical meaning of the unit start-stop logic constraint is: When the unit is in state, it must be turned on; when When the genset status is turned off; otherwise, the genset status is not forcibly limited;
正旋转备用约束(不确定约束):Positive Spinning Alternate Constraints (Indeterminate Constraints):
其中,为t时段系统的正旋转备用容量需求;正旋转备用约束中含有随机能源出力正旋转备用约束表征了随机能源的不确定性,其物理含义是所有在线火电机组的出力上限与随机能源出力之和大于负荷与正旋转备用容量需求之和;in, is the positive spinning reserve capacity requirement of the system in period t; the positive spinning reserve constraint includes random energy output The positive spinning reserve constraint represents the uncertainty of random energy, and its physical meaning is that the sum of the output upper limit of all online thermal power units and the random energy output is greater than the sum of the load and the positive spinning reserve capacity demand;
负旋转备用约束(不确定约束):Negative Spinning Spare Constraint (Indeterminate Constraint):
其中,为t时段系统的负旋转备用容量需求;负旋转备用约束中含有随机能源出力因此负旋转备用约束表征了随机能源的不确定性;负旋转备用约束的物理含义为:所有在线火电机组的出力下限与随机能源出力之和小于负荷与负旋转备用容量需求之差;in, is the negative spinning reserve capacity requirement of the system in period t; the negative spinning reserve constraint contains random energy output Therefore, the negative spinning reserve constraint represents the uncertainty of random energy; the physical meaning of the negative spinning reserve constraint is: the sum of the output lower limit of all online thermal power units and the output of random energy is less than the difference between the load and the negative spinning reserve capacity demand;
S4:将含随机能源的正旋转备用约束及负旋转备用约束转化为基于区间分段鲁棒优化方法的确定性约束;S4: Convert the positive spinning reserve constraints and negative spinning reserve constraints with random energy into deterministic constraints based on the interval piecewise robust optimization method;
以正旋转备用约束为例,将 带入得到如下公式:Taking the positive spinning reserve constraint as an example, set the bring in The following formula is obtained:
区间分段鲁棒优化的前提是随机能源的最恶劣波动情况下也能保证上述公式,故在取最小值时上述公式仍成立,从而将等价为:The premise of interval segmented robust optimization is that the above formula can also be guaranteed under the worst fluctuations of random energy, so in The above formula still holds when the minimum value is taken, so that the Equivalent to:
其中,DEVt为随机能源波动是的最大总偏差;满足公式(1)的约束条件可实现每个子区间中随机能源场站的个数满足该区间随机能源场站个数上下限;Among them, DEV t is the maximum total deviation of random energy fluctuations; satisfying the constraints of formula (1) can realize each sub-interval The number of random energy stations in the interval meets the upper and lower limits of the number of random energy stations in the interval;
引入分别代表公式(1)~(3)的对偶变量,获取正旋转备用约束的线性化形式:introduce Represent the dual variables of formulas (1) to (3) respectively, and obtain the linearized form of the positive rotation reserve constraint:
相同的原理,引入对偶变量获取负旋转备用约束的线性化形式:The same principle, introducing dual variables Obtain the linearized form of the negative spinning reserve constraint:
将正负旋转备用约束线性化后,获取区间分段鲁棒模型;After linearizing the positive and negative rotation reserve constraints, an interval piecewise robust model is obtained;
S5:求解机组优化调度模型,用于机组调度。S5: Solve the unit optimal scheduling model for unit scheduling.
基于上述提供的机组优化调度模型的建立方法,本发明提供了相应的机组优化调度模型的建立装置,包括:顺次连接的子区间构建模块、参数设置模块和模型建立模块;Based on the above-mentioned method for establishing an optimal dispatching model for a unit, the present invention provides a corresponding device for establishing an optimal dispatching model for a unit, including: a sub-interval construction module, a parameter setting module and a model construction module connected in sequence;
子区间构建模块用于基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;The sub-interval building module is used to represent the output fluctuation interval of random energy in segments based on the interval segment robust optimization method, and construct a random energy output fluctuation sub-interval;
参数设置模块用于利用随机能源场站的历史预测出力数据与随机能源场站的历史实际出力数据,设置各子区间分段鲁棒优化参数;The parameter setting module is used to set the segmented robust optimization parameters of each sub-interval by using the historical predicted output data of the random energy station and the historical actual output data of the random energy station;
模型建立模块用于利用各子区间分段鲁棒优化参数以及对偶变量,建立线性化约束条件,并以火电机组燃烧成本及启停成本最小为目标函数,建立机组优化调度模型。The model building module is used to establish the linearization constraints by using the segmented robust optimization parameters and dual variables of each sub-interval, and establish the optimal scheduling model of the unit with the minimum combustion cost and start-stop cost of the thermal power unit as the objective function.
优选地,模型建立模块包括目标函数建立单元、约束条件处理器、线性化处理器和转化器;目标函数建立单元与线性化处理器连接;转化器与约束条件处理器连接;Preferably, the model establishment module includes an objective function establishment unit, a constraint condition processor, a linearization processor and a converter; the objective function establishment unit is connected with the linearization processor; the converter is connected with the constraint condition processor;
目标函数建立模块用于建立火电机组燃料成本与启停成本之和最小的目标函数;The objective function establishment module is used to establish the objective function that minimizes the sum of the fuel cost and the start-stop cost of the thermal power unit;
约束条件处理器用于利用各子区间分段鲁棒优化参数,建立确定性约束条件;The constraint condition processor is used to use each sub-interval segmented robust optimization parameters to establish deterministic constraints;
线性化处理器用于采用分段线性化方法将目标函数进行线性化;The linearization processor is used to linearize the objective function using a piecewise linearization method;
转化器用于通过引入对偶变量,将正旋转备用约束和负旋转备用约束线性化,建立机组优化调度模型。The converter is used to linearize the positive spinning reserve constraint and the negative spinning reserve constraint by introducing dual variables to establish the optimal scheduling model of the unit.
优选地,子区间分段鲁棒优化参数包括各子区间的偏差倍数的个数上限和下限。优选地,约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束、正旋转备用约束和负旋转备用约束。Preferably, the sub-interval segmented robust optimization parameters include an upper limit and a lower limit of the number of deviation multiples of each sub-interval. Preferably, the constraints include power balance constraints, upper and lower limits of unit output, unit ramp constraints, unit start-stop logic constraints, positive spinning reserve constraints and negative spinning reserve constraints.
优选地,随机能源的出力波动区间分段表示为:Preferably, the output fluctuation interval of the random energy source is expressed as follows:
其中, 为第k个随机能源场站在第t时段的出力偏差,且满足条件: 为第k个随机能源场站在第t时段的实际出力;为第k个随机能源场站在第t时段的预测出力; in, is the output deviation of the kth random energy station in the tth period, and it satisfies the conditions: is the actual output of the kth random energy station in the tth period; Output for the prediction of the kth random energy station in the tth period;
优选地,线性化后的目标函数为:Preferably, the linearized objective function is:
δl,g,t≤Hl,g-Hl-1,g,l∈NLg, δ l,g,t ≤H l,g -H l-1,g , l∈NLg ,
δl,g,t≥0,l∈NLg, δ l,g,t ≥0 ,l∈NLg ,
其中,δl,g,t为附加变量,代表机组g在时段t的第l段的输出功率;NLg为机组g燃料成本特性曲线分段线性化的分段数;Ag为机组g在开机状态下的最小燃料成本;Fl,g为机组g的燃料成本二次曲线在第l段的斜率;Hl,g为机组g的第l段的分段点;为机组g的出力下限;为机组g的出力上限;fG为机组燃料成本;NG系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态。Among them, δ l, g, t is an additional variable, representing the output power of unit g in the first section of time period t; NL g is the segment number of the piecewise linearization of the fuel cost characteristic curve of unit g; A g is the unit g in the The minimum fuel cost in the power-on state; F l,g is the slope of the fuel cost quadratic curve of the unit g in the first section; H l,g is the segment point of the first section of the unit g; is the lower output limit of unit g; is the output upper limit of unit g; f G is the fuel cost of the unit; the set of thermal power units in the NG system; a g , b g , and c g are the secondary, primary and constant cost coefficients of thermal power units; is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment.
优选地,转化为确定性约束的正旋转备用约束为:Preferably, the positive spinning reserve constraint translated into a deterministic constraint is:
其中,为对偶变量;为t时段系统的正旋转备用容量需求;为时段t全系统的负荷需求;ug,t为第g台火电机组在第t时刻的运行状态;为第k个随机能源场站在第t时段的出力偏差;为第k个随机能源场站在第t时段的预测出力;为机组g的出力上限;和分别为偏差倍数在各子区间分段的个数上限和下限。in, is a dual variable; is the positive spinning reserve capacity requirement of the system in period t; is the load demand of the whole system in the period t; u g,t is the operating state of the gth thermal power unit at the tth time; is the output deviation of the kth random energy station in the tth period; Output for the prediction of the kth random energy station in the tth period; is the output upper limit of unit g; and are the upper and lower limits of the number of segments of the deviation multiple in each sub-interval, respectively.
本发明公开的机组优化调度模型的建立方法可存储在计算机可读存储介质中,计算机程序被处理器执行时可实现本发明提供的机组优化调度模型的建立方法。The method for establishing an optimal scheduling model of a unit disclosed in the present invention can be stored in a computer-readable storage medium, and when a computer program is executed by a processor, the method for establishing an optimal scheduling model for a unit provided by the present invention can be implemented.
实施方式Implementation
为了降低极限鲁棒优化的保守性,并兼顾电力系统运行的经济性,文献“含大规模风电场的电力系统运行优化方法研究”将Seng-Cheol Kang鲁棒优化应用于电力系统机组调度中,但是,Seng-Cheol Kang鲁棒优化模型仅能考虑每个不确定变量的极限情况,无法考虑不确定变量波动区间内部的一般情况。In order to reduce the conservatism of limit robust optimization and take into account the economics of power system operation, the paper "Research on the optimization method of power system operation with large-scale wind farms" applies Seng-Cheol Kang robust optimization to power system unit scheduling. However, the Seng-Cheol Kang robust optimization model can only consider the limit case of each uncertain variable, and cannot consider the general situation inside the fluctuation interval of the uncertain variable.
而本发明详细地考虑了随机能源出力波动时的极限情况与一般情况,将传统的鲁棒区间进行分割,基于随机能源出力波动子区间进行鲁棒优化。构造的子区间有效的降低了传统鲁棒优化方法的保守性,更有利于找到鲁棒机组调度结果的鲁棒性与经济性平衡点;在此基础上,采用对偶理论与二次函数分段线性化方法实现了非线性模型到线性化模型的转化。本发明提供的基于区间分段鲁棒优化的区间分段鲁棒模型,与传统的极限鲁棒优化模型及Seng-Cheol Kang鲁棒优化模型的调度结果进行对比分析,进一步验证区间分段鲁棒优化方法的有效性。However, the present invention considers in detail the limit situation and general situation when random energy output fluctuates, divides the traditional robust interval, and performs robust optimization based on random energy output fluctuation sub-intervals. The constructed sub-interval effectively reduces the conservatism of traditional robust optimization methods, and is more conducive to finding the balance between robustness and economy of robust unit scheduling results; on this basis, dual theory and quadratic function segmentation are adopted. The linearization method realizes the transformation from nonlinear model to linearized model. The interval segment robust model based on the interval segment robust optimization provided by the present invention is compared and analyzed with the scheduling results of the traditional limit robust optimization model and the Seng-Cheol Kang robust optimization model to further verify the interval segment robustness. Effectiveness of optimization methods.
基于本发明提供的区间分段鲁棒模型的建立方法,提出两种仿真对比方案:Based on the method for establishing an interval segment robust model provided by the present invention, two simulation comparison schemes are proposed:
方案一、10机39节点1风电场系统机组调度方案
本方案采用极限鲁棒优化模型、Seng-Cheol Kang鲁棒优化模型以及本发明提供的区间分段鲁棒模型进行对比分析系统机组调度后的系统运行成本及系统鲁棒性。鲁棒性包括测试三种模型机组调度结果的平均弃风量、平均弃风次数以及平均调节量;系统运行成本表征调度结果的经济性。In this scheme, the limit robust optimization model, the Seng-Cheol Kang robust optimization model and the interval segment robust model provided by the present invention are used to compare and analyze the system operation cost and system robustness after system unit scheduling. Robustness includes testing the average air curtailment, average curtailment times and average regulation amount of the three models of unit dispatching results; system operating costs represent the economy of dispatching results.
方案二、54机118节点3风电场系统机组调度方案
本方案基于大型多机组电力系统对比分析Seng-Cheol Kang鲁棒优化模型以及本发明提供的区间分段鲁棒模型的机组调度结果。侧重分析Seng-Cheol Kang鲁棒优化模型与区间分段鲁棒模型的鲁棒性调节能力。This scheme is based on the comparative analysis of the Seng-Cheol Kang robust optimization model and the unit scheduling results of the interval segment robust model provided by the present invention based on a large-scale multi-generator power system. It focuses on the analysis of the robustness adjustment ability of the Seng-Cheol Kang robust optimization model and the interval piecewise robust model.
下面结合实施例,对本发明进行进一步详细说明。The present invention will be further described in detail below with reference to the embodiments.
本实施例基于MATLAB结合CPLEX求解器进行仿真。仿真中设定随机能源为风电,风电的预测误差为20%,即实际风电在预测风电的0.8倍至1.2倍的区间中波动,具体的仿真方案如表1所示。表2为区间分段鲁棒优化方法的区间分段示例,其中分段系数设置为M=2,共有2M+1=5个子区间,每个子区间的值如表2所示;表3是方案一中Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的主观参数对应关系。方案(1)中的Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)均仿真实验20次;方案二中Seng-Cheol Kang鲁棒模型(SCK-RO)仿真实验3次,区间分段鲁棒模型(MBU-RO)仿真实验20次。This embodiment performs simulation based on MATLAB combined with the CPLEX solver. In the simulation, the random energy is set as wind power, and the prediction error of wind power is 20%, that is, the actual wind power fluctuates in the interval of 0.8 times to 1.2 times of the predicted wind power. The specific simulation scheme is shown in Table 1. Table 2 is an example of interval segmentation of the interval segmentation robust optimization method, where the segmentation coefficient is set to M=2, there are 2M+1=5 sub-intervals, and the values of each sub-interval are shown in Table 2; Table 3 is the scheme Correspondence of subjective parameters between the Seng-Cheol Kang robust model (SCK-RO) and the interval piecewise robust model (MBU-RO). Both the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO) in scheme (1) were simulated for 20 times; the Seng-Cheol Kang robust model (SCK-RO) in scheme 2 ) simulation experiments were performed 3 times, and the interval segment robust model (MBU-RO) simulation experiments were performed 20 times.
表1Table 1
表2Table 2
表3table 3
图2为方案一种Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的机组出力对比图,其中,Seng-Cheol Kang鲁棒模型(SCK-RO)的不确定度参数Γt=1,区间分段鲁棒模型(MBU-RO)的分段系数M=20,此时两种鲁棒模型均为各自的最保守情况。从图2可以看出,Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)在最保守情况下的机组出力有很大的差异,其中发电机G4与发电机G5最为明显。Figure 2 is a comparison chart of unit output between a Seng-Cheol Kang robust model (SCK-RO) and an interval segmented robust model (MBU-RO). Among them, the Seng-Cheol Kang robust model (SCK-RO) The uncertainty parameter of Γ t =1, and the segmental coefficient M of the interval piecewise robust model (MBU-RO) is 20. At this time, the two robust models are their respective most conservative cases. It can be seen from Figure 2 that the unit output of the Seng-Cheol Kang robust model (SCK-RO) and the interval piecewise robust model (MBU-RO) is very different in the most conservative case. The generator G5 is the most obvious.
图3为方案一中Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的旋转备用对比图。从图3可以看出,Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的旋转备用十分接近,但在个别时段存在一定的差距。由此可以判断,Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)在各自最保守的情况下具有不同旋转备用,即Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)在最保守的情况下的机组调度结果在应对风电波动时的能力不同。Figure 3 is a comparison diagram of the rotation backup between the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO) in scheme one. It can be seen from Figure 3 that the rotation reserve of the Seng-Cheol Kang robust model (SCK-RO) and the interval piecewise robust model (MBU-RO) is very close, but there is a certain gap in individual time periods. From this, it can be judged that the Seng-Cheol Kang robust model (SCK-RO) and the interval piecewise robust model (MBU-RO) have different rotation reserves in their most conservative cases, namely the Seng-Cheol Kang robust model ( SCK-RO) and the interval piecewise robust model (MBU-RO) in the most conservative case have different capacity in coping with wind power fluctuations.
图4是极限鲁棒模型(CRO)、Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的系统运行成本对比示意图。图5为极限鲁棒模型(CRO)、Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的调度方案鲁棒性对比示意图(图5(a)是平均弃风量对比图;Figure 4 is a schematic diagram showing the comparison of system operating costs of the extreme robust model (CRO), the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO). Figure 5 is a schematic diagram of the robustness comparison of scheduling schemes between the limit robust model (CRO), the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO) (Figure 5(a) is a Comparison chart of average abandoned air volume;
图5(b)是平均弃风次数对比图;图5(c)是平均调节量对比图)。从图4和图5(图5(a)、图5(b)和图5(c))可以看出,极限鲁棒模型(CRO)的机组调度结果为最保守情况下的Seng-Cheol Kang鲁棒模型(SCK-RO)的机组调度结果,通过对比Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的调度结果可以看出,虽然Seng-Cheol Kang鲁棒模型(SCK-RO)可以调节优化结果的经济性与鲁棒性,但是仍然无法获得与区间分段鲁棒模型(MBU-RO)一样的经济性与鲁棒性平衡点。Figure 5(b) is a comparison chart of the average number of abandoned winds; Figure 5(c) is a comparison chart of the average adjustment amount). From Figure 4 and Figure 5 (Figure 5(a), Figure 5(b) and Figure 5(c)), it can be seen that the unit scheduling result of the limit robust model (CRO) is the Seng-Cheol Kang in the most conservative case The unit scheduling results of the robust model (SCK-RO), by comparing the scheduling results of the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO), it can be seen that although Seng-Cheol The Kang robust model (SCK-RO) can adjust the economy and robustness of the optimization results, but it still cannot obtain the same balance of economy and robustness as the interval piecewise robust model (MBU-RO).
相同地,图6是方案二中Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的系统运行成本对比示意图,图7是方案二中Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的调度方法鲁棒性对比示意图(图7(a)是平均弃风量对比图;图7(b)是平均弃风次数对比图;图7(c)是平均调节量对比图)。在多风电场的情况下,Seng-Cheol Kang鲁棒模型(SCK-RO)的不确定度参数Γt虽然可以调节,但是在最保守的Γt=3时仍然出现了成本浪费。而区间分段鲁棒模型(MBU-RO)兼顾了机组调度结果的经济性与鲁棒性,存在二者的平衡点,介于Seng-Cheol Kang鲁棒模型(SCK-RO)中Γt=2与Γt=3之间的最佳运行点。Similarly, Figure 6 is a schematic diagram of the system operating cost comparison between the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO) in the second solution, and Figure 7 is the Seng-Cheol Kang in the second solution. Schematic diagram of the robustness comparison of scheduling methods between the robust model (SCK-RO) and the interval segment robust model (MBU-RO) (Fig. Times comparison chart; Figure 7(c) is the average adjustment amount comparison chart). In the case of multiple wind farms, although the uncertainty parameter Γ t of the Seng-Cheol Kang robust model (SCK-RO) can be adjusted, there is still a cost waste when the most conservative Γ t =3. The interval segment robust model (MBU-RO) takes into account the economy and robustness of the unit scheduling results, and there is a balance between the two, which is between the Seng-Cheol Kang robust model (SCK-RO) Γ t = Optimal operating point between 2 and Γ t =3.
通过对仿真中调度结果的经济性与鲁棒性的分析可以发现,如果不进行区间分段,会出现电力系统运行成本浪费的情况。Through the analysis of the economy and robustness of the scheduling results in the simulation, it can be found that if the interval segmentation is not performed, the operation cost of the power system will be wasted.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011344914.1A CN112668751B (en) | 2020-11-26 | 2020-11-26 | A method and device for establishing an optimal scheduling model for a unit |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011344914.1A CN112668751B (en) | 2020-11-26 | 2020-11-26 | A method and device for establishing an optimal scheduling model for a unit |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112668751A CN112668751A (en) | 2021-04-16 |
| CN112668751B true CN112668751B (en) | 2022-06-17 |
Family
ID=75403657
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011344914.1A Active CN112668751B (en) | 2020-11-26 | 2020-11-26 | A method and device for establishing an optimal scheduling model for a unit |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112668751B (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115864542B (en) * | 2023-02-24 | 2023-05-05 | 南方电网数字电网研究院有限公司 | Optimization method, device, equipment and storage medium of power unit scheduling model |
| CN118353102B (en) * | 2024-06-19 | 2024-10-29 | 华南理工大学 | Power system unit combination method based on target robustness optimization |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6021402A (en) * | 1997-06-05 | 2000-02-01 | International Business Machines Corporaiton | Risk management system for electric utilities |
| WO2009117364A2 (en) * | 2008-03-21 | 2009-09-24 | General Electric Company | Method for controlling a powered system based on mission plan |
| CN104809327A (en) * | 2014-09-02 | 2015-07-29 | 长沙理工大学 | Uncertain distribution robust optimization method of new energy-containing power dispatching moment |
| CN105426998A (en) * | 2015-11-19 | 2016-03-23 | 广西大学 | Method for predicting wind power interval based on multiple conditions |
| CN105846425A (en) * | 2016-04-08 | 2016-08-10 | 江苏省电力试验研究院有限公司 | Economic dispatching method based on general wind power forecasting error model |
| CN107947164A (en) * | 2017-11-30 | 2018-04-20 | 三峡大学 | A Day-ahead Robust Scheduling Method for Power Systems Considering Multiple Uncertainties and Correlations |
| CN108108846A (en) * | 2017-12-28 | 2018-06-01 | 东南大学 | A kind of alternating current-direct current mixing microgrid robust optimizes coordinated scheduling method |
| CN108539732A (en) * | 2018-03-30 | 2018-09-14 | 东南大学 | Alternating current-direct current microgrid economic load dispatching based on the optimization of more bounded-but-unknown uncertainty robusts |
| CN108629449A (en) * | 2018-04-26 | 2018-10-09 | 东南大学 | A kind of distribution robust formula Optimization Scheduling for alternating current-direct current mixing microgrid |
| CN109256810A (en) * | 2018-11-14 | 2019-01-22 | 南京邮电大学 | Consider that blower is contributed and does not know the Multipurpose Optimal Method of cost |
| CN110247426A (en) * | 2019-06-12 | 2019-09-17 | 国网山西省电力公司电力科学研究院 | A kind of robust Unit Combination method based on the uncertain set of multiband |
| CN110782363A (en) * | 2019-08-15 | 2020-02-11 | 东南大学 | AC/DC power distribution network scheduling method considering wind power uncertainty |
-
2020
- 2020-11-26 CN CN202011344914.1A patent/CN112668751B/en active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6021402A (en) * | 1997-06-05 | 2000-02-01 | International Business Machines Corporaiton | Risk management system for electric utilities |
| WO2009117364A2 (en) * | 2008-03-21 | 2009-09-24 | General Electric Company | Method for controlling a powered system based on mission plan |
| CN104809327A (en) * | 2014-09-02 | 2015-07-29 | 长沙理工大学 | Uncertain distribution robust optimization method of new energy-containing power dispatching moment |
| CN105426998A (en) * | 2015-11-19 | 2016-03-23 | 广西大学 | Method for predicting wind power interval based on multiple conditions |
| CN105846425A (en) * | 2016-04-08 | 2016-08-10 | 江苏省电力试验研究院有限公司 | Economic dispatching method based on general wind power forecasting error model |
| CN107947164A (en) * | 2017-11-30 | 2018-04-20 | 三峡大学 | A Day-ahead Robust Scheduling Method for Power Systems Considering Multiple Uncertainties and Correlations |
| CN108108846A (en) * | 2017-12-28 | 2018-06-01 | 东南大学 | A kind of alternating current-direct current mixing microgrid robust optimizes coordinated scheduling method |
| CN108539732A (en) * | 2018-03-30 | 2018-09-14 | 东南大学 | Alternating current-direct current microgrid economic load dispatching based on the optimization of more bounded-but-unknown uncertainty robusts |
| CN108629449A (en) * | 2018-04-26 | 2018-10-09 | 东南大学 | A kind of distribution robust formula Optimization Scheduling for alternating current-direct current mixing microgrid |
| CN109256810A (en) * | 2018-11-14 | 2019-01-22 | 南京邮电大学 | Consider that blower is contributed and does not know the Multipurpose Optimal Method of cost |
| CN110247426A (en) * | 2019-06-12 | 2019-09-17 | 国网山西省电力公司电力科学研究院 | A kind of robust Unit Combination method based on the uncertain set of multiband |
| CN110782363A (en) * | 2019-08-15 | 2020-02-11 | 东南大学 | AC/DC power distribution network scheduling method considering wind power uncertainty |
Non-Patent Citations (10)
| Title |
|---|
| A Multi-Band Uncertainty Set Based Robust SCUC With Spatial and Temporal Budget Constraints;Chenxi Dai 等;《IEEE Transactions on Power Systems》;20160224;第31卷(第6期);第4988-5000页 * |
| A two-stage robust transmission expansion planning approach with multi-band uncertainty set;Chenxi Dai 等;《2016 IEEE Power and Energy Society General Meeting》;20161114;第1-5页 * |
| New results about multi-band uncertainty in robust optimization;Christina Büsing等;《Proceedings of the 11th international conference on Experimental》;20120630;第63-74页 * |
| Robust SCUC With Multi-Band Nodal Load Uncertainty Set;Bingqian Hu 等;《IEEE Transactions on Power Systems》;20150716;第31卷(第3期);第2491-2492页 * |
| The minimum spinning reserve model for wind power uncertainty by roubst scheduling model;Li Jinghua 等;《2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference》;20150330;第1-5页 * |
| 基于两阶段鲁棒区间优化的风储联合运行调度模型;张刘冬 等;《电力自动化设备》;20181210;第38卷(第12期);第59-66、93页 * |
| 基于鲁棒优化的主动配电网分布式电源优化配置方法;凌万水 等;《电力系统保护与控制》;20200801;第48卷(第15期);第141-148页 * |
| 大规模风电接入下的电力系统旋转备用优化方法研究;雷佳;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20180715;第2018年卷(第07期);第C042-243页 * |
| 考虑风电主动控制的电力系统鲁棒备用计划问题研究;林峰;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20180615;第2018年卷(第06期);第C042-812页 * |
| 考虑风电降载的电力系统鲁棒备用调度模型;林峰 等;《电力系统自动化》;20181010;第42卷(第19期);第64-70、154页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112668751A (en) | 2021-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113393054A (en) | Optimal scheduling method and optimal scheduling system of wind storage combined system | |
| CN103606967B (en) | A kind of dispatching method realizing electric power system robust and run | |
| CN107239863B (en) | Robust unit combination method for power grid safety constraint | |
| CN108667012A (en) | Source-load-storage two-stage coordinated optimization method for regional energy interconnection based on multi-scenario | |
| CN105790265A (en) | AC power flow constraint-based uncertainty unit commitment model and solving method | |
| CN104239967A (en) | Multi-target economic dispatch method for power system with wind farm | |
| CN107240933A (en) | A kind of wind fire for considering wind power characteristic coordinates rolling scheduling method | |
| CN106886839B (en) | Combined optimal scheduling method for hydrothermal power units based on mixed integer programming | |
| CN111245025A (en) | Optimization method, terminal device and storage medium for comprehensive energy system operation strategy | |
| CN112668751B (en) | A method and device for establishing an optimal scheduling model for a unit | |
| CN115296345B (en) | A combined optimization method and device for start-stop-output-standby of a gas-fired generator set | |
| CN113298407B (en) | A method for establishing an optimal dispatch model for an electric-gas integrated energy system in an industrial park | |
| CN112186734B (en) | Medium-and-long-term operation simulation method for power system, storage medium and computing equipment | |
| CN105305423A (en) | Method for determining optimal error boundary considering intermittent energy uncertainty | |
| CN105244870B (en) | A kind of method that wind rate and unit generation amount are abandoned in quick calculating power grid wind field | |
| CN109802437A (en) | A kind of Unit Combination optimization method based on distribution robust chance constraint | |
| CN117154781B (en) | Energy storage frequency modulation capacity configuration method, device and computer-readable storage medium | |
| CN113435659B (en) | Scene analysis-based two-stage optimized operation method and system for comprehensive energy system | |
| CN114386236A (en) | Planning method and system for reasonable utilization rate of new energy consumption | |
| CN116562563A (en) | Power system optimization operation method based on minimum inertia demand evaluation | |
| CN104836260B (en) | Calculation method for allowed capacity of DGs in active power distribution network under voltage constraint | |
| CN109657898B (en) | Renewable energy random dynamic economic dispatching method based on convex relaxation | |
| CN119134271A (en) | A method for optimizing the scheduling of integrated energy systems based on multiple time scales | |
| CN116979558A (en) | Time-frequency optimization scheduling method for electric hydrogen comprehensive energy system | |
| CN117477659A (en) | A method, device and medium for proportioning new energy and conventional power in a power system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |