[go: up one dir, main page]

CN112680371A - 一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法 - Google Patents

一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法 Download PDF

Info

Publication number
CN112680371A
CN112680371A CN201910998677.1A CN201910998677A CN112680371A CN 112680371 A CN112680371 A CN 112680371A CN 201910998677 A CN201910998677 A CN 201910998677A CN 112680371 A CN112680371 A CN 112680371A
Authority
CN
China
Prior art keywords
gene
candida utilis
double
kitchen waste
expression vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910998677.1A
Other languages
English (en)
Inventor
刘泽寰
林蒋海
孙涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Recyclean Low Carbon Technology Co ltd
Original Assignee
Guangdong Recyclean Low Carbon Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Recyclean Low Carbon Technology Co ltd filed Critical Guangdong Recyclean Low Carbon Technology Co ltd
Priority to CN201910998677.1A priority Critical patent/CN112680371A/zh
Priority to EP19949535.9A priority patent/EP4053279A4/en
Priority to JP2021578075A priority patent/JP2022539781A/ja
Priority to AU2019470409A priority patent/AU2019470409A1/en
Priority to PCT/CN2019/125985 priority patent/WO2021072963A1/zh
Publication of CN112680371A publication Critical patent/CN112680371A/zh
Priority to US17/565,813 priority patent/US20220251583A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/485Exopeptidases (3.4.11-3.4.19)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/58Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi
    • C12N9/62Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from fungi from Aspergillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/23Aspartic endopeptidases (3.4.23)
    • C12Y304/23018Aspergillopepsin I (3.4.23.18)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/24Metalloendopeptidases (3.4.24)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/102Plasmid DNA for yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/72Candida

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及遗传工程和发酵工程领域,提供一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株,所述产朊假丝酵母双基因共表达菌株为将羧肽酶和内切蛋白酶基因通过产朊假丝酵母表达载体整合至产朊假丝酵母基因组上构建而成。本发明提供了一种能降解餐厨垃圾的产朊假丝酵母双基因共表达菌株,能对餐厨垃圾中的蛋白成分进行专一性的降解,将其分解转化成小肽和氨基酸。

Description

一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达 菌株及其构建方法
技术领域
本发明涉及遗传工程和发酵工程领域,更具体地,涉及一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法。
背景技术
餐厨垃圾中的蛋白成分是餐厨垃圾中除碳水化合物、油脂之外的主要成分。餐厨垃圾经过发酵后,微生物基本将餐厨垃圾中的糖类物质耗尽,蛋白类物质却有较多的残留。因此,餐厨垃圾中的蛋白成分如果直接排放到环境中,极易造成环境污染。如何转化利用餐厨垃圾中的蛋白质是一个较为棘手的问题。
微生物发酵正在被国内外业界重视,发酵技术正在成为一种对餐厨垃圾综合利用的有效方式,真正达到资源节约和环境有好地目的。发酵残液,一般是指在工业生产应用中,原材料经过微生物的发酵后所产生的废渣或废液的总称。而餐厨垃圾发酵后的残液,是指餐厨垃圾原料经过了脱油脂、发酵以及发酵产物提取等一系列工艺流程后得到的微生物未利用的废弃物。经过前面工艺中的脱油脂和发酵,餐厨垃圾中原有的油脂类和糖类化合物基本被利用完,而餐厨垃圾中的蛋白质类化合物只有很少的一部分被微生物生长所利用,大部分蛋白质以废弃物的形式残留在发酵残液中,而且随着工业上对餐厨垃圾发酵的进一步研究和发展,必然会使发酵产生的残液越来越多,如果不经过有效的处理,随意排放,残液中大量的蛋白质类有机物,不仅会造成有毒有害微生物的大量繁殖,而且会对环境造成严重的危害。所以必须采取有效的处理方式,对餐厨发酵残液进行处理,而处理的关键是将其中的有机物进一步利用,将大量的蛋白质分解转变成小肽和氨基酸就成为一条可行的办法,不仅可以解决残存的蛋白质污染问题,小肽和氨基酸还是制药、生物饲料、有机肥的原材料,具有一定的经济价值。
氨基酸肥料相较于传统的化肥,不仅肥力高、吸收快,还是一种绿色环保的化肥,可以有效避免环境污染。如果能将餐厨垃圾中的蛋白成分转化成小肽或氨基酸,正可以为氨基酸肥料的生产提供原料。这样,既可以解决餐厨垃圾发酵后残余的蛋白污染问题,又可以产生可观的经济效益,具有良好的社会意义。
由于餐厨垃圾中的蛋白成分复杂,单一的蛋白酶往往达不到良好的作用效果,需要多种酶协同作用,并且,不同酶之间的比例对水解效果也会有很大影响。
发明内容
本发明旨在克服上述现有技术的至少一种不足,提供一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法,用于解决降解餐厨发酵液中蛋白质的问题。
本发明采取的技术方案是,提供一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株,所述产朊假丝酵母双基因共表达菌株为将羧肽酶和内切蛋白酶基因通过产朊假丝酵母表达载体整合至产朊假丝酵母基因组上构建而成。
本发明的重点在于构建了一种能够降解餐厨垃圾的产朊假丝酵母双基因共表达菌株,将羧肽酶和内切蛋白酶基因转入产朊假丝酵母并使其分泌表达,所选用的工具为产朊假丝酵母表达载体。
其中,羧肽酶是一种外切蛋白酶,可以有选择的从蛋白质的C端水解产生相应的氨基酸一种蛋白酶,在多种生物体中都能够找到羧肽酶酶分子的酶原形式。羧肽酶参与了机体中多个器官的新陈代谢。此外,在医药应用上,很多机体中产生的不良物质,都依赖于羧肽酶的水解。现在生产羧肽酶的主要来源是微生物自身代谢产生的羧肽酶或以微生物为宿主过量表达的羧肽酶。
内切蛋白酶,可以将蛋白质分子多肽链从中间打断成几段或几十段。广泛存在于生物体的消化,凝血和补体激活和补体激活生理功能等方面,其作用是通过识别相应的氨基酸残基链,活化的羟基与肽键的原子产生亲核反应。
产朊假丝酵母,在生产和生活中得到了广泛的应用,是美国食品和药品管理局认证的可视为安全的微生物菌株,产朊假丝酵母具有一系列优良的特性;培养条件简单,可以在一些简单的培养条件下就可以进行生长,而且具有五、六碳糖双糖共转运系统,能够实现戊糖和己糖的共用,拓宽了应用范围;因自身不分泌胞外蛋白酶,产朊假丝酵母可以被应用于多种目标蛋白的表达,其本身作为一种生物安全性生物,只需要经过简单的分离纯化程序目标产物的分离,大大节约了生产成本。
进一步地,所述的产朊假丝酵母表达载体为产朊假丝酵母多基因共表达载体。
进一步地,所述产朊假丝酵母表达载体为GAP-pepA-TEF1-pepF。
一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株的构建方法,包括以下步骤:
S1:内切蛋白酶基因pepA与表达载体pcGAPGA进行连接;
S2:羧肽酶基因pepF与表达载体pcTEF1GA进行连接;
S3:获取羧肽酶基因pepF表达盒;
S4:将表达载体pcGAPGA-pepA线性化;
S5:将上述羧肽酶基因表达盒与表达载体pcGAPGA-pepA进行连接,得到同时含有羧肽酶和内切蛋白酶基因的共表达载体;
S6:将上述构建得到的重组双基因共表达载体用限制性核酸内切酶SacI切割,使之线性化后转化产朊假丝酵母,构建基因重组产朊假丝酵母双基因共表达菌株。
进一步地,还包括重组产朊假丝酵母双基因共表达菌株水解餐厨垃圾中的蛋白成分。
进一步地,步骤S6中所述的转化是使用电转化法、冷冻法或化学试剂法进行转化。
进一步地,所述步骤S1中的内切蛋白酶为黑曲霉中的内切蛋白酶pepA,所述步骤S2中的羧肽酶为黑曲霉中的羧肽酶pepF。
与现有技术相比,本发明的有益效果为:餐厨垃圾中含有大量的营养物质,在脱油脂和发酵后其中原有的油脂类和糖类化合物基本被除去,而餐厨垃圾中的蛋白质类化合物只有很少的一部分被微生物生长所利用,大部分蛋白质以废弃物的形式残留在发酵残液中。鉴于此,本发明提供了一种能降解餐厨垃圾的产朊假丝酵母双基因共表达菌株,对餐厨发酵残液进行处理,将其中的有机物进一步利用,将大量的蛋白质分解转变成小肽和氨基酸。本发明通过调整不同蛋白酶之间的比例,利用蛋白酶间的协同作用,寻找最佳蛋白酶配比,达到最佳的效率,获得最大的氨基酸产量。
附图说明
图1为内切蛋白酶基因pepA与pMD19-T载体连接转化DH5a菌液PCR鉴定。
图2为羧肽酶基因pepF与pMD19-T载体连接转化DH5a菌液PCR鉴定。
图3为内切蛋白酶基因pepA与表达载体pcGAPGA连接阳性鉴定。
图4为羧肽酶基因pepF与表达载体pcTEF1GA连接阳性鉴定。
图5为pepF表达盒基因。
图6为pcGAPGA-pepA表达载体BamHI线性化。
图7为线性化pcGAPGA-pepA反向PCR。
图8为pepF表达盒与pcGAPGA-pepA反向PCR载体进行连接转化DH5a阳性鉴定。
图9为双基因表达载体线性化。
图10为电转产朊假丝酵母阳性鉴定。
图11为重组产朊假丝酵母TGCE酶活生长曲线。
图12为pcGAPGA-pepA,pcTEF1GA-pepF重组质粒构建过程。
图13为scTEF1-pepF重组产朊假丝酵母生长酶活曲线。
图14为cuGAP-pepA重组产朊假丝酵母生长酶活曲线。
图15为双基因共表达载体GAP-pepA-TEF1-pepF构建过程。
图16为三基因共表达载体GAP-pepA-TEF1-YPDF-HXT7-pepF构建过程。
图17为三基因共表达重组产朊假丝菌株生长酶活曲线。
具体实施方式
本发明附图仅用于示例性说明,不能理解为对本发明的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例
利用扩增的目的基因与pMD19-T载体进行重组获得pMD19-X重组质粒,即包含了目的基因X的重组质粒,X代表pepA基因或pepF基因。对包含pepA或pepF的重组质粒进行酶切,同时,分别将产朊假丝酵母表达载体pcGAPGA、pcTEF1GA进行酶切,连接酶切后获得的表达载体pcGAPGA和目的基因pepA,获得pcGAPGA-pepA重组质粒,连接酶切后获得的表达载体pcTEF1GA和目的基因pepF,获得pcTEF1GA-pepF重组质粒;pcGAPGA,pcTEF1GA结构以及重组质粒构建过程如图12所示。将pcTEF1GA-pepF重组质粒电转化至产朊假丝酵母后获得含有羧肽酶pepF单基因的重组产朊假丝酵母,对其进行上述实施例类似的生物量、酶活测定,将该重组菌株命名为scTEF1-pepF,进行测定绘制的图谱如图13所示。将pcGAPGA-pepA重组质粒电转化至产朊假丝酵母后获得含有内切蛋白酶pepA单基因的重组产朊假丝酵母,对其进行上述实施例类似的生物量、酶活测定,将重组菌株命名cuGAP-pepA,进行测定绘制的图谱如图14所示。在获得表达载体pcGAPGA-pepA的基础上,分别获取氨肽酶基因表达盒YPDF和羧肽酶基因表达盒pepF,先将YPDF基因表达盒与pcGAPGA-pepA表达载体连接及转化,获得同时含有氨肽酶和内切蛋白酶基因的表达载体,命名为GAP-pepA-HXT7-YPDF,再将该载体与pepF基因表达盒进行连接和转化,获得同时含有氨肽酶、羧肽酶、内切蛋白酶的三基因表达载体,将三基因表达载体命名为GAP-pepA-TEF1-YPDF-HXT7-pepF,具体构建过程及结构如图16所示,电转化产朊假丝酵母并进行生物量、酶活测定,绘制图谱如图17所示。
一、内切蛋白酶pepA基因和羧肽酶pepF基因分别和表达载体pcGAPGA和pcTEF1GA进行连接
(1)内切蛋白酶pepA与表达载体pcGAPGA进行连接。
从黑曲霉中提取基因组并用引物pepAF/R引物PCR得到pepA片段,其中,pepA片段序列如序列表中的SEQ ID No.2序列所示,将得到的片段与pMD19-T载体进行连接后,热激转化DH5a大肠杆菌后进行菌液PCR鉴定,结果如图1所示。
将连接有pepA基因的pMD19-T载体和pcGAPGA表达载体分别用XhoI和XbaI两个限制性内切酶进行双酶切,并对目标片段进行回收。
将双酶切后的pepA基因与双酶切后的pcGAPGA表达载体用DNA连接酶进行连接后,构建重组表达载体pcGAPGA-pepA,热激转化DH5a大肠杆菌,并进行菌液PCR鉴定,结果如图3所示。
(2)羧肽酶酶pepF与表达载体pcTEF1GA进行连接。
从黑曲霉中提取基因组并用引物pepF F1-R4引物采用重叠延伸PCR得到pepF片段,其中,pepF片段序列如序列表中的SEQ ID No.1序列所示,将得到的片段与pMD19-T载体进行连接后,热激转化DH5a大肠杆菌后进行菌液PCR鉴定,结果如图2所示。
将连接有pepF基因的pMD19-T载体和pcTEF1GA表达载体分别用XhoI和XbaI两个限制性内切酶进行双酶切,并对目标片段进行回收。
将双酶切后的pepF基因与双酶切后的pcTEF1GA表达载体用DNA连接酶进行连接后,构建重组表达载体pcTEF1GA-pepF,热激转化DH5a大肠杆菌,并进行菌液PCR鉴定,结果如图4所示。
二、pepF表达盒的获取
从含有重组表达载体pcTEF1GA-pepF质粒的DH5a大肠杆菌中提取质粒,以重组表达载体pcTEF1GA-pepF质粒为模板,采用引物pepF casF/R,PCR扩增得到含有TEF1启动子的pepF基因片段的pepF表达盒,结果如图5所示。
三、重组表达载体pcGAPGA-pepA的线性化
从含有重组表达载体pcGAPGA-pepA质粒的DH5a大肠杆菌中提取质粒,以重组表达载体pcGAPGA-pepA质粒为模板,用限制性核酸内切酶BamHI对重组载体pcGAPGA-pepA进行线性化处理。结果如图6所示。
为增强无缝连接的效果,去除未被酶切质粒背景对无缝连接的干扰,以BamHI单酶切线性化后片段为模板,采用引物RpepA F/R,对线性化后的质粒片段进行反向PCR,得到最终的线性化的重组表达载体pcGAPGA-pepA,结果如图7所示。
四、pepF表达盒与线性化重组表达载体pcGAPGA-pepA进行连接,转化产朊假丝酵母
将得到的pepF表达盒与线性化的pcGAPGA-pepA重组质粒利用无缝连接试剂盒进行连接,得到重组双基因表达载体GAP-pepA-TEF1-pepF,其构建过程如图15所示,后转化DH5a大肠杆菌,利用引物pepAF/R和引物pepF F1/R4对DH5a进行阳性鉴定,结果如图8所示。
从含有双基因重组表达载体GAP-pepA-TEF1-pepF质粒的DH5a大肠杆菌中提取质粒,用限制性核酸内切酶SacI进行线性化处理后,转化产朊假丝酵母,得到含内切蛋白酶pepA和羧肽酶pepF的产朊假丝酵母TGCE,对其基因组进行鉴定,结果如图9所示。
五、双基因重组产朊假丝酵母TGCE酶活生长曲线
将含有内切蛋白酶和羧肽酶双基因的重组产朊假丝酵母TGCE进行培养,以初始OD=0.05接种量接种到100mL的YPD培养基中,每隔12h分别吸取上清液,对重组产朊假丝酵母的生物量和采用Folin法对上清液中的蛋白酶酶活进行测定,并绘制图谱,结果如图11所示。
由图11可知,在本实施例含双基因的产朊假丝酵母生长酶活曲线中,OD值在72h达到峰值超过30,并持续一段时间至94h时仍处于25之上,酶活则在48h时达到峰值超过14U/mL,48h~96h内在11~14U/mL区域内波动。对于图13,即含pepF单基因的产朊假丝酵母生长酶活曲线,虽然其OD值在84h时达到峰值并超过30,但达到峰值后就发生较为明显的下降。而且其酶活峰值只在13U/mL以下,并在达到峰值后发生显著的下降,在96h降至11U/mL以下,所以相比于pepF单基因,双基因具有更佳的生长量,稳定且较高的酶活。对于图14,虽然pepA单基因产朊假丝酵母在72h后酶活性在14~16U/mL区域内波动,具有较高的酶活性,但其生长量在60h后发生明显的变化,虽然其具有较高的酶活,但随着生长状况的恶化,其无法持久的产生酶,酶量的减少仍然会导致酶降解的效果变差,而图11所代表的双基因中,虽然自48h的峰值后酶活有所降低,但其酶活仍处于较高的水准,而且生长量仍在较长的时间内保持较高的水平,平衡的生长状况、酶活有利于显著提高降解效果。对于图17,即三基因产朊假丝酵母生长酶活曲线,虽然其酶活在48h达到与本申请双基因相似的峰值且持续了一段时间峰值酶活,但其OD值平滑升高至峰值后就降低,且峰值不足25,显而易见该三基因生长速度缓慢,且生长量显然不足其他单基因、双基因的重组产朊假丝酵母。所以,以本申请的双基因与单基因、三基因相比,具有稳定且较高的酶活、生长量,均衡了菌株酶活与菌株生长状况,能够显著提高单位菌株带来的降解效果,适合工业化应用。
在上述实施例中,用到的引物如表1所示,其中字母F代表正向引物,R代表反向引物,序号代表不同的引物组合。
Figure BDA0002238723510000071
表1
显然,本发明的上述实施例仅仅是为清楚地说明本发明技术方案所作的举例,而并非是对本发明的具体实施方式的限定。凡在本发明权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Figure BDA0002238723510000081
Figure BDA0002238723510000091
Figure BDA0002238723510000101
Figure BDA0002238723510000111
Figure BDA0002238723510000121
序列表
<110> 广东利世康低碳科技有限公司
<120> 一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1608
<212> DNA
<213> 未知(Unknown)
<400> 1
ctcgagatgc tgtttcgcag tctgttgtcg acggctgtcc tagccgtctc gctgtgcacg 60
gataatgctt cagctgctaa acatggtcga tttggccaaa aagctcgcga cgccatgaac 120
atcgcgaagc gttccgctaa cgccgtgaaa cactcgttga agatccctgt cgaggactat 180
cagttcttga acaacaagac taagccttac cgcgtggaaa gcctgcctga tgttcacttc 240
gatctgggcg agatgtattc cggcttggtc cctattgaga agggcaacgt gtcacggtcc 300
cttttctttg tcttccagcc cactattggc gagcctgtgg atgagatcac catctggctg 360
aatggtggcc ctggttgcag ttcccttgag gcctttctcc aggagaatgg tagattcgtg 420
tggcagcctg gaacctacca gcctgttgag aacccatact cgtgggtgaa tctcaccaat 480
gttctgtggg ttgaccaacc tgtgggaacg ggattctctc tgggtgtccc aaccgctacg 540
tccgaggagg agattgctga agactttgtg aagttcttca agaactggca gcagatcttt 600
gggatcaaaa acttcaagat ctatgttact ggagaaagtt atgcgggccg ttatgttcct 660
tacatatccg ctgctttcct agatcagaat gatacagaac acttcaacct aaaaggtgca 720
ctggcatatg atccctgtat tggtcagttt gactacgtgc aggaggaagc acctgttgtt 780
ccctttgtcc agaagaacaa tgccctcttc aatttcaatg caagcttttt ggcggaacta 840
gagagcatcc atgagcaatg tggatacaag gatttcatcg accagtatct agtcttccca 900
gcatccggtg tccagccgcc aaaggctatg aactggagcg atcccacctg tgatgtttat 960
gacatcgtta ataacgccgt cctggatccc aacccgtgct tcaaccccta cgaaatcaac 1020
gagatgtgcc ccattctctg ggacgttctt ggattcccca ccgaagtcga ctatctccct 1080
gcgggcgcca gcatctactt tgaccgcgct gatgttaagc gtgccatgca cgctcctaac 1140
atcacctggt ccgagtgctc ggtggagagc gtctttgtcg ggggcgacgg cggtcccgag 1200
caggagggcg actactcggc caaccccatc gagcatgtct tgccccaggt catcgaaggc 1260
accaaccgag ttctgatcgg taacggtgat tatgacatgg tcatccttac caacggcacc 1320
cttctctcga tccagaacat gacatggaat ggaaagcttg gattcgacac ggcccccagc 1380
acccccatca acatcgacat ccctgacctg atgtacaatg aagtgttcat tgagaacggc 1440
tatgacccac aaggtggtca gggtgtcatg ggcatccagc actatgagcg tggtcttatg 1500
tgggctgaga ccttccagag cggacacatg cagccccaat tccaacccag agtgtcatac 1560
cgtcaccttg agtggctgct tggccggcgt gataccctgt aatctaga 1608
<210> 2
<211> 2178
<212> DNA
<213> 未知(Unknown)
<400> 2
ttcgaaacga tggttgtttt ctctaagacc gctgctttgg ttttgggttt gtcttctgct 60
gtttctgctg ctccagctcc aaccagaaag ggtttcacca tcaaccaaat cgctagacca 120
gctaacaaga ccagaaccat caacttgcca ggtatgtacg ctagatcttt ggctaagttc 180
ggtggtaccg ttccacaatc tgttaaggag gctgcttcta agggttctgc tgttaccacc 240
ccacaaaaca acgatgagga gtacttgacc ccagttaccg ttggtaagtc taccttgcac 300
ttggatttcg ataccggttc tgctgatttg tgggttttct ctgatgagtt gccatcttct 360
gagcaaaccg gtcacgattt gtacacccca tcttcttctg ctaccaagtt gtctggttac 420
acctgggata tctcttacgg tgatggttct tctgcttctg gtgatgttta cagagatacc 480
gttaccgttg gtggtgttac caccaacaag caagctgttg aggctgcttc taagatctct 540
tctgagttcg ttcaaaacac cgctaacgat ggtttgttgg gtttggcttt ctcttctatc 600
aacaccgttc aaccaaaggc tcaaaccacc ttcttcgata ccgttaagtc tcaattggat 660
tctccattgt tcgctgttca attgaagcac gatgctccag gtgtttacga tttcggttac 720
atcgatgatt ctaagtacac cggttctatc acctacaccg atgctgattc ttctcaaggt 780
tactggggtt tctctaccga tggttactct atcggtgatg gttcttcttc ttcttctggt 840
ttctctgcta tcgctgatac cggtaccacc ttgatcttgt tggatgatga gatcgtttct 900
gcttactacg agcaagtttc tggtgctcaa gagtctgagg aggctggtgg ttacgttttc 960
tcttgttcta ccaacccacc agatttcacc gttgttatcg gtgattacaa ggctgttgtt 1020
ccaggtaagt acatcaacta cgctccaatc tctaccggtt cttctacctg tttcggtggt 1080
atccaatcta actctggttt gggtttgtct atcttgggtg atgttttctt gaagtctcaa 1140
tacgttgttt tcaactctga gggtccaaag ttgggtttcg ctgctcaagc tggtggtggt 1200
ggctcgagcg ctaagtcttc tttcatctct accaccacca ccgatttgac ctctatcaac 1260
acctctgctt actctaccgg ttctatctct accgttgaga ccggtaacag aaccacctct 1320
gaggttatct ctcacgttgt taccacctct accaagttgt ctccaaccgc taccacctct 1380
ttgaccatcg ctcaaacctc tatctactct accgattcta acatcaccgt tggtaccgat 1440
atccacacca cctctgaggt tatctctgat gttgagacca tctccagaga gaccgcttct 1500
accgttgttg ctgctccaac ctctaccacc ggttggaccg gtgctatgaa cacctacatc 1560
tctcaattca cctcttcttc tttcgctacc atcaactcta ccccaatcat ctcttcttct 1620
gctgttttcg agacctctga tgcttctatc gttaacgttc acaccgagaa catcaccaac 1680
accgctgctg ttccatctga ggagccaacc ttcgttaacg ctaccagaaa ctctttgaac 1740
tctttctgtt cttctaagca accatcttct ccatcttctt acacctcttc tccattggtt 1800
tcttctttgt ctgtttctaa gaccttgttg tctacctctt tcaccccatc tgttccaacc 1860
tctaacacct acatcaagac caagaacacc ggttacttcg agcacaccgc tttgaccacc 1920
tcttctgttg gtttgaactc tttctctgag accgctgttt cttctcaagg taccaagatc 1980
gataccttct tggtttcttc tttgatcgct tacccatctt ctgcttctgg ttctcaattg 2040
tctggtatcc aacaaaactt cacctctacc tctttgatga tctctaccta cgagggtaag 2100
gcttctatct tcttctctgc tgagttgggt tctatcatct tcttgttgtt gtcttacttg 2160
ttgttctgat aatctaga 2178

Claims (8)

1.一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株,其特征在于,所述产朊假丝酵母双基因共表达菌株为将羧肽酶和内切蛋白酶基因通过产朊假丝酵母表达载体整合至产朊假丝酵母基因组上构建而成。
2.根据权利要求1所述的一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株,其特征在于,所述的产朊假丝酵母表达载体为产朊假丝酵母多基因共表达载体。
3.根据权利要求1所述的一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株的构建方法,其特征在于,所述产朊假丝酵母表达载体为GAP-pepA-TEF1-pepF。
4.根据权利要求1至3任一项所述的一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株的构建方法,其特征在于,包括以下步骤:
S1:内切蛋白酶基因pepA与表达载体pcGAPGA进行连接;
S2:羧肽酶基因pepF与表达载体pcTEF1GA进行连接;
S3:获取羧肽酶基因pepF表达盒;
S4:将表达载体pcGAPGA-pepA线性化;
S5:将上述羧肽酶基因表达盒与表达载体pcGAPGA-pepA进行连接,得到同时含有羧肽酶和内切蛋白酶基因的共表达载体;
S6:将上述构建得到的重组双基因共表达载体用限制性核酸内切酶SacI切割,使之线性化后转化产朊假丝酵母,构建基因重组产朊假丝酵母双基因共表达菌株。
5.根据权利要求4所述的一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株的构建方法,其特征在于:所述步骤S5中同时含有羧肽酶和内切蛋白酶基因的表达载体命名为GAP-pepA-TEF1-pepF。
6.根据权利要求4所述的一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株的构建方法,其特征在于,还包括重组产朊假丝酵母双基因共表达菌株水解餐厨垃圾中蛋白成分。
7.根据权利要求4所述的一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株的构建方法,其特征在于,步骤S6中所述的转化是使用电转化法、冷冻法或化学试剂法进行转化。
8.根据权利要求4所述的一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株的构建方法,其特征在于,所述步骤S1中的内切蛋白酶为黑曲霉中的内切蛋白酶pepA,所述步骤S2中的羧肽酶为黑曲霉中的羧肽酶pepF。
CN201910998677.1A 2019-10-18 2019-10-18 一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法 Pending CN112680371A (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201910998677.1A CN112680371A (zh) 2019-10-18 2019-10-18 一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法
EP19949535.9A EP4053279A4 (en) 2019-10-18 2019-12-17 CANDIDA UTILIS DOUBLE GENE COEXPRESSION STRAIN THAT HYDROLYZES PROTEIN COMPONENTS IN FOOD WASTE AND METHOD FOR THE PRODUCTION THEREOF
JP2021578075A JP2022539781A (ja) 2019-10-18 2019-12-17 生ゴミに含まれるタンパク質成分を加水分解するキャンディダ・ユティリスの二遺伝子共発現株及びその構築方法
AU2019470409A AU2019470409A1 (en) 2019-10-18 2019-12-17 Candida utilis double gene co-expression strain that hydrolyzes protein components in food waste and construction method therefor
PCT/CN2019/125985 WO2021072963A1 (zh) 2019-10-18 2019-12-17 一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法
US17/565,813 US20220251583A1 (en) 2019-10-18 2021-12-30 Candida utilis double gene co-expression strain for hydrolyzing protein components in kitchen waste and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910998677.1A CN112680371A (zh) 2019-10-18 2019-10-18 一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法

Publications (1)

Publication Number Publication Date
CN112680371A true CN112680371A (zh) 2021-04-20

Family

ID=75445080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910998677.1A Pending CN112680371A (zh) 2019-10-18 2019-10-18 一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法

Country Status (6)

Country Link
US (1) US20220251583A1 (zh)
EP (1) EP4053279A4 (zh)
JP (1) JP2022539781A (zh)
CN (1) CN112680371A (zh)
AU (1) AU2019470409A1 (zh)
WO (1) WO2021072963A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151330A (zh) * 2021-03-30 2021-07-23 云南师范大学 一种酸性蛋白酶突变体及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287627A1 (en) * 2004-06-25 2005-12-29 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides or dipeptide derivatives
WO2010014817A2 (en) * 2008-07-30 2010-02-04 Novozymes A/S Producing fermentation products
US20140147895A1 (en) * 2011-07-22 2014-05-29 Novozymes A/S Processes for Pretreating Cellulosic Material and Improving Hydrolysis Thereof
CN107630029A (zh) * 2017-06-28 2018-01-26 广东利世康低碳科技有限公司 一种产朊假丝酵母游离型表达载体及其构建方法与应用
CN110305806A (zh) * 2019-07-12 2019-10-08 广东利世康低碳科技有限公司 一种降解蛋白质的产朊假丝酵母单基因表达菌株及其构建方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100506981C (zh) * 2000-12-07 2009-07-01 Dsmip资产有限公司 富含具有羧基末端脯氨酸残基的肽的蛋白质水解产物
GB0329722D0 (en) * 2003-12-23 2004-01-28 Delta Biotechnology Ltd Modified plasmid and use thereof
ES2425413T3 (es) * 2006-11-22 2013-10-15 Novo Nordisk A/S Método para preparar carboxipeptidasa activada
CN103725624B (zh) * 2013-12-30 2016-03-23 广东启智生物科技有限公司 一种能降解利用餐厨废弃物的基因重组酿酒酵母
WO2015118126A1 (en) * 2014-02-07 2015-08-13 Dsm Ip Assets B.V. Improved bacillus host
MX2018009216A (es) * 2016-02-25 2018-11-09 Dupont Nutrition Biosci Aps Metodo para producir un hidrolizado de proteina empleando una tripeptidil peptidasa de aspergillus fumigatus.
CA3012508A1 (en) * 2016-03-01 2017-09-08 Novozymes A/S Combined use of at least one endo-protease and at least one exo-protease in an ssf process for improving ethanol yield
CN106701606B (zh) * 2016-12-19 2021-03-26 广东利世康低碳科技有限公司 一种能降解利用餐厨废弃物的基因工程产朊假丝酵母及其构建方法
CN110373339A (zh) * 2019-07-12 2019-10-25 广东利世康低碳科技有限公司 一种降解蛋白质的产朊假丝酵母三基因表达菌株及其构建方法
CN110373340A (zh) * 2019-07-12 2019-10-25 广东利世康低碳科技有限公司 一种降解餐厨废弃物的产朊假丝酵母单基因表达菌株及其构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050287627A1 (en) * 2004-06-25 2005-12-29 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides or dipeptide derivatives
WO2010014817A2 (en) * 2008-07-30 2010-02-04 Novozymes A/S Producing fermentation products
US20140147895A1 (en) * 2011-07-22 2014-05-29 Novozymes A/S Processes for Pretreating Cellulosic Material and Improving Hydrolysis Thereof
CN107630029A (zh) * 2017-06-28 2018-01-26 广东利世康低碳科技有限公司 一种产朊假丝酵母游离型表达载体及其构建方法与应用
CN110305806A (zh) * 2019-07-12 2019-10-08 广东利世康低碳科技有限公司 一种降解蛋白质的产朊假丝酵母单基因表达菌株及其构建方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COLOMBO AL 等: "Candida and invasive mould diseases in non-neutropenic critically ill patients and patients with haematological cancer", 《LANCET INFECT DIS》 *
TAO SUN等: "Producing amino acid fertilizer by hydrolysis of the fermented mash of food waste with the synergy of three proteases expressed by engineered Candida utilis", 《BIORESOURCE TECHNOLOGY REPORTS》 *
戴世金等: "餐厨垃圾有机酸发酵液淋洗去除土壤重金属", 《环境工程学报》 *
李阳 等: "预处理对菌接种餐厨垃圾发酵产乙酸的影响", 《中国环境科学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151330A (zh) * 2021-03-30 2021-07-23 云南师范大学 一种酸性蛋白酶突变体及其制备方法和应用
CN113151330B (zh) * 2021-03-30 2023-09-08 云南师范大学 一种酸性蛋白酶突变体及其制备方法和应用

Also Published As

Publication number Publication date
EP4053279A1 (en) 2022-09-07
JP2022539781A (ja) 2022-09-13
EP4053279A4 (en) 2023-10-11
WO2021072963A1 (zh) 2021-04-22
AU2019470409A1 (en) 2022-02-03
US20220251583A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
Souza et al. Production, purification and characterization of an aspartic protease from Aspergillus foetidus
US10577615B2 (en) Genetically engineered Candida utilis capable of degrading and utilizing kitchen waste and construction method therefor
CN105026548B (zh) D-葡萄糖二酸生产菌及d-葡萄糖二酸的制造方法
CN106367408A (zh) Pet分解酶突变体、编码基因及其应用
Zhu et al. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius
CN103911400B (zh) 一种采用全细胞转化生产α-酮戊二酸的方法
WO2022232638A2 (en) Enzymes with ruvc domains
CN104911117A (zh) 一种利用融合表达提高酵母发酵生产葡萄糖二酸的方法
CN113249238A (zh) 一株耐酸酿酒酵母及其在有机酸制备中的应用
CN111996205A (zh) 几丁质酶基因、几丁质酶及其制备方法和应用
Zin et al. Purification and characterization of a carboxymethyl cellulase from Artemia salina
CN112680371A (zh) 一种水解餐厨垃圾中蛋白成分的产朊假丝酵母双基因共表达菌株及其构建方法
CN101457208B (zh) 一种抗蛋白酶的酸性α-半乳糖苷酶Aga-F75及其基因和应用
KR101414734B1 (ko) 미세조류를 질소원으로 이용한 숙신산의 생산 방법
EP3208340B1 (en) Process for propagating a yeast capable to ferment glucose and xylose
Rachamontree et al. Selection of Pichia kudriavzevii strain for the production of single-cell protein from cassava processing waste
KR20100040438A (ko) 신규한 아가레이즈 및 이를 이용한 아가로스로부터 아가로올리고사카라이드의 효소적 생산방법
JP7011132B2 (ja) 新規キトサナーゼchi1、そのコード遺伝子およびその使用
CN104789546A (zh) 一种脱乙酰基酶突变体及其应用
CN111378611B (zh) 一种谷氨酸脱羧酶重组菌及其构建方法和应用
CN112175974A (zh) 几丁质脱乙酰酶基因、几丁质脱乙酰酶及其制备方法和应用
CN108018297B (zh) AnChi基因、AnChi几丁质酶及其在降解几丁质方面的应用
CN110373339A (zh) 一种降解蛋白质的产朊假丝酵母三基因表达菌株及其构建方法
CN115895918B (zh) 一种裂解性多糖单加氧酶及其应用
EP1570050B1 (fr) Souches bacteriennes du genre exiguobacterium, procede de culture et applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210420

RJ01 Rejection of invention patent application after publication