[go: up one dir, main page]

CN112668751B - A method and device for establishing an optimal scheduling model for a unit - Google Patents

A method and device for establishing an optimal scheduling model for a unit Download PDF

Info

Publication number
CN112668751B
CN112668751B CN202011344914.1A CN202011344914A CN112668751B CN 112668751 B CN112668751 B CN 112668751B CN 202011344914 A CN202011344914 A CN 202011344914A CN 112668751 B CN112668751 B CN 112668751B
Authority
CN
China
Prior art keywords
interval
sub
unit
output
random energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011344914.1A
Other languages
Chinese (zh)
Other versions
CN112668751A (en
Inventor
黎静华
徐逸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202011344914.1A priority Critical patent/CN112668751B/en
Publication of CN112668751A publication Critical patent/CN112668751A/en
Application granted granted Critical
Publication of CN112668751B publication Critical patent/CN112668751B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Feedback Control In General (AREA)

Abstract

本发明公开了一种机组优化调度模型的建立方法及装置,属于新能源机组的调度领域,建立方法包括:基于区间分段鲁棒优化方法,构建随机能源出力波动子区间;利用历史的随机能源场站的预测出力数据与实际出力数据,设置各子区间分段鲁棒优化参数;利用各子区间分段鲁棒优化参数,以火电机组燃烧成本及启停成本最小为目标函数,结合约束条件,建立机组优化调度模型。本发明在考虑子区间内随机能源波动情况的同时可以更好的平衡电力系统运行的鲁棒性和经济性。同时本发明采用历史样本概率信息进行子区间分段鲁棒优化参数设置的方法,该方法只需设置分段系数即可确定每个子区间中不确定变量个数的最大值和最小值,从而使优化结果更加客观。

Figure 202011344914

The invention discloses a method and a device for establishing an optimal dispatch model of a unit, belonging to the field of dispatching of new energy units. The establishment method includes: constructing a random energy output fluctuation sub-interval based on an interval segmented robust optimization method; using historical random energy The predicted output data and actual output data of the station are used to set the segmented robust optimization parameters of each sub-interval; using the segmented robust optimization parameters of each sub-interval, the objective function is to minimize the combustion cost and start-stop cost of thermal power units, combined with constraints , to establish a unit optimal scheduling model. The present invention can better balance the robustness and economy of the operation of the power system while considering the random energy fluctuations in the sub-intervals. At the same time, the present invention uses the historical sample probability information to set the sub-interval segmented robust optimization parameters. The method only needs to set the segment coefficient to determine the maximum and minimum number of uncertain variables in each sub-interval, so as to make The optimization results are more objective.

Figure 202011344914

Description

一种机组优化调度模型的建立方法及装置A method and device for establishing an optimal scheduling model for a unit

技术领域technical field

本发明属于新能源机组的调度领域,更具体地,涉及一种机组优化调度模型的建立方法及装置。The invention belongs to the field of dispatching of new energy generating units, and more particularly relates to a method and device for establishing an optimal dispatching model for generating units.

背景技术Background technique

目前,大规模新能源并网给电力系统运行与调度带来了较大的挑战,研究能够应对新能源发电不确定性的电力系统机组组合模型和方法,对新能源发电大规模并网以及保证电力系统安全稳定运行具有重要意义。对随机能源随机性的处理方法主要有两类,一类是基于随机能源功率预测的方法,另一类是基于含不确定变量优化问题的方法。At present, large-scale new energy grid connection has brought great challenges to the operation and dispatch of the power system. To study the power system unit combination model and method that can cope with the uncertainty of new energy power generation, the large-scale grid connection of new energy power generation and the guarantee The safe and stable operation of the power system is of great significance. There are two main methods for dealing with the randomness of stochastic energy, one is the method based on random energy power prediction, and the other is the method based on the optimization problem with uncertain variables.

随机规划是求解含不确定变量优化问题的方法。它认为不确定量的变化规律服从一定概率分布,并通过对约束或目标函数的概率化建模进行求解。常规的概率分布函数难以准确描述风速的分布特性。场景生成方法、场景削减方法的提出,为电力系统中随机能源等不确定性因素的描述和建模提供了新的思路。尽管基于场景的不确定性建模方法能够描述系统中的不确定性因素,但其受到计算规模的限制,难以阐述清楚削减后的场景对不确定性的表达程度。Stochastic programming is a method for solving optimization problems with uncertain variables. It considers that the change law of uncertain quantities obeys a certain probability distribution, and solves it by probabilistic modeling of constraints or objective functions. Conventional probability distribution functions are difficult to accurately describe the distribution characteristics of wind speed. The proposal of the scene generation method and the scene reduction method provides a new idea for the description and modeling of uncertain factors such as random energy in the power system. Although the scenario-based uncertainty modeling method can describe the uncertainty factors in the system, it is limited by the calculation scale, and it is difficult to clearly describe the degree of uncertainty expressed by the reduced scenarios.

鲁棒优化是求解含不确定变量优化问题的另一种成熟理论。求解电力系统含不确定变量优化问题的基本思想是给出一个包含不确定变量所有可能值的不确定集,然后找到一个对不确定集中的所有可能值都可行的解。目前现有的鲁棒优化在解决机组调度问题中仅能考虑随机能源波动区间极限情况,虽然可以采用不确定度参数Γi调节优化结果的鲁棒性,但是不确定度参数Γi的设置过于主观,无法有效的兼顾电力系统运行的鲁棒性与经济性。为此亟需一种能够同时考虑随机能源波动区间中极限情况与一般情况的鲁棒优化方法,从而更加客观的调度机组,兼顾电力系统运行的鲁棒性与经济性。Robust optimization is another mature theory for solving optimization problems with uncertain variables. The basic idea of solving optimization problems with uncertain variables in power systems is to give an uncertain set containing all possible values of uncertain variables, and then find a feasible solution for all possible values in the uncertain set. At present, the existing robust optimization can only consider the limit of the random energy fluctuation interval in solving the unit scheduling problem. Although the uncertainty parameter Γ i can be used to adjust the robustness of the optimization result, the setting of the uncertainty parameter Γ i is too high. Subjective, it cannot effectively take into account the robustness and economy of power system operation. Therefore, there is an urgent need for a robust optimization method that can simultaneously consider the limit and general conditions in the random energy fluctuation range, so as to more objectively dispatch units and take into account the robustness and economy of power system operation.

发明内容SUMMARY OF THE INVENTION

针对现有技术的缺陷,本发明的目的在于提供一种机组优化调度模型的建立方法及装置,旨在解决目前的考虑随机能源不确定性的机组优化调度中,仅能够考虑随机能源出力波动的极端情况,无法客观调节电力系统运行的鲁棒性与经济性的问题。Aiming at the defects of the prior art, the purpose of the present invention is to provide a method and device for establishing an optimal dispatching model for units, which aims to solve the problem that in the current optimal dispatching of units considering the uncertainty of random energy, only the output fluctuation of random energy can be considered. In extreme cases, it is impossible to objectively adjust the robustness and economy of power system operation.

为实现上述目的,本发明提供了一种机组优化调度模型的建立方法,包括以下步骤:In order to achieve the above purpose, the present invention provides a method for establishing an optimal scheduling model for a unit, comprising the following steps:

S1:基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;S1: Based on the interval segmented robust optimization method, the output fluctuation interval of random energy is represented by segments, and a sub-interval of random energy output fluctuation is constructed;

S2:利用随机能源场站的历史预测出力与历史实际出力数据,设置子区间分段鲁棒优化参数;S2: Use the historical predicted output and historical actual output data of random energy stations to set sub-interval robust optimization parameters;

S3:利用各子区间分段鲁棒优化参数以及对偶变量,建立线性化约束条件,并以火电机组燃烧成本与启停成本之和最小为目标函数,建立机组优化调度模型。S3: Use the segmented robust optimization parameters and dual variables of each sub-interval to establish linearization constraints, and take the minimum sum of the combustion cost and the start-stop cost of the thermal power unit as the objective function to establish the unit optimization scheduling model.

优选地,步骤S3具体包括:Preferably, step S3 specifically includes:

建立火电机组燃料成本与启停成本之和最小的目标函数,并利用子区间分段鲁棒优化参数,建立确定性约束条件;Establish an objective function that minimizes the sum of fuel cost and start-stop cost of thermal power units, and use sub-interval segmented robust optimization parameters to establish deterministic constraints;

采用分段线性化方法将目标函数进行线性化;Use piecewise linearization method to linearize the objective function;

通过引入对偶变量,将正旋转备用约束和负旋转备用约束转化线性化,完成机组优化调度模型。By introducing dual variables, the positive spinning reserve constraint and the negative spinning reserve constraint are transformed and linearized to complete the optimal scheduling model of the unit.

优选地,子区间分段鲁棒优化参数包括各子区间的偏差倍数的个数上限和下限。Preferably, the sub-interval segmented robust optimization parameters include an upper limit and a lower limit of the number of deviation multiples of each sub-interval.

优选地,获取子区间分段鲁棒优化参数的方法,包括以下步骤:Preferably, the method for obtaining sub-interval segmented robust optimization parameters includes the following steps:

将随机能源场站的历史实际出力与历史预测出力作比值,获取随机能源场站出力的历史偏差倍数;Compare the historical actual output of the random energy station with the historical predicted output to obtain the historical deviation multiple of the output of the random energy station;

比较子区间分段内各时段中偏差倍数的个数,筛选出各子区间对应的偏差倍数个数的最大值和最小值;Compare the number of deviation multiples in each time period in the sub-interval segment, and filter out the maximum and minimum values of the deviation multiples corresponding to each sub-interval;

将偏差倍数个数的最大值和最小值均除以时段,获取各子区间的偏差倍数的个数上限和下限。优选地,约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束、正旋转备用约束和负旋转备用约束。Divide the maximum and minimum number of deviation multiples by the time period to obtain the upper and lower limits of the number of deviation multiples for each sub-interval. Preferably, the constraints include power balance constraints, upper and lower limits of unit output, unit ramp constraints, unit start-stop logic constraints, positive spinning reserve constraints and negative spinning reserve constraints.

优选地,随机能源的出力波动区间分段表示为:Preferably, the output fluctuation interval of the random energy source is expressed as follows:

Figure GDA0003591752620000031
Figure GDA0003591752620000031

其中,

Figure GDA0003591752620000032
Figure GDA0003591752620000033
为第k个随机能源场站在第t时段的出力偏差,且满足条件:
Figure GDA0003591752620000034
Figure GDA0003591752620000035
为第k个随机能源场站在第t时段的实际出力;
Figure GDA0003591752620000036
为第k个随机能源场站在第t时段的预测出力;
Figure GDA0003591752620000037
M为区间分段鲁棒优化方法的分段系数;Q为m的编号集合;Nw为系统中随机能源场站的个数;T为总调度时段。in,
Figure GDA0003591752620000032
Figure GDA0003591752620000033
is the output deviation of the kth random energy station in the tth period, and it satisfies the conditions:
Figure GDA0003591752620000034
Figure GDA0003591752620000035
is the actual output of the kth random energy station in the tth period;
Figure GDA0003591752620000036
Output for the prediction of the kth random energy station in the tth period;
Figure GDA0003591752620000037
M is the segment coefficient of the interval segment robust optimization method; Q is the numbered set of m; N w is the number of random energy stations in the system; T is the total dispatch period.

优选地,线性化后的目标函数为:Preferably, the linearized objective function is:

Figure GDA0003591752620000038
Figure GDA0003591752620000038

Figure GDA0003591752620000039
Figure GDA0003591752620000039

Figure GDA00035917526200000310
Figure GDA00035917526200000310

Figure GDA00035917526200000311
Figure GDA00035917526200000311

δl,g,t≤Hl,g-Hl-1,g,l∈NLg,

Figure GDA00035917526200000312
δ l,g,t ≤H l,g -H l-1,g , l∈NLg ,
Figure GDA00035917526200000312

Figure GDA00035917526200000313
Figure GDA00035917526200000313

δl,g,t≥0,l∈NLg,

Figure GDA00035917526200000314
δ l,g,t ≥0 ,l∈NLg ,
Figure GDA00035917526200000314

其中,δl,g,t为附加变量,代表机组g在时段t的第l段的输出功率;NLg为机组g燃料成本特性曲线分段线性化的分段数;Ag为机组g在开机状态的最小燃料成本;Fl,g为机组g的燃料成本二次曲线在第l段的斜率;Hl,g为机组g的第l段的分段点;

Figure GDA0003591752620000041
为机组g的出力下限;
Figure GDA0003591752620000042
为机组g的出力上限;fG为机组燃料成本;NG系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;
Figure GDA0003591752620000043
为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态。Among them, δ l, g, t is an additional variable, representing the output power of unit g in the first section of time period t; NL g is the segment number of the piecewise linearization of the fuel cost characteristic curve of unit g; A g is the unit g in the The minimum fuel cost in the starting state; F l,g is the slope of the fuel cost quadratic curve of the unit g in the first section; H l,g is the segment point of the first section of the unit g;
Figure GDA0003591752620000041
is the lower output limit of unit g;
Figure GDA0003591752620000042
is the output upper limit of unit g; f G is the fuel cost of the unit; the set of thermal power units in the NG system; a g , b g , and c g are the secondary, primary and constant cost coefficients of thermal power units;
Figure GDA0003591752620000043
is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment.

优选地,转化为确定性约束的正旋转备用约束为:Preferably, the positive spinning reserve constraint translated into a deterministic constraint is:

Figure GDA0003591752620000044
Figure GDA0003591752620000044

Figure GDA0003591752620000045
Figure GDA0003591752620000045

Figure GDA0003591752620000046
Figure GDA0003591752620000046

Figure GDA0003591752620000047
Figure GDA0003591752620000047

其中,

Figure GDA0003591752620000048
为对偶变量;
Figure GDA0003591752620000049
为t时段系统的正旋转备用容量需求;
Figure GDA00035917526200000410
为时段t全系统的负荷需求;ug,t为第g台火电机组在第t时刻的运行状态;
Figure GDA00035917526200000411
为第k个随机能源场站在第t时段的出力偏差;
Figure GDA00035917526200000412
为第k个随机能源场站在第t时段的预测出力;
Figure GDA00035917526200000413
为机组g的出力上限;
Figure GDA00035917526200000414
Figure GDA00035917526200000415
分别为偏差倍数在各子区间分段的个数上限和下限。in,
Figure GDA0003591752620000048
is a dual variable;
Figure GDA0003591752620000049
is the positive spinning reserve capacity requirement of the system in period t;
Figure GDA00035917526200000410
is the load demand of the whole system in the period t; u g,t is the operating state of the gth thermal power unit at the tth time;
Figure GDA00035917526200000411
is the output deviation of the kth random energy station in the tth period;
Figure GDA00035917526200000412
Output for the prediction of the kth random energy station in the tth period;
Figure GDA00035917526200000413
is the output upper limit of unit g;
Figure GDA00035917526200000414
and
Figure GDA00035917526200000415
are the upper and lower limits of the number of segments of the deviation multiple in each sub-interval, respectively.

基于上述提供的机组优化调度模型的建立方法,本发明提供了相应的机组优化调度模型的建立装置,包括:顺次连接的子区间构建模块、参数设置模块和模型建立模块;Based on the above-mentioned method for establishing an optimal dispatching model for a unit, the present invention provides a corresponding device for establishing an optimal dispatching model for a unit, including: a sub-interval construction module, a parameter setting module and a model construction module connected in sequence;

子区间构建模块用于基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;The sub-interval building module is used to represent the output fluctuation interval of random energy in segments based on the interval segment robust optimization method, and construct a random energy output fluctuation sub-interval;

参数设置模块用于利用随机能源场站的历史预测出力数据与随机能源场站的历史实际出力数据,设置各子区间分段鲁棒优化参数;The parameter setting module is used to set the segmented robust optimization parameters of each sub-interval by using the historical predicted output data of the random energy station and the historical actual output data of the random energy station;

模型建立模块用于利用各子区间分段鲁棒优化参数以及对偶变量,建立线性化约束条件,并以火电机组燃烧成本与启停成本之和最小为目标函数,建立机组优化调度模型。The model building module is used to establish the linearization constraints by using the segmented robust optimization parameters and dual variables of each sub-interval, and establish the optimal scheduling model of the unit with the minimum sum of the combustion cost and the start-stop cost of the thermal power unit as the objective function.

优选地,模型建立模块包括目标函数建立单元、约束条件处理器、线性化处理器和转化器;目标函数建立单元与线性化处理器连接;转化器与约束条件处理器连接;Preferably, the model establishment module includes an objective function establishment unit, a constraint condition processor, a linearization processor and a converter; the objective function establishment unit is connected with the linearization processor; the converter is connected with the constraint condition processor;

目标函数建立模块用于建立火电机组燃料成本与启停成本之和最小的目标函数;The objective function establishment module is used to establish the objective function that minimizes the sum of the fuel cost and the start-stop cost of the thermal power unit;

约束条件处理器用于利用各子区间分段鲁棒优化参数,建立确定性约束条件;The constraint condition processor is used to use each sub-interval segmented robust optimization parameters to establish deterministic constraints;

线性化处理器用于采用分段线性化方法将目标函数进行线性化;The linearization processor is used to linearize the objective function using a piecewise linearization method;

转化器用于通过引入对偶变量,将正旋转备用约束和负旋转备用约束线性化,建立机组优化调度模型。The converter is used to linearize the positive spinning reserve constraint and the negative spinning reserve constraint by introducing dual variables to establish the optimal scheduling model of the unit.

优选地,子区间分段鲁棒优化参数包括各子区间的偏差倍数的个数上限和下限。Preferably, the sub-interval segmented robust optimization parameters include an upper limit and a lower limit of the number of deviation multiples of each sub-interval.

优选地,约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束、正旋转备用约束和负旋转备用约束。Preferably, the constraints include power balance constraints, upper and lower limits of unit output, unit ramp constraints, unit start-stop logic constraints, positive spinning reserve constraints and negative spinning reserve constraints.

优选地,随机能源的出力波动区间分段表示为:Preferably, the output fluctuation interval of the random energy source is expressed as follows:

Figure GDA0003591752620000051
Figure GDA0003591752620000051

其中,

Figure GDA0003591752620000052
Figure GDA0003591752620000053
为第k个随机能源场站在第t时段的出力偏差,且满足条件:
Figure GDA0003591752620000054
Figure GDA0003591752620000055
为第k个随机能源场站在第t时段的实际出力;
Figure GDA0003591752620000056
为第k个随机能源场站在第t时段的预测出力;
Figure GDA0003591752620000057
in,
Figure GDA0003591752620000052
Figure GDA0003591752620000053
is the output deviation of the kth random energy station in the tth period, and it satisfies the conditions:
Figure GDA0003591752620000054
Figure GDA0003591752620000055
is the actual output of the kth random energy station in the tth period;
Figure GDA0003591752620000056
Output for the prediction of the kth random energy station in the tth period;
Figure GDA0003591752620000057

优选地,线性化后的目标函数为:Preferably, the linearized objective function is:

Figure GDA0003591752620000058
Figure GDA0003591752620000058

Figure GDA0003591752620000061
Figure GDA0003591752620000061

Figure GDA0003591752620000062
Figure GDA0003591752620000062

Figure GDA0003591752620000063
Figure GDA0003591752620000063

δl,g,t≤Hl,g-Hl-1,g,l∈NLg,

Figure GDA0003591752620000064
δ l,g,t ≤H l,g -H l-1,g , l∈NLg ,
Figure GDA0003591752620000064

Figure GDA0003591752620000065
Figure GDA0003591752620000065

δl,g,t≥0,l∈NLg,

Figure GDA0003591752620000066
δ l,g,t ≥0 ,l∈NLg ,
Figure GDA0003591752620000066

其中,δl,g,t为附加变量,代表机组g在时段t的第l段的输出功率;NLg为机组g燃料成本特性曲线分段线性化的分段数;Ag为机组g在开机状态的最小燃料成本;Fl,g为机组g的燃料成本二次曲线在第l段的斜率;Hl,g为机组g的第l段的分段点;

Figure GDA0003591752620000067
为机组g的出力下限;
Figure GDA0003591752620000068
为机组g的出力上限;fG为机组燃料成本;NG系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;
Figure GDA0003591752620000069
为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态。Among them, δ l, g, t is an additional variable, representing the output power of unit g in the first section of time period t; NL g is the segment number of the piecewise linearization of the fuel cost characteristic curve of unit g; A g is the unit g in the The minimum fuel cost in the starting state; F l,g is the slope of the fuel cost quadratic curve of the unit g in the first section; H l,g is the segment point of the first section of the unit g;
Figure GDA0003591752620000067
is the lower output limit of unit g;
Figure GDA0003591752620000068
is the output upper limit of unit g; f G is the fuel cost of the unit; the set of thermal power units in the NG system; a g , b g , and c g are the secondary, primary and constant cost coefficients of thermal power units;
Figure GDA0003591752620000069
is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment.

优选地,转化为确定性约束的正旋转备用约束为:Preferably, the positive spinning reserve constraint translated into a deterministic constraint is:

Figure GDA00035917526200000610
Figure GDA00035917526200000610

Figure GDA00035917526200000611
Figure GDA00035917526200000611

Figure GDA00035917526200000612
Figure GDA00035917526200000612

Figure GDA00035917526200000613
Figure GDA00035917526200000613

其中,

Figure GDA00035917526200000614
为对偶变量;
Figure GDA00035917526200000615
为t时段系统的正旋转备用容量需求;
Figure GDA00035917526200000616
为时段t全系统的负荷需求;ug,t为第g台火电机组在第t时刻的运行状态;
Figure GDA00035917526200000617
为第k个随机能源场站在第t时段的出力偏差;
Figure GDA00035917526200000618
为第k个随机能源场站在第t时段的预测出力;
Figure GDA00035917526200000619
为机组g的出力上限;
Figure GDA00035917526200000620
Figure GDA00035917526200000621
分别为偏差倍数在各子区间分段的个数上限和下限。in,
Figure GDA00035917526200000614
is a dual variable;
Figure GDA00035917526200000615
is the positive spinning reserve capacity requirement of the system in period t;
Figure GDA00035917526200000616
is the load demand of the whole system in the period t; u g,t is the operating state of the gth thermal power unit at the tth time;
Figure GDA00035917526200000617
is the output deviation of the kth random energy station in the tth period;
Figure GDA00035917526200000618
Output for the prediction of the kth random energy station in the tth period;
Figure GDA00035917526200000619
is the output upper limit of unit g;
Figure GDA00035917526200000620
and
Figure GDA00035917526200000621
are the upper and lower limits of the number of segments of the deviation multiple in each sub-interval, respectively.

本发明公开的机组优化调度模型的建立方法可存储在计算机可读存储介质中,计算机程序被处理器执行时可实现本发明提供的机组优化调度模型的建立方法。The method for establishing an optimal scheduling model of a unit disclosed in the present invention can be stored in a computer-readable storage medium, and when a computer program is executed by a processor, the method for establishing an optimal scheduling model for a unit provided by the present invention can be implemented.

通过本发明所构思的以上技术方案,与现有技术相比,能够取得以下有益效果:Through the above technical solutions conceived by the present invention, compared with the prior art, the following beneficial effects can be achieved:

本发明提供了机组优化调度模型的建立方法,该方法基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;同时利用历史的随机能源场站的预测出力与实际出力,设置子区间分段鲁棒优化参数,利用各子区间分段鲁棒优化参数,建立基于随机能源场站出力波动子区间的正旋转备用与负旋转备用约束,该正旋转备用约束与负旋转备用约束中采用随机能源场站出力波动子区间替代随机能源场站出力,实现了不确定性的旋转备用约束转化为确定性的旋转备用约束。此外,基于对偶变换引入对偶变量,将确定性的旋转备用约束中的非线性部分转化为线性部分,实现了具有非线性部分的确定性旋转备用约束向确定性线性旋转备用约束的转化。相比于现有的不确定性旋转备用约束,确定性线性旋转备用约束可以避免旋转备用过量而引起的火电机组燃料成本浪费,有效提高系统运行经济性;此外,确定性线性旋转备用约束可以避免旋转备用不足而引起的系统失负荷及弃风光,有效的提升系统运行的鲁棒性。因此本发明在考虑子区间内随机能源波动情况的同时可以更好的平衡电力系统运行的鲁棒性和经济性。The invention provides a method for establishing an optimal dispatching model of a unit. The method is based on an interval segmented robust optimization method. The output fluctuation interval of random energy is represented in segments to construct a random energy output fluctuation sub-interval; at the same time, the historical random energy field is used. According to the predicted output and actual output of the station, set the sub-interval robust optimization parameters, and use the sub-interval sub-interval robust optimization parameters to establish positive spinning reserve and negative spinning reserve constraints based on the sub-intervals of random energy station output fluctuations. In the positive spinning reserve constraint and the negative spinning reserve constraint, the random energy station output fluctuation sub-interval is used to replace the random energy station output, which realizes the transformation of the uncertain spinning reserve constraint into the deterministic spinning reserve constraint. In addition, the dual variable is introduced based on the dual transformation, and the nonlinear part of the deterministic spinning reserve constraint is converted into a linear part, which realizes the transformation from the deterministic spinning reserve constraint with nonlinear part to the deterministic linear spinning reserve constraint. Compared with the existing uncertain spinning reserve constraint, the deterministic linear spinning reserve constraint can avoid the waste of fuel cost of thermal power units caused by excessive spinning reserve, and effectively improve the operating economy of the system; in addition, the deterministic linear spinning reserve constraint can avoid System load loss and abandoned scenery caused by insufficient spinning reserve effectively improve the robustness of system operation. Therefore, the present invention can better balance the robustness and economy of the operation of the power system while considering the random energy fluctuations in the sub-intervals.

本发明基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,同时涵盖了随机能源波动的极端情况与一般情况,弥补了极限鲁棒优化与Seng-CheolKang鲁棒优化仅能考虑随机能源的极端波动情况的不足。Based on the interval segmented robust optimization method, the invention expresses the output fluctuation interval of random energy in segments, covers the extreme and general situations of random energy fluctuations, and makes up for the limit robust optimization and Seng-CheolKang robust optimization only. The insufficiency of being able to account for extreme fluctuations in stochastic energy.

本发明采用历史样本概率信息进行子区间分段鲁棒优化参数设置的方法,该方法只需设置分段系数即可确定每个子区间中不确定变量个数的最大值和最小值,避免了传统的区间分段鲁棒优化需要设置太多参数的缺点,并且使优化结果更加客观。The present invention adopts the historical sample probability information for sub-interval segment robust optimization parameter setting method, the method only needs to set segment coefficients to determine the maximum and minimum number of uncertain variables in each sub-interval, avoiding the traditional The interval piecewise robust optimization has the disadvantage that too many parameters need to be set, and makes the optimization results more objective.

附图说明Description of drawings

图1是本发明提供的机组优化调度模型的建立方法流程图;Fig. 1 is the flow chart of the establishment method of the unit optimization scheduling model provided by the present invention;

图2是实施例提供的方案一中SCK-RO与MBU-RO的机组出力对比示意图;Fig. 2 is the schematic diagram of the unit output comparison of SCK-RO and MBU-RO in the scheme one provided by the embodiment;

图3是实施例提供的方案一中SCK-RO与MBU-RO的系统旋转备用示意图;Fig. 3 is the schematic diagram of the system rotation standby of SCK-RO and MBU-RO in scheme one provided by the embodiment;

图4是实施例提供的方案一中CRO、SCK-RO与MBU-RO的系统运行成本对比示意图;4 is a schematic diagram showing the comparison of system operating costs of CRO, SCK-RO and MBU-RO in scheme one provided by the embodiment;

图5(a)是实施例提供的方案一中CRO、SCK-RO与MBU-RO的平均弃风量对比图;Fig. 5 (a) is the average abandoned air volume comparison diagram of CRO, SCK-RO and MBU-RO in the scheme one provided by the embodiment;

图5(b)是实施例提供的方案一中CRO、SCK-RO与MBU-RO的平均弃风次数对比图;Fig. 5(b) is a comparison diagram of the average number of abandoned winds of CRO, SCK-RO and MBU-RO in the scheme one provided by the embodiment;

图5(c)是实施例提供的方案一中CRO、SCK-RO与MBU-RO的平均调节量对比图;Fig. 5 (c) is the average adjustment amount comparison diagram of CRO, SCK-RO and MBU-RO in the scheme one provided by the embodiment;

图6是实施例提供的方案二中SCK-RO与MBU-RO的系统运行成本对比示意图;Fig. 6 is the system operating cost comparison schematic diagram of SCK-RO and MBU-RO in scheme 2 provided by the embodiment;

图7(a)实施例提供的方案二中CRO、SCK-RO与MBU-RO的平均弃风量对比图;Figure 7 (a) the comparison diagram of the average abandoned air volume of CRO, SCK-RO and MBU-RO in the second scheme provided by the embodiment;

图7(b)是实施例提供的方案二中CRO、SCK-RO与MBU-RO的平均弃风次数对比图;Fig. 7(b) is a comparison chart of the average number of wind abandonment times of CRO, SCK-RO and MBU-RO in scheme 2 provided by the embodiment;

图7(c)是实施例提供的方案二中CRO、SCK-RO与MBU-RO的平均调节量对比图。Figure 7(c) is a comparison diagram of the average adjustment amount of CRO, SCK-RO and MBU-RO in the second solution provided by the embodiment.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

如图1所示,本发明提出了一种机组优化调度模型的建立方法,包括以下步骤:As shown in Figure 1, the present invention proposes a method for establishing an optimal scheduling model of a unit, including the following steps:

S1:基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;S1: Based on the interval segmented robust optimization method, the output fluctuation interval of random energy is represented by segments, and a sub-interval of random energy output fluctuation is constructed;

具体为:Specifically:

随机能源出力可以表示为:The random energy output can be expressed as:

Figure GDA0003591752620000091
Figure GDA0003591752620000091

其中,Nw为随机能源场站的个数;T为总调度时段;

Figure GDA0003591752620000092
为第k个随机能源场站在第t时段的实际出力;
Figure GDA0003591752620000093
为第k个随机能源场站在第t时段的预测出力;
Figure GDA0003591752620000094
Figure GDA0003591752620000095
相对于
Figure GDA0003591752620000096
的偏差倍数;
Figure GDA0003591752620000097
d-M为负偏差百分比;dM为正偏差百分比;
Figure GDA0003591752620000098
的区间形式表示如下:Among them, N w is the number of random energy stations; T is the total dispatch period;
Figure GDA0003591752620000092
is the actual output of the kth random energy station in the tth period;
Figure GDA0003591752620000093
Output for the prediction of the kth random energy station in the tth period;
Figure GDA0003591752620000094
for
Figure GDA0003591752620000095
relative to
Figure GDA0003591752620000096
the deviation multiple;
Figure GDA0003591752620000097
d- M is the negative deviation percentage; d M is the positive deviation percentage;
Figure GDA0003591752620000098
The interval form of is as follows:

Figure GDA0003591752620000099
Figure GDA0003591752620000099

其中,[d-M,dM]称为

Figure GDA00035917526200000910
相对于
Figure GDA00035917526200000911
的偏差百分比区间;基于区间分段鲁棒优化方法,[d-M,dM]可表示为如下多个子区间形式:where [d - M ,d M ] is called
Figure GDA00035917526200000910
relative to
Figure GDA00035917526200000911
The deviation percentage interval of ; based on the interval piecewise robust optimization method, [d -M ,d M ] can be expressed as the following multiple sub-interval forms:

d-M<…<dm-1<dm<…<dM d -M <…<d m-1 <d m <…<d M

其中,M为区间分段鲁棒优化方法的分段系数,m为每个子区间的编号,并且有m∈{Q|-M,…,-1,0,1,…,M},Q为m的编号集合;Among them, M is the segment coefficient of the interval piecewise robust optimization method, m is the number of each subinterval, and there is m∈{Q|-M,…,-1,0,1,…,M}, and Q is the numbered set of m;

当m=-M时,子区间为单独一个数d-M;当m∈{-M+1,…,-1,0,1,…,M}时,子区间为(dm-1,dm];特别地,当m=0时,d0=0,即

Figure GDA00035917526200000912
对于
Figure GDA00035917526200000913
未发生偏差;基于以上,
Figure GDA00035917526200000914
的子区间形式可以表示为:When m=-M, the subinterval is a single number d- M ; when m∈{-M+1,...,-1,0,1,...,M}, the subinterval is (d m-1 , d m ]; in particular, when m=0, d 0 =0, i.e.
Figure GDA00035917526200000912
for
Figure GDA00035917526200000913
No deviation occurred; based on the above,
Figure GDA00035917526200000914
The subinterval form of can be expressed as:

Figure GDA00035917526200000915
Figure GDA00035917526200000915

其中,

Figure GDA00035917526200000916
Figure GDA00035917526200000917
时,
Figure GDA00035917526200000918
相对于
Figure GDA00035917526200000919
未发生偏差;当
Figure GDA00035917526200000920
时,
Figure GDA0003591752620000101
相对于
Figure GDA0003591752620000102
发生偏差,因此,
Figure GDA0003591752620000103
可简化表示为:in,
Figure GDA00035917526200000916
when
Figure GDA00035917526200000917
hour,
Figure GDA00035917526200000918
relative to
Figure GDA00035917526200000919
No deviation occurs; when
Figure GDA00035917526200000920
hour,
Figure GDA0003591752620000101
relative to
Figure GDA0003591752620000102
deviation occurs, therefore,
Figure GDA0003591752620000103
It can be simplified as:

Figure GDA0003591752620000104
Figure GDA0003591752620000104

其中,

Figure GDA0003591752620000105
Figure GDA0003591752620000106
为第k个随机能源场站在第t时段的出力偏差上限,且满足下面的条件:in,
Figure GDA0003591752620000105
Figure GDA0003591752620000106
is the upper limit of the output deviation of the kth random energy station in the tth period, and meets the following conditions:

Figure GDA0003591752620000107
Figure GDA0003591752620000107

以上完成了随机能源的出力波动区间分段,构造了随机能源出力的子区间;The above completes the output fluctuation interval segmentation of random energy, and constructs the sub-interval of random energy output;

S2:设置子区间分段鲁棒优化参数:S2: Set sub-interval segment robust optimization parameters:

分段系数M将[d-M,dM]分为2M+1个子区间,定义lm代表

Figure GDA0003591752620000108
属于子区间(1+dm-1,1+dm]的偏差倍数的个数下限,定义um代表
Figure GDA0003591752620000109
属于子区间(1+dm-1,1+dm]的偏差倍数的个数上限,并且有0<lm<um<NWT;基于
Figure GDA00035917526200001010
的历史数据
Figure GDA00035917526200001011
即可确定每个子区间(1+dm-1,1+dm]的lm与um值;假设
Figure GDA00035917526200001012
Figure GDA00035917526200001013
的历史样本,
Figure GDA00035917526200001014
Figure GDA00035917526200001015
的历史样本,d是样本天的编号,D是样本天的集合,确定lm与um的具体步骤如下:The segmentation coefficient M divides [d - M , d M ] into 2M+1 sub-intervals, and defines lm to represent
Figure GDA0003591752620000108
The lower limit of the number of deviation multiples belonging to the sub-interval (1+d m-1 , 1+d m ], which defines um to represent
Figure GDA0003591752620000109
The upper limit of the number of deviation multiples belonging to the subinterval (1+d m-1 , 1+d m ], and 0<l m <u m <N W T; based on
Figure GDA00035917526200001010
historical data of
Figure GDA00035917526200001011
The lm and um values of each subinterval (1+d m-1 , 1+ d m ] can be determined; suppose
Figure GDA00035917526200001012
Yes
Figure GDA00035917526200001013
historical samples,
Figure GDA00035917526200001014
Yes
Figure GDA00035917526200001015
The historical samples of , d is the number of the sample day, D is the set of sample days, the specific steps to determine lm and um are as follows:

S2.1:基于

Figure GDA00035917526200001016
Figure GDA00035917526200001017
的值采用下列计算
Figure GDA00035917526200001018
的历史值
Figure GDA00035917526200001019
S2.1: Based on
Figure GDA00035917526200001016
and
Figure GDA00035917526200001017
The value of is calculated using the following
Figure GDA00035917526200001018
historical value of
Figure GDA00035917526200001019

Figure GDA00035917526200001020
Figure GDA00035917526200001020

S2.2:计算每个子区间(1+dm-1,1+dm]各时段中

Figure GDA00035917526200001021
的个数Nd,m,并筛选出各子区间对应的偏差倍数个数的最大值
Figure GDA00035917526200001022
和最小值
Figure GDA00035917526200001023
Figure GDA00035917526200001024
Figure GDA00035917526200001025
代表了每个子区间(1+dm -1,1+dm]在时段中
Figure GDA00035917526200001026
的个数上限与个数下限;一般时段以一天作为一个时段;S2.2: Calculate each time period in each sub-interval (1+d m-1 ,1+d m ]
Figure GDA00035917526200001021
N d,m , and filter out the maximum number of deviation multiples corresponding to each sub-interval
Figure GDA00035917526200001022
and minimum
Figure GDA00035917526200001023
Figure GDA00035917526200001024
and
Figure GDA00035917526200001025
represents each subinterval (1+d m -1 ,1+d m ] in the period
Figure GDA00035917526200001026
The upper limit and lower limit of the number of ; the general period takes one day as a period;

S2.3:计算每个子区间(1+dm-1,1+dm]在时段内的最大发生概率

Figure GDA00035917526200001027
与最小发生概率
Figure GDA00035917526200001028
若时段以一天为基准,则T=24h;S2.3: Calculate the maximum probability of occurrence of each sub-interval (1+d m-1 , 1+d m ] within the time period
Figure GDA00035917526200001027
with minimum probability of occurrence
Figure GDA00035917526200001028
If the time period is based on one day, then T=24h;

Figure GDA00035917526200001029
Figure GDA00035917526200001029

Figure GDA00035917526200001030
Figure GDA00035917526200001030

S2.4:计算每个子区间(1+dm-1,1+dm]的偏差倍数的lm与um值;S2.4: Calculate the lm and um values of the deviation multiples of each sub-interval (1+d m-1 , 1+ d m ];

Figure GDA0003591752620000111
Figure GDA0003591752620000111

Figure GDA0003591752620000112
Figure GDA0003591752620000112

从上述步骤可知,基于随机能源的历史数据,完成了区间分段鲁棒优化的参数设置,可以直观地发现,仅需设置分段系数M即可确定lm与um的值;此外,lm与um由随机能源的历史概率信息确定,使得鲁棒优化的结果更加客观;It can be seen from the above steps that based on the historical data of random energy, the parameter setting of interval segment robust optimization is completed. It can be intuitively found that the values of lm and um can be determined only by setting the segment coefficient M ; m and um are determined by the historical probability information of random energy, which makes the result of robust optimization more objective;

S3:基于区间分段鲁棒优化方法的随机能源出力不确定性,建立区间分段鲁棒模型;S3: Based on the uncertainty of stochastic energy output based on the interval piecewise robust optimization method, an interval piecewise robust model is established;

基于区间分段鲁棒优化方法的随机能源出力不确定性,建立的机组优化模型的目标函数是以火电机组燃料成本及启停成本最小为目标;目标函数的约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束以及正负旋转备用约束;Based on the uncertainty of stochastic energy output of the interval piecewise robust optimization method, the objective function of the established unit optimization model is to minimize the fuel cost and start-stop cost of thermal power units; the constraints of the objective function include power balance constraints, unit output Upper and lower limit constraints, unit climbing constraints, unit start-stop logic constraints, and positive and negative rotation reserve constraints;

目标函数如下:The objective function is as follows:

fUC=min(fG+fC)f UC =min(f G +f C )

Figure GDA0003591752620000113
Figure GDA0003591752620000113

Figure GDA0003591752620000114
Figure GDA0003591752620000114

上述目标函数中,fUC为系统运行总成本;fG为机组燃料成本;fC为机组启停成本;

Figure GDA0003591752620000115
系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;
Figure GDA0003591752620000116
为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态;
Figure GDA0003591752620000117
为第g台火电机组的总开机次数;
Figure GDA0003591752620000118
第g台火电机组在第t时刻开机成本;
Figure GDA0003591752620000119
第g台火电机组的总关机次数;
Figure GDA00035917526200001110
第g台火电机组在第t时刻关机成本;In the above objective function, f UC is the total cost of system operation; f G is the fuel cost of the unit; f C is the start and stop cost of the unit;
Figure GDA0003591752620000115
Set of thermal power units in the system; a g , b g , c g are the secondary, primary and constant cost coefficients of thermal power units;
Figure GDA0003591752620000116
is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment;
Figure GDA0003591752620000117
is the total startup times of the gth thermal power unit;
Figure GDA0003591752620000118
The startup cost of the gth thermal power unit at the tth moment;
Figure GDA0003591752620000119
The total shutdown times of the gth thermal power unit;
Figure GDA00035917526200001110
The shutdown cost of the gth thermal power unit at the tth time;

为了降低机组优化调度模型的求解难度,采用分段线性化方法将目标函数进行线性化,由二次目标函数降为一次目标函数;In order to reduce the difficulty of solving the optimal scheduling model of the unit, the piecewise linearization method is used to linearize the objective function, and the objective function is reduced from the quadratic objective function to the primary objective function;

Figure GDA0003591752620000121
Figure GDA0003591752620000121

Figure GDA0003591752620000122
Figure GDA0003591752620000122

Figure GDA0003591752620000123
Figure GDA0003591752620000123

Figure GDA0003591752620000124
Figure GDA0003591752620000124

δl,g,t≤Hl,g-Hl-1,g,l∈NLg,

Figure GDA0003591752620000125
δ l,g,t ≤H l,g -H l-1,g , l∈NLg ,
Figure GDA0003591752620000125

Figure GDA0003591752620000126
Figure GDA0003591752620000126

δl,g,t≥0,l∈NLg,

Figure GDA0003591752620000127
δ l,g,t ≥0 ,l∈NLg ,
Figure GDA0003591752620000127

其中,δl,g,t为附加变量,代表机组g在时段t的第l段的输出功率;NLg为机组g燃料成本特性曲线分段线性化的分段数;Ag为机组g在开机状态下的最小燃料成本;Fl,g为机组g的燃料成本二次曲线在第l段的斜率;Hl,g为机组g的第l段的分段点;

Figure GDA0003591752620000128
为机组g的出力下限;
Figure GDA0003591752620000129
为机组g的出力上限;fG为机组燃料成本;NG系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;
Figure GDA00035917526200001210
为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态。Among them, δ l, g, t is an additional variable, representing the output power of unit g in the first section of time period t; NL g is the segment number of the piecewise linearization of the fuel cost characteristic curve of unit g; A g is the unit g in the The minimum fuel cost in the power-on state; F l,g is the slope of the fuel cost quadratic curve of the unit g in the first section; H l,g is the segment point of the first section of the unit g;
Figure GDA0003591752620000128
is the lower output limit of unit g;
Figure GDA0003591752620000129
is the output upper limit of unit g; f G is the fuel cost of the unit; the set of thermal power units in the NG system; a g , b g , and c g are the secondary, primary and constant cost coefficients of thermal power units;
Figure GDA00035917526200001210
is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment.

约束条件:Restrictions:

功率平衡约束:Power Balance Constraints:

Figure GDA00035917526200001211
Figure GDA00035917526200001211

其中,

Figure GDA00035917526200001212
为时段t全系统的负荷需求;in,
Figure GDA00035917526200001212
is the load demand of the whole system in period t;

功率平衡约束要求在时段t,系统中火电机组的总出力与随机能源的总出力之和等于系统负荷需求;The power balance constraint requires that in the time period t, the sum of the total output of thermal power units and the total output of random energy in the system is equal to the system load demand;

机组出力上下限约束:Unit output upper and lower limit constraints:

Figure GDA00035917526200001213
Figure GDA00035917526200001213

其中,

Figure GDA0003591752620000131
为机组g的出力下限;
Figure GDA0003591752620000132
为机组g的出力上限;该约束条件要求火电机组的出力满足机组出力上下限;in,
Figure GDA0003591752620000131
is the lower output limit of unit g;
Figure GDA0003591752620000132
is the output upper limit of unit g; this constraint requires that the output of the thermal power unit meets the upper and lower output limits of the unit;

机组爬坡约束:Crew climbing constraints:

Figure GDA0003591752620000133
Figure GDA0003591752620000133

其中,

Figure GDA0003591752620000134
为火电机组g的向下爬坡功率;
Figure GDA0003591752620000135
为火电机组g的向上爬坡功率;机组爬坡约束的物理含义为:机组的在前后时段的功率变化量满足机组自身的爬坡功率;in,
Figure GDA0003591752620000134
is the downhill power of the thermal power unit g;
Figure GDA0003591752620000135
is the upward climbing power of the thermal power unit g; the physical meaning of the unit's climbing constraint is: the power change of the unit in the front and rear periods meets the unit's own climbing power;

机组启停逻辑约束:Unit start-stop logic constraints:

Figure GDA0003591752620000136
Figure GDA0003591752620000136

其中,

Figure GDA0003591752620000137
为机组g的连续运行时间;
Figure GDA0003591752620000138
为机组g的最小连续运行时间;
Figure GDA0003591752620000139
为机组g的连续停机时间;
Figure GDA00035917526200001310
为机组g的最小连续停机时间;机组启停逻辑约束的物理含义为:在
Figure GDA00035917526200001311
时,机组状态必开机;在
Figure GDA00035917526200001312
时,机组状态必关机;除此之外的情况不强制限制机组状态;in,
Figure GDA0003591752620000137
is the continuous running time of unit g;
Figure GDA0003591752620000138
is the minimum continuous running time of unit g;
Figure GDA0003591752620000139
is the continuous shutdown time of unit g;
Figure GDA00035917526200001310
is the minimum continuous shutdown time of unit g; the physical meaning of the unit start-stop logic constraint is:
Figure GDA00035917526200001311
When the unit is in state, it must be turned on; when
Figure GDA00035917526200001312
When the genset status is turned off; otherwise, the genset status is not forcibly limited;

正旋转备用约束(不确定约束):Positive Spinning Alternate Constraints (Indeterminate Constraints):

Figure GDA00035917526200001313
Figure GDA00035917526200001313

其中,

Figure GDA00035917526200001314
为t时段系统的正旋转备用容量需求;正旋转备用约束中含有随机能源出力
Figure GDA00035917526200001315
正旋转备用约束表征了随机能源的不确定性,其物理含义是所有在线火电机组的出力上限与随机能源出力之和大于负荷与正旋转备用容量需求之和;in,
Figure GDA00035917526200001314
is the positive spinning reserve capacity requirement of the system in period t; the positive spinning reserve constraint includes random energy output
Figure GDA00035917526200001315
The positive spinning reserve constraint represents the uncertainty of random energy, and its physical meaning is that the sum of the output upper limit of all online thermal power units and the random energy output is greater than the sum of the load and the positive spinning reserve capacity demand;

负旋转备用约束(不确定约束):Negative Spinning Spare Constraint (Indeterminate Constraint):

Figure GDA00035917526200001316
Figure GDA00035917526200001316

其中,

Figure GDA00035917526200001317
为t时段系统的负旋转备用容量需求;负旋转备用约束中含有随机能源出力
Figure GDA00035917526200001318
因此负旋转备用约束表征了随机能源的不确定性;负旋转备用约束的物理含义为:所有在线火电机组的出力下限与随机能源出力之和小于负荷与负旋转备用容量需求之差;in,
Figure GDA00035917526200001317
is the negative spinning reserve capacity requirement of the system in period t; the negative spinning reserve constraint contains random energy output
Figure GDA00035917526200001318
Therefore, the negative spinning reserve constraint represents the uncertainty of random energy; the physical meaning of the negative spinning reserve constraint is: the sum of the output lower limit of all online thermal power units and the output of random energy is less than the difference between the load and the negative spinning reserve capacity demand;

S4:将含随机能源的正旋转备用约束及负旋转备用约束转化为基于区间分段鲁棒优化方法的确定性约束;S4: Convert the positive spinning reserve constraints and negative spinning reserve constraints with random energy into deterministic constraints based on the interval piecewise robust optimization method;

以正旋转备用约束为例,将

Figure GDA0003591752620000141
Figure GDA0003591752620000142
带入
Figure GDA0003591752620000143
得到如下公式:Taking the positive spinning reserve constraint as an example, set the
Figure GDA0003591752620000141
Figure GDA0003591752620000142
bring in
Figure GDA0003591752620000143
The following formula is obtained:

Figure GDA0003591752620000144
Figure GDA0003591752620000144

区间分段鲁棒优化的前提是随机能源的最恶劣波动情况下也能保证上述公式,故在

Figure GDA0003591752620000145
取最小值时上述公式仍成立,从而将
Figure GDA0003591752620000146
等价为:The premise of interval segmented robust optimization is that the above formula can also be guaranteed under the worst fluctuations of random energy, so in
Figure GDA0003591752620000145
The above formula still holds when the minimum value is taken, so that the
Figure GDA0003591752620000146
Equivalent to:

Figure GDA0003591752620000147
Figure GDA0003591752620000147

Figure GDA0003591752620000148
Figure GDA0003591752620000148

Figure GDA0003591752620000149
Figure GDA0003591752620000149

Figure GDA00035917526200001410
Figure GDA00035917526200001410

Figure GDA00035917526200001411
Figure GDA00035917526200001411

其中,DEVt为随机能源波动是的最大总偏差;满足公式(1)的约束条件可实现每个子区间

Figure GDA00035917526200001412
中随机能源场站的个数满足该区间随机能源场站个数上下限;Among them, DEV t is the maximum total deviation of random energy fluctuations; satisfying the constraints of formula (1) can realize each sub-interval
Figure GDA00035917526200001412
The number of random energy stations in the interval meets the upper and lower limits of the number of random energy stations in the interval;

引入

Figure GDA00035917526200001413
分别代表公式(1)~(3)的对偶变量,获取正旋转备用约束的线性化形式:introduce
Figure GDA00035917526200001413
Represent the dual variables of formulas (1) to (3) respectively, and obtain the linearized form of the positive rotation reserve constraint:

Figure GDA00035917526200001414
Figure GDA00035917526200001414

Figure GDA00035917526200001415
Figure GDA00035917526200001415

Figure GDA00035917526200001416
Figure GDA00035917526200001416

Figure GDA0003591752620000151
Figure GDA0003591752620000151

相同的原理,引入对偶变量

Figure GDA0003591752620000152
获取负旋转备用约束的线性化形式:The same principle, introducing dual variables
Figure GDA0003591752620000152
Obtain the linearized form of the negative spinning reserve constraint:

Figure GDA0003591752620000153
Figure GDA0003591752620000153

Figure GDA0003591752620000154
Figure GDA0003591752620000154

Figure GDA0003591752620000155
Figure GDA0003591752620000155

Figure GDA0003591752620000156
Figure GDA0003591752620000156

将正负旋转备用约束线性化后,获取区间分段鲁棒模型;After linearizing the positive and negative rotation reserve constraints, an interval piecewise robust model is obtained;

S5:求解机组优化调度模型,用于机组调度。S5: Solve the unit optimal scheduling model for unit scheduling.

基于上述提供的机组优化调度模型的建立方法,本发明提供了相应的机组优化调度模型的建立装置,包括:顺次连接的子区间构建模块、参数设置模块和模型建立模块;Based on the above-mentioned method for establishing an optimal dispatching model for a unit, the present invention provides a corresponding device for establishing an optimal dispatching model for a unit, including: a sub-interval construction module, a parameter setting module and a model construction module connected in sequence;

子区间构建模块用于基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;The sub-interval building module is used to represent the output fluctuation interval of random energy in segments based on the interval segment robust optimization method, and construct a random energy output fluctuation sub-interval;

参数设置模块用于利用随机能源场站的历史预测出力数据与随机能源场站的历史实际出力数据,设置各子区间分段鲁棒优化参数;The parameter setting module is used to set the segmented robust optimization parameters of each sub-interval by using the historical predicted output data of the random energy station and the historical actual output data of the random energy station;

模型建立模块用于利用各子区间分段鲁棒优化参数以及对偶变量,建立线性化约束条件,并以火电机组燃烧成本及启停成本最小为目标函数,建立机组优化调度模型。The model building module is used to establish the linearization constraints by using the segmented robust optimization parameters and dual variables of each sub-interval, and establish the optimal scheduling model of the unit with the minimum combustion cost and start-stop cost of the thermal power unit as the objective function.

优选地,模型建立模块包括目标函数建立单元、约束条件处理器、线性化处理器和转化器;目标函数建立单元与线性化处理器连接;转化器与约束条件处理器连接;Preferably, the model establishment module includes an objective function establishment unit, a constraint condition processor, a linearization processor and a converter; the objective function establishment unit is connected with the linearization processor; the converter is connected with the constraint condition processor;

目标函数建立模块用于建立火电机组燃料成本与启停成本之和最小的目标函数;The objective function establishment module is used to establish the objective function that minimizes the sum of the fuel cost and the start-stop cost of the thermal power unit;

约束条件处理器用于利用各子区间分段鲁棒优化参数,建立确定性约束条件;The constraint condition processor is used to use each sub-interval segmented robust optimization parameters to establish deterministic constraints;

线性化处理器用于采用分段线性化方法将目标函数进行线性化;The linearization processor is used to linearize the objective function using a piecewise linearization method;

转化器用于通过引入对偶变量,将正旋转备用约束和负旋转备用约束线性化,建立机组优化调度模型。The converter is used to linearize the positive spinning reserve constraint and the negative spinning reserve constraint by introducing dual variables to establish the optimal scheduling model of the unit.

优选地,子区间分段鲁棒优化参数包括各子区间的偏差倍数的个数上限和下限。优选地,约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束、正旋转备用约束和负旋转备用约束。Preferably, the sub-interval segmented robust optimization parameters include an upper limit and a lower limit of the number of deviation multiples of each sub-interval. Preferably, the constraints include power balance constraints, upper and lower limits of unit output, unit ramp constraints, unit start-stop logic constraints, positive spinning reserve constraints and negative spinning reserve constraints.

优选地,随机能源的出力波动区间分段表示为:Preferably, the output fluctuation interval of the random energy source is expressed as follows:

Figure GDA0003591752620000161
Figure GDA0003591752620000161

其中,

Figure GDA0003591752620000162
Figure GDA0003591752620000163
为第k个随机能源场站在第t时段的出力偏差,且满足条件:
Figure GDA0003591752620000164
Figure GDA0003591752620000165
为第k个随机能源场站在第t时段的实际出力;
Figure GDA0003591752620000166
为第k个随机能源场站在第t时段的预测出力;
Figure GDA0003591752620000167
in,
Figure GDA0003591752620000162
Figure GDA0003591752620000163
is the output deviation of the kth random energy station in the tth period, and it satisfies the conditions:
Figure GDA0003591752620000164
Figure GDA0003591752620000165
is the actual output of the kth random energy station in the tth period;
Figure GDA0003591752620000166
Output for the prediction of the kth random energy station in the tth period;
Figure GDA0003591752620000167

优选地,线性化后的目标函数为:Preferably, the linearized objective function is:

Figure GDA0003591752620000168
Figure GDA0003591752620000168

Figure GDA0003591752620000169
Figure GDA0003591752620000169

Figure GDA00035917526200001610
Figure GDA00035917526200001610

Figure GDA00035917526200001611
Figure GDA00035917526200001611

δl,g,t≤Hl,g-Hl-1,g,l∈NLg,

Figure GDA00035917526200001612
δ l,g,t ≤H l,g -H l-1,g , l∈NLg ,
Figure GDA00035917526200001612

Figure GDA00035917526200001613
Figure GDA00035917526200001613

δl,g,t≥0,l∈NLg,

Figure GDA00035917526200001614
δ l,g,t ≥0 ,l∈NLg ,
Figure GDA00035917526200001614

其中,δl,g,t为附加变量,代表机组g在时段t的第l段的输出功率;NLg为机组g燃料成本特性曲线分段线性化的分段数;Ag为机组g在开机状态下的最小燃料成本;Fl,g为机组g的燃料成本二次曲线在第l段的斜率;Hl,g为机组g的第l段的分段点;

Figure GDA0003591752620000171
为机组g的出力下限;
Figure GDA0003591752620000172
为机组g的出力上限;fG为机组燃料成本;NG系统中火电机组集合;ag、bg、cg为火电机组二次、一次、常数成本系数;
Figure GDA0003591752620000173
为第g台火电机组在第t时刻的出力;ug,t为第g台火电机组在第t时刻的运行状态。Among them, δ l, g, t is an additional variable, representing the output power of unit g in the first section of time period t; NL g is the segment number of the piecewise linearization of the fuel cost characteristic curve of unit g; A g is the unit g in the The minimum fuel cost in the power-on state; F l,g is the slope of the fuel cost quadratic curve of the unit g in the first section; H l,g is the segment point of the first section of the unit g;
Figure GDA0003591752620000171
is the lower output limit of unit g;
Figure GDA0003591752620000172
is the output upper limit of unit g; f G is the fuel cost of the unit; the set of thermal power units in the NG system; a g , b g , and c g are the secondary, primary and constant cost coefficients of thermal power units;
Figure GDA0003591752620000173
is the output of the g-th thermal power unit at the t-th moment; u g,t is the operating state of the g-th thermal power unit at the t-th moment.

优选地,转化为确定性约束的正旋转备用约束为:Preferably, the positive spinning reserve constraint translated into a deterministic constraint is:

Figure GDA0003591752620000174
Figure GDA0003591752620000174

Figure GDA0003591752620000175
Figure GDA0003591752620000175

Figure GDA0003591752620000176
Figure GDA0003591752620000176

Figure GDA0003591752620000177
Figure GDA0003591752620000177

其中,

Figure GDA0003591752620000178
为对偶变量;
Figure GDA0003591752620000179
为t时段系统的正旋转备用容量需求;
Figure GDA00035917526200001710
为时段t全系统的负荷需求;ug,t为第g台火电机组在第t时刻的运行状态;
Figure GDA00035917526200001711
为第k个随机能源场站在第t时段的出力偏差;
Figure GDA00035917526200001712
为第k个随机能源场站在第t时段的预测出力;
Figure GDA00035917526200001713
为机组g的出力上限;
Figure GDA00035917526200001714
Figure GDA00035917526200001715
分别为偏差倍数在各子区间分段的个数上限和下限。in,
Figure GDA0003591752620000178
is a dual variable;
Figure GDA0003591752620000179
is the positive spinning reserve capacity requirement of the system in period t;
Figure GDA00035917526200001710
is the load demand of the whole system in the period t; u g,t is the operating state of the gth thermal power unit at the tth time;
Figure GDA00035917526200001711
is the output deviation of the kth random energy station in the tth period;
Figure GDA00035917526200001712
Output for the prediction of the kth random energy station in the tth period;
Figure GDA00035917526200001713
is the output upper limit of unit g;
Figure GDA00035917526200001714
and
Figure GDA00035917526200001715
are the upper and lower limits of the number of segments of the deviation multiple in each sub-interval, respectively.

本发明公开的机组优化调度模型的建立方法可存储在计算机可读存储介质中,计算机程序被处理器执行时可实现本发明提供的机组优化调度模型的建立方法。The method for establishing an optimal scheduling model of a unit disclosed in the present invention can be stored in a computer-readable storage medium, and when a computer program is executed by a processor, the method for establishing an optimal scheduling model for a unit provided by the present invention can be implemented.

实施方式Implementation

为了降低极限鲁棒优化的保守性,并兼顾电力系统运行的经济性,文献“含大规模风电场的电力系统运行优化方法研究”将Seng-Cheol Kang鲁棒优化应用于电力系统机组调度中,但是,Seng-Cheol Kang鲁棒优化模型仅能考虑每个不确定变量的极限情况,无法考虑不确定变量波动区间内部的一般情况。In order to reduce the conservatism of limit robust optimization and take into account the economics of power system operation, the paper "Research on the optimization method of power system operation with large-scale wind farms" applies Seng-Cheol Kang robust optimization to power system unit scheduling. However, the Seng-Cheol Kang robust optimization model can only consider the limit case of each uncertain variable, and cannot consider the general situation inside the fluctuation interval of the uncertain variable.

而本发明详细地考虑了随机能源出力波动时的极限情况与一般情况,将传统的鲁棒区间进行分割,基于随机能源出力波动子区间进行鲁棒优化。构造的子区间有效的降低了传统鲁棒优化方法的保守性,更有利于找到鲁棒机组调度结果的鲁棒性与经济性平衡点;在此基础上,采用对偶理论与二次函数分段线性化方法实现了非线性模型到线性化模型的转化。本发明提供的基于区间分段鲁棒优化的区间分段鲁棒模型,与传统的极限鲁棒优化模型及Seng-Cheol Kang鲁棒优化模型的调度结果进行对比分析,进一步验证区间分段鲁棒优化方法的有效性。However, the present invention considers in detail the limit situation and general situation when random energy output fluctuates, divides the traditional robust interval, and performs robust optimization based on random energy output fluctuation sub-intervals. The constructed sub-interval effectively reduces the conservatism of traditional robust optimization methods, and is more conducive to finding the balance between robustness and economy of robust unit scheduling results; on this basis, dual theory and quadratic function segmentation are adopted. The linearization method realizes the transformation from nonlinear model to linearized model. The interval segment robust model based on the interval segment robust optimization provided by the present invention is compared and analyzed with the scheduling results of the traditional limit robust optimization model and the Seng-Cheol Kang robust optimization model to further verify the interval segment robustness. Effectiveness of optimization methods.

基于本发明提供的区间分段鲁棒模型的建立方法,提出两种仿真对比方案:Based on the method for establishing an interval segment robust model provided by the present invention, two simulation comparison schemes are proposed:

方案一、10机39节点1风电场系统机组调度方案Scheme 1. Scheduling scheme for wind farm system with 10 machines, 39 nodes and 1 wind farm

本方案采用极限鲁棒优化模型、Seng-Cheol Kang鲁棒优化模型以及本发明提供的区间分段鲁棒模型进行对比分析系统机组调度后的系统运行成本及系统鲁棒性。鲁棒性包括测试三种模型机组调度结果的平均弃风量、平均弃风次数以及平均调节量;系统运行成本表征调度结果的经济性。In this scheme, the limit robust optimization model, the Seng-Cheol Kang robust optimization model and the interval segment robust model provided by the present invention are used to compare and analyze the system operation cost and system robustness after system unit scheduling. Robustness includes testing the average air curtailment, average curtailment times and average regulation amount of the three models of unit dispatching results; system operating costs represent the economy of dispatching results.

方案二、54机118节点3风电场系统机组调度方案Scheme 2. Scheduling scheme for wind farm systems with 54 machines, 118 nodes and 3 wind farms

本方案基于大型多机组电力系统对比分析Seng-Cheol Kang鲁棒优化模型以及本发明提供的区间分段鲁棒模型的机组调度结果。侧重分析Seng-Cheol Kang鲁棒优化模型与区间分段鲁棒模型的鲁棒性调节能力。This scheme is based on the comparative analysis of the Seng-Cheol Kang robust optimization model and the unit scheduling results of the interval segment robust model provided by the present invention based on a large-scale multi-generator power system. It focuses on the analysis of the robustness adjustment ability of the Seng-Cheol Kang robust optimization model and the interval piecewise robust model.

下面结合实施例,对本发明进行进一步详细说明。The present invention will be further described in detail below with reference to the embodiments.

本实施例基于MATLAB结合CPLEX求解器进行仿真。仿真中设定随机能源为风电,风电的预测误差为20%,即实际风电在预测风电的0.8倍至1.2倍的区间中波动,具体的仿真方案如表1所示。表2为区间分段鲁棒优化方法的区间分段示例,其中分段系数设置为M=2,共有2M+1=5个子区间,每个子区间的值如表2所示;表3是方案一中Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的主观参数对应关系。方案(1)中的Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)均仿真实验20次;方案二中Seng-Cheol Kang鲁棒模型(SCK-RO)仿真实验3次,区间分段鲁棒模型(MBU-RO)仿真实验20次。This embodiment performs simulation based on MATLAB combined with the CPLEX solver. In the simulation, the random energy is set as wind power, and the prediction error of wind power is 20%, that is, the actual wind power fluctuates in the interval of 0.8 times to 1.2 times of the predicted wind power. The specific simulation scheme is shown in Table 1. Table 2 is an example of interval segmentation of the interval segmentation robust optimization method, where the segmentation coefficient is set to M=2, there are 2M+1=5 sub-intervals, and the values of each sub-interval are shown in Table 2; Table 3 is the scheme Correspondence of subjective parameters between the Seng-Cheol Kang robust model (SCK-RO) and the interval piecewise robust model (MBU-RO). Both the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO) in scheme (1) were simulated for 20 times; the Seng-Cheol Kang robust model (SCK-RO) in scheme 2 ) simulation experiments were performed 3 times, and the interval segment robust model (MBU-RO) simulation experiments were performed 20 times.

表1Table 1

Figure GDA0003591752620000191
Figure GDA0003591752620000191

表2Table 2

Figure GDA0003591752620000192
Figure GDA0003591752620000192

表3table 3

Figure GDA0003591752620000193
Figure GDA0003591752620000193

图2为方案一种Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的机组出力对比图,其中,Seng-Cheol Kang鲁棒模型(SCK-RO)的不确定度参数Γt=1,区间分段鲁棒模型(MBU-RO)的分段系数M=20,此时两种鲁棒模型均为各自的最保守情况。从图2可以看出,Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)在最保守情况下的机组出力有很大的差异,其中发电机G4与发电机G5最为明显。Figure 2 is a comparison chart of unit output between a Seng-Cheol Kang robust model (SCK-RO) and an interval segmented robust model (MBU-RO). Among them, the Seng-Cheol Kang robust model (SCK-RO) The uncertainty parameter of Γ t =1, and the segmental coefficient M of the interval piecewise robust model (MBU-RO) is 20. At this time, the two robust models are their respective most conservative cases. It can be seen from Figure 2 that the unit output of the Seng-Cheol Kang robust model (SCK-RO) and the interval piecewise robust model (MBU-RO) is very different in the most conservative case. The generator G5 is the most obvious.

图3为方案一中Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的旋转备用对比图。从图3可以看出,Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的旋转备用十分接近,但在个别时段存在一定的差距。由此可以判断,Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)在各自最保守的情况下具有不同旋转备用,即Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)在最保守的情况下的机组调度结果在应对风电波动时的能力不同。Figure 3 is a comparison diagram of the rotation backup between the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO) in scheme one. It can be seen from Figure 3 that the rotation reserve of the Seng-Cheol Kang robust model (SCK-RO) and the interval piecewise robust model (MBU-RO) is very close, but there is a certain gap in individual time periods. From this, it can be judged that the Seng-Cheol Kang robust model (SCK-RO) and the interval piecewise robust model (MBU-RO) have different rotation reserves in their most conservative cases, namely the Seng-Cheol Kang robust model ( SCK-RO) and the interval piecewise robust model (MBU-RO) in the most conservative case have different capacity in coping with wind power fluctuations.

图4是极限鲁棒模型(CRO)、Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的系统运行成本对比示意图。图5为极限鲁棒模型(CRO)、Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的调度方案鲁棒性对比示意图(图5(a)是平均弃风量对比图;Figure 4 is a schematic diagram showing the comparison of system operating costs of the extreme robust model (CRO), the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO). Figure 5 is a schematic diagram of the robustness comparison of scheduling schemes between the limit robust model (CRO), the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO) (Figure 5(a) is a Comparison chart of average abandoned air volume;

图5(b)是平均弃风次数对比图;图5(c)是平均调节量对比图)。从图4和图5(图5(a)、图5(b)和图5(c))可以看出,极限鲁棒模型(CRO)的机组调度结果为最保守情况下的Seng-Cheol Kang鲁棒模型(SCK-RO)的机组调度结果,通过对比Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的调度结果可以看出,虽然Seng-Cheol Kang鲁棒模型(SCK-RO)可以调节优化结果的经济性与鲁棒性,但是仍然无法获得与区间分段鲁棒模型(MBU-RO)一样的经济性与鲁棒性平衡点。Figure 5(b) is a comparison chart of the average number of abandoned winds; Figure 5(c) is a comparison chart of the average adjustment amount). From Figure 4 and Figure 5 (Figure 5(a), Figure 5(b) and Figure 5(c)), it can be seen that the unit scheduling result of the limit robust model (CRO) is the Seng-Cheol Kang in the most conservative case The unit scheduling results of the robust model (SCK-RO), by comparing the scheduling results of the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO), it can be seen that although Seng-Cheol The Kang robust model (SCK-RO) can adjust the economy and robustness of the optimization results, but it still cannot obtain the same balance of economy and robustness as the interval piecewise robust model (MBU-RO).

相同地,图6是方案二中Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的系统运行成本对比示意图,图7是方案二中Seng-Cheol Kang鲁棒模型(SCK-RO)与区间分段鲁棒模型(MBU-RO)的调度方法鲁棒性对比示意图(图7(a)是平均弃风量对比图;图7(b)是平均弃风次数对比图;图7(c)是平均调节量对比图)。在多风电场的情况下,Seng-Cheol Kang鲁棒模型(SCK-RO)的不确定度参数Γt虽然可以调节,但是在最保守的Γt=3时仍然出现了成本浪费。而区间分段鲁棒模型(MBU-RO)兼顾了机组调度结果的经济性与鲁棒性,存在二者的平衡点,介于Seng-Cheol Kang鲁棒模型(SCK-RO)中Γt=2与Γt=3之间的最佳运行点。Similarly, Figure 6 is a schematic diagram of the system operating cost comparison between the Seng-Cheol Kang robust model (SCK-RO) and the interval segment robust model (MBU-RO) in the second solution, and Figure 7 is the Seng-Cheol Kang in the second solution. Schematic diagram of the robustness comparison of scheduling methods between the robust model (SCK-RO) and the interval segment robust model (MBU-RO) (Fig. Times comparison chart; Figure 7(c) is the average adjustment amount comparison chart). In the case of multiple wind farms, although the uncertainty parameter Γ t of the Seng-Cheol Kang robust model (SCK-RO) can be adjusted, there is still a cost waste when the most conservative Γ t =3. The interval segment robust model (MBU-RO) takes into account the economy and robustness of the unit scheduling results, and there is a balance between the two, which is between the Seng-Cheol Kang robust model (SCK-RO) Γ t = Optimal operating point between 2 and Γ t =3.

通过对仿真中调度结果的经济性与鲁棒性的分析可以发现,如果不进行区间分段,会出现电力系统运行成本浪费的情况。Through the analysis of the economy and robustness of the scheduling results in the simulation, it can be found that if the interval segmentation is not performed, the operation cost of the power system will be wasted.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。Those skilled in the art can easily understand that the above are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, etc., All should be included within the protection scope of the present invention.

Claims (3)

1.一种机组优化调度模型的建立方法,其特征在于,包括以下步骤:1. a method for establishing an optimal dispatch model for unit, is characterized in that, comprises the following steps: S1:基于区间分段鲁棒优化方法,构建随机能源出力波动子区间;S1: Construct random energy output fluctuation sub-intervals based on the interval segmented robust optimization method; S2:利用随机能源场站的历史预测出力数据与历史实际出力数据,设置各子区间分段鲁棒优化参数;S2: Use the historical predicted output data and historical actual output data of the random energy station to set the sub-interval robust optimization parameters; S3:利用各子区间分段鲁棒优化参数以及对偶变量,建立线性化约束条件,并以火电机组燃烧成本及启停成本最小为目标函数,建立机组优化调度模型;S3: Use the segmented robust optimization parameters and dual variables of each sub-interval to establish linearization constraints, and take the minimum combustion cost and start-stop cost of thermal power units as the objective function to establish the unit optimization scheduling model; 所述步骤S3具体包括:The step S3 specifically includes: 建立火电机组燃料成本与启停成本之和最小的目标函数,并利用子区间分段鲁棒优化参数,建立确定性约束条件;Establish an objective function that minimizes the sum of fuel cost and start-stop cost of thermal power units, and use sub-interval segmented robust optimization parameters to establish deterministic constraints; 采用分段线性化方法将目标函数进行线性化;Use piecewise linearization method to linearize the objective function; 通过引入对偶变量,将正旋转备用约束和负旋转备用约束线性化,完成机组优化调度模型;By introducing dual variables, the positive spinning reserve constraint and the negative spinning reserve constraint are linearized to complete the optimal scheduling model of the unit; 所述约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束、正旋转备用约束和负旋转备用约束;The constraints include power balance constraints, unit output upper and lower limit constraints, unit ramping constraints, unit start-stop logic constraints, positive spinning reserve constraints and negative spinning reserve constraints; 其中,S1具体为基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;Among them, S1 is specifically based on the interval segmented robust optimization method, which represents the output fluctuation interval of random energy in segments, and constructs the output fluctuation sub-interval of random energy; 随机能源出力表示为:The random energy output is expressed as:
Figure FDA0003591752610000011
Figure FDA0003591752610000011
其中,Nw为随机能源场站的个数;T为总调度时段;
Figure FDA0003591752610000012
为第k个随机能源场站在第t时段的实际出力;
Figure FDA0003591752610000013
为第k个随机能源场站在第t时段的预测出力;
Figure FDA0003591752610000014
Figure FDA0003591752610000015
相对于
Figure FDA0003591752610000016
的偏差倍数;
Figure FDA0003591752610000017
d-M为负偏差百分比;dM为正偏差百分比;
Figure FDA0003591752610000018
的区间形式表示如下:
Among them, N w is the number of random energy stations; T is the total dispatch period;
Figure FDA0003591752610000012
is the actual output of the kth random energy station in the tth period;
Figure FDA0003591752610000013
Output for the prediction of the kth random energy station in the tth period;
Figure FDA0003591752610000014
for
Figure FDA0003591752610000015
relative to
Figure FDA0003591752610000016
the deviation multiple;
Figure FDA0003591752610000017
d- M is the negative deviation percentage; d M is the positive deviation percentage;
Figure FDA0003591752610000018
The interval form of is as follows:
Figure FDA0003591752610000021
Figure FDA0003591752610000021
其中,[d-M,dM]称为
Figure FDA0003591752610000022
相对于
Figure FDA0003591752610000023
的偏差百分比区间;基于区间分段鲁棒优化方法,[d-M,dM]表示为多个子区间形式:
where [d - M , d M ] is called
Figure FDA0003591752610000022
relative to
Figure FDA0003591752610000023
The deviation percentage interval of ; based on the interval piecewise robust optimization method, [d - M , d M ] is expressed in the form of multiple subintervals:
d-M<…<dm-1<dm<…<dM d -M <...<d m-1 <d m <...<d M 其中,M为区间分段鲁棒优化方法的分段系数,m为每个子区间的编号,并且有m∈{Q|-M,...,-1,0,1,...,M},Q为m的编号集合;Among them, M is the segment coefficient of the interval piecewise robust optimization method, m is the number of each subinterval, and there are m∈{Q|-M,...,-1,0,1,...,M }, Q is the numbered set of m; 当m=-M时,子区间为单独一个数d-M;当m∈{-M+1,...,-1,0,1,...,M}时,子区间为(dm -1,dm];When m=-M, the subinterval is a single number d- M ; when m∈{-M+1,...,-1,0,1,...,M}, the subinterval is (d m -1 , d m ];
Figure FDA0003591752610000024
的子区间形式表示为:
Figure FDA0003591752610000024
The subinterval form of is expressed as:
Figure FDA0003591752610000025
Figure FDA0003591752610000025
其中,
Figure FDA0003591752610000026
Figure FDA0003591752610000027
时,
Figure FDA0003591752610000028
相对于
Figure FDA0003591752610000029
未发生偏差;当
Figure FDA00035917526100000210
时,
Figure FDA00035917526100000211
相对于
Figure FDA00035917526100000212
发生偏差,
Figure FDA00035917526100000213
表示为:
in,
Figure FDA0003591752610000026
when
Figure FDA0003591752610000027
hour,
Figure FDA0003591752610000028
relative to
Figure FDA0003591752610000029
No deviation occurs; when
Figure FDA00035917526100000210
hour,
Figure FDA00035917526100000211
relative to
Figure FDA00035917526100000212
deviation occurs,
Figure FDA00035917526100000213
Expressed as:
Figure FDA00035917526100000214
Figure FDA00035917526100000214
其中,
Figure FDA00035917526100000215
Figure FDA00035917526100000216
为第k个随机能源场站在第t时段的出力偏差上限,且满足下面的条件:
in,
Figure FDA00035917526100000215
Figure FDA00035917526100000216
is the upper limit of the output deviation of the kth random energy station in the tth period, and meets the following conditions:
Figure FDA00035917526100000217
Figure FDA00035917526100000217
以上完成了随机能源的出力波动区间分段,构造了随机能源出力的子区间;The above completes the output fluctuation interval segmentation of random energy, and constructs the sub-interval of random energy output; 步骤S2设置子区间分段鲁棒优化参数,具体步骤为:Step S2 sets the sub-interval segmented robust optimization parameters, and the specific steps are: 分段系数M将[d-M,dM]分为2M+1个子区间,定义lm代表
Figure FDA00035917526100000218
属于子区间(1+dm-1,1+dm]的偏差倍数的个数下限,定义um代表
Figure FDA00035917526100000219
属于子区间(1+dm-1,1+dm]的偏差倍数的个数上限,并且有0<lm<um<NWT;基于
Figure FDA00035917526100000220
的历史数据
Figure FDA00035917526100000221
确定每个子区间(1+dm-1,1+dm]的lm与um值;假设
Figure FDA0003591752610000031
Figure FDA0003591752610000032
的历史样本,
Figure FDA0003591752610000033
Figure FDA0003591752610000034
的历史样本,d是样本天的编号,D是样本天的集合,确定lm与um的具体步骤如下:
The segmentation coefficient M divides [d -M , d M ] into 2M+1 sub-intervals, and defines lm to represent
Figure FDA00035917526100000218
The lower limit of the number of deviation multiples belonging to the sub-interval (1+d m-1 , 1+d m ], which defines um to represent
Figure FDA00035917526100000219
The upper limit of the number of deviation multiples belonging to the subinterval (1+d m-1 , 1+d m ], and 0<l m <u m <N W T; based on
Figure FDA00035917526100000220
historical data of
Figure FDA00035917526100000221
Determine the lm and um values for each subinterval (1+d m-1 , 1+ d m ]; suppose
Figure FDA0003591752610000031
Yes
Figure FDA0003591752610000032
historical samples,
Figure FDA0003591752610000033
Yes
Figure FDA0003591752610000034
The historical samples of , d is the number of the sample day, D is the set of sample days, the specific steps to determine lm and um are as follows:
S2.1:基于
Figure FDA0003591752610000035
Figure FDA0003591752610000036
的值采用下列计算
Figure FDA0003591752610000037
的历史值
Figure FDA0003591752610000038
S2.1: Based on
Figure FDA0003591752610000035
and
Figure FDA0003591752610000036
The value of is calculated using the following
Figure FDA0003591752610000037
historical value of
Figure FDA0003591752610000038
Figure FDA0003591752610000039
Figure FDA0003591752610000039
S2.2:计算每个子区间(1+dm-1,1+dm]各时段中
Figure FDA00035917526100000310
的个数Nd,m,并筛选出各子区间对应的偏差倍数个数的最大值
Figure FDA00035917526100000311
和最小值
Figure FDA00035917526100000312
Figure FDA00035917526100000313
代表了每个子区间(1+dm-1,1+dm]在时段中
Figure FDA00035917526100000314
的个数上限与个数下限;
S2.2: Calculate each sub-interval (1+d m-1 , 1+d m ] in each time period
Figure FDA00035917526100000310
The number N d, m , and filter out the maximum number of deviation multiples corresponding to each sub-interval
Figure FDA00035917526100000311
and minimum
Figure FDA00035917526100000312
and
Figure FDA00035917526100000313
represents each subinterval (1+d m-1 , 1+d m ] in the period
Figure FDA00035917526100000314
The upper limit and the lower limit of the number;
S2.3:计算每个子区间(1+dm-1,1+dm]在时段内的最大发生概率
Figure FDA00035917526100000315
与最小发生概率
Figure FDA00035917526100000316
S2.3: Calculate the maximum probability of occurrence of each sub-interval (1+d m-1 , 1+d m ] within the time period
Figure FDA00035917526100000315
with minimum probability of occurrence
Figure FDA00035917526100000316
Figure FDA00035917526100000317
Figure FDA00035917526100000317
Figure FDA00035917526100000318
Figure FDA00035917526100000318
S2.4:计算每个子区间(1+dm-1,1+dm]的偏差倍数的lm与um值;S2.4: Calculate the lm and um values of the deviation multiples of each sub-interval (1+d m-1 , 1+ d m ];
Figure FDA00035917526100000319
Figure FDA00035917526100000319
Figure FDA00035917526100000320
Figure FDA00035917526100000320
其中,引入对偶变量
Figure FDA00035917526100000321
获取正旋转备用约束的线性化形式:
Among them, the introduction of dual variables
Figure FDA00035917526100000321
Obtain the linearized form of the positive spinning reserve constraint:
Figure FDA00035917526100000322
Figure FDA00035917526100000322
Figure FDA00035917526100000323
Figure FDA00035917526100000323
Figure FDA00035917526100000324
Figure FDA00035917526100000324
Figure FDA00035917526100000325
Figure FDA00035917526100000325
引入对偶变量
Figure FDA00035917526100000326
获取负旋转备用约束的线性化形式:
Introduce dual variables
Figure FDA00035917526100000326
Obtain the linearized form of the negative spinning reserve constraint:
Figure FDA00035917526100000327
Figure FDA00035917526100000327
Figure FDA00035917526100000328
Figure FDA00035917526100000328
Figure FDA00035917526100000329
Figure FDA00035917526100000329
Figure FDA00035917526100000330
Figure FDA00035917526100000330
将正负旋转备用约束线性化后,获取区间分段鲁棒模型;After linearizing the positive and negative rotation reserve constraints, an interval piecewise robust model is obtained; 其中,NG系统中火电机组集合;ug,t为第g台火电机组在第t时刻的运行状态;
Figure FDA0003591752610000041
为时段t全系统的负荷需求;g为火电机组;
Figure FDA0003591752610000042
为机组g的出力下限;
Figure FDA0003591752610000043
为机组g的出力上限;
Figure FDA0003591752610000044
Figure FDA0003591752610000045
分别为偏差倍数在各子区间分段的个数上限和下限;
Figure FDA0003591752610000046
为第k个随机能源场站在第t时段的预测出力;
Figure FDA0003591752610000047
为t时段系统的正旋转备用容量需求;
Figure FDA0003591752610000048
为t时段系统的负旋转备用容量需求。
Among them, the set of thermal power units in the NG system; u g , t is the operating state of the gth thermal power unit at the t th time;
Figure FDA0003591752610000041
is the load demand of the whole system in period t; g is the thermal power unit;
Figure FDA0003591752610000042
is the lower output limit of unit g;
Figure FDA0003591752610000043
is the output upper limit of unit g;
Figure FDA0003591752610000044
and
Figure FDA0003591752610000045
are the upper and lower limits of the number of segments of the deviation multiple in each sub-interval, respectively;
Figure FDA0003591752610000046
Output for the prediction of the kth random energy station in the tth period;
Figure FDA0003591752610000047
is the positive spinning reserve capacity requirement of the system in period t;
Figure FDA0003591752610000048
is the negative spinning reserve capacity requirement of the system during period t.
2.一种基于机组优化调度模型的建立方法的建立装置,其特征在于,包括顺次连接的子区间构建模块、参数设置模块和模型建立模块;2. a kind of establishment device based on the establishment method of unit optimization scheduling model, it is characterized in that, comprise successively connected sub-interval building module, parameter setting module and model building module; 所述子区间构建模块用于基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;The sub-interval building module is used to represent the output fluctuation interval of random energy in segments based on the interval segmented robust optimization method, so as to construct a random energy output fluctuation sub-interval; 所述参数设置模块用于利用随机能源场站的历史预测出力数据与历史实际出力数据,设置各子区间分段鲁棒优化参数;The parameter setting module is used to set the segmented robust optimization parameters of each sub-interval by using the historical predicted output data and historical actual output data of the random energy station; 所述模型建立模块用于利用各子区间分段鲁棒优化参数以及对偶变量,建立线性化约束条件,并以火电机组燃烧成本与启停成本之和最小为目标函数,建立机组优化调度模型;The model establishment module is used for using each sub-interval segmented robust optimization parameters and dual variables to establish linearization constraints, and takes the minimum sum of the combustion cost and the start-stop cost of the thermal power unit as the objective function to establish the unit optimization scheduling model; 所述模型建立模块包括目标函数建立单元、约束条件处理器、线性化处理器和转化器;The model establishment module includes an objective function establishment unit, a constraint condition processor, a linearization processor and a converter; 所述目标函数建立单元与所述线性化处理器连接;所述转化器与所述约束条件处理器连接;Described objective function establishment unit is connected with described linearization processor; Described converter is connected with described constraint condition processor; 所述目标函数建立模块用于建立火电机组燃料成本与启停成本之和最小的目标函数;The objective function establishment module is used to establish an objective function with the minimum sum of the fuel cost and the start-stop cost of the thermal power unit; 所述约束条件处理器用于利用各子区间分段鲁棒优化参数,建立确定性约束条件;The constraint condition processor is configured to use each sub-interval segmented robust optimization parameter to establish a deterministic constraint condition; 所述线性化处理器用于采用分段线性化方法将目标函数进行线性化;The linearization processor is used to linearize the objective function by using a piecewise linearization method; 所述转化器用于通过引入对偶变量,将正旋转备用约束和负旋转备用约束线性化,建立机组优化调度模型;约束条件包括功率平衡约束、机组出力上下限约束、机组爬坡约束、机组启停逻辑约束、正旋转备用约束和负旋转备用约束;The converter is used to linearize the positive spinning reserve constraint and the negative spinning reserve constraint by introducing dual variables to establish an optimal scheduling model for the unit; the constraints include power balance constraints, upper and lower output limits of the unit, ramp constraints of the unit, start and stop of the unit Logical constraints, positive spinning reserve constraints, and negative spinning reserve constraints; 其中,基于区间分段鲁棒优化方法,将随机能源的出力波动区间进行分段表示,构建随机能源出力波动子区间;Among them, based on the interval segmented robust optimization method, the output fluctuation interval of random energy is represented by segments, and the output fluctuation sub-interval of random energy is constructed; 随机能源出力表示为:The random energy output is expressed as:
Figure FDA0003591752610000051
Figure FDA0003591752610000051
其中,Nw为随机能源场站的个数;T为总调度时段;
Figure FDA0003591752610000052
为第k个随机能源场站在第t时段的实际出力;
Figure FDA0003591752610000053
为第k个随机能源场站在第t时段的预测出力;
Figure FDA0003591752610000054
Figure FDA0003591752610000055
相对于
Figure FDA0003591752610000056
的偏差倍数;
Figure FDA0003591752610000057
d-M为负偏差百分比;dM为正偏差百分比;
Figure FDA0003591752610000058
的区间形式表示如下:
Among them, N w is the number of random energy stations; T is the total dispatch period;
Figure FDA0003591752610000052
is the actual output of the kth random energy station in the tth period;
Figure FDA0003591752610000053
Output for the prediction of the kth random energy station in the tth period;
Figure FDA0003591752610000054
for
Figure FDA0003591752610000055
relative to
Figure FDA0003591752610000056
the deviation multiple;
Figure FDA0003591752610000057
d- M is the negative deviation percentage; d M is the positive deviation percentage;
Figure FDA0003591752610000058
The interval form of is as follows:
Figure FDA0003591752610000059
Figure FDA0003591752610000059
其中,[d-M,dM]称为
Figure FDA00035917526100000510
相对于
Figure FDA00035917526100000511
的偏差百分比区间;基于区间分段鲁棒优化方法,[d-M,dM]表示为多个子区间形式:
where [d - M , d M ] is called
Figure FDA00035917526100000510
relative to
Figure FDA00035917526100000511
The deviation percentage interval of ; based on the interval piecewise robust optimization method, [d - M , d M ] is expressed in the form of multiple subintervals:
d-M<…<dm-1<dm<…<dM d -M <...<d m-1 <d m <...<d M 其中,M为区间分段鲁棒优化方法的分段系数,m为每个子区间的编号,并且有m∈{Q|-M,...,-1,0,1,...,M},Q为m的编号集合;Among them, M is the segment coefficient of the interval piecewise robust optimization method, m is the number of each subinterval, and there are m∈{Q|-M,...,-1,0,1,...,M }, Q is the numbered set of m; 当m=-M时,子区间为单独一个数d-M;当m∈{-M+1,...,-1,0,1,...,M}时,子区间为(dm -1,dm];When m=-M, the sub-interval is a single number d- M ; when m∈{-M+1,...,-1,0,1,...,M}, the sub-interval is (d m -1 , d m ];
Figure FDA00035917526100000512
的子区间形式表示为:
Figure FDA00035917526100000512
The subinterval form of is expressed as:
Figure FDA00035917526100000513
Figure FDA00035917526100000513
其中,
Figure FDA00035917526100000514
Figure FDA00035917526100000515
时,
Figure FDA00035917526100000516
相对于
Figure FDA00035917526100000517
未发生偏差;当
Figure FDA00035917526100000518
时,
Figure FDA00035917526100000519
相对于
Figure FDA00035917526100000520
发生偏差,
Figure FDA00035917526100000521
表示为:
in,
Figure FDA00035917526100000514
when
Figure FDA00035917526100000515
hour,
Figure FDA00035917526100000516
relative to
Figure FDA00035917526100000517
No deviation occurs; when
Figure FDA00035917526100000518
hour,
Figure FDA00035917526100000519
relative to
Figure FDA00035917526100000520
deviation occurs,
Figure FDA00035917526100000521
Expressed as:
Figure FDA00035917526100000522
Figure FDA00035917526100000522
其中,
Figure FDA00035917526100000523
Figure FDA00035917526100000524
为第k个随机能源场站在第t时段的出力偏差上限,且满足下面的条件:
in,
Figure FDA00035917526100000523
Figure FDA00035917526100000524
is the upper limit of the output deviation of the kth random energy station in the tth period, and meets the following conditions:
Figure FDA0003591752610000061
Figure FDA0003591752610000061
以上完成了随机能源的出力波动区间分段,构造了随机能源出力的子区间;The above completes the output fluctuation interval segmentation of random energy, and constructs the sub-interval of random energy output; 其中,设置子区间分段鲁棒优化参数,具体步骤为:Among them, the sub-interval segment robust optimization parameters are set, and the specific steps are: 分段系数M将[d-M,dM]分为2M+1个子区间,定义lm代表
Figure FDA0003591752610000062
属于子区间(1+dm-1,1+dm]的偏差倍数的个数下限,定义um代表
Figure FDA0003591752610000063
属于子区间(1+dm-1,1+dm]的偏差倍数的个数上限,并且有0<lm<um<NWT;基于
Figure FDA0003591752610000064
的历史数据
Figure FDA0003591752610000065
确定每个子区间(1+dm-1,1+dm]的lm与um值;假设
Figure FDA0003591752610000066
Figure FDA0003591752610000067
的历史样本,
Figure FDA0003591752610000068
Figure FDA0003591752610000069
的历史样本,d是样本天的编号,D是样本天的集合,确定lm与um的具体步骤如下:
The segmentation coefficient M divides [d -M , d M ] into 2M+1 sub-intervals, and defines lm to represent
Figure FDA0003591752610000062
The lower limit of the number of deviation multiples belonging to the sub-interval (1+d m-1 , 1+d m ], which defines um to represent
Figure FDA0003591752610000063
The upper limit of the number of deviation multiples belonging to the subinterval (1+d m-1 , 1+d m ], and 0<l m <u m <N W T; based on
Figure FDA0003591752610000064
historical data of
Figure FDA0003591752610000065
Determine the lm and um values for each subinterval (1+d m-1 , 1+ d m ]; suppose
Figure FDA0003591752610000066
Yes
Figure FDA0003591752610000067
historical samples,
Figure FDA0003591752610000068
Yes
Figure FDA0003591752610000069
The historical samples of , d is the number of the sample day, D is the set of sample days, the specific steps to determine lm and um are as follows:
基于
Figure FDA00035917526100000610
Figure FDA00035917526100000611
的值采用下列计算
Figure FDA00035917526100000612
的历史值
Figure FDA00035917526100000613
based on
Figure FDA00035917526100000610
and
Figure FDA00035917526100000611
The value of is calculated using the following
Figure FDA00035917526100000612
historical value of
Figure FDA00035917526100000613
Figure FDA00035917526100000614
Figure FDA00035917526100000614
计算每个子区间(1+dm-1,1+dm]各时段中
Figure FDA00035917526100000615
的个数Nd,m,并筛选出各子区间对应的偏差倍数个数的最大值
Figure FDA00035917526100000616
和最小值
Figure FDA00035917526100000617
Figure FDA00035917526100000618
代表了每个子区间(1+dm-1,1+dm]在时段中
Figure FDA00035917526100000619
的个数上限与个数下限;
Calculate each sub-interval (1+d m-1 , 1+d m ] in each time period
Figure FDA00035917526100000615
The number N d, m , and filter out the maximum number of deviation multiples corresponding to each sub-interval
Figure FDA00035917526100000616
and minimum
Figure FDA00035917526100000617
and
Figure FDA00035917526100000618
represents each subinterval (1+d m-1 , 1+d m ] in the period
Figure FDA00035917526100000619
The upper limit and the lower limit of the number;
计算每个子区间(1+dm-1,1+dm]在时段内的最大发生概率
Figure FDA00035917526100000620
与最小发生概率
Figure FDA00035917526100000621
Calculate the maximum probability of occurrence of each subinterval (1+d m-1 , 1+d m ] within the time period
Figure FDA00035917526100000620
with minimum probability of occurrence
Figure FDA00035917526100000621
Figure FDA00035917526100000622
Figure FDA00035917526100000622
Figure FDA00035917526100000623
Figure FDA00035917526100000623
计算每个子区间(1+dm-1,1+dm]的偏差倍数的lm与um值;Calculate the lm and um values of the deviation multiples of each subinterval (1+d m-1 , 1+ d m ];
Figure FDA00035917526100000624
Figure FDA00035917526100000624
Figure FDA00035917526100000625
Figure FDA00035917526100000625
其中,引入对偶变量
Figure FDA00035917526100000626
获取正旋转备用约束的线性化形式:
Among them, the introduction of dual variables
Figure FDA00035917526100000626
Obtain the linearized form of the positive spinning reserve constraint:
Figure FDA00035917526100000627
Figure FDA00035917526100000627
Figure FDA0003591752610000071
Figure FDA0003591752610000071
Figure FDA0003591752610000072
Figure FDA0003591752610000072
Figure FDA0003591752610000073
Figure FDA0003591752610000073
引入对偶变量
Figure FDA0003591752610000074
获取负旋转备用约束的线性化形式:
Introduce dual variables
Figure FDA0003591752610000074
Obtain the linearized form of the negative spinning reserve constraint:
Figure FDA0003591752610000075
Figure FDA0003591752610000075
Figure FDA0003591752610000076
Figure FDA0003591752610000076
Figure FDA0003591752610000077
Figure FDA0003591752610000077
Figure FDA0003591752610000078
Figure FDA0003591752610000078
将正负旋转备用约束线性化后,获取区间分段鲁棒模型;After linearizing the positive and negative rotation reserve constraints, an interval piecewise robust model is obtained; 其中,NG系统中火电机组集合;ug,t为第g台火电机组在第t时刻的运行状态;
Figure FDA0003591752610000079
为时段t全系统的负荷需求;g为火电机组;
Figure FDA00035917526100000710
为机组g的出力下限;
Figure FDA00035917526100000711
为机组g的出力上限;
Figure FDA00035917526100000712
Figure FDA00035917526100000713
分别为偏差倍数在各子区间分段的个数上限和下限;
Figure FDA00035917526100000714
为第k个随机能源场站在第t时段的预测出力;
Figure FDA00035917526100000715
为t时段系统的正旋转备用容量需求;
Figure FDA00035917526100000716
为t时段系统的负旋转备用容量需求。
Among them, the set of thermal power units in the NG system; u g , t is the operating state of the gth thermal power unit at the t th time;
Figure FDA0003591752610000079
is the load demand of the whole system in period t; g is the thermal power unit;
Figure FDA00035917526100000710
is the lower output limit of unit g;
Figure FDA00035917526100000711
is the output upper limit of unit g;
Figure FDA00035917526100000712
and
Figure FDA00035917526100000713
are the upper and lower limits of the number of segments of the deviation multiple in each sub-interval, respectively;
Figure FDA00035917526100000714
Output for the prediction of the kth random energy station in the tth period;
Figure FDA00035917526100000715
is the positive spinning reserve capacity requirement of the system in period t;
Figure FDA00035917526100000716
is the negative spinning reserve capacity requirement of the system during period t.
3.一种计算机可读存储介质,其上存储计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1所述的建立方法的步骤。3 . A computer-readable storage medium on which a computer program is stored, characterized in that, when the computer program is executed by a processor, the steps of the establishment method of claim 1 are implemented.
CN202011344914.1A 2020-11-26 2020-11-26 A method and device for establishing an optimal scheduling model for a unit Active CN112668751B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011344914.1A CN112668751B (en) 2020-11-26 2020-11-26 A method and device for establishing an optimal scheduling model for a unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011344914.1A CN112668751B (en) 2020-11-26 2020-11-26 A method and device for establishing an optimal scheduling model for a unit

Publications (2)

Publication Number Publication Date
CN112668751A CN112668751A (en) 2021-04-16
CN112668751B true CN112668751B (en) 2022-06-17

Family

ID=75403657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011344914.1A Active CN112668751B (en) 2020-11-26 2020-11-26 A method and device for establishing an optimal scheduling model for a unit

Country Status (1)

Country Link
CN (1) CN112668751B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864542B (en) * 2023-02-24 2023-05-05 南方电网数字电网研究院有限公司 Optimization method, device, equipment and storage medium of power unit scheduling model
CN118353102B (en) * 2024-06-19 2024-10-29 华南理工大学 Power system unit combination method based on target robustness optimization

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021402A (en) * 1997-06-05 2000-02-01 International Business Machines Corporaiton Risk management system for electric utilities
WO2009117364A2 (en) * 2008-03-21 2009-09-24 General Electric Company Method for controlling a powered system based on mission plan
CN104809327A (en) * 2014-09-02 2015-07-29 长沙理工大学 Uncertain distribution robust optimization method of new energy-containing power dispatching moment
CN105426998A (en) * 2015-11-19 2016-03-23 广西大学 Method for predicting wind power interval based on multiple conditions
CN105846425A (en) * 2016-04-08 2016-08-10 江苏省电力试验研究院有限公司 Economic dispatching method based on general wind power forecasting error model
CN107947164A (en) * 2017-11-30 2018-04-20 三峡大学 A Day-ahead Robust Scheduling Method for Power Systems Considering Multiple Uncertainties and Correlations
CN108108846A (en) * 2017-12-28 2018-06-01 东南大学 A kind of alternating current-direct current mixing microgrid robust optimizes coordinated scheduling method
CN108539732A (en) * 2018-03-30 2018-09-14 东南大学 Alternating current-direct current microgrid economic load dispatching based on the optimization of more bounded-but-unknown uncertainty robusts
CN108629449A (en) * 2018-04-26 2018-10-09 东南大学 A kind of distribution robust formula Optimization Scheduling for alternating current-direct current mixing microgrid
CN109256810A (en) * 2018-11-14 2019-01-22 南京邮电大学 Consider that blower is contributed and does not know the Multipurpose Optimal Method of cost
CN110247426A (en) * 2019-06-12 2019-09-17 国网山西省电力公司电力科学研究院 A kind of robust Unit Combination method based on the uncertain set of multiband
CN110782363A (en) * 2019-08-15 2020-02-11 东南大学 AC/DC power distribution network scheduling method considering wind power uncertainty

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6021402A (en) * 1997-06-05 2000-02-01 International Business Machines Corporaiton Risk management system for electric utilities
WO2009117364A2 (en) * 2008-03-21 2009-09-24 General Electric Company Method for controlling a powered system based on mission plan
CN104809327A (en) * 2014-09-02 2015-07-29 长沙理工大学 Uncertain distribution robust optimization method of new energy-containing power dispatching moment
CN105426998A (en) * 2015-11-19 2016-03-23 广西大学 Method for predicting wind power interval based on multiple conditions
CN105846425A (en) * 2016-04-08 2016-08-10 江苏省电力试验研究院有限公司 Economic dispatching method based on general wind power forecasting error model
CN107947164A (en) * 2017-11-30 2018-04-20 三峡大学 A Day-ahead Robust Scheduling Method for Power Systems Considering Multiple Uncertainties and Correlations
CN108108846A (en) * 2017-12-28 2018-06-01 东南大学 A kind of alternating current-direct current mixing microgrid robust optimizes coordinated scheduling method
CN108539732A (en) * 2018-03-30 2018-09-14 东南大学 Alternating current-direct current microgrid economic load dispatching based on the optimization of more bounded-but-unknown uncertainty robusts
CN108629449A (en) * 2018-04-26 2018-10-09 东南大学 A kind of distribution robust formula Optimization Scheduling for alternating current-direct current mixing microgrid
CN109256810A (en) * 2018-11-14 2019-01-22 南京邮电大学 Consider that blower is contributed and does not know the Multipurpose Optimal Method of cost
CN110247426A (en) * 2019-06-12 2019-09-17 国网山西省电力公司电力科学研究院 A kind of robust Unit Combination method based on the uncertain set of multiband
CN110782363A (en) * 2019-08-15 2020-02-11 东南大学 AC/DC power distribution network scheduling method considering wind power uncertainty

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
A Multi-Band Uncertainty Set Based Robust SCUC With Spatial and Temporal Budget Constraints;Chenxi Dai 等;《IEEE Transactions on Power Systems》;20160224;第31卷(第6期);第4988-5000页 *
A two-stage robust transmission expansion planning approach with multi-band uncertainty set;Chenxi Dai 等;《2016 IEEE Power and Energy Society General Meeting》;20161114;第1-5页 *
New results about multi-band uncertainty in robust optimization;Christina Büsing等;《Proceedings of the 11th international conference on Experimental》;20120630;第63-74页 *
Robust SCUC With Multi-Band Nodal Load Uncertainty Set;Bingqian Hu 等;《IEEE Transactions on Power Systems》;20150716;第31卷(第3期);第2491-2492页 *
The minimum spinning reserve model for wind power uncertainty by roubst scheduling model;Li Jinghua 等;《2014 IEEE PES Asia-Pacific Power and Energy Engineering Conference》;20150330;第1-5页 *
基于两阶段鲁棒区间优化的风储联合运行调度模型;张刘冬 等;《电力自动化设备》;20181210;第38卷(第12期);第59-66、93页 *
基于鲁棒优化的主动配电网分布式电源优化配置方法;凌万水 等;《电力系统保护与控制》;20200801;第48卷(第15期);第141-148页 *
大规模风电接入下的电力系统旋转备用优化方法研究;雷佳;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20180715;第2018年卷(第07期);第C042-243页 *
考虑风电主动控制的电力系统鲁棒备用计划问题研究;林峰;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》;20180615;第2018年卷(第06期);第C042-812页 *
考虑风电降载的电力系统鲁棒备用调度模型;林峰 等;《电力系统自动化》;20181010;第42卷(第19期);第64-70、154页 *

Also Published As

Publication number Publication date
CN112668751A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
CN113393054A (en) Optimal scheduling method and optimal scheduling system of wind storage combined system
CN103606967B (en) A kind of dispatching method realizing electric power system robust and run
CN107239863B (en) Robust unit combination method for power grid safety constraint
CN108667012A (en) Source-load-storage two-stage coordinated optimization method for regional energy interconnection based on multi-scenario
CN105790265A (en) AC power flow constraint-based uncertainty unit commitment model and solving method
CN104239967A (en) Multi-target economic dispatch method for power system with wind farm
CN107240933A (en) A kind of wind fire for considering wind power characteristic coordinates rolling scheduling method
CN106886839B (en) Combined optimal scheduling method for hydrothermal power units based on mixed integer programming
CN111245025A (en) Optimization method, terminal device and storage medium for comprehensive energy system operation strategy
CN112668751B (en) A method and device for establishing an optimal scheduling model for a unit
CN115296345B (en) A combined optimization method and device for start-stop-output-standby of a gas-fired generator set
CN113298407B (en) A method for establishing an optimal dispatch model for an electric-gas integrated energy system in an industrial park
CN112186734B (en) Medium-and-long-term operation simulation method for power system, storage medium and computing equipment
CN105305423A (en) Method for determining optimal error boundary considering intermittent energy uncertainty
CN105244870B (en) A kind of method that wind rate and unit generation amount are abandoned in quick calculating power grid wind field
CN109802437A (en) A kind of Unit Combination optimization method based on distribution robust chance constraint
CN117154781B (en) Energy storage frequency modulation capacity configuration method, device and computer-readable storage medium
CN113435659B (en) Scene analysis-based two-stage optimized operation method and system for comprehensive energy system
CN114386236A (en) Planning method and system for reasonable utilization rate of new energy consumption
CN116562563A (en) Power system optimization operation method based on minimum inertia demand evaluation
CN104836260B (en) Calculation method for allowed capacity of DGs in active power distribution network under voltage constraint
CN109657898B (en) Renewable energy random dynamic economic dispatching method based on convex relaxation
CN119134271A (en) A method for optimizing the scheduling of integrated energy systems based on multiple time scales
CN116979558A (en) Time-frequency optimization scheduling method for electric hydrogen comprehensive energy system
CN117477659A (en) A method, device and medium for proportioning new energy and conventional power in a power system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant