CN1127381C - Apparatus and method for providing pulsating fluid - Google Patents
Apparatus and method for providing pulsating fluid Download PDFInfo
- Publication number
- CN1127381C CN1127381C CN99804701A CN99804701A CN1127381C CN 1127381 C CN1127381 C CN 1127381C CN 99804701 A CN99804701 A CN 99804701A CN 99804701 A CN99804701 A CN 99804701A CN 1127381 C CN1127381 C CN 1127381C
- Authority
- CN
- China
- Prior art keywords
- fluid
- reservoir
- vessel
- pressure
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 231
- 238000000034 method Methods 0.000 title claims abstract description 59
- 239000000463 material Substances 0.000 claims abstract description 74
- 238000003860 storage Methods 0.000 claims abstract description 41
- 230000008569 process Effects 0.000 claims abstract description 38
- 238000000926 separation method Methods 0.000 claims abstract description 30
- 238000009931 pascalization Methods 0.000 claims abstract description 18
- 238000002347 injection Methods 0.000 claims abstract description 14
- 239000007924 injection Substances 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims description 22
- 238000005086 pumping Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims 5
- 238000001816 cooling Methods 0.000 claims 3
- 238000009833 condensation Methods 0.000 claims 2
- 230000005494 condensation Effects 0.000 claims 2
- 239000007787 solid Substances 0.000 claims 2
- 238000004891 communication Methods 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 description 71
- 239000003607 modifier Substances 0.000 description 49
- 239000000203 mixture Substances 0.000 description 43
- 235000012431 wafers Nutrition 0.000 description 37
- 239000000758 substrate Substances 0.000 description 30
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 24
- 230000004888 barrier function Effects 0.000 description 21
- 239000010410 layer Substances 0.000 description 20
- 238000004140 cleaning Methods 0.000 description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 description 12
- 239000001569 carbon dioxide Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 11
- 238000010926 purge Methods 0.000 description 11
- 239000002904 solvent Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 150000002170 ethers Chemical class 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- -1 cyclic compound compounds Chemical class 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 150000008282 halocarbons Chemical class 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000011877 solvent mixture Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 241001469893 Oxyzygonectes dovii Species 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- DFFDSQBEGQFJJU-UHFFFAOYSA-M butyl carbonate Chemical compound CCCCOC([O-])=O DFFDSQBEGQFJJU-UHFFFAOYSA-M 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 230000035485 pulse pressure Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
- B08B3/04—Cleaning involving contact with liquid
- B08B3/10—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
- B08B3/102—Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B3/00—Cleaning by methods involving the use or presence of liquid or steam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/50—Solvents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/22—Electronic devices, e.g. PCBs or semiconductors
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/26—Organic compounds containing oxygen
- C11D7/266—Esters or carbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/26—Organic compounds containing oxygen
- C11D7/267—Heterocyclic compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Cleaning By Liquid Or Steam (AREA)
Abstract
Description
这项申请要求具有1998年3月30日申请的美国专利临时申请第60/079,918号和1998年3月30日申请的美国专利临时申请第60/079,919号的权益。This application claims the benefit of US Patent Provisional Application No. 60/079,918, filed March 30, 1998, and US Patent Provisional Application No. 60/079,919, filed March 30, 1998.
本发明的技术领域Technical Field of the Invention
这项发明涉及提供脉动流体的装置和方法。它在把脉动的超临界流体提供给准备用超临界流体处理的涂层表面时是特别有用的。This invention relates to apparatus and methods for providing pulsating fluids. It is particularly useful in supplying pulses of supercritical fluid to a coated surface to be treated with supercritical fluid.
这项发明是按照美国能源部颁发的合同(合同号W-7405-ENG-36)在政府的支持下完成的。就这项发明而言,政府具有某些权力。This invention was made with Government support under contract awarded by the U.S. Department of Energy (Contract No. W-7405-ENG-36). The government has certain powers with respect to this invention.
本发明的现有技术Prior Art of the Invention
现在有许多科学处理和工业处理要求把流体传送到某个表面以便处理那个表面或清除那个表面上的可溶性物质。在一些这样的应用中,流体需要以脉动方式传送。在一些这样的应用中,流体不得不在表面与流体接触时保持超临界状态。Many scientific and industrial processes today require the transfer of fluids to a surface in order to treat that surface or remove soluble materials from that surface. In some of these applications, the fluid needs to be delivered in a pulsating manner. In some of these applications, the fluid has to remain in a supercritical state while the surface is in contact with the fluid.
一种特别适合本发明的装置的用途是在与本申请同日提交的保护将用于从制造集成电路或其它电子元器件时使用的基材上清除光刻胶材料的某些流体的发明专利申请中介绍的。A particularly suitable use of the apparatus of the present invention is the patent application for invention filed on the same date as this application for the protection of certain fluids to be used to remove photoresist material from substrates used in the manufacture of integrated circuits or other electronic components introduced in.
在集成电路即通常指的半导体芯片或微型芯片的制造期间,使用重复若干次的光刻工艺。在这种制造工艺中导电壁垒层中的导电离子掺杂栅极如二氧化硅、氮化硅或金属,首先通过几种适当的工艺如热氧化、化学气相淀积、溅射、离子移植或真空蒸镀中的任何一种沉积在基材如硅或砷化镓晶片上。During the manufacture of integrated circuits, commonly referred to as semiconductor chips or microchips, a photolithographic process repeated several times is used. In this manufacturing process, the conductive ion-doped gate in the conductive barrier layer, such as silicon dioxide, silicon nitride or metal, is first passed through several appropriate processes such as thermal oxidation, chemical vapor deposition, sputtering, ion implantation or Either vacuum evaporation deposits on substrates such as silicon or gallium arsenide wafers.
在形成或淀积了导电壁垒层之后,借助任何适当的装置把光刻胶材料涂布到晶片上,包括但不限于通过旋涂使液体光刻胶均匀地分布在晶片的表面上。After forming or depositing the conductive barrier layer, the photoresist material is applied to the wafer by any suitable means, including but not limited to spin coating to evenly distribute the liquid photoresist over the surface of the wafer.
通常接下来在“低温烘烤(soft bake)”或预烘烤阶段给涂覆晶片的光刻胶材料加热,以便改善光刻胶材料对基材表面和/或壁垒层的粘接和清除通常为聚合物的光刻胶材料中的溶剂。This is usually followed by heating the photoresist material coating the wafer in a "soft bake" or pre-bake stage in order to improve adhesion and removal of the photoresist material to the substrate surface and/or barrier layer. Solvent in polymeric photoresist materials.
在光刻胶在壁垒层上经过低温烘烤之后,使晶片上经过低温烘烤的光刻胶涂层部分按照光刻掩膜定义的所需图案有选择地暴露在高能光线如高强度的紫外光之下。然后用显影剂使光刻胶材料暴露在高能光线下的部分显影。After the photoresist is low-temperature baked on the barrier layer, the part of the photoresist coating on the wafer that has been low-temperature baked is selectively exposed to high-energy light such as high-intensity ultraviolet rays according to the desired pattern defined by the photolithographic mask. under the light. The portions of the photoresist material exposed to high energy light are then developed with a developer.
在使用正光刻胶材料时,通过曝光和显影,光刻胶材料中被显影的部分被溶液化并且随后被洗去,留在涂覆晶片上的壁垒层部分被暴露出来,而用壁垒层涂覆的晶片的其余部分在剩余的未曝光且未显影的光刻胶层下面。When using a positive photoresist material, through exposure and development, the developed part of the photoresist material is solubilized and then washed away, and the part of the barrier layer left on the coated wafer is exposed, while the barrier layer is used The remainder of the coated wafer underlies the remaining unexposed and undeveloped photoresist layer.
反之,在使用负光刻胶材料时,光刻胶材料中未显影的部分被有选择地除去,以便使涂覆基材的壁垒层中按所需图案选定的部分暴露出来。Conversely, when a negative photoresist material is used, undeveloped portions of the photoresist material are selectively removed to expose selected portions of the barrier layer of the coated substrate in a desired pattern.
一旦光刻胶图案在晶片建立起来,该晶片将经受“高温烘烤(hard bake)”以便使光刻胶材料变得密实和坚韧以及改善对壁垒层的粘接。然后,借助几种适当的方法中的任何一种(取决于用作壁垒层的材料)蚀刻(除去)暴露的基材和/或壁垒材料。湿法化学蚀刻、干法蚀刻、等离子体蚀刻、溅射蚀刻或活性离子蚀刻等工艺都可以使用。蚀刻工艺除去不受光刻胶保护的壁垒材料,留下裸露的晶片部分和具有壁垒层和光刻胶材料的分层涂层的晶片部分,其中光刻胶材料保护下面的壁垒层使它免受晶片表面上的蚀刻处理。Once the photoresist pattern is established on the wafer, the wafer is subjected to a "hard bake" to densify and toughen the photoresist material and improve adhesion to the barrier layer. The exposed substrate and/or barrier material is then etched (removed) by any of several suitable methods (depending on the material used as the barrier layer). Processes such as wet chemical etching, dry etching, plasma etching, sputter etching or reactive ion etching can be used. The etch process removes the barrier material that is not protected by the photoresist, leaving bare wafer portions and wafer portions with a layered coating of the barrier layer and the photoresist material that protects the underlying barrier layer from subject to etching on the wafer surface.
然后,表面上有用光刻胶材料涂覆的壁垒层材料的图案的晶片将通过侵蚀步骤处理以便从壁垒层材料的保留图案中除去经过高温烘烤的光刻胶材料。按惯例这是利用溶剂洗涤完成的,例如卤代烃、硫酸和过氧化氢的混合物或氢氧化物与活化剂的强碱性混合物。使用这些溶剂混合物中的任何一种都将产生大量的不希望的废液流。The wafer having the pattern of barrier layer material coated with photoresist material on its surface is then processed through an etching step to remove the high temperature baked photoresist material from the remaining pattern of barrier layer material. Conventionally this is done by washing with a solvent such as a mixture of halogenated hydrocarbons, sulfuric acid and hydrogen peroxide or a strongly basic mixture of hydroxide and an activator. Use of any of these solvent mixtures will generate large and undesirable waste streams.
在除去经过高温烘烤的光刻胶材料之后,在最后的步骤中,将用去离子水洗涤上面有带图案的表面层的基材,以保证从晶片表面上清除掉所有痕量的光刻胶清洗剂。这种光刻工艺根据需要被重复许多次,以便在基材上产生与所希望的层数一样多的图案各异的导电壁垒层,因此往往形成大量的被污染的废水流。After removal of the high temperature baked photoresist material, in a final step the substrate with the patterned surface layer on it is washed with deionized water to ensure that all traces of photoresist are removed from the wafer surface. Glue cleaner. This photolithographic process is repeated as many times as necessary to produce as many differently patterned conductive barrier layers on the substrate as desired, often resulting in a large stream of contaminated waste water.
所以,需要一些有效地清除光刻胶材料的方法,用这些方法将减少不希望的废液流量。Therefore, there is a need for methods of efficiently removing photoresist material which will reduce undesirable waste flow.
更一般的说,需要一种装置和方法以便把脉动流体提供给反应部位或将要用那些流体处理的表面;更具体地说,需要一种装置和方法以便把脉动的超临界流体提供给将要用该超临界流体处理的表面。More generally, there is a need for an apparatus and method for supplying pulsating fluids to reaction sites or surfaces to be treated with those fluids; more specifically, there is a need for a device and method for providing pulsating supercritical fluids to The supercritical fluid treats the surface.
所以,这项发明的一个目标是提供一种装置和方法以便把脉动流体提供给反应部位或将要用该流体处理的表面。It is therefore an object of this invention to provide an apparatus and method for supplying a pulsating fluid to a reaction site or a surface to be treated with the fluid.
这项发明的另一个目标是一种方法和装置以便清除在制造集成电路或其它电子元器件(如电路板、光波导和平板显示器)时使用的光刻胶材料。Another object of this invention is a method and apparatus for removing photoresist material used in the manufacture of integrated circuits or other electronic components such as circuit boards, optical waveguides and flat panel displays.
本发明的附加目标、优点和新颖性特征将在下面的介绍中部分地予以陈述,本领于的技术人员可以通过研究下述内容使这些附加目标、优点和新颖性特征部分地变得明了,或者可以通过实践本发明而明了这些附加目标、优点和新颖性特征。本发明的目标和优点可以借助在权利要求书中具体指出的手段和组合得以实现和完成。权利要求书倾向于覆盖不脱离本发明的精神和范围的所有的变化和改进。Additional objects, advantages and novel features of the present invention will be partially stated in the following introduction, and those skilled in the art may make these additional objects, advantages and novel features partially apparent by studying the following content, or These additional objects, advantages and novel features can be learned by practice of the invention. The objects and advantages of the invention may be realized and accomplished by means of the instrumentalities and combinations particularly pointed out in the claims. The claims are intended to cover all changes and modifications that do not depart from the spirit and scope of the invention.
本发明的概述Summary of the invention
为了实现上述和其它目标,依据本发明的目的,正象通过本文体现和广泛介绍的那样,用于把脉动流体提供给压力容器的装置包括:至少一个供将要产生脉动的流体使用的贮存器;把所述的贮存器与泵送装置连接起来的备有阀门的管道;从泵送装置延伸到一个或多个压载储罐的备有至少一个控制阀的管道,其中所述的控制阀能够按顺序或间歇地引导流体流使之进入每个压载储罐;从每个压载储罐延伸到控制/注射阀的管道,其中所述的控制/注射阀把流体从来自每个压载储罐的管道注射到高压处理容器中,在该容器中将要与脉动流体接触的材料与该流体接触。To accomplish the foregoing and other objects, and in accordance with the objects of the present invention, as embodied and broadly described herein, means for supplying a pulsating fluid to a pressure vessel comprises: at least one reservoir for the fluid to be pulsated; valved piping connecting said reservoir to the pumping means; piping extending from the pumping means to one or more ballast storage tanks, provided with at least one control valve capable of directing fluid flow sequentially or intermittently into each ballast tank; a conduit extending from each ballast tank to a control/injection valve that transfers fluid from and to each ballast tank The tubing of the storage tank injects into the high pressure processing vessel where the material to be in contact with the pulsating fluid comes into contact with the fluid.
为了使处理流体再循环,来自高压处理容器的管道可以与单一的或多单元的分离容器、二次处理容器或储存容器相连接,借此处理流体可以返回贮存器以便在该处理中再次使用,或者为了其它目的被引导到别的地方。In order to recycle the treatment fluid, the piping from the high pressure treatment vessel can be connected to a single or multi-unit separation vessel, secondary treatment vessel or storage vessel, whereby the treatment fluid can be returned to the reservoir for reuse in the treatment, Or be directed elsewhere for other purposes.
附图简要说明 Brief description of the drawings
并入这份说明书并且构成其一部分的附图将图解说明本发明的实施方案,并且与陈述部分一起用于解释本发明的原理。在这些附图中,The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the presentation, serve to explain the principles of the invention. In these drawings,
图1是为了使基材上的光刻胶材料与密相流体和密相流体改性剂的混合物接触而使用的本发明的装置的示意图;Figure 1 is a schematic diagram of an apparatus of the present invention for use in contacting a photoresist material on a substrate with a mixture of a dense phase fluid and a dense phase fluid modifier;
图2是依据本发明把脉动流体提供给压力容器的装置的示意图。Figure 2 is a schematic illustration of an apparatus for supplying pulsating fluid to a pressure vessel in accordance with the present invention.
本发明的详细叙述Detailed description of the invention
业已发明了一种装置,它能够把脉动流体提供给反应部位或将用该脉动流体处理的材料表面。A device has been invented which is capable of delivering a pulsating fluid to a reaction site or surface of material to be treated with the pulsating fluid.
本发明包括:至少一个供流体使用的贮存器;把每个贮存器与泵送装置连接起来的备有阀门的管道;从泵送装置延伸到一个或多个压载储罐的备有数个控制阀的管道,其中所述的控制阀能够按顺序或间歇地引导流体流使之进入每个压载储罐;从每个压载储罐延伸到控制/注射阀的管道,其中所述的控制/注射阀把流体从来自每个压载储罐的管道注射到高压处理容器中,在该容器中待处理的反应部位或材料与流体接触。此外,还可以有从与一个或多个压载储罐连接的控制阀延伸到处理容器的引导管道,以便提供一种装置以便将几种原料流体中的一种流体流或未产生脉动的流体或流体混合物的流体流直接引入处理容器,从而为压载储罐提供旁路。The invention comprises: at least one reservoir for fluid; valved piping connecting each reservoir to a pumping device; several control valves extending from the pumping device to one or more ballast storage tanks; Piping for valves, wherein said control valve is capable of directing fluid flow sequentially or intermittently into each ballast tank; piping extending from each ballast tank to a control/injection valve, wherein said control The /injection valve injects fluid from the piping from each ballast storage tank into the high pressure processing vessel where the reaction site or material to be treated is in contact with the fluid. In addition, there may be lead piping extending from a control valve connected to one or more ballast storage tanks to the process vessel in order to provide a means to flow one of several feed fluids or a non-pulsating fluid Or the fluid flow of the fluid mixture is directly introduced into the process vessel, thereby providing a bypass for the ballast storage tank.
如果需要用脉动的超临界流体进行处理,例如在使用脉动的超临界流体混合物清除基材表面上的光刻胶材料时,将使用能够产生并维持高压的高压处理容器和泵。If processing with pulsating supercritical fluid is required, such as when using a pulsating supercritical fluid mixture to remove photoresist material from a substrate surface, a high pressure process vessel and pump capable of generating and maintaining high pressure will be used.
如果需要,可以简单地引导原料流体或流体混合物以及来自反应或被处理的材料的任何污染物离开该处理工艺,然后象需要的那样进行处理、储存或输送。If desired, the feedstock fluid or fluid mixture, as well as any contaminants from the reacted or processed materials, can simply be directed out of the process and then treated, stored or transported as desired.
为了使处理流体再循环,来自处理容器的管道可以与分离容器、多单元分离容器或串联起来的多个分离容器连接。在这类分离容器中,其中带有任何污染物的处理流体或流体混合物可以用几种方式中的任何一种进行处理,这取决于所需的产品、经济因素以及设备、空间和工程能力。In order to recirculate the treatment fluid, the piping from the treatment vessel can be connected to a separation vessel, a multi-unit separation vessel or several separation vessels in series. In such separation vessels, the treatment fluid or fluid mixture with any contaminants therein can be treated in any of several ways, depending on the desired product, economic factors and equipment, space and engineering capabilities.
例如,在用本发明的装置对着涂有光刻胶材料的基材使密相流体和密相流体改性剂的超临界混合物产生脉动时,至少有三种不同的分离容器设计可用于选择不同的处理方法。For example, in pulsing a supercritical mixture of a dense phase fluid and a dense phase fluid modifier against a substrate coated with a photoresist material using the apparatus of the present invention, at least three different separation vessel designs are available to select different process method.
在第一种情况下,可以使用单一的分离容器容纳该混合物,同时把温度和压力调节到光刻胶材料不再是可溶性的并且析出的数值。然后,使剩余的密相流体和密相流体改性剂一起再循环。In the first case, a single separate vessel can be used to contain the mixture while adjusting the temperature and pressure to a value at which the photoresist material is no longer soluble and precipitates out. The remaining dense phase fluid is then recycled together with the dense phase fluid modifier.
在第二种情况下,可以使用分离容器或分离容器的舱室容纳混合物,同时降低压力和升高温度,使它们达到这样的数值,以致在该压力和温度下超临界密相流体将蒸发,留下密相流体改性剂和光刻胶材料的混合物。然后,呈气态的密相流体再次凝聚成液体并且在该工艺中再次使用。而密相流体改性剂和光刻胶材料将在另一个容器或单一分离容器的另一个舱室中分离。In the second case, a separation vessel or a compartment of a separation vessel can be used to contain the mixture while reducing the pressure and raising the temperature so that they reach values at which the supercritical dense phase fluid will evaporate, leaving Mixture of lower dense phase fluid modifier and photoresist material. The dense phase fluid in the gaseous state is then recondensed into a liquid and reused in the process. Instead, the dense phase fluid modifier and photoresist material will be separated in another vessel or in another compartment of a single separation vessel.
在第三种情况即目前优选的情况下,使用多单元分离容器,以便首先调节混合物的温度和压力使光刻胶材料不再是可溶性的并且析出,然后在第二单元中通过降低压力和升高温度使密相流体蒸发留下密相流体改性剂。In the third case, the currently preferred case, a multi-unit separation vessel is used so that the temperature and pressure of the mixture are first adjusted so that the photoresist material is no longer soluble and precipitates, and then in the second unit by reducing the pressure and raising the The high temperature evaporates the dense phase fluid leaving the dense phase fluid modifier.
正象在这个使用本发明的装置清除光刻胶材料的实例中所需要的那样,提供一些管道,借助这些管道使密相流体改性剂可以被引导到用于分离溶解的光刻胶材料的装置,然后再使清洗的密相流体改性剂返回密相流体改性剂贮存器以便在本发明的工艺中再次使用,或者把该密相流体改性剂引导到别的地方用于其它目的。As required in this example of removal of photoresist material using the apparatus of the present invention, conduits are provided by which the dense phase fluid modifier can be directed to the channel for separating dissolved photoresist material. device, and then return the cleaned dense phase fluid modifier to the dense phase fluid modifier reservoir for reuse in the process of the present invention, or direct the dense phase fluid modifier to other places for other purposes .
再者,在这个实例中,象装置所需要的那样,还可以提供一些管道,因为蒸发的超临界流体将被引导到冷凝器以便在能那里凝聚然后再返回密相流体贮存器以便在本发明的工艺中再次使用或者被引导到别的地方用于其它目的。Again, in this example, some piping can also be provided as required by the device, because the evaporated supercritical fluid will be directed to a condenser to condense there and then return to the dense phase fluid reservoir for the purpose of the present invention. re-used in the process or directed elsewhere for other purposes.
一般的说,需要的压载储罐的数目是足以提供尽可能连续有效的处理的储罐数目,因为在任何需要的时候只要简单地交替选择储罐就能提供准备好的可靠的压缩流体源。In general, the number of ballast tanks required is sufficient to provide as continuous and efficient a process as possible, since a simple alternate selection of tanks will provide a ready and reliable source of compressed fluid whenever required .
虽然本发明的装置的一个或多个实施方案几乎可以供所有需要用脉动流体接触反应部位或表面的应用使用,但是本发明的装置对于在制造电子元器件包括集成电路和电路板期间从已经过涂覆导电壁垒层和光刻胶材料、预热、有选择地曝光和显影、蚀刻和高温烘烤诸项处理的基材上清除经过高温烘烤的光刻胶材料是特别有用的。While one or more embodiments of the device of the present invention can be used in virtually all applications that require contacting a reactive site or surface with a pulsating fluid, the device of the present invention is useful in the manufacture of electronic components, including integrated circuits and circuit boards, that have never been It is especially useful to remove the high temperature baked photoresist material from the substrate treated by coating the conductive barrier layer and photoresist material, preheating, selective exposure and development, etching and high temperature baking.
在通常用于制造集成电路和电路板的光刻工艺最后一步开始时,导电壁垒材料层和经过高温烘烤的光刻胶材料层(该层已在光刻工艺的蚀刻步骤期间对导电壁垒材料实施保护)的图案保留在基材上。按照这项发明,经过高温烘烤的光刻胶材料将被除去,其方法是使用本发明的装置和方法使它与至少一种密相流体和至少一种密相流体改性剂的混合物发生多次冲击接触。At the beginning of the last step of the photolithography process usually used to manufacture integrated circuits and circuit boards, the conductive barrier material layer and the high temperature baked photoresist material layer (this layer has been etched on the conductive barrier material during the etching step of the photolithography process) The pattern of protection) remains on the substrate. In accordance with this invention, high temperature baked photoresist material is removed by subjecting it to a mixture of at least one dense phase fluid and at least one dense phase fluid modifier using the apparatus and method of the present invention Multiple shock contacts.
处于液态的密相流体是最便于作为初始组成部分使用的,但是就目前这个实例而言,它的温度和压力将足够高,以便维持该流体处于超临界状态,使其性能即象液体(在密度方面)又象气体(在扩散性方面)并且能够溶解密相流体改性剂。必要的温度和压力将取决于所用的密相流体。Dense-phase fluids in the liquid state are most convenient to use as starting components, but for the present example, the temperature and pressure will be high enough to maintain the fluid in a supercritical state so that it behaves like a liquid (in Density) acts like a gas (in terms of diffusivity) and is capable of dissolving dense phase fluid modifiers. The necessary temperature and pressure will depend on the dense phase fluid used.
就这个目的而言有用的密相流体通常是那些将使选定的改性剂以足够的数量溶解在其中的密相流体,以便有效地清除光刻胶材料。目前最优选的是二氧化碳,因为它不易燃、无毒、具有易于实现的临界相并且是一种醚类物质的极好的溶剂。Dense phase fluids useful for this purpose are generally those in which the selected modifier is dissolved in sufficient quantities to effectively remove the photoresist material. Carbon dioxide is currently most preferred because it is non-flammable, non-toxic, has an easily achieved critical phase and is an excellent solvent for ethers.
密相流体的量要足以溶解选定量的改性剂并且要满足接触光刻胶材料区的要求。The amount of dense phase fluid is sufficient to dissolve the selected amount of modifier and to satisfy the requirements of the area contacting the photoresist material.
一般的说,目前作为密相流体改性剂优选的是具有下图所示官能团的环状化合物化合物: Generally speaking, as the dense phase fluid modifier, the cyclic compound compounds with the functional groups shown in the figure below are preferred:
以及具有下图所示官能团的醚, and ethers with the functional groups shown in the diagram below,
因为它们具有比较高的沸点、高极性、低毒性和生物降解能力。Because they have relatively high boiling point, high polarity, low toxicity and biodegradability.
一般的说,目前优选的密相流体改性剂包括但不限于在下式范围内的醚: In general, presently preferred dense phase fluid modifiers include, but are not limited to, ethers within the range of the formula:
其中R1、R2、R3和R4是选自氢、具有1至10个碳原子的烃基、卤素和具有1至10个碳原子的卤代烃基的取代基,并且其中每个R1、R2、R3和R4可以是相同的或不同的取代基;以及在下式范围内的醚: wherein R 1 , R 2 , R 3 and R 4 are substituents selected from hydrogen, hydrocarbon groups having 1 to 10 carbon atoms, halogen and halogenated hydrocarbon groups having 1 to 10 carbon atoms, and wherein each R 1 , R 2 , R 3 and R 4 can be the same or different substituents; and ethers within the scope of the following formula:
其中R1、R2、R3和R4是选自氢、具有1至10个碳原子的烃基、卤素和具有1至10个碳原子的卤代烃基的取代基,并且其中每个R1、R2、R3和R4可以是相同的或不同的取代基;wherein R 1 , R 2 , R 3 and R 4 are substituents selected from hydrogen, hydrocarbon groups having 1 to 10 carbon atoms, halogen and halogenated hydrocarbon groups having 1 to 10 carbon atoms, and wherein each R 1 , R 2 , R 3 and R 4 can be the same or different substituents;
环醚通常被看作是比较有用的,因为与开链醚相比其空间位阻的或然率比较低。Cyclic ethers are generally considered more useful because of the lower likelihood of steric hindrance than open-chain ethers.
目前优选的密相流体改性剂包括但不限于碳酸亚丙酯(1,3-dioxalane-2-one,4-methyl)、碳酸亚乙酯,碳酸丁酯、二甲亚砜以及γ-丁内酯(2,4-dioxalane-3-one)。Presently preferred dense phase fluid modifiers include, but are not limited to, propylene carbonate (1,3-dioxalane-2-one, 4-methyl), ethylene carbonate, butyl carbonate, dimethyl sulfoxide, and γ-butyl Lactone (2,4-dioxalane-3-one).
能够完全溶解在选定的密相流体中的密相流体改性剂是特别有用的,因为在密相流体中的完全溶解性有利于用一个步骤将被处理表面上的改性剂与密相流体一起清除干净。Dense-phase fluid modifiers that are fully soluble in selected dense-phase fluids are particularly useful because complete solubility in dense-phase fluids facilitates incorporation of the modifier on the treated surface into the dense phase in one step. Fluid cleans up together.
密相流体改性剂的量要足以使光刻胶聚合物中的化学键断裂到便于清除光刻胶材料的程度。The amount of dense phase fluid modifier is sufficient to break the chemical bonds in the photoresist polymer to the extent that removal of the photoresist material is facilitated.
当密相流体改性剂实际上可完全溶解在超临界流体中时保持单一超临界相的溶剂溶液形成。A solvent solution that maintains a single supercritical phase is formed when the dense phase fluid modifier is virtually completely soluble in the supercritical fluid.
形成溶剂的单一超临界相的密相流体和密相流体改性剂的混合物是这样制备的,即在维持足以把单相超临界流体保持在超临界状态的压力和温度的同时把两种选定量的化合物合并。为了维持化合物处于单一的超临界相可以采用各种各样的压力和温度,取决于化合物的选择。例如,在选择二氧化碳作为密相流体并且选择碳酸亚乙酯作为密相流体改性剂时需要至少为1080psi的压力和至少31℃的温度作用在密相流体和密相流体改性剂两者之上。A mixture of a dense phase fluid forming a single supercritical phase of the solvent and a dense phase fluid modifier is prepared by combining the two selected phases while maintaining a pressure and temperature sufficient to maintain the single phase supercritical fluid in a supercritical state. Quantitative compound pooling. Depending on the choice of compound, various pressures and temperatures can be used to maintain the compound in a single supercritical phase. For example, selecting carbon dioxide as the dense phase fluid and ethylene carbonate as the dense phase fluid modifier requires a pressure of at least 1080 psi and a temperature of at least 31°C acting between both the dense phase fluid and the dense phase fluid modifier superior.
具有导电壁垒材料和经过高温烘烤的光刻胶材料的带图案的涂层的基材可以在浸泡周期内首先与依据本发明将诸组成部分按选定的成比例的量配制成的组合物接触。在浸泡期间带涂层的基材在足以使流体混合物保持超临界状态的温度和压力下浸没在静态的超临界流体混合物中。A substrate having a patterned coating of a conductive barrier material and a high temperature baked photoresist material may first be mixed with a composition according to the invention in selected proportionate amounts during a soak cycle touch. During immersion the coated substrate is submerged in a static supercritical fluid mixture at a temperature and pressure sufficient to maintain the fluid mixture in a supercritical state.
然后,在维持流体处于超临界状态的温度下使带涂层接触依次受压力驱动的超临界流体混合物的冲击。压力顺序通常是继高压流体冲击之后跟着间歇时间周期,在该时间周期内允许正在与被处理的基材接触的流体压力下降到较低的水平但仍然是升高的压力。目前优选的流体高压脉冲通常是在大约550psi至大约10,500psi的范围内,以便以足以清除被溶液化或软化的光刻胶材料的力接触带涂层的基材。目前更优选的是在大约1500psi至大约5000psi范围内的流体高压脉冲,取决于采用何种溶剂溶液成分和何种温度。在采用二氧化碳作为密相流体并采用碳酸亚乙酯作为密相流体改性剂时,目前最优选的是在大约2000psi至大约4000psi范围内的流体高压脉冲。The strip coating is then exposed to sequential pressure-driven impingement of a mixture of supercritical fluids at a temperature that maintains the fluid in a supercritical state. The pressure sequence is typically followed by a high pressure fluid impingement followed by an intermittent period of time during which the pressure of the fluid in contact with the substrate being processed is allowed to drop to a lower but still elevated pressure. A presently preferred high pressure pulse of fluid is generally in the range of about 550 psi to about 10,500 psi to contact the coated substrate with sufficient force to remove solubilized or softened photoresist material. Presently more preferred are high pressure pulses of fluid in the range of about 1500 psi to about 5000 psi, depending on what solvent solution composition and what temperature is used. High pressure pulses of fluid in the range of about 2000 psi to about 4000 psi are presently most preferred when using carbon dioxide as the dense phase fluid and ethylene carbonate as the dense phase fluid modifier.
在浸泡期间,如果使用浸泡期,在用去胶流体简单地填充高压容器时,该压力保持在大约500psi至大约10,000psi范围内。During soaking, if a soaking period is used, the pressure is maintained in the range of about 500 psi to about 10,000 psi while simply filling the high pressure vessel with the adhesive removal fluid.
在低压接触的周期内,去胶流体的压力通常在大约500psi至大约10,000psi范围内。目前更优选的是压力在大约1,100psi至大约2,000psi范围内的流体低压周期。The pressure of the stripping fluid typically ranges from about 500 psi to about 10,000 psi during the low pressure contact cycle. Presently more preferred are fluid low pressure cycles at pressures in the range of about 1,100 psi to about 2,000 psi.
在接触的浸泡周期和低压周期内,改性的超临界流体都使经过高温烘烤的光刻胶材料软化并且摆脱与基材上的导电壁垒材料层的结合。During both the soak cycle and the low pressure cycle of contact, the modified supercritical fluid softens the high temperature baked photoresist material and breaks free from the conductive barrier material layer on the substrate.
当充分提高接触带涂层的基材的超临界处理流体的压力时,软化的和脱粘的光刻胶材料在承受数次高压冲击期间被超临界处理流体溶解和清洗,离开带涂层的基材。When the pressure of the supercritical processing fluid in contact with the coated substrate is sufficiently increased, the softened and debonded photoresist material is dissolved and cleaned by the supercritical processing fluid during exposure to several high pressure shocks, leaving the coated substrate Substrate.
利用本发明的装置,在把光刻胶清除到与现有的晶片工业标准一致或优于该标准的水平之后,可以用未改性的超临界流体对基材进行最后的漂洗,以便清除残留的改性剂。Utilizing the apparatus of the present invention, after the photoresist has been removed to a level consistent with or better than existing wafer industry standards, a final rinse of the substrate with unmodified supercritical fluid can be performed to remove residual modifiers.
图1示意地展示了一个本发明的示范实施方案,其中使用带三个压载储罐的装置从带涂层的基材上清除光刻胶材料。Figure 1 schematically illustrates an exemplary embodiment of the invention in which an apparatus with three ballast tanks is used to remove photoresist material from a coated substrate.
参照图1,分开的贮存器10和12是分别为密相流体和密相流体改性剂提供的。这两个贮存器还起着作为这些成分的长期储存设施的作用。另外,为了容纳密相流体和密相流体改性剂的混合物,可以使用单一的贮存器。Referring to Figure 1,
管道14把密相流体贮存器10与控制阀18连接起来,该控制阀导入选定量的密相流体,该选定量与从密相流体改性剂贮存器20通过管道16分配给控制阀18的密相流体改性剂的量是成比例的。控制阀18通过管道20连接到高压泵24上。控制阀18还可以用于把未改性的密相流体分配给管道20以便在需要时用未改性的密相流体冲洗系统或进行最后的漂洗步骤。Conduit 14 connects dense-
高压泵24具有产生所需要的流体压力和形成高体积流量的能力。The
待处理的晶片在高压处理容器54中借助任何适当的装置定位和固定。例如,晶片可以借助固定夹附着在悬浮在高压处理容器54中的架子上。这样放置晶片为的是使流体脉冲直接冲击待清除的光刻胶材料。The wafers to be processed are positioned and secured within the high
为了把晶片放进高压处理容器54和从该容器中取出晶片,先将高压处理容器54隔离,然后卸压。In order to place wafers into and remove wafers from the high
为了使光刻胶材料软化和开始溶解,可以使用第一浸泡步骤。如果希望使用浸泡步骤,可以使用高压泵24把通过控制阀18的分配使密相流体与密相流体改性剂的量成比例的本发明的混合物直接通过固定56泵送到高压处理容器54中。高压处理容器54被维持在足够高的温度和压力下,以便保持本发明的溶剂混合物处于超临界相。In order for the photoresist material to soften and start to dissolve, a first soaking step may be used. If it is desired to use a soaking step, the mixture of the present invention, which is dispensed through
在这样的浸泡步骤中,允许晶片在高压处理容器54中用静态的超临界混合物浸泡一段时间,浸泡时间周期在大约30秒至大约10分钟范围内以便使待清除的光刻胶材料软化和/或降解。In such a soak step, the wafer is allowed to soak in the static supercritical mixture in the high
然后,使用高压泵24将选定的本发明的密相流体和密相流体改性剂的混合物通过管道26泵送到控制阀28中,该控制阀能够按顺序或间歇地通过三条管道30、32和34中的每一条释放预定份额的密相流体和密相流体改性剂的混合物。控制阀28中的三个触点可以通过电子电路激活以便控制被释放到三条管道30、32和34中每一条管道中的混合物的压力。三条管道30、32和34被分别连接到三个压载储罐36、38和40上。一般的说,优选的是在至少一个其它压载储罐由于有流体从它那里流入多口控制阀48而正在释放压力时至少有一个压载储罐是全额增压的,其中所述多口控制阀将通过注射阀50和管道52将流体注射到高压处理容器54中。A
举例说,仍然参照图1,当增压流体从管道30进入压载储罐36使压载储罐36增压时,阀门48关闭来自压载储罐36的管道42,与此同时,来自压载储罐38的增压流体正通过管道44释放到多口控制阀48中,而该多口控制阀48此刻正允许来自压载储罐38的增压流体进入注射阀50以便注入高压处理容器54。在这个实例中,压载储罐40可能正在用来自管道34的流体增压,而连接多口控制阀48的管道46在增压期间被关闭。另外,依据产生所需时间间隔和进入高压处理容器54的流体脉冲的压力对压力的要求,流体可能正通过管道46从压载储罐40释放到多口控制阀48中以便通过注射阀50注入高压处理容器54。For example, still referring to FIG. 1, when pressurized fluid enters
以高压脉冲与低压脉冲交替的形式泵送超临界流体混合物冲击带光刻胶涂层的基材表面。在使用本文介绍的装置时,压力脉冲的长度是压载储罐分送压力脉冲使其压力下降到与高压处理容器54中的压力达到平衡所需要的时间。The supercritical fluid mixture is pumped in alternating high-pressure pulses and low-pressure pulses to impinge on the surface of the photoresist-coated substrate. The length of the pressure pulse is the time required for the ballast tank to deliver the pressure pulse to bring its pressure down to equilibrium with the pressure in the high
本发明的流体混合物每次在高压处理容器54中冲击晶片之后,已在高压处理容器54中与基材上的光刻胶接触过的流体混合物被引导离开高压处理容器54。这是这样完成的,即打开管道60上的控制阀62释放在高压处理容器54中建立起来的压力直到高压处理容器54中的压力降回到浸泡周期的压力水平。The fluid mixture that has been in contact with the photoresist on the substrate in the high
带光刻胶涂层的基材将在高压处理容器中用本发明的单相超临界溶剂混合物处理足以允许光刻胶材料完全被清除的时间周期。依据密相流体和密相流体改性剂的脉冲压力、温度、速度和体积以及成比例的量,通常需要至少大约1分钟的周期。如果其它因素是优化的,则时间周期通常没有必要比大约30分钟还长。The photoresist-coated substrate will be treated in a high pressure processing vessel with the single phase supercritical solvent mixture of the present invention for a period of time sufficient to allow complete removal of the photoresist material. Depending on the pulse pressure, temperature, velocity and volume and proportional amounts of the dense phase fluid and dense phase fluid modifier, a period of at least about 1 minute is typically required. It is generally not necessary for the time period to be longer than about 30 minutes if other factors are optimized.
在这样释放高压处理容器54的压力的同时,被引导通过带阀门62的管道60离开高压处理容器54的流体混合物通过管道64被输送到分离容器66中。While thus releasing the pressure of the high
分离容器66可以具有任何适当的配置,以满足把密相流体与有光刻胶材料溶解在其中的密相流体改性剂分离的要求,而且如果需要还应满足把溶解的光刻胶材料与密相流体改性剂分开的要求。有用的分离容器66的一个实例是三级的多极分离设备,该设备备有独立控制对该分离容器66的三个部分66A、66B和66C中每个部分加热的装置。
在这个分离容器实例中,多极分离设备66的第一部分66A被用于给包含溶解的光刻胶材料的本发明的超临界流体混合物预热。在温度升高到足以允许密相流体和密相流体改性剂的可混溶的混合物“煮掉”光刻胶材料的温度之后,把该混合物输送到分离设备的第二部分66B。In this example of a separation vessel, the first portion 66A of the
在这个实例的分离设备66的第二部分66B中,压力受到充分地控制,以允许光刻胶材料从密相流体和密相流体改性剂的单相可混溶的混合物中淀析出来。光刻胶材料从密相流体和密相流体改性剂的可混溶的混合物中淀析出来是因为在降低的压力下这种单相可混溶的混合物没有能力使光刻胶材料保留在溶液中。In the second portion 66B of the
然后,将这个实例的多极分离设备66的第三部分66C用于把密相流体和密相流体改性剂分开。在第三部分66C中,温度和/或压力将针对两种流体在蒸汽压方面的差异进一步受到控制,以使这两种流体分成两相。The third section 66C of the
依据被选定的是哪种密相流体,分离容器66的温度被维持在大约0℃至大约100℃范围内。例如,在采用二氧化碳作为密相流体、采用碳酸亚丙酯作为密相流体改性剂时,分离容器66的温度被维持在大约0℃至大约25℃范围内。在使用多极分离容器时,这个步骤是在分离容器66的第一级66A中完成的。Depending on which dense phase fluid is selected, the temperature of
压力下降引起密相流体混合物中超临界或临界的成分作为气体分离出来并且通过管道68离开分离容器66。管道68使气相流体流入冷凝器70,在那里气相流体被液化。然后,液化的密相流体可以通过管道72返回到密相流体贮存器10以便在需要是再次在本发明的工艺中使用。另外,该密相流体也可以从该反应器回路中去除。The drop in pressure causes the supercritical or critical components of the dense phase fluid mixture to separate as a gas and exit
用于分离在密相流体改性剂中溶解的或以机械方式携带的光刻胶材料的装置66B可以并入分离容器66。在这个实例中,已经从中清除了光刻胶材料的密相流体改性剂如果需要可以通过管道78返回到密相流体改性剂贮存器12。任何被分离的光刻胶材料都通过管道74被引导到用于收集被分离的光刻胶材料的装置76。另外,内含被溶解的光刻胶材料的密相流体改性剂还可以从分离设备66泵送出反应器回路以便在远程设备中分离。A device 66B for separating photoresist material dissolved or mechanically entrained in the dense phase fluid modifier may be incorporated into the
在用本发明的流体混合物以足以清除光刻胶的次数冲击带涂层的基材之后,最后用未改性的流体漂洗基材晶片是这样完成的,即将来自密相流体贮存器10的未改性的密相流体通过“三通”阀28和绕开压载储罐的独立管道58直接泵送到多口控制阀48中以便注入高压处理容器54。After impacting the coated substrate with the fluid mixture of the present invention a number of times sufficient to remove the photoresist, a final rinse of the substrate wafer with the unmodified fluid is accomplished by removing the unmodified fluid from the dense
使用本发明的装置和方法使最后的步骤成为不必要的,在该步骤中,上面带有导电图案的基材将用去离子水清洗以保证从晶片表面除去所有痕量的有机溶剂和硫酸盐。超临界处理流体溶液不会遗留任何密相流体改性剂,因为密相流体改性剂可以完全溶解在超临界流体中。Use of the apparatus and method of the present invention renders unnecessary the final step in which the substrate with the conductive pattern thereon will be rinsed with deionized water to ensure that all traces of organic solvents and sulfates are removed from the wafer surface . The supercritically treated fluid solution does not leave behind any dense phase fluid modifiers because the dense phase fluid modifiers are completely soluble in the supercritical fluid.
本发明的装置和方法适合或易于变得适合大量的应用,因为该装置和方法可应用于可通过该装置泵送的任何流体脉冲的各种压力、体积、温度、次数和顺序。The device and method of the present invention are suitable or readily adaptable to a large number of applications, as the device and method are applicable to a wide variety of pressures, volumes, temperatures, times and sequences of any fluid pulses that may be pumped through the device.
实施例1Example 1
为了证明本发明的可操作性,利用提供单压载流体脉冲的装置做有创意的运行。为了进行在这个实施例中介绍的有创意的运行,设备按示意图图2所示的方式建造。To demonstrate the operability of the present invention, an inventive run was made with a device providing a single pulse of ballast fluid. In order to carry out the inventive operation described in this example, the apparatus was constructed as shown schematically in FIG. 2 .
为了从半导体芯片的硅基材上清除光刻胶材料,用二氧化碳作为密相流体,用碳酸亚丙酯作为密相流体改性剂。To remove photoresist material from silicon substrates of semiconductor chips, carbon dioxide was used as the dense phase fluid and propylene carbonate was used as the dense phase fluid modifier.
由H.PGas Products有限公司用标准尺寸的A型虹吸钢瓶供应的5%碳酸亚丙酯与95%二氧化碳的混合物被用作来自碳酸亚丙酯和二氧化碳贮存器11的原料。虹吸钢瓶中的压力在室温下大约为900psi,这足以维持钢瓶内的东西呈液态。 -A mixture of 5% propylene carbonate and 95% carbon dioxide supplied by H.PGas Products Ltd in standard size Type A siphon cylinders was used as feed from the propylene carbonate and
碳酸亚丙酯和二氧化碳贮存器11通过管道13连接到ISCOTM260D型注射泵15上,该注射泵依次通过管道17连接到充当压载储罐21的WhiteyTM 304L-HDF4型1000毫升的高压采样瓶上。在注射泵15和压载储罐21之间的管道17有减压阀19。The propylene carbonate and
在压载储罐21的下游,1/4英寸外径的不锈钢钢管管道23把压载储罐21连接到DUR-O-LOKTM型速启高压过滤器壳体上,该壳体经过改造充当净化容器27。由C.F.Technologies公司制造的DUR-O-LOKTM型过滤器壳体是通过添加减压口和加工该容器的内侧以考虑供特殊的晶片夹持装置使用的栓系点完成改造的。经过改造的容器被重新检定,以便满足A.S.M.E.Code,Sec.VIII,Div.1标准。Downstream of the
定位夹具是为了在清洗容器27中固定硅片而设计的。晶片定位夹具是直径大约为2英寸的不锈钢盘,该不锈钢盘被镗孔以便接受有晶片安装在其中的第二盘。The positioning jig is designed for fixing silicon wafers in the cleaning
清洗容器27的有效体积大约为320毫升。The effective volume of the cleaning
通过管道23到清洗容器27的高压输入口被定位,以便允许密相流体混合物直接注射到硅片表面上。The high pressure input through
大功率加热器29、热电偶31、卸压阀33和减压阀35都安装在通过改造充当清洗容器27的速启高压过滤器壳体上。High power heater 29,
高压管材(304不锈钢硬管和SwagelokTM不锈钢丝编包的聚四氟乙烯软管)被用来作为管道37,把清洗容器27与AutoclaveEngineers制造的高压过滤器壳体连接起来,该高压过滤器壳体经过改造充当缓冲罐41。精密的测微波纹管针阀39安装在管道37上以允许控制清洗容器27释放过高的压力同时维持清洗容器27内压力高于临界点。High-pressure tubing (304 stainless steel hard pipe and Swagelok TM stainless steel wire braided polytetrafluoroethylene hose) is used as the
改造后充当缓冲罐41的高压过滤器壳体具有2升体积并且为来自清洗容器27的膨胀压力留有充分的余地。The high pressure filter housing retrofitted as
上面带阀门的管道43把缓冲罐41与5升的储罐连接起来,该储罐适合充当鼓泡水罐47收集从缓冲罐41释放出来的气体混合物中的碳酸亚丙酯。来自鼓泡水罐47的管道49引导洁净的二氧化碳离开鼓泡水罐47释放到大气中。与碳酸亚丙酯形成溶液的水在需要时从鼓泡水罐47中排放掉。A
在为这次示范运行开始增压之前,将压载储罐21和清洗容器27预热到50℃。两个可调变压器被用于分别控制压载储罐21和清洗容器27的温度。The
让二氧化碳和碳酸亚丙酯的混合物流入该系统并且允许它充满高压注射泵15、压载储罐21和清洗容器27。最终压力大约为900psi,填充时间大约整整两分钟。A mixture of carbon dioxide and propylene carbonate is flowed into the system and allowed to fill the high
一旦完成填充,用高压注射泵15把清洗容器27和压载储罐21的压力升高到大约1100psi,该压力是临界压力。然后,关闭在压载储罐21和清洗容器27之间的阀门25,并且让泵15运行大约5分钟以使压载储罐21增压至大约1600psi。这5分钟的时间周期变成在清洗容器27中的“晶片浸泡时间”。Once filled, the high
一旦压载储罐21被增压到1600psi,打开阀门25,以便将压力释放到清洗容器27中。压载储罐21(1600psi)和清洗容器27(1100psi)之间的压力差使二氧化碳与碳酸亚丙酯的密相流体混合物伴随着高压和高速直接注射到晶片上,借此清除来自晶片的光刻胶。我们认为将在二氧化碳和碳酸亚丙酯的密相流体混合物中变成溶液。Once
让压载储罐21和清洗容器27中的压力趋于平衡,平衡压力大约为1400psi。在压载储罐21和清洗容器27的压力达到平衡之后,打开下游的测微波纹管针阀39并持续足以允许压载储罐21和清洗容器27的压力下降到1100psi的时间(大约1分钟)。The pressure in the
然后,关闭测微波纹管针阀39和在压载储罐21和清洗容器27之间的阀门25。随着测微波纹管针阀39和在压载储罐21和清洗容器27之间的阀门25被关闭,高压注射泵15被激活,再次给压载储罐21增压,以便重复上述程序,在清洗容器27中将另一个压力脉冲施加在硅片上。这个程序总共重复3次。Then, the micrometer bellows
在完成3个压力脉冲之后,降低整个系统的压力,从清洗容器27中取出夹持硅片的特制夹具,并且用经过过滤的去离子水冲洗整个系统。After completing 3 pressure pulses, reduce the pressure of the whole system, take out the special jig holding the silicon wafer from the cleaning
硅片分析表明所有的光刻胶材料本质上已借助流体的脉冲从晶片上清除。Wafer analysis indicated that essentially all photoresist material had been removed from the wafer by the pulse of fluid.
尽管为了说明已详细地介绍了这项发明的制造工艺和制品,但本发明的工艺和制品不仅限于此。这份专利倾向于覆盖在其精神和范围内的所有变化和改进。Although the process and article of manufacture of this invention have been described in detail for purposes of illustration, the process and article of manufacture of this invention are not limited thereto. This patent is intended to cover all changes and modifications within its spirit and scope.
工业应用industrial application
本发明的装置和工艺可以被用于任何希望用流体冲击表面的应用,特别是为了用超临界流体冲击表面以清除可溶解于那种特定溶剂的物质。The apparatus and process of the present invention can be used in any application where it is desirable to impinge a surface with a fluid, in particular for impinging a surface with a supercritical fluid to remove substances soluble in that particular solvent.
本发明的装置和工艺在制造电子器件、特别是半导体芯片和晶片期间可以用于从金属化的和非金属化的基材上清除光刻胶材料。本发明的装置和工艺还可以用于其它需要光刻胶掩膜的制造工艺,例如光波导和平板显示器的生产。The apparatus and process of the present invention can be used to remove photoresist material from metallized and non-metallized substrates during the manufacture of electronic devices, particularly semiconductor chips and wafers. The apparatus and process of the present invention can also be used in other manufacturing processes that require photoresist masks, such as the production of optical waveguides and flat panel displays.
Claims (31)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US7991998P | 1998-03-30 | 1998-03-30 | |
| US60/079,919 | 1998-03-30 | ||
| US09/243,191 US6085762A (en) | 1998-03-30 | 1999-02-02 | Apparatus and method for providing pulsed fluids |
| US09/243,191 | 1999-02-02 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1295503A CN1295503A (en) | 2001-05-16 |
| CN1127381C true CN1127381C (en) | 2003-11-12 |
Family
ID=26762567
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN99804701A Expired - Fee Related CN1127381C (en) | 1998-03-30 | 1999-03-22 | Apparatus and method for providing pulsating fluid |
Country Status (7)
| Country | Link |
|---|---|
| EP (1) | EP1082182A4 (en) |
| JP (1) | JP2002509800A (en) |
| KR (1) | KR100557247B1 (en) |
| CN (1) | CN1127381C (en) |
| AU (1) | AU3545899A (en) |
| CA (1) | CA2326810A1 (en) |
| WO (1) | WO1999049996A1 (en) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6294194B1 (en) | 1997-10-14 | 2001-09-25 | Boehringer Ingelheim Pharmaceuticals, Inc. | Method for extraction and reaction using supercritical fluids |
| US6612317B2 (en) | 2000-04-18 | 2003-09-02 | S.C. Fluids, Inc | Supercritical fluid delivery and recovery system for semiconductor wafer processing |
| US6602349B2 (en) | 1999-08-05 | 2003-08-05 | S.C. Fluids, Inc. | Supercritical fluid cleaning process for precision surfaces |
| TWI270626B (en) * | 2002-04-23 | 2007-01-11 | Display Mfg Service Co Ltd | Wet processing bath and fluid supplying system for liquid crystal display manufacturing equipment |
| US7267727B2 (en) | 2002-09-24 | 2007-09-11 | Air Products And Chemicals, Inc. | Processing of semiconductor components with dense processing fluids and ultrasonic energy |
| US20050029492A1 (en) | 2003-08-05 | 2005-02-10 | Hoshang Subawalla | Processing of semiconductor substrates with dense fluids comprising acetylenic diols and/or alcohols |
| US7195676B2 (en) | 2004-07-13 | 2007-03-27 | Air Products And Chemicals, Inc. | Method for removal of flux and other residue in dense fluid systems |
| KR100831402B1 (en) * | 2006-05-08 | 2008-05-22 | 주식회사 지에스하이텍 | High pressure cleaning liquid supply device for substrate cleaning |
| US8224481B2 (en) * | 2009-01-19 | 2012-07-17 | Access Business Group International Llc | Method and apparatus for dispensing fluid compositions |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3175569A (en) * | 1961-12-28 | 1965-03-30 | Sperry Rand Corp | Pure fluid pulse generator |
| US3302398A (en) * | 1963-06-25 | 1967-02-07 | Bendix Corp | Fluid pulse control |
| US3437099A (en) * | 1965-10-22 | 1969-04-08 | Sperry Rand Corp | Pulse generator |
| US3799205A (en) * | 1966-07-18 | 1974-03-26 | Us Army | Fluid oscillators |
| US3576294A (en) * | 1969-02-26 | 1971-04-27 | Bendix Corp | Fluidic cleansing device |
| US3568702A (en) * | 1969-03-07 | 1971-03-09 | Nasa | Pneumatic oscillator |
| US3885591A (en) * | 1973-06-14 | 1975-05-27 | Automatic Switch Co | Tunable fluidic oscillator |
| US4570675A (en) * | 1982-11-22 | 1986-02-18 | General Electric Company | Pneumatic signal multiplexer |
| US4622996A (en) * | 1985-03-14 | 1986-11-18 | Donaldson Company, Inc. | Aspirator for pulse-jet air cleaner |
| US4915119A (en) * | 1986-04-21 | 1990-04-10 | Dober Chemical Corporation | Cleaning apparatus and method |
| SE457822B (en) * | 1986-11-28 | 1989-01-30 | Svenska Rotor Maskiner Ab | PROCEDURES FOR AUTHORIZATION OF SELECTIVELY CONTROLLED PRESSURE PULSES IN A GAS MASS AND DEVICE FOR IMPLEMENTATION OF THE PROCEDURE |
| US4921662A (en) * | 1988-04-19 | 1990-05-01 | Westinghouse Electric Corp. | Pressure pulse cleaning method |
| US5082502A (en) * | 1988-09-08 | 1992-01-21 | Cabot Corporation | Cleaning apparatus and process |
| US4874016A (en) * | 1989-02-28 | 1989-10-17 | Allied-Signal Inc. | Method for improving signal-to-noise ratios in fluidic circuits and apparatus adapted for use therewith |
| US5273590A (en) * | 1991-12-18 | 1993-12-28 | The Babcock & Wilcox Company | Pressure pulse cleaning for adsorption tower distributors |
| US5195560A (en) * | 1992-04-27 | 1993-03-23 | Muchlis Achmad | Adjustable low frequency hydrofluidic oscillator |
| US5514220A (en) * | 1992-12-09 | 1996-05-07 | Wetmore; Paula M. | Pressure pulse cleaning |
| US5882589A (en) * | 1994-06-03 | 1999-03-16 | Leon Shipper | Sealed endoscope decontamination, disinfection and drying device |
| US5647386A (en) * | 1994-10-04 | 1997-07-15 | Entropic Systems, Inc. | Automatic precision cleaning apparatus with continuous on-line monitoring and feedback |
| US5595201A (en) * | 1994-12-05 | 1997-01-21 | Dober Chemical Co. | Apparatus and methods for automatically cleaning multiple pieces of equipment |
| DE59510556D1 (en) * | 1995-12-22 | 2003-03-20 | Festo Ag & Co | Device for generating periodic pulse changes in a fluid flow, method for operating the device and its use |
-
1999
- 1999-03-22 CN CN99804701A patent/CN1127381C/en not_active Expired - Fee Related
- 1999-03-22 EP EP99917306A patent/EP1082182A4/en not_active Withdrawn
- 1999-03-22 AU AU35458/99A patent/AU3545899A/en not_active Abandoned
- 1999-03-22 JP JP2000540950A patent/JP2002509800A/en active Pending
- 1999-03-22 KR KR1020007010889A patent/KR100557247B1/en not_active Expired - Fee Related
- 1999-03-22 CA CA002326810A patent/CA2326810A1/en not_active Abandoned
- 1999-03-22 WO PCT/US1999/006258 patent/WO1999049996A1/en not_active Application Discontinuation
Also Published As
| Publication number | Publication date |
|---|---|
| WO1999049996A1 (en) | 1999-10-07 |
| AU3545899A (en) | 1999-10-18 |
| EP1082182A1 (en) | 2001-03-14 |
| CA2326810A1 (en) | 1999-10-07 |
| KR100557247B1 (en) | 2006-03-07 |
| JP2002509800A (en) | 2002-04-02 |
| KR20010074464A (en) | 2001-08-04 |
| EP1082182A4 (en) | 2005-04-27 |
| CN1295503A (en) | 2001-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6403544B1 (en) | Composition and method for removing photoresist materials from electronic components | |
| US6085762A (en) | Apparatus and method for providing pulsed fluids | |
| US6715498B1 (en) | Method and apparatus for radiation enhanced supercritical fluid processing | |
| US6817370B2 (en) | Method for processing the surface of a workpiece | |
| KR100853354B1 (en) | Cleaning of contaminated articles by aqueous supercritical oxidation | |
| JP2770883B2 (en) | Concentrated fluid photochemical treatment method for substrate treatment | |
| CN1175470C (en) | Method and apparatus for supercritical treatment of multiple workpieces | |
| TW501196B (en) | Cleaning device, cleaning system, treating device and cleaning method | |
| US20040198066A1 (en) | Using supercritical fluids and/or dense fluids in semiconductor applications | |
| EP0726099A2 (en) | Method of removing surface contamination | |
| TW201426850A (en) | Stiction-free drying process with contaminant removal for high-aspect-ratio semiconductor device structures | |
| CN1127381C (en) | Apparatus and method for providing pulsating fluid | |
| JPH0586241B2 (en) | ||
| CN101556430A (en) | Mask surface chemical treatment method and system | |
| TWI261290B (en) | Removal of contaminants using supercritical processing | |
| TWI246713B (en) | Processing chamber including a circulation loop integrally formed in a chamber housing | |
| TWI293482B (en) | Method for reducing the formation of contaminants during supercritical carbon dioxide processes | |
| US6846789B2 (en) | Composition and method for removing photoresist materials from electronic components | |
| JP2006528845A (en) | Decontamination of supercritical wafer processing equipment | |
| TW200308051A (en) | Method of treatment of porous dielectric films to reduce damage during cleaning | |
| CN117936406A (en) | Etching device and etching method | |
| JP2004088065A (en) | Film stripping apparatus and film stripping method | |
| US20040194886A1 (en) | Microelectronic device manufacturing in coordinated carbon dioxide processing chambers | |
| CN116765059A (en) | A tank washing method for removing metal from treatment tank | |
| JP2004192851A (en) | Washing method and its device for metal mask |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C19 | Lapse of patent right due to non-payment of the annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |