[go: up one dir, main page]

CN112740633B - Method and circuit for reducing crest factor for cable television amplifier - Google Patents

Method and circuit for reducing crest factor for cable television amplifier Download PDF

Info

Publication number
CN112740633B
CN112740633B CN201980062088.0A CN201980062088A CN112740633B CN 112740633 B CN112740633 B CN 112740633B CN 201980062088 A CN201980062088 A CN 201980062088A CN 112740633 B CN112740633 B CN 112740633B
Authority
CN
China
Prior art keywords
cfr
dpd
output signal
signal
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980062088.0A
Other languages
Chinese (zh)
Other versions
CN112740633A (en
Inventor
C·H·迪克
H·赵
H·M·帕雷克
X·陈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xilinx Inc
Original Assignee
Xilinx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/142,893 external-priority patent/US10411656B1/en
Priority claimed from US16/142,295 external-priority patent/US10944444B2/en
Application filed by Xilinx Inc filed Critical Xilinx Inc
Publication of CN112740633A publication Critical patent/CN112740633A/en
Application granted granted Critical
Publication of CN112740633B publication Critical patent/CN112740633B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/63Indexing scheme relating to amplifiers the amplifier being suitable for CATV applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

A Crest Factor Reduction (CFR) system includes a digital ramp filter coupled to an input of the CFR system. In some embodiments, the digital tilt filter is configured to receive the system input signal and generate a digital tilt filter output signal at a digital tilt filter output. In some examples, the CFR system further includes a CFR module coupled to the digital tilt filter output, wherein the CFR module is configured to receive the digital tilt filter output signal and perform CFR processing on the digital tilt filter output signal to generate a CFR module output signal at the CFR module output. Additionally, the CFR system may further include a digital tilt equalizer coupled to the CFR module output, wherein the digital tilt equalizer is configured to receive the CFR module output signal and generate a system output signal.

Description

用于为有线电视放大器降低波峰因数的方法和电路Method and circuit for reducing crest factor for cable television amplifier

技术领域Technical Field

本公开的示例总体上涉及集成电路(“IC”),并且具体地,涉及与有线电视(CATV)放大器的波峰因数降低有关的实施例。Examples of the present disclosure relate generally to integrated circuits ("ICs"), and more particularly, to embodiments related to crest factor reduction for cable television (CATV) amplifiers.

背景技术Background Art

为了满足对互联网、电话和视频服务的更高数据速率的需求,电缆行业正在基于新的电缆数据服务接口规范(Data Over Cable Service Interface Specification,DOCSIS)3.1标准部署新的高数据速率和宽带远程PHY节点。DOCSIS 3.1支持4096正交幅度调制(QAM),并使用正交分频复用(OFDM)。这样,DOCSIS 3.1的发射信号质量要求比当前标准DOCSIS 3.0更高。由于与DOCSIS 3.1相关的更复杂的功能,有线电视(CATV)放大器可能会在非线性区域内工作。CATV放大器的非线性效应将大大降低发射信号的质量。此外,提供高数据速率和DOCSIS 3.1的更复杂功能的新组件本身也会消耗功率。然而,由于到每个节点(例如,每个远程PHY节点)的电源供给是固定的,所以应减少其他组件(例如,CATV放大器)的功耗。因此,虽然期望提供DOCSIS 3.1的先进性能,但是同时提供改进的发射信号质量和降低其他组件(例如,CATV放大器)的功耗是具有挑战性的。To meet the demand for higher data rates for Internet, telephone and video services, the cable industry is deploying new high data rate and broadband remote PHY nodes based on the new Data Over Cable Service Interface Specification (DOCSIS) 3.1 standard. DOCSIS 3.1 supports 4096 quadrature amplitude modulation (QAM) and uses orthogonal frequency division multiplexing (OFDM). As a result, the transmission signal quality requirements of DOCSIS 3.1 are higher than those of the current standard DOCSIS 3.0. Due to the more complex functions associated with DOCSIS 3.1, cable television (CATV) amplifiers may operate in a nonlinear region. The nonlinear effects of CATV amplifiers will greatly reduce the quality of the transmitted signal. In addition, the new components that provide high data rates and the more complex functions of DOCSIS 3.1 will also consume power themselves. However, since the power supply to each node (e.g., each remote PHY node) is fixed, the power consumption of other components (e.g., CATV amplifiers) should be reduced. Therefore, while it is desirable to provide the advanced performance of DOCSIS 3.1, it is challenging to simultaneously provide improved transmit signal quality and reduce power consumption of other components (eg, CATV amplifiers).

因此,需要改进的方法和电路来降低CATV放大器的波峰因数。Therefore, there is a need for improved methods and circuits for reducing the crest factor of CATV amplifiers.

发明内容Summary of the invention

在根据本公开的一些实施例中,波峰因数降低(CFR)系统包括耦接到CFR系统的输入端的数字倾斜滤波器(digital tilt filter)。在一些实施例中,数字倾斜滤波器被配置为接收系统输入信号并在数字倾斜滤波器输出端处生成数字倾斜滤波器输出信号。在一些示例中,CFR系统还包括耦接到数字倾斜滤波器输出端的CFR模块,其中CFR模块被配置为接收数字倾斜滤波器输出信号并对数字倾斜滤波器输出信号执行CFR处理以便在CFR模块输出端生成CFR模块输出信号。另外,CFR系统可以包括耦接到CFR模块输出端的数字倾斜均衡器(digital tilt equalizer),其中数字倾斜均衡器被配置为接收CFR模块输出信号并生成系统输出信号。In some embodiments according to the present disclosure, a crest factor reduction (CFR) system includes a digital tilt filter coupled to an input of the CFR system. In some embodiments, the digital tilt filter is configured to receive a system input signal and generate a digital tilt filter output signal at a digital tilt filter output. In some examples, the CFR system also includes a CFR module coupled to the output of the digital tilt filter, wherein the CFR module is configured to receive the digital tilt filter output signal and perform CFR processing on the digital tilt filter output signal to generate a CFR module output signal at the CFR module output. In addition, the CFR system may include a digital tilt equalizer coupled to the output of the CFR module, wherein the digital tilt equalizer is configured to receive the CFR module output signal and generate a system output signal.

在一些实施例中,CFR系统还包括耦接到CFR模块输出端的数字预失真(DPD)模块,其中DPD模块被配置为接收CFR模块输出信号并对CFR模块输出信号执行DPD处理,以便在DPD模块输出端处生成DPD模块输出信号。在某些情形下,数字倾斜均衡器耦接到DPD模块输出端,并且数字倾斜均衡器被配置为接收DPD模块输出信号并生成系统输出信号。In some embodiments, the CFR system further comprises a digital predistortion (DPD) module coupled to an output of the CFR module, wherein the DPD module is configured to receive the CFR module output signal and perform DPD processing on the CFR module output signal to generate a DPD module output signal at the DPD module output. In some cases, a digital tilt equalizer is coupled to the DPD module output, and the digital tilt equalizer is configured to receive the DPD module output signal and generate a system output signal.

在一些实施例中,系统输入信号具有第一峰值对平均值功率比(peak-to-averagepower ratio,PAPR),并且CFR模块输出信号具有小于第一PAPR的第二PAPR。In some embodiments, the system input signal has a first peak-to-average power ratio (PAPR), and the CFR module output signal has a second PAPR that is less than the first PAPR.

在一些实施例中,CFR系统还包括第一线性数据路径,该第一线性数据路径耦接到CFR系统的输入端并且与CFR模块和DPD模块并联以产生第一时间延迟信号。在一些示例中,CFR系统还包括第一组合器,该第一组合器被配置为组合数字倾斜均衡器输出信号和第一时间延迟信号以生成系统输出信号。In some embodiments, the CFR system further comprises a first linear data path coupled to an input of the CFR system and connected in parallel with the CFR module and the DPD module to generate a first time-delayed signal. In some examples, the CFR system further comprises a first combiner configured to combine the digital tilt equalizer output signal and the first time-delayed signal to generate a system output signal.

在一些实施例中,CFR系统还包括第二线性数据路径,该第二线性数据路径耦接到CFR系统的输入端并且与CFR模块并联以产生第二时间延迟信号。举例来说,第二组合器被配置为将CFR模块输出信号和第二时延信号组合以生成第一输出信号,第三组合器被配置为将第一输出信号和DPD模块输出信号组合以生成系统输出信号。In some embodiments, the CFR system further comprises a second linear data path coupled to the input of the CFR system and connected in parallel with the CFR module to generate a second time-delayed signal. For example, the second combiner is configured to combine the CFR module output signal and the second time-delayed signal to generate a first output signal, and the third combiner is configured to combine the first output signal and the DPD module output signal to generate a system output signal.

在一些实施例中,CFR系统还包括耦接到CFR模块输出端的非线性数据路径,其中非线性数据路径包括每个都耦接到CFR模块输出端的多个并行数据路径单元,其中多个并行数据路径单元中的每个并行数据路径单元被配置为向CFR模块输出信号添加与放大器的非线性分量相对应的不同的逆非线性分量,并且其中组合器被配置为组合多个并行数据路径单元中的每个并行数据路径单元的输出以生成DPD模块输出信号。In some embodiments, the CFR system further comprises a nonlinear data path coupled to an output of the CFR module, wherein the nonlinear data path comprises a plurality of parallel data path cells each coupled to the output of the CFR module, wherein each of the plurality of parallel data path cells is configured to add a different inverse nonlinear component corresponding to a nonlinear component of the amplifier to the CFR module output signal, and wherein the combiner is configured to combine the output of each of the plurality of parallel data path cells to generate a DPD module output signal.

在一些实施例中,数模转换器(DAC)被配置为接收系统输出信号并生成DAC输出信号,其中模拟倾斜滤波器被配置为接收DAC输出信号并生成模拟倾斜滤波器输出信号,以及其中数字倾斜滤波器被配置成对模拟倾斜滤波器进行建模。In some embodiments, a digital-to-analog converter (DAC) is configured to receive a system output signal and generate a DAC output signal, wherein the analog tilt filter is configured to receive the DAC output signal and generate an analog tilt filter output signal, and wherein the digital tilt filter is configured to model the analog tilt filter.

在一些实施例中,数字倾斜均衡器被配置为对模拟倾斜滤波器的逆进行建模。In some embodiments, the digital shelving equalizer is configured to model the inverse of an analog shelving filter.

在一些实施例中,CFR系统还包括单边带希尔伯特滤波器(Hilbert filter),其中单边带希尔伯特滤波器输入端被配置为接收DPD模块输出信号,并且单边带希尔伯特滤波器输出端被耦接到数字倾斜均衡器输入端。In some embodiments, the CFR system further comprises a single sideband Hilbert filter, wherein the single sideband Hilbert filter input is configured to receive the DPD module output signal, and the single sideband Hilbert filter output is coupled to the digital tilt equalizer input.

在一些实施例中,CFR系统还包括适配引擎,其被配置为从放大器输出端接收反馈数据,其中基于所述反馈数据,适配引擎被配置为更新CFR模块的配置。In some embodiments, the CFR system further comprises an adaptation engine configured to receive feedback data from the amplifier output, wherein based on the feedback data, the adaptation engine is configured to update a configuration of the CFR module.

在根据本公开的一些实施例中,数字前端(DFE)系统被配置为执行波峰因数降低(CFR)处理,并且DFE系统包括数字上变频器(DUC),其被配置为接收和转换基带数据输入信号以生成复合信号。在各种实施例中,DFE系统还包括CFR系统,其包括数字倾斜滤波器、CFR模块和数字倾斜均衡器,其中,数字倾斜滤波器被配置为接收复合信号并生成数字倾斜滤波器输出信号,其中CFR模块被配置为接收数字倾斜滤波器输出信号并对数字倾斜滤波器输出信号执行CFR处理,以生成CFR模块输出信号;其中数字倾斜均衡器被配置为接收CFR模块输出信号并生成CFR系统输出信号,并且其中CFR系统输出信号被耦接到放大器。在一些示例中,DFE系统还包括被配置为从放大器的输出端接收反馈数据的适配引擎,其中基于反馈数据,适配引擎被配置为更新CFR系统的配置。In some embodiments according to the present disclosure, a digital front end (DFE) system is configured to perform crest factor reduction (CFR) processing, and the DFE system includes a digital up converter (DUC) configured to receive and convert a baseband data input signal to generate a composite signal. In various embodiments, the DFE system also includes a CFR system including a digital shelving filter, a CFR module, and a digital shelving equalizer, wherein the digital shelving filter is configured to receive the composite signal and generate a digital shelving filter output signal, wherein the CFR module is configured to receive the digital shelving filter output signal and perform CFR processing on the digital shelving filter output signal to generate a CFR module output signal; wherein the digital shelving equalizer is configured to receive the CFR module output signal and generate a CFR system output signal, and wherein the CFR system output signal is coupled to an amplifier. In some examples, the DFE system also includes an adaptation engine configured to receive feedback data from an output of the amplifier, wherein based on the feedback data, the adaptation engine is configured to update a configuration of the CFR system.

在一些实施例中,CFR处理被配置为减小数字倾斜滤波器输出信号的峰值对平均值功率比(PAPR)。In some embodiments, the CFR processing is configured to reduce a peak-to-average power ratio (PAPR) of the digital shelving filter output signal.

在一些实施例中,CFR系统还包括数字预失真(DPD)模块,其包括耦接到CFR模块输出端的非线性数据路径,其中所述非线性数据路径包括多个并行数据路径单元,每个并行数据路径单元耦接到CFR模块输出端,其中多个并行数据路径单元中的每一个并行数据路径单元被配置为对与放大器的非线性分量相对应的不同的逆非线性分量进行建模,其中组合器被配置为组合多个并行数据路径单元中的每个数据路径单元的输出以生成DPD模块输出信号,并且其中数字倾斜均衡器被配置为接收DPD模块输出信号并生成CFR系统输出信号。In some embodiments, the CFR system further comprises a digital predistortion (DPD) module comprising a nonlinear data path coupled to an output of the CFR module, wherein the nonlinear data path comprises a plurality of parallel data path cells, each of the parallel data path cells being coupled to the output of the CFR module, wherein each of the plurality of parallel data path cells is configured to model a different inverse nonlinear component corresponding to a nonlinear component of the amplifier, wherein a combiner is configured to combine an output of each of the plurality of parallel data path cells to generate a DPD module output signal, and wherein a digital tilt equalizer is configured to receive the DPD module output signal and generate a CFR system output signal.

在一些实施例中,数模转换器(DAC)被配置为接收CFR系统输出信号并生成DAC输出信号,其中模拟倾斜滤波器被配置为接收DAC输出信号并生成模拟倾斜滤波器输出信号,并且其中数字倾斜滤波器被配置为对模拟倾斜滤波器进行建模。In some embodiments, a digital-to-analog converter (DAC) is configured to receive a CFR system output signal and generate a DAC output signal, wherein the analog shelving filter is configured to receive the DAC output signal and generate an analog shelving filter output signal, and wherein the digital shelving filter is configured to model the analog shelving filter.

在一些实施例中,数字倾斜均衡器被配置为对模拟倾斜滤波器的逆进行建模。In some embodiments, the digital shelving equalizer is configured to model the inverse of an analog shelving filter.

在根据本公开的一些实施例中,一种方法包括在波峰因数降低(CFR)系统的数字倾斜滤波器处接收输入信号,并在数字倾斜滤波器输出端处生成数字倾斜滤波器输出信号。在各种示例中,所述方法还包括在CFR系统的CFR模块处对数字倾斜滤波器输出信号执行CFR处理以生成CFR模块输出信号,其中CFR处理被配置为减小数字倾斜滤波器输出信号的峰值对平均值功率比(PAPR)。在一些示例中,所述方法还包括在CFR系统的数字倾斜均衡器处接收CFR模块输出信号并生成系统输出信号。在一些实施例中,所述方法还包括将系统输出信号提供给放大器。In some embodiments according to the present disclosure, a method includes receiving an input signal at a digital tilt filter of a crest factor reduction (CFR) system and generating a digital tilt filter output signal at a digital tilt filter output terminal. In various examples, the method also includes performing CFR processing on the digital tilt filter output signal at a CFR module of the CFR system to generate a CFR module output signal, wherein the CFR processing is configured to reduce a peak-to-average power ratio (PAPR) of the digital tilt filter output signal. In some examples, the method also includes receiving the CFR module output signal at a digital tilt equalizer of the CFR system and generating a system output signal. In some embodiments, the method also includes providing the system output signal to an amplifier.

在一些实施例中,所述方法还包括响应于从放大器的输出端接收的反馈数据更新CFR系统的配置。In some embodiments, the method further comprises updating a configuration of the CFR system in response to feedback data received from an output of the amplifier.

在一些实施例中,所述方法还包括在CFR系统的数字预失真(DPD)模块处对CFR模块输出信号执行DPD处理,以生成DPD模块输出信号。在一些示例中,所述方法还包括在CFR系统的数字倾斜均衡器处接收DPD模块输出信号并生成系统输出信号。In some embodiments, the method further comprises performing DPD processing on the CFR module output signal at a digital predistortion (DPD) module of the CFR system to generate a DPD module output signal. In some examples, the method further comprises receiving the DPD module output signal at a digital tilt equalizer of the CFR system and generating a system output signal.

在一些实施例中,DPD模块还包括耦接到CFR模块的输出端的非线性数据路径,其中所述非线性数据路径包括多个并行数据路径单元,每个数据路径单元都耦接到CFR模块输出端的,其中多个并行数据路径单元中的每个并行数据路径单元被配置为对与所述放大器的非线性分量相对应的不同的逆非线性分量进行建模,并且其中组合器被配置为将所述多个并行数据路径单元中的每个数据路径单元的输出进行组合以生成所述DPD模块输出信号。In some embodiments, the DPD module further comprises a nonlinear data path coupled to an output of the CFR module, wherein the nonlinear data path comprises a plurality of parallel data path cells, each data path cell being coupled to the output of the CFR module, wherein each of the plurality of parallel data path cells is configured to model a different inverse nonlinear component corresponding to the nonlinear component of the amplifier, and wherein a combiner is configured to combine the output of each of the plurality of parallel data path cells to generate the DPD module output signal.

在一些实施例中,所述方法还包括响应于将系统输出信号提供给放大器同时使放大器工作在非线性区域,减小放大器的功耗。In some embodiments, the method further includes reducing power consumption of the amplifier in response to providing the system output signal to the amplifier while operating the amplifier in a non-linear region.

在根据本公开的一些实施例中,数字预失真(DPD)系统包括被配置为接收DPD输入信号的输入端。在一些实施例中,DPD系统还包括耦接到输入端的非线性数据路径,其中非线性数据路径包括每个都耦接到输入端的多个并行数据路径单元,其中多个并行数据路径单元中的每个并行数据路径单元被配置为向DPD输入信号添加与放大器的非线性分量相对应的不同的逆非线性分量,并且其中第一组合器被配置为组合多个并行数据路径单元中的每个并行数据路径单元的输出以生成第一预失真信号。在一些实施例中,DPD系统还包括与非线性数据路径并行的、耦接到输入端的线性数据路径以生成第二预失真信号,以及包括第二组合器,第二组合器被配置为组合第一预失真信号和第二预失真信号以生成DPD输出信号。In some embodiments according to the present disclosure, a digital predistortion (DPD) system includes an input terminal configured to receive a DPD input signal. In some embodiments, the DPD system also includes a nonlinear data path coupled to the input terminal, wherein the nonlinear data path includes a plurality of parallel data path units each coupled to the input terminal, wherein each of the plurality of parallel data path units is configured to add a different inverse nonlinear component corresponding to a nonlinear component of an amplifier to the DPD input signal, and wherein a first combiner is configured to combine the output of each of the plurality of parallel data path units to generate a first predistortion signal. In some embodiments, the DPD system also includes a linear data path coupled to the input terminal in parallel with the nonlinear data path to generate a second predistortion signal, and includes a second combiner configured to combine the first predistortion signal and the second predistortion signal to generate a DPD output signal.

在一些实施例中,多个并行数据路径单元包括基带DPD数据路径、视频带宽DPD数据路径、二次谐波DPD数据路径和三次谐波DPD数据路径。In some embodiments, the plurality of parallel data path units include a baseband DPD data path, a video bandwidth DPD data path, a second harmonic DPD data path, and a third harmonic DPD data path.

在一些实施例中,所述基带DPD数据路径被配置为将逆非线性基带分量添加到DPD输入信号。In some embodiments, the baseband DPD data path is configured to add an inverse nonlinear baseband component to the DPD input signal.

在一些实施例中,所述视频带宽DPD数据路径被配置为将逆非线性视频带宽分量添加到DPD输入信号。In some embodiments, the video bandwidth DPD data path is configured to add an inverse non-linear video bandwidth component to the DPD input signal.

在一些实施例中,所述二次谐波DPD数据路径被配置为将逆二次谐波分量添加到DPD输入信号。In some embodiments, the second harmonic DPD data path is configured to add an inverse second harmonic component to the DPD input signal.

在一些实施例中,所述三次谐波DPD数据路径被配置为将逆三次谐波分量添加到DPD输入信号。In some embodiments, the third harmonic DPD data path is configured to add an inverse third harmonic component to the DPD input signal.

在一些实施例中,DPD系统还包括配置成对模拟倾斜滤波器建模的数字倾斜滤波器,其中数字倾斜滤波器输入端耦接到所述输入端,并且数字倾斜滤波器输出端耦接到非线性数据路径。In some embodiments, the DPD system further includes a digital shelving filter configured to model an analog shelving filter, wherein a digital shelving filter input is coupled to the input and a digital shelving filter output is coupled to the nonlinear data path.

在一些实施例中,DPD系统还包括数字倾斜均衡器,其被配置为对模拟倾斜滤波器的逆进行建模,其中数字倾斜均衡器输入端被配置为接收第一预失真信号,并且第二组合器被配置为将数字倾斜均衡器输出组合到第二预失真信号以生成DPD输出信号。In some embodiments, the DPD system further comprises a digital tilt equalizer configured to model an inverse of an analog tilt filter, wherein the digital tilt equalizer input is configured to receive a first predistortion signal, and the second combiner is configured to combine the digital tilt equalizer output to the second predistortion signal to generate a DPD output signal.

在一些实施例中,DPD系统还包括单边带希尔伯特滤波器,其中单边带希尔伯特滤波器输入端被配置为接收第一预失真信号,并且单边带希尔伯特滤波器输出端被耦接到数字倾斜均衡器输入端。In some embodiments, the DPD system further comprises a single sideband Hilbert filter, wherein the single sideband Hilbert filter input is configured to receive the first predistortion signal, and the single sideband Hilbert filter output is coupled to the digital tilt equalizer input.

在一些实施例中,DPD输出信号被耦接到放大器输入端以生成放大的输出信号,并且DPD输出信号被配置为补偿放大器的多个非线性分量。In some embodiments, the DPD output signal is coupled to an amplifier input to generate an amplified output signal, and the DPD output signal is configured to compensate for a plurality of nonlinear components of the amplifier.

在根据本公开的一些实施例中,被配置为执行数字预失真(DPD)处理的数字前端(DFE)系统包括数字上变频器(DUC),其被配置为接收和转换基带数据输入信号以生成复合信号。在一些实施例中,DFE系统还包括DPD系统,其被配置为在DPD输入端处接收复合信号并对复合信号执行DPD处理,其中DPD输入端被耦接至多个并行数据路径单元,其中所述多个并行数据路径单元中的至少一个并行数据路径单元被配置为向复合信号添加与放大器的非线性谐波分量相对应的逆谐波分量,其中组合器被配置为组合多个数据路径单元中的每一个数据路径单元的输出,以生成DPD输出信号,以及其中DPD输出信号被耦接到放大器。在一些实施例中,DPD输出信号被配置为补偿放大器的非线性谐波分量。In some embodiments according to the present disclosure, a digital front end (DFE) system configured to perform digital predistortion (DPD) processing includes a digital upconverter (DUC) configured to receive and convert a baseband data input signal to generate a composite signal. In some embodiments, the DFE system also includes a DPD system configured to receive the composite signal at a DPD input and perform DPD processing on the composite signal, wherein the DPD input is coupled to a plurality of parallel data path units, wherein at least one of the plurality of parallel data path units is configured to add an inverse harmonic component corresponding to a nonlinear harmonic component of an amplifier to the composite signal, wherein a combiner is configured to combine an output of each of the plurality of data path units to generate a DPD output signal, and wherein the DPD output signal is coupled to the amplifier. In some embodiments, the DPD output signal is configured to compensate for the nonlinear harmonic component of the amplifier.

在一些实施例中,多个并行数据路径单元包括基带DPD数据路径、视频带宽DPD数据路径、二次谐波DPD数据路径和三次谐波DPD数据路径。In some embodiments, the plurality of parallel data path units include a baseband DPD data path, a video bandwidth DPD data path, a second harmonic DPD data path, and a third harmonic DPD data path.

在一些实施例中,DUC被配置为对基带数据输入信号执行插值处理以生成插值信号,并且DUC被配置为对插值信号执行混合处理以生成复合信号。In some embodiments, the DUC is configured to perform an interpolation process on the baseband data input signal to generate an interpolated signal, and the DUC is configured to perform a mixing process on the interpolated signal to generate a composite signal.

在一些实施例中,DPD系统还包括被配置为对模拟倾斜滤波器进行建模的数字倾斜滤波器,其中数字倾斜滤波器输入端被配置为接收复合信号,并且其中数字倾斜滤波器输出端被耦接至多个并行数据路径单元。In some embodiments, the DPD system further comprises a digital shelving filter configured to model the analog shelving filter, wherein the digital shelving filter input is configured to receive the composite signal, and wherein the digital shelving filter output is coupled to the plurality of parallel data path units.

在一些实施例中,DPD系统还包括被配置为对模拟倾斜滤波器的逆进行建模的数字倾斜均衡器,其中数字倾斜均衡器输入端被配置为接收多个数据路径单元中的每个数据路径单元的组合输出,以及其中另一个组合器被配置为将数字倾斜均衡器输出组合为线性DPD信号以生成DPD输出信号。In some embodiments, the DPD system further comprises a digital tilt equalizer configured to model an inverse of an analog tilt filter, wherein an input of the digital tilt equalizer is configured to receive a combined output of each of a plurality of data path units, and wherein another combiner is configured to combine the digital tilt equalizer outputs into a linear DPD signal to generate a DPD output signal.

在根据本公开的一些实施例中,一种方法包括在数字预失真(DPD)系统的输入端接收DPD输入信号。在一些实施例中,所述方法还包括在耦接到DPD系统的输入端的非线性数据路径处接收DPD输入信号,其中所述非线性数据路径包括多个并行数据路径单元,其中每个并行数据路径单元被耦接到所述输入端。在一些实施例中,所述方法还包括由多个并行数据路径单元中的每个并行数据路径单元向DPD输入信号添加与放大器的非线性分量相对应的逆非线性分量。在一些实施例中,所述方法还包括由第一组合器组合多个并行数据路径单元中的每个并行数据路径单元的输出以生成第一预失真信号。在一些实施例中,所述方法还包括在与非线性数据路径并行地耦接到输入端的线性数据路径处接收DPD输入信号,以生成第二预失真信号。在一些实施例中,所述方法还包括通过第二组合器将第一预失真信号和第二预失真信号组合以生成DPD输出信号。In some embodiments according to the present disclosure, a method includes receiving a DPD input signal at an input of a digital predistortion (DPD) system. In some embodiments, the method also includes receiving the DPD input signal at a nonlinear data path coupled to the input of the DPD system, wherein the nonlinear data path includes a plurality of parallel data path units, wherein each parallel data path unit is coupled to the input. In some embodiments, the method also includes adding an inverse nonlinear component corresponding to a nonlinear component of an amplifier to the DPD input signal by each of the plurality of parallel data path units. In some embodiments, the method also includes combining the output of each of the plurality of parallel data path units by a first combiner to generate a first predistortion signal. In some embodiments, the method also includes receiving the DPD input signal at a linear data path coupled to the input in parallel with the nonlinear data path to generate a second predistortion signal. In some embodiments, the method also includes combining the first predistortion signal and the second predistortion signal by a second combiner to generate a DPD output signal.

在一些实施例中,多个并行数据路径单元包括基带DPD数据路径、视频带宽DPD数据路径、二次谐波DPD数据路径和三次谐波DPD数据路径。In some embodiments, the plurality of parallel data path units include a baseband DPD data path, a video bandwidth DPD data path, a second harmonic DPD data path, and a third harmonic DPD data path.

在一些实施例中,所述方法还包括:通过基带DPD数据路径将逆非线性基带分量添加到DPD输入信号;通过视频带宽DPD数据路径将逆非线性视频带宽分量添加到DPD输入信号;通过二次谐波DPD数据路径将逆二次谐波分量添加到DPD输入信号;以及通过三次谐波DPD数据路径将逆三次谐波分量添加到DPD输入信号。In some embodiments, the method further includes: adding an inverse nonlinear baseband component to the DPD input signal via a baseband DPD data path; adding an inverse nonlinear video bandwidth component to the DPD input signal via a video bandwidth DPD data path; adding an inverse second harmonic component to the DPD input signal via a second harmonic DPD data path; and adding an inverse third harmonic component to the DPD input signal via a third harmonic DPD data path.

在一些实施例中,所述方法还包括将DPD输出信号提供到放大器输入端以生成放大的输出信号,其中DPD输出信号被配置为补偿放大器的多个非线性分量。In some embodiments, the method further includes providing the DPD output signal to an amplifier input to generate an amplified output signal, wherein the DPD output signal is configured to compensate for a plurality of nonlinear components of the amplifier.

在一些实施例中,所述方法还包括响应于将DPD输出信号提供给放大器同时使放大器工作在非线性区域,降低放大器的功耗。In some embodiments, the method further includes reducing power consumption of the amplifier in response to providing the DPD output signal to the amplifier while operating the amplifier in a non-linear region.

通过阅读以下的具体实施方式和附图,其他方面和特征将显而易见。Other aspects and features will become apparent from a review of the following detailed description and accompanying drawings.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是示出根据本公开一些实施例用于IC的示例性架构的框图。FIG. 1 is a block diagram illustrating an exemplary architecture for an IC according to some embodiments of the present disclosure.

图2是根据一些实施例的示例性电缆网络的示意图。FIG. 2 is a schematic diagram of an exemplary cable network according to some embodiments.

图3是根据一些实施例的示例性数字前端(DFE)系统的示意图。3 is a schematic diagram of an exemplary digital front end (DFE) system according to some embodiments.

图4A提供了根据一些实施例的数字预失真(DPD)--波峰因数降低(CFR)系统的图。4A provides a diagram of a digital predistortion (DPD) - crest factor reduction (CFR) system according to some embodiments.

图4B提供了根据一些实施例的DPD模块的示例。FIG. 4B provides an example of a DPD module according to some embodiments.

图5A和5B分别提供了根据一些实施例的示例性DPD-CFR输入频谱和DPD-CFR输出频谱。5A and 5B provide an exemplary DPD-CFR input spectrum and a DPD-CFR output spectrum, respectively, according to some embodiments.

图6A提供了根据一些实施例的示例性曲线图,示出了随时间采样的模拟倾斜滤波器输出的标准化幅度并且示出了执行CFR处理的效果。6A provides an exemplary graph showing the normalized magnitude of an analog shelving filter output sampled over time and illustrating the effect of performing CFR processing, in accordance with some embodiments.

图6B示出了根据一些实施例执行CFR处理之后在模拟倾斜滤波器的输出端处的功率谱。6B shows the power spectrum at the output of the analog shelving filter after performing CFR processing according to some embodiments.

图7A、7B和7C提供了根据一些实施例的示例性曲线图,示出了随时间采样的CATV放大器输出的标准化幅度并且示出了执行CFR处理的效果。7A, 7B, and 7C provide exemplary graphs showing normalized amplitude of CATV amplifier output sampled over time and illustrating the effect of performing CFR processing, in accordance with some embodiments.

图8A示出了根据一些实施例的单个载波的累积分布函数(CCDF)图,显示执行CFR处理的效果。8A illustrates a cumulative distribution function (CCDF) plot of a single carrier, showing the effect of performing CFR processing, according to some embodiments.

图8B示出了根据一些实施例执行CFR处理后的、并且对应于图8A数据的功率谱。FIG. 8B shows a power spectrum corresponding to the data of FIG. 8A after CFR processing has been performed according to some embodiments.

图9A和9B提供了根据一些实施例的CATV放大器传递函数的曲线图,示出了幅度到幅度失真(AM/AM),并且示出了执行DPD处理和CFR处理之一或执行二者的效果。9A and 9B provide graphs of CATV amplifier transfer functions, showing amplitude to amplitude distortion (AM/AM), and illustrating the effects of performing either or both DPD and CFR processing, according to some embodiments.

图10A和10B提供了根据一些实施例的DPD输出稳定性能的曲线图,示出了执行CFR处理的效果。10A and 10B provide graphs of DPD output stability performance, illustrating the effect of performing CFR processing, according to some embodiments.

图11提供了根据一些实施例的包括用于CATV放大器的调制误差比(MER)数据的表,其示出了对MER数据施加由DPD-CFR系统提供的校正的效果。11 provides a table including modulation error ratio (MER) data for a CATV amplifier, showing the effect of applying the correction provided by the DPD-CFR system to the MER data, according to some embodiments.

图12是示出根据一些实施例在DPD-CFR系统中执行波峰因数降低处理和数字预失真处理的方法的流程图。12 is a flow chart illustrating a method of performing crest factor reduction processing and digital pre-distortion processing in a DPD-CFR system according to some embodiments.

图13、14、15和16示出了根据一些实施例的、包括图解表示的方程式,其中方程式为图4的每个非线性数据路径单元提供了推导。13, 14, 15, and 16 illustrate equations including graphical representations, according to some embodiments, where the equations provide derivations for each of the non-linear data path elements of FIG. 4. FIG.

图17示出了根据一些实施例的单载波的功率谱,示出了CATV放大器的非线性效应。17 illustrates the power spectrum of a single carrier, showing the non-linear effects of CATV amplifiers, according to some embodiments.

图18示出了根据一些实施例显示对图17的功率谱施加基带DPD校正的结果的功率谱。18 illustrates a power spectrum showing the result of applying a baseband DPD correction to the power spectrum of FIG. 17 , according to some embodiments.

图19示出了根据一些实施例显示对图17的功率谱施加二次谐波DPD校正的结果的功率谱。19 illustrates a power spectrum showing the result of applying a second harmonic DPD correction to the power spectrum of FIG. 17 , according to some embodiments.

图20示出了根据一些实施例显示对图17的功率谱施加三次谐波DPD校正的结果的功率谱。20 illustrates a power spectrum showing the result of applying a third harmonic DPD correction to the power spectrum of FIG. 17 , according to some embodiments.

图21示出了根据一些实施例显示同时施加基带DPD校正和视频带宽DPD校正的结果的功率谱。21 illustrates a power spectrum showing the results of applying both baseband DPD correction and video bandwidth DPD correction simultaneously according to some embodiments.

图22示出了根据一些实施例显示由DPD系统提供的校正的应用引起的相邻信道功率比(ACPR)校正的功率谱。22 illustrates a power spectrum showing adjacent channel power ratio (ACPR) correction resulting from application of corrections provided by a DPD system in accordance with some embodiments.

图23提供了根据一些实施例包括CATV放大器的调制误差比(MER)数据的表,其示出了将DPD系统提供的校正应用于MER数据的效果。23 provides a table including modulation error ratio (MER) data for a CATV amplifier, showing the effect of applying corrections provided by a DPD system to the MER data, according to some embodiments.

图24是根据一些实施例显示用于在DPD系统中执行数字预失真处理的方法的流程图。FIG. 24 is a flow chart showing a method for performing digital pre-distortion processing in a DPD system according to some embodiments.

具体实施方式DETAILED DESCRIPTION

以下参考附图描述各种实施例,其中在附图中示出了示例性实施例。然而,所要求保护的发明可以以不同的形式实施,并且不应被解释为限于本文阐述的实施例。贯穿全文,相同的附图标记表示相同的单元。因此,将不再关于每个附图来详细描述相似的单元。还应指出,附图仅旨在帮助描述实施例。它们不旨在作为所要求保护的发明的详尽描述或对所要求保护的发明的范围限制。另外,示出的实施例不必具有所示的所有方面或优点。结合特定实施例描述的方面或优点不必限于该实施例,并且即使未如此示出或未明确描述,也可以在任何其他实施例中实践。这些特征、功能和优点可以在各种实施例中独立地实现,或者可以在其他实施例中组合。Various embodiments are described below with reference to the accompanying drawings, in which exemplary embodiments are shown. However, the claimed invention may be implemented in different forms and should not be construed as being limited to the embodiments set forth herein. Throughout the text, the same reference numerals represent the same units. Therefore, similar units will no longer be described in detail with respect to each of the accompanying drawings. It should also be noted that the accompanying drawings are intended only to help describe the embodiments. They are not intended to be an exhaustive description of the claimed invention or to limit the scope of the claimed invention. In addition, the illustrated embodiments do not necessarily have all the aspects or advantages shown. The aspects or advantages described in conjunction with a particular embodiment are not necessarily limited to the embodiment, and even if not shown or explicitly described as such, may be practiced in any other embodiment. These features, functions and advantages may be implemented independently in various embodiments, or may be combined in other embodiments.

在描述几个附图中示意性示出的示例性实施例之前,提供一般介绍以进一步理解。Before describing exemplary embodiments that are schematically illustrated in several figures, a general introduction is provided to provide a further understanding.

如上所述,电缆行业正在基于DOCSIS 3.1标准部署新的高数据速率和宽带远程PHY节点,以满足对互联网、电话和视频服务更高数据速率的需求。DOCSIS 3.1支持4096(4K)正交幅度调制(QAM),并使用正交分频复用(OFDM)。这样,DOCSIS 3.1的发射信号质量要求比当前标准的DOCSIS 3.0更高。由于与DOCSIS 3.1相关的功能更加复杂,因此有线电视(CATV)放大器可能会在非线性区域内工作。CATV放大器的非线性效应将大大降低发射信号的质量。此外,提供高数据速率和DOCSIS 3.1更复杂功能的新组件本身也会消耗功率。然而,由于到每个节点(例如,每个远程PHY节点)的电源功率是固定的,所以应减少其他组件(例如,CATV放大器)的功耗。因此,虽然期望提供DOCSIS3.1的先进性能,但是同时提供改进的发射信号质量和降低其他组件(例如,CATV放大器)的功耗是具有挑战性的。As described above, the cable industry is deploying new high data rate and broadband remote PHY nodes based on the DOCSIS 3.1 standard to meet the demand for higher data rates for Internet, telephone and video services. DOCSIS 3.1 supports 4096 (4K) quadrature amplitude modulation (QAM) and uses orthogonal frequency division multiplexing (OFDM). As a result, the transmission signal quality requirements of DOCSIS 3.1 are higher than those of the current standard DOCSIS 3.0. Due to the more complex functions associated with DOCSIS 3.1, cable television (CATV) amplifiers may operate in a nonlinear region. The nonlinear effects of CATV amplifiers will greatly reduce the quality of the transmitted signal. In addition, the new components that provide high data rates and more complex functions of DOCSIS 3.1 themselves also consume power. However, since the power supply power to each node (e.g., each remote PHY node) is fixed, the power consumption of other components (e.g., CATV amplifiers) should be reduced. Therefore, although it is expected to provide the advanced performance of DOCSIS3.1, it is challenging to simultaneously provide improved transmission signal quality and reduce the power consumption of other components (e.g., CATV amplifiers).

在至少一些现有技术中,在模拟传输路径中实现了在1.2GHz电缆频谱上具有高达22dB的深衰减的倾斜均衡器(倾斜滤波器),以补偿同轴电缆的损耗(例如,从CATV放大器到电缆调制解调器)。但是,与当前的DOCSIS 3.0标准相比,使用4K QAM OFDM调制的DOCSIS3.1波形显示出较高的峰值对平均值功率比(PAPR)。这样,对于DOCSIS 3.0中CATV放大器的相同RMS功率输出,DOCSIS 3.1波形的峰值将位于CATV放大器的非线性区域。因此,发射信号的质量会下降。数字预失真(DPD)可用于提高CATV放大器的信号质量,例如,通过使CATV运行在更高效率的区域中。DPD已经用于无线通信技术,其中无线通信技术的信号带宽比起用于有线通信技术的信号带宽窄得多。此外,在无线通信中,无线部件的非线性效应的谐波不会落入信号带宽中。这样,用于无线通信的DPD只需要对围绕基带频率投影的非线性分量进行建模。但是,对于电缆应用,CATV放大器信号的非线性效应的谐波会落入信号带宽。因此,用于电缆应用的DPD实现方案应当对于CATV放大器的非线性效应的谐波分量进行建模。另外,具有深衰减的倾斜均衡器不能在数字域中实现,并且数字倾斜均衡器的实施方案将因为数模转换器(DAC)的有限数字分辨率而降低低频载波的传输波形质量。In at least some prior art, a shelving equalizer (shelving filter) with a deep attenuation of up to 22 dB on the 1.2 GHz cable spectrum is implemented in the analog transmission path to compensate for the loss of the coaxial cable (e.g., from the CATV amplifier to the cable modem). However, compared with the current DOCSIS 3.0 standard, the DOCSIS3.1 waveform using 4K QAM OFDM modulation shows a higher peak-to-average power ratio (PAPR). In this way, for the same RMS power output of the CATV amplifier in DOCSIS 3.0, the peak of the DOCSIS 3.1 waveform will be located in the nonlinear region of the CATV amplifier. Therefore, the quality of the transmitted signal will decrease. Digital pre-distortion (DPD) can be used to improve the signal quality of the CATV amplifier, for example, by making the CATV operate in a more efficient area. DPD has been used in wireless communication technology, in which the signal bandwidth of the wireless communication technology is much narrower than the signal bandwidth used for wired communication technology. In addition, in wireless communication, the harmonics of the nonlinear effects of the wireless components will not fall into the signal bandwidth. In this way, the DPD used for wireless communication only needs to model the nonlinear components projected around the baseband frequency. However, for cable applications, the harmonics of the nonlinear effects of the CATV amplifier signal will fall into the signal bandwidth. Therefore, the DPD implementation for cable applications should model the harmonic components of the nonlinear effects of the CATV amplifier. In addition, the shelving equalizer with deep attenuation cannot be implemented in the digital domain, and the implementation of the digital shelving equalizer will reduce the transmission waveform quality of the low-frequency carrier due to the limited digital resolution of the digital-to-analog converter (DAC).

另外,如上所述,与当前的DOCSIS 3.0标准相比,使用4K QAM OFDM调制的DOCSIS3.1波形显示出较高的PAPR。高PAPR的一些影响包括带内失真和带外失真(例如,包括增加的相邻信道泄漏比(ACLR))。波峰因数降低(CFR)可用于通过对信号进行削波和允许在CFR输出端获得额外的增益而降低信号的PAPR。削波是通过有意地限制信号来进行的,因此幅度被限制在所需范围内的最大值。通过使用CFR,可以使得放大器(例如CATV放大器)工作在其1dB压缩点附近,从而提高了CATV放大器的效率;此外,当与DPD结合使用时,CFR可以显著提高DPD的稳定性(例如,避免DPD发散)并进一步提高CATV放大器的效率。对于集成电路(IC)解决方案,已经发现在数字前端(DFE)芯片中实现的CFR和DPD数据路径可以为DOCSIS3.1波形的高PAPR、DPD稳定性和CATV放大器的效率提供解决方案,以及可供用于为CATV放大器非线性效应的谐波分量和CATV放大器中发射频谱上的深衰减进行建模。因此,本公开的实施例提供了改善的发射信号质量、增加的CATV放大器效率以及减少的CATV放大器功耗。In addition, as mentioned above, the DOCSIS3.1 waveform using 4K QAM OFDM modulation exhibits a higher PAPR compared to the current DOCSIS 3.0 standard. Some effects of high PAPR include in-band distortion and out-of-band distortion (e.g., including increased adjacent channel leakage ratio (ACLR)). Crest factor reduction (CFR) can be used to reduce the PAPR of a signal by clipping the signal and allowing additional gain at the output of the CFR. Clipping is performed by intentionally limiting the signal so that the amplitude is limited to a maximum value within the desired range. By using CFR, an amplifier (e.g., a CATV amplifier) can be made to operate near its 1dB compression point, thereby improving the efficiency of the CATV amplifier; in addition, when used in conjunction with DPD, CFR can significantly improve the stability of DPD (e.g., avoiding DPD divergence) and further improve the efficiency of the CATV amplifier. For integrated circuit (IC) solutions, it has been found that the CFR and DPD data paths implemented in a digital front end (DFE) chip can provide solutions for high PAPR of DOCSIS3.1 waveforms, DPD stability, and efficiency of CATV amplifiers, as well as be used to model the harmonic components of CATV amplifier nonlinear effects and deep attenuation on the transmit spectrum in CATV amplifiers. Therefore, embodiments of the present disclosure provide improved transmit signal quality, increased CATV amplifier efficiency, and reduced CATV amplifier power consumption.

记住以上一般性理解,下面总体上描述用于提供用于CATV放大器的CFR的方法和电路的各种实施例。因为使用特定类型的IC示例了上述实施例中的一个或多个,所以以下提供了这种IC的详细描述。然而,应理解,其他类型的IC可受益于本文描述的一个或多个实施例。With the above general understanding in mind, various embodiments of methods and circuits for providing CFR for CATV amplifiers are generally described below. Because one or more of the above embodiments are illustrated using a specific type of IC, a detailed description of such an IC is provided below. However, it should be understood that other types of ICs may benefit from one or more embodiments described herein.

可编程逻辑器件(“PLD”)是一种众所周知可被编程以执行指定的逻辑功能的集成电路。一种类型的PLD,即现场可编程门阵列(“FPGA”),通常包括可编程片(programmabletiles)的阵列。这些可编程片可以包括例如输入/输出块(“IOB”)、可配置逻辑块(“CLB”)、专用随机存取存储块(“BRAM”)、乘法器、数字信号处理块(“DSP”)、处理器、时钟管理器、延迟锁相环(“DLL”)等。如本文所使用的,“包括”和“包含”是指包括而不作限制。A programmable logic device ("PLD") is a well-known integrated circuit that can be programmed to perform a specified logic function. One type of PLD, a field programmable gate array ("FPGA"), typically includes an array of programmable tiles. These programmable tiles may include, for example, input/output blocks ("IOBs"), configurable logic blocks ("CLBs"), application specific random access memory blocks ("BRAMs"), multipliers, digital signal processing blocks ("DSPs"), processors, clock managers, delay locked loops ("DLLs"), etc. As used herein, "includes" and "comprising" mean including without limitation.

每个可编程片通常包括可编程互连和可编程逻辑。可编程互连通常包括通过可编程互连点(“PIP”)互连的许多不同长度的互连线。可编程逻辑使用可编程单元来实现用户设计的逻辑,可编程单元可以包括例如函数发生器、寄存器、算术逻辑等。Each programmable slice typically includes programmable interconnects and programmable logic. The programmable interconnects typically include many interconnect lines of different lengths interconnected by programmable interconnect points ("PIPs"). Programmable logic uses programmable cells to implement user-designed logic, which may include, for example, function generators, registers, arithmetic logic, etc.

可编程互连和可编程逻辑通常可以通过将配置数据流加载到内部配置存储单元而进行编程,该内部配置存储单元定义了如何配置可编程单元。配置数据可以从存储器(例如,从外部PROM)读取,或者通过外部设备被写入到FPGA。然后,各个存储单元的集体状态决定了FPGA的功能。The programmable interconnect and programmable logic can usually be programmed by loading a stream of configuration data into internal configuration memory cells, which define how the programmable cells are configured. The configuration data can be read from a memory (e.g., from an external PROM) or written to the FPGA by an external device. The collective state of the individual memory cells then determines the functionality of the FPGA.

另一类PLD是复杂可编程逻辑器件(CPLD)。CPLD包含两个或多个“功能块”,它们连接在一起并通过互连开关矩阵连接到输入/输出(“I/O”)资源。CPLD的每个功能块都包括一个两级AND/OR结构,类似于在可编程逻辑阵列(“PLA”)和可编程阵列逻辑(“PAL”)器件中使用的结构。在CPLD中,配置数据通常是片上存储在非易失性存储器中。在某些CPLD中,配置数据是片上存储在非易失性存储器中,然后作为初始配置(编程)序列的一部分下载到易失性存储器中。Another type of PLD is the Complex Programmable Logic Device (CPLD). A CPLD contains two or more "functional blocks" that are connected together and to input/output ("I/O") resources through an interconnect switch matrix. Each functional block of a CPLD includes a two-level AND/OR structure similar to that used in programmable logic array ("PLA") and programmable array logic ("PAL") devices. In a CPLD, configuration data is typically stored on-chip in nonvolatile memory. In some CPLDs, configuration data is stored on-chip in nonvolatile memory and then downloaded to volatile memory as part of the initial configuration (programming) sequence.

通常,对于这些可编程逻辑器件(“PLD”)中的每一个,器件的功能为此目的被提供给器件的配置数据控制。配置数据可以存储在易失性存储器(例如,FPGA和某些CPLD中常见的静态存储单元)、非易失性存储器(例如,在某些CPLD中,例如FLASH存储器)或任何其他类型的存储单元中。Typically, for each of these programmable logic devices ("PLDs"), the functionality of the device is controlled for this purpose by configuration data provided to the device. The configuration data may be stored in volatile memory (e.g., static memory cells common in FPGAs and some CPLDs), non-volatile memory (e.g., FLASH memory in some CPLDs), or any other type of memory cell.

通过应用诸如金属层之类的处理层来对其他PLD进行编程,其中处理层以可编程方式互连器件上的各种单元。这些PLD被称为掩模可编程器件。也可以以其他方式(例如,使用保险丝或反熔丝技术)来实现PLD。术语“PLD”和“可编程逻辑器件”包括但不限于这些示例性器件,以及包括仅部分可编程的器件。例如,一种类型的PLD包括硬编码晶体管逻辑和以可编程方式互连硬编码晶体管逻辑的可编程开关结构的组合。Other PLDs are programmed by applying a processing layer, such as a metal layer, that interconnects the various elements on the device in a programmable manner. These PLDs are referred to as mask programmable devices. PLDs may also be implemented in other ways (e.g., using fuse or anti-fuse technology). The terms "PLD" and "programmable logic device" include, but are not limited to, these exemplary devices, as well as devices that are only partially programmable. For example, one type of PLD includes a combination of hard-coded transistor logic and a programmable switch structure that programmably interconnects the hard-coded transistor logic.

如上所述,高级FPGA可以包括在阵列中的几种不同类型的可编程逻辑块。例如,图1示出了示例性FPGA架构100。FPGA架构100包括大量不同的可编程片,包括多千兆位收发器(“MGT”)101、可配置逻辑块(“CLB”)102、随机存取存储器块(“BRAM”)103、输入/输出块(“IOB”)104、配置和时钟逻辑(“CONFIG/CLOCKS”)105、数字信号处理块(“DSP”)106、专用输入/输出块(“I/O”)107(例如,配置端口和时钟端口)以及其他可编程逻辑108,例如数字时钟管理器、模数转换器、系统监视逻辑等。一些FPGA还包括专用处理器块(“PROC”)110。在一些实施例中,FPGA架构100包括RF数据转换器子系统,其包含多个射频模数转换器(RF-ADC)和多个射频数模转换器(RF-DAC)。在各种示例中,可以将RF-ADC和RF-DAC各自配置为用于实数数据,或者可以将其成对配置为用于实数和虚数I/Q数据。在至少一些示例中,FPGA架构100可以实现RFSoC器件。As described above, advanced FPGAs can include several different types of programmable logic blocks in an array. For example, FIG. 1 shows an exemplary FPGA architecture 100. FPGA architecture 100 includes a large number of different programmable slices, including multi-gigabit transceivers ("MGTs") 101, configurable logic blocks ("CLBs") 102, random access memory blocks ("BRAMs") 103, input/output blocks ("IOBs") 104, configuration and clock logic ("CONFIG/CLOCKS") 105, digital signal processing blocks ("DSPs") 106, dedicated input/output blocks ("I/Os") 107 (e.g., configuration ports and clock ports), and other programmable logic 108, such as digital clock managers, analog-to-digital converters, system monitoring logic, etc. Some FPGAs also include dedicated processor blocks ("PROCs") 110. In some embodiments, FPGA architecture 100 includes an RF data converter subsystem that includes multiple radio frequency analog-to-digital converters (RF-ADCs) and multiple radio frequency digital-to-analog converters (RF-DACs). In various examples, the RF-ADC and RF-DAC can be configured individually for real data, or can be configured in pairs for real and imaginary I/Q data.In at least some examples, FPGA architecture 100 can implement an RFSoC device.

在一些FPGA中,每个可编程片可以包括至少一个可编程互连单元(“INT”)111,其具有到相同片内的可编程逻辑单元的输入和输出端120的连接,如在图1的顶部所包括的示例所示。每个可编程互连单元111还可以包括到同一片或其他片中的相邻可编程互连单元的互连段122的连接。每个可编程互连单元111还可以包括到逻辑块之间的通用路由资源的互连段124的连接(未示出)。通用路由资源可以包括逻辑块(未示出)与用于连接互连段的开关块(未示出)之间的路由通道,其中所述逻辑块包括互连段(例如,互连段124)。通用路由资源的互连段(例如,互连段124)可以跨越一个或多个逻辑块。可编程互连单元111与通用路由资源一起实现了用于所示FPGA的可编程互连结构(“可编程互连”)。In some FPGAs, each programmable slice may include at least one programmable interconnect cell ("INT") 111 having connections to input and output terminals 120 of programmable logic cells within the same slice, as shown in the example included at the top of FIG. Each programmable interconnect cell 111 may also include connections to interconnect segments 122 of adjacent programmable interconnect cells in the same slice or other slices. Each programmable interconnect cell 111 may also include connections to interconnect segments 124 of general routing resources between logic blocks (not shown). General routing resources may include routing channels between logic blocks (not shown) and switch blocks (not shown) for connecting interconnect segments, wherein the logic blocks include interconnect segments (e.g., interconnect segments 124). Interconnect segments of general routing resources (e.g., interconnect segments 124) may span one or more logic blocks. Programmable interconnect cells 111, together with general routing resources, implement a programmable interconnect structure ("programmable interconnect") for the FPGA shown.

在一个示例性实施例中,CLB 102可以包括可被编程为实现用户逻辑的可配置逻辑单元(“CLE”)112,以及单个可编程互连单元(“INT”)111。BRAM 103除了包括一个或多个可编程互连单元之外,还可以包括BRAM逻辑单元(“BRL”)113。通常,片中包括的互连单元的数量取决于片的高度。在图示的例子中,BRAM片具有与五个CLB相同的高度,但是也可以使用其他数目(例如四个)。除了适当数量的可编程互连单元之外,DSP片106还可以包括DSP逻辑单元(“DSPL”)114。除了可编程互连单元111的一个实例之外,IOB 104还可以包括例如输入/输出逻辑单元(“IOL”)115的两个实例。本领域技术人员将清楚,例如,典型地连接到I/O逻辑单元115的实际的I/O焊盘通常不限于输入/输出逻辑单元115的区域。In an exemplary embodiment, CLB 102 may include configurable logic elements (“CLEs”) 112 that may be programmed to implement user logic, and a single programmable interconnect cell (“INT”) 111. BRAM 103 may include a BRAM logic cell (“BRL”) 113 in addition to one or more programmable interconnect cells. Typically, the number of interconnect cells included in a slice depends on the height of the slice. In the illustrated example, the BRAM slice has the same height as the five CLBs, but other numbers (e.g., four) may also be used. In addition to an appropriate number of programmable interconnect cells, DSP slice 106 may also include a DSP logic cell (“DSPL”) 114. In addition to one instance of programmable interconnect cell 111, IOB 104 may also include, for example, two instances of input/output logic cell (“IOL”) 115. It will be clear to those skilled in the art that, for example, the actual I/O pads that are typically connected to I/O logic cell 115 are generally not limited to the area of input/output logic cell 115.

在图1的示例中,靠近管芯中心(水平示出)的区域(例如,由图1所示的区域105、107和108形成)可以用于配置、时钟和其他控制逻辑。从该水平区域延伸的列109(垂直示出)或其他列可用于在FPGA的整个宽度上分配时钟和配置信号。In the example of Figure 1, an area near the center of the die (shown horizontally) (e.g., formed by areas 105, 107, and 108 shown in Figure 1) can be used for configuration, clock, and other control logic. Column 109 (shown vertically) or other columns extending from this horizontal area can be used to distribute clock and configuration signals across the width of the FPGA.

利用图1所示的架构的一些FPGA包括破坏构成FPGA的大部分规则柱状结构的附加逻辑块。所述附加逻辑块可以是可编程块和/或专用逻辑。例如,PROC 110跨越几列CLB和BRAM。PROC 110可以包括各种组件,其范围可以从单个微处理器到包括微处理器、存储器控制器、外围器件等的完整可编程处理系统。Some FPGAs utilizing the architecture shown in FIG. 1 include additional logic blocks that disrupt the mostly regular columnar structure that makes up the FPGA. The additional logic blocks may be programmable blocks and/or dedicated logic. For example, PROC 110 spans several columns of CLBs and BRAMs. PROC 110 may include a variety of components that may range from a single microprocessor to a complete programmable processing system including a microprocessor, memory controller, peripherals, etc.

一方面,PROC 110被实现为专用电路,例如,作为硬连线处理器,其被制造为实现IC的可编程电路的管芯的一部分。PROC 110可以代表多种不同的处理器类型和/或系统,其复杂程度从单个处理器(例如,能够执行程序代码的单个内核)到具有一个或多个内核、模块、协同工作处理器、接口等的整个处理器系统。In one aspect, PROC 110 is implemented as a dedicated circuit, e.g., as a hardwired processor that is manufactured as part of a die implementing the programmable circuitry of an IC. PROC 110 may represent a variety of different processor types and/or systems ranging in complexity from a single processor (e.g., a single core capable of executing program code) to an entire processor system having one or more cores, modules, cooperating processors, interfaces, etc.

另一方面,PROC 110从架构100中被省略,并且可以用所描述的可编程块中的一个或多个其他变体来代替。此外,此类块可用于形成“软处理器”,因为可编程电路的各个块可用于形成可执行程序代码的处理器,就像PROC 110一样。On the other hand, PROC 110 is omitted from architecture 100 and may be replaced with one or more other variations of the described programmable blocks. In addition, such blocks may be used to form a "soft processor" in that individual blocks of programmable circuitry may be used to form a processor that executes program code, just as PROC 110 does.

短语“可编程电路”可以指IC内的可编程电路单元,例如,本文描述的各种可编程或可配置电路块或片,以及选择性地耦接各种电路块、片和/或根据加载到IC中的配置数据的单元的互连电路。例如,在PROC 110外部的诸如CLB 102和BRAM 103之类的图1中所示的部分可以被认为是IC的可编程电路。The phrase "programmable circuitry" may refer to programmable circuit elements within an IC, such as the various programmable or configurable circuit blocks or slices described herein, and interconnect circuitry that selectively couples the various circuit blocks, slices, and/or elements according to configuration data loaded into the IC. For example, portions shown in FIG. 1 such as CLB 102 and BRAM 103 that are external to PROC 110 may be considered programmable circuitry of the IC.

在一些实施例中,直到将配置数据加载到IC中时,可编程电路的功能和连通性才被建立。一组配置数据可用于对IC(例如FPGA)的可编程电路进行编程。在某些情况下,配置数据被称为“配置比特流”。通常,在不首先将配置比特流加载到IC中的情况下,可编程电路将无法工作或起作用。配置比特流有效地实现或实例化了可编程电路内的特定电路设计。电路设计规定了例如可编程电路块的功能方面以及各种可编程电路块之间的物理连接。In some embodiments, the functionality and connectivity of the programmable circuits are not established until the configuration data is loaded into the IC. A set of configuration data can be used to program the programmable circuits of an IC (e.g., an FPGA). In some cases, the configuration data is referred to as a "configuration bitstream". Typically, the programmable circuit will not work or function without first loading the configuration bitstream into the IC. The configuration bitstream effectively implements or instantiates a specific circuit design within the programmable circuit. The circuit design specifies, for example, the functional aspects of the programmable circuit blocks and the physical connections between the various programmable circuit blocks.

在一些实施例中,“硬连线”或“硬化”电路,即,不可编程的电路,被制造为IC的一部分。与可编程电路不同,硬连线电路或电路块不是在IC被制造之后通过加载配置比特流而被实施的。硬连线电路通常被认为具有例如专用电路块和互连,这些电路块和互连在不首先将配置比特流加载到IC(例如PROC 110)的情况下即可工作。In some embodiments, "hardwired" or "hardened" circuits, i.e., circuits that are not programmable, are manufactured as part of an IC. Unlike programmable circuits, hardwired circuits or circuit blocks are not implemented after the IC is manufactured by loading a configuration bitstream. Hardwired circuits are generally considered to have, for example, dedicated circuit blocks and interconnects that operate without first loading a configuration bitstream into the IC (e.g., PROC 110).

在某些情况下,硬连线电路可以具有一种或多种操作模式,可以根据寄存器设置或存储在IC内一个或多个存储单元中的值来设置或选择一种或多种操作模式。例如,可以通过将配置比特流加载到IC中来设置操作模式。尽管具有这种能力,但是硬连线电路不被认为是可编程电路,因为当硬连线电路被制造为IC的一部分时,该硬连线电路是可操作的并且具有特定功能。In some cases, a hardwired circuit may have one or more operating modes that may be set or selected based on register settings or values stored in one or more memory cells within the IC. For example, the operating mode may be set by loading a configuration bitstream into the IC. Despite this capability, a hardwired circuit is not considered a programmable circuit because when a hardwired circuit is manufactured as part of an IC, the hardwired circuit is operable and has a specific function.

图1旨在说明可用于实现包括可编程电路(例如,可编程结构)的IC的示例性架构。例如,在图1的顶部所包括的一行中逻辑块的数量、行的相对宽度、行的数量和顺序、行中包含的逻辑块的类型、逻辑块的相对大小以及互连/逻辑实现方式仅仅是示例性的。例如,在实际的IC中,无论CLB出现在何处,通常都包括一个以上的相邻CLB行,以促进用户逻辑的有效实现,但是相邻CLB行的数量随IC的整体尺寸而变化。此外,图1的FPGA示出了可编程IC的一个示例,该IC的示例可采用这里描述的互连电路的示例。本文所述的互连电路可以用在其他类型的可编程IC中,例如CPLD或具有用于选择性地耦接逻辑单元的可编程互连结构的任何类型的可编程IC。FIG. 1 is intended to illustrate an exemplary architecture that can be used to implement an IC that includes programmable circuits (e.g., programmable structures). For example, the number of logic blocks in a row, the relative widths of the rows, the number and order of the rows, the types of logic blocks contained in the rows, the relative sizes of the logic blocks, and the interconnect/logic implementation methods included at the top of FIG. 1 are merely exemplary. For example, in an actual IC, no matter where the CLBs appear, more than one adjacent CLB row is typically included to facilitate efficient implementation of user logic, but the number of adjacent CLB rows varies with the overall size of the IC. In addition, the FPGA of FIG. 1 shows an example of a programmable IC that can employ the example of the interconnect circuit described herein. The interconnect circuit described herein can be used in other types of programmable ICs, such as CPLDs or any type of programmable IC having a programmable interconnect structure for selectively coupling logic cells.

应当指出,可以实现用于CATV放大器的CFR的方法和电路的IC不限于图1所示的示例性IC,以及具有其他配置的IC或其他类型的IC也可以实现用于CATV放大器的CFR的方法和电路。It should be noted that the IC that can implement the method and circuit for CFR of CATV amplifier is not limited to the exemplary IC shown in FIG. 1 , and ICs having other configurations or other types of ICs can also implement the method and circuit for CFR of CATV amplifier.

现在参照图2,图上示出了电缆网络200,该电缆网络200示出了从数据光纤(例如,可以包括光纤)开始,经过远程节点并到达最终用户位置(例如,在房屋处)的信号路径。电缆网络200可以是混合光纤同轴网络的一部分,其中数据光纤从中央头端行进到远程节点,同轴电缆从远程节点行进到最终用户。在一些示例中,远程节点包括基于DOCSIS 3.1标准的远程PHY节点。在一些实施例中,远程PHY节点可以包括基带和数字前端(DFE)芯片202、数模转换器(DAC)204、驱动器206(例如,可以包括放大器)、模拟倾斜滤波器208、功率分配器210和CATV放大器212。在各个示例中,基带和DFE芯片202可以被实现为单个的芯片,或者被实现为包括基带处理器芯片和单独的DFE芯片的单独的芯片。在一些实施例中,例如,取决于到DAC 204的输入端,DAC 204可以被实现为RF DAC或IF DAC。此外,在一些实施例中,基带和DFE芯片202以及DAC 204可以被实现为单个芯片(例如,在RFSoC器件中)。此外,可以在诸如图1的可编程逻辑器件的可编程逻辑器件中实现远程PHY节点的一个或多个组件。如图2所示,数据光纤作为输入连接至基带和DFE芯片202,基带和DFE芯片202的输出作为输入连接至DAC 204。功率谱214(无斜率)提供了在基带和DFE芯片202的输出端处的信号形状的一个示例。DAC 204的输出作为输入连接到驱动器206,驱动器206的输出作为输入连接到模拟倾斜滤波器208。对于电缆应用,模拟倾斜滤波器208可用于改变信号功率谱上的增益。换句话说,模拟倾斜滤波器208用于在功率谱上的信号功率电平中增加斜率。功率谱216示出了与功率谱214相比在模拟倾斜滤波器208的输出处的信号中的斜率(例如,在本示例中为正斜率)。Referring now to FIG. 2 , a cable network 200 is shown showing a signal path starting from a data fiber (e.g., which may include an optical fiber), passing through a remote node and arriving at an end-user location (e.g., at a premises). The cable network 200 may be part of a hybrid fiber-coaxial network, where the data fiber travels from a central headend to the remote node and the coaxial cable travels from the remote node to the end-user. In some examples, the remote node includes a remote PHY node based on the DOCSIS 3.1 standard. In some embodiments, the remote PHY node may include a baseband and digital front end (DFE) chip 202, a digital-to-analog converter (DAC) 204, a driver 206 (e.g., which may include an amplifier), an analog tilt filter 208, a power divider 210, and a CATV amplifier 212. In various examples, the baseband and DFE chip 202 may be implemented as a single chip, or as separate chips including a baseband processor chip and a separate DFE chip. In some embodiments, for example, depending on the input to the DAC 204, the DAC 204 may be implemented as an RF DAC or an IF DAC. In addition, in some embodiments, the baseband and DFE chip 202 and the DAC 204 can be implemented as a single chip (e.g., in an RFSoC device). In addition, one or more components of the remote PHY node can be implemented in a programmable logic device such as the programmable logic device of FIG. 1. As shown in FIG. 2, the data fiber is connected as an input to the baseband and DFE chip 202, and the output of the baseband and DFE chip 202 is connected as an input to the DAC 204. The power spectrum 214 (no slope) provides an example of the shape of the signal at the output of the baseband and DFE chip 202. The output of the DAC 204 is connected as an input to the driver 206, and the output of the driver 206 is connected as an input to the analog tilt filter 208. For cable applications, the analog tilt filter 208 can be used to change the gain on the signal power spectrum. In other words, the analog tilt filter 208 is used to add a slope in the signal power level on the power spectrum. The power spectrum 216 shows the slope (e.g., a positive slope in this example) in the signal at the output of the analog tilt filter 208 compared to the power spectrum 214.

在一些实施例中,模拟倾斜滤波器208的输出作为输入被连接到功率分配器210。如图2所示,功率分配器210包括具有单个输入和四个输出的1×4功率分配器。然而,在一些实施例中,功率分配器210可以包括具有单个输入和两个输出的1×2功率分配器、1×2功率分配器的级联(例如,以产生四个输出)或另一类型的功率分配器。在本示例中,功率分配器210的四个输出中的每个输出作为输入连接到CATV放大器212。然后,每个CATV放大器212的输出耦接到同轴电缆,该同轴电缆在最终用户位置(例如,在房子)进一步耦接到电缆调制解调器。在至少一些实施例中,电缆网络200实施“节点+0”架构,这意味着在远程PHY节点与最终用户位置之间沿着同轴电缆路径没有额外的CATV放大器(除了在远程PHY节点处的CATV放大器212之外)。图2还示出了显示同轴电缆损耗谱(例如,具有负斜率)的功率谱218、显示CATV放大器212的输出信号的功率谱219以及显示到达最终用户位置的信号的功率(无斜率)的功率谱220。如前所述,模拟倾斜滤波器208用于补偿同轴电缆损耗(例如,从CATV放大器212到在最终用户位置处的电缆调制解调器)。In some embodiments, the output of the analog tilt filter 208 is connected to a power divider 210 as an input. As shown in Figure 2, the power divider 210 includes a 1×4 power divider with a single input and four outputs. However, in some embodiments, the power divider 210 may include a 1×2 power divider with a single input and two outputs, a cascade of 1×2 power dividers (e.g., to produce four outputs), or another type of power divider. In this example, each of the four outputs of the power divider 210 is connected to a CATV amplifier 212 as an input. Then, the output of each CATV amplifier 212 is coupled to a coaxial cable, which is further coupled to a cable modem at an end-user location (e.g., in a house). In at least some embodiments, the cable network 200 implements a "node + 0" architecture, which means that there is no additional CATV amplifier (except the CATV amplifier 212 at the remote PHY node) along the coaxial cable path between the remote PHY node and the end-user location. 2 also shows a power spectrum 218 showing the coaxial cable loss spectrum (e.g., with a negative slope), a power spectrum 219 showing the output signal of the CATV amplifier 212, and a power spectrum 220 showing the power of the signal reaching the end user location (no slope). As previously described, the analog shelving filter 208 is used to compensate for coaxial cable losses (e.g., from the CATV amplifier 212 to the cable modem at the end user location).

在至少一些现有的电缆网络中,CATV放大器工作在线性区域中。这意味着,CATV放大器的输出处的非线性程度足够低,以至于不需要进行其他信号处理,并且CATV放大器的输出处的信号可以直接通过同轴电缆发送到最终用户位置的电缆调制解调器,用于解调和信息传输。然而,随着向更复杂功能的转变以及与DOCSIS 3.1相关的附加功耗组件的出现,并且由于到每个节点(例如,每个远程PHY节点)的电源供给是固定的,因此希望减少诸如CATV放大器那样的其它组件的功耗。当前,CATV放大器的效率约为2-3%,因此,例如,一个具有20瓦输入功率的CATV放大器将输出约二分之一瓦的输出功率。对于四个CATV放大器(例如,如图2所示),100瓦的输入功率将输出约2瓦的输出功率。因此,非常希望使得CATV放大器更有效。In at least some existing cable networks, CATV amplifiers operate in a linear region. This means that the nonlinearity at the output of the CATV amplifier is low enough that no other signal processing is required, and the signal at the output of the CATV amplifier can be directly sent to the cable modem at the end-user location via a coaxial cable for demodulation and information transmission. However, with the transition to more complex functions and the emergence of additional power consumption components associated with DOCSIS 3.1, and because the power supply to each node (e.g., each remote PHY node) is fixed, it is desirable to reduce the power consumption of other components such as CATV amplifiers. Currently, the efficiency of CATV amplifiers is about 2-3%, so, for example, a CATV amplifier with 20 watts of input power will output an output power of about one-half watt. For four CATV amplifiers (e.g., as shown in Figure 2), an input power of 100 watts will output an output power of about 2 watts. Therefore, it is highly desirable to make CATV amplifiers more efficient.

为使CATV放大器更有效而正在探索的至少一种选择是使CATV放大器在更非线性的区域中工作。然而,这样做意味着,如根据本公开的实施例所提供的,在没有某种附加的数字信号处理的情况下,CATV放大器的输出处的信号可能不能直接在同轴电缆上发送到终端用户位置。举例来说,本文公开的实施例在基带和DFE芯片202内添加功能,如下文更详细地论述,使得即使CATV放大器在非线性区域中操作,基带和DFE芯片202也能够反转或更改信号,以使CATV放大器输出端的信号仍然是线性的,并且可以通过最终用户位置的电缆调制解调器方便地进行解调。换句话说,如果CATV放大器具有非线性“x”,则基带和DFE芯片202内的功能被配置为添加逆非线性的“1/x”,其将通过有线电视放大器的非线性“x”被抵消。这样,CATV放大器输出端的信号是干净且线性的。通常,预先添加非线性的处理(例如,诸如在基带和DFE芯片202处添加逆非线性)被称为预先失真或预失真。在基带和DFE芯片202的环境中,由于失真是数字添加的,所以预失真可以被称为数字预失真(DPD)。根据各种实施例,在了解CATV放大器(例如,诸如CATV放大器212)具有的非线性“x”的类型的情况下执行DPD处理,使得DPD处理可以添加适当的逆非线性“1/x”。因此,根据本公开的实施例,DPD处理是在基带和DFE芯片202内添加的第一功能。At least one option being explored to make CATV amplifiers more efficient is to operate the CATV amplifiers in a more nonlinear region. However, doing so means that, as provided in accordance with embodiments of the present disclosure, the signal at the output of the CATV amplifier may not be directly sent to the end-user location on the coaxial cable without some additional digital signal processing. For example, the embodiments disclosed herein add functionality within the baseband and DFE chip 202, as discussed in more detail below, so that even if the CATV amplifier operates in a nonlinear region, the baseband and DFE chip 202 are able to invert or change the signal so that the signal at the output of the CATV amplifier is still linear and can be conveniently demodulated by the cable modem at the end-user location. In other words, if the CATV amplifier has a nonlinearity "x", the functionality within the baseband and DFE chip 202 is configured to add an inverse nonlinearity of "1/x", which will be offset by the nonlinearity "x" of the cable TV amplifier. In this way, the signal at the output of the CATV amplifier is clean and linear. Typically, the process of adding nonlinearity in advance (e.g., such as adding an inverse nonlinearity at the baseband and DFE chip 202) is referred to as pre-distortion or pre-distortion. In the context of the baseband and DFE chip 202, the pre-distortion may be referred to as digital pre-distortion (DPD) because the distortion is added digitally. According to various embodiments, the DPD process is performed with knowledge of the type of nonlinearity "x" that a CATV amplifier (e.g., such as CATV amplifier 212) has, so that the DPD process can add the appropriate inverse nonlinearity "1/x". Therefore, according to embodiments of the present disclosure, the DPD process is the first function added within the baseband and DFE chip 202.

另外,在基带和DFE芯片202中添加的第二功能可以包括CFR处理。如上所述,CFR处理可用于通过对信号进行削波并允许在CFR输出处获得额外增益来降低信号的PAPR。通过采用CFR,可以使CATV放大器更接近其1dB压缩点运行,从而提高了CATV放大器的效率。此外,当与DPD处理结合时,CFR处理可用于显著改善DPD稳定性(例如,避免DPD发散)并进一步提高CATV放大器的效率。在各种实施例中,DPD处理和CFR处理是在了解基带和DFE芯片202与CATV放大器212之间的信号链的情况下执行的,包括由DAC 204、驱动器206和模拟倾斜滤波器208中的每一个所引入的任何影响和/或失真。在各种实施例中,通过本文公开的DPD处理和CFR处理,CATV放大器的效率得以提高并且功耗得以降低。In addition, the second function added in the baseband and DFE chip 202 may include CFR processing. As described above, CFR processing can be used to reduce the PAPR of the signal by clipping the signal and allowing additional gain at the CFR output. By adopting CFR, the CATV amplifier can be operated closer to its 1dB compression point, thereby improving the efficiency of the CATV amplifier. In addition, when combined with DPD processing, CFR processing can be used to significantly improve DPD stability (e.g., avoid DPD divergence) and further improve the efficiency of the CATV amplifier. In various embodiments, DPD processing and CFR processing are performed with knowledge of the signal chain between the baseband and DFE chip 202 and the CATV amplifier 212, including any effects and/or distortion introduced by each of the DAC 204, the driver 206, and the analog tilt filter 208. In various embodiments, the efficiency of the CATV amplifier is improved and the power consumption is reduced by the DPD processing and CFR processing disclosed herein.

在一些实施例中,基带和DFE芯片202内的功能(例如,包括DPD处理和CFR处理)可以很大程度上实现为DFE功能,其中,基带输出信号被提供作为DFE芯片的输入。这样,现在参照图3,其中示出了DFE系统300,其提供了被配置为执行本公开的一个或多个方面的DFE设计。在一些实施例中,DFE系统300包括数字上变频器(DUC)302。在各种示例中,DUC 302用于将一个或多个数据通道从基带转换为通带信号,其中通带信号包括在一个或多个指定射频或中频(RF或IF)组的调制载波。举例来说,DUC 302通过执行插值(例如,增加采样率)、滤波(例如,提供频谱整形和插值图像的拒绝)以及混合(例如,将信号频谱移动到所需的载波频率)来实现这一点。通常,在DUC 302的输入处的采样率是较低的(例如,数字通信系统的符号速率),而输出的采样率要高得多(例如输入到DAC的输入采样率),DAC将数字采样转换为模拟波形以进行进一步的模拟处理和频率转换。In some embodiments, functions within the baseband and DFE chip 202 (e.g., including DPD processing and CFR processing) can be largely implemented as DFE functions, where the baseband output signal is provided as an input to the DFE chip. As such, referring now to FIG. 3 , a DFE system 300 is shown, which provides a DFE design configured to perform one or more aspects of the present disclosure. In some embodiments, the DFE system 300 includes a digital upconverter (DUC) 302. In various examples, the DUC 302 is used to convert one or more data channels from baseband to a passband signal, where the passband signal includes a modulated carrier at one or more specified radio frequency or intermediate frequency (RF or IF) groups. For example, the DUC 302 achieves this by performing interpolation (e.g., increasing the sampling rate), filtering (e.g., providing spectral shaping and rejection of interpolated images), and mixing (e.g., moving the signal spectrum to a desired carrier frequency). Typically, the sampling rate at the input of the DUC 302 is low (e.g., the symbol rate of a digital communication system), while the sampling rate at the output is much higher (e.g., the input sampling rate to a DAC), which converts the digital samples into an analog waveform for further analog processing and frequency conversion.

如在图3的示例中所示,基带数据输入被提供给DUC 302。基带数据输入包括多个不同的载波,分别表示为s1(n)、s2(n)、s3(n)、s4(n)、s5(n)和s6(n)。在一些实施例中,基带数据输入的采样率约为204.8MHz,对应于OFDM符号时钟。举例来说,DUC 302通过初始执行基带数据输入的插值来生成多个不同载波(例如,从基带数据输入),在本示例中,用于将采样率提高八倍,并且由此从第一时钟域(例如,204.8MHz时钟域)过渡到第二时钟域(例如,1638.4MHz时钟域)。在插值处理之后,将多个不同载波中的每个与来自数控振荡器(NCO)的信号混合,每个NCO具有不同的频率,以将多个不同载波中的每个载波的频率移动到期望的载波频率。例如,载波s1(n)与具有第一频率的第一NCO(NCO1)混合,载波s2(n)与具有第二频率的第二NCO(NCO2)混合,载波s3(n)与具有第三频率的第三NCO(NCO3)混合,载波s4(n)与具有第四频率的第四NCO(NCO4)混合,载波s5(n)与具有第五频率的第五NCO(NCO5)混合,载波s6(n)与具有第六频率的第六NCO(NCO6)混合。在混合处理之后,多个不同载波中的每个载波被组合形成复合信号c(n)。因此,复合信号c(n)包括以不同频率混合的多个不同载波中的每个载波。在一些实施例中,并且作为混合处理的结果,复合信号c(n)可以看起来与图5A所示的信号基本相同,其中多个不同载波中的每个载波在频率上并排布置。在某些情况下,在生成复合信号c(n)之后,可以可选地执行另一次插值处理,在图3的示例中,可以用于将复合信号c(n)的采样率提高两倍,从而从第二时钟域(例如1638.4MHz时钟域)过渡到第三时钟域(例如,3276.8MHz时钟域)。在由DUC 302进行信号处理之后,将复合信号c(n)作为输入提供给DPD-CFR系统304,这将在下面更详细地描述。在一些实施例中,DPD-CFR系统304的输出可以经历复数-实数信号转换306,而复数-实数信号转换306的输出被提供为DAC的输入(例如,可以是图2的DAC 204)。另外,DFE系统300的一个或多个组件可以在诸如图1的可编程逻辑器件那样的可编程逻辑器件中实现。As shown in the example of FIG. 3 , a baseband data input is provided to a DUC 302. The baseband data input includes a plurality of different carriers, denoted as s 1 (n), s 2 (n), s 3 (n), s 4 (n), s 5 (n), and s 6 (n). In some embodiments, the sampling rate of the baseband data input is approximately 204.8 MHz, corresponding to an OFDM symbol clock. For example, the DUC 302 generates the plurality of different carriers (e.g., from the baseband data input) by initially performing interpolation of the baseband data input, in this example, to increase the sampling rate by a factor of eight and thereby transition from a first clock domain (e.g., a 204.8 MHz clock domain) to a second clock domain (e.g., a 1638.4 MHz clock domain). After the interpolation process, each of the plurality of different carriers is mixed with a signal from a numerically controlled oscillator (NCO), each NCO having a different frequency, to shift the frequency of each of the plurality of different carriers to a desired carrier frequency. For example, carrier s 1 (n) is mixed with a first NCO (NCO1) having a first frequency, carrier s 2 (n) is mixed with a second NCO (NCO2) having a second frequency, carrier s 3 (n) is mixed with a third NCO (NCO3) having a third frequency, carrier s 4 (n) is mixed with a fourth NCO (NCO4) having a fourth frequency, carrier s 5 (n) is mixed with a fifth NCO (NCO5) having a fifth frequency, and carrier s 6 (n) is mixed with a sixth NCO (NCO6) having a sixth frequency. After the mixing process, each of the multiple different carriers is combined to form a composite signal c (n). Therefore, the composite signal c (n) includes each of the multiple different carriers mixed at different frequencies. In some embodiments, and as a result of the mixing process, the composite signal c (n) may appear substantially the same as the signal shown in FIG. 5A, where each of the multiple different carriers is arranged side by side in frequency. In some cases, after generating the composite signal c(n), another interpolation process may be optionally performed, which in the example of FIG. 3 may be used to increase the sampling rate of the composite signal c(n) by a factor of two, thereby transitioning from the second clock domain (e.g., the 1638.4 MHz clock domain) to the third clock domain (e.g., the 3276.8 MHz clock domain). After signal processing by the DUC 302, the composite signal c(n) is provided as an input to the DPD-CFR system 304, which will be described in more detail below. In some embodiments, the output of the DPD-CFR system 304 may undergo a complex-to-real signal conversion 306, and the output of the complex-to-real signal conversion 306 is provided as an input to a DAC (e.g., which may be the DAC 204 of FIG. 2). In addition, one or more components of the DFE system 300 may be implemented in a programmable logic device such as the programmable logic device of FIG. 1.

如先前所讨论的,DPD和CFR处理并且因此DPD-CFR系统304在已知CATV放大器具有的非线性“x”的类型的情况下以及在已知基带和DFE芯片202与CATV放大器212之间的信号链的情况下起作用,以便DPD-CFR系统304可以有效地实施适当的DPD和CFR处理(例如,包括添加适当的逆非线性“1/x”和减小信号的PAPR)。例如,DPD-CFR系统304可以用于对CATV放大器建模(例如,包括非线性效应和信号链)。这样,可以基于反馈数据308来生成和/或更新由DPD-CFR系统304提供的模型,其中反馈数据308可以包括CATV放大器(例如,CATV放大器212)的输出信号。在一些实施例中,反馈数据308通过模数转换器(ADC)310进行处理,并作为数字反馈数据311提供给DPD/CFR自适应引擎312。在各种示例中,基于数字反馈数据311,DPD/CFR自适应引擎312更新DPD-CFR系统304,使得DPD-CFR系统304可以适应CATV放大器的运行时间行为。更具体地,在一些实施例中,DPD/CFR自适应引擎312可以确定DPD-CFR系统304内的滤波器系数或其他单元的配置,并且通常可以在DPD-CFR系统304内配置CFR和DPD模块,如下面所讨论的。因此,通过连续监视和更新由DPD-CFR系统304(例如,通过反馈数据308和DPD/CFR自适应引擎312)提供的模型,可以实现最佳的DPD和CFR处理。举例来说,监视和更新模型的方面(例如,诸如DPD/CFR适配引擎312的功能)可以被实现为存储在存储器中(例如,在BRAM 103内或在另一个片上存储器位置内)的软件,并由一个或多个片上处理器(例如PROC 110)执行。注意,在一些实施例中,基带和DFE芯片202、DAC 204和ADC 310可以被实现为单个芯片(例如,在RFSoC器件中)。监视和更新以上提供的模型的示例并不意味着以任何方式进行限制,并且将会看到,尽管其他方法是可能的,但是本公开的实施例不受所提供的任何示例的限制。As previously discussed, the DPD and CFR processing and therefore the DPD-CFR system 304 functions in the case where the type of nonlinearity "x" that the CATV amplifier has is known and in the case where the signal chain between the baseband and DFE chip 202 and the CATV amplifier 212 is known so that the DPD-CFR system 304 can effectively implement appropriate DPD and CFR processing (e.g., including adding appropriate inverse nonlinearity "1/x" and reducing the PAPR of the signal). For example, the DPD-CFR system 304 can be used to model the CATV amplifier (e.g., including nonlinear effects and signal chains). In this way, the model provided by the DPD-CFR system 304 can be generated and/or updated based on the feedback data 308, where the feedback data 308 can include the output signal of the CATV amplifier (e.g., CATV amplifier 212). In some embodiments, the feedback data 308 is processed by an analog-to-digital converter (ADC) 310 and provided to the DPD/CFR adaptation engine 312 as digital feedback data 311. In various examples, based on the digital feedback data 311, the DPD/CFR adaptation engine 312 updates the DPD-CFR system 304 so that the DPD-CFR system 304 can adapt to the run-time behavior of the CATV amplifier. More specifically, in some embodiments, the DPD/CFR adaptation engine 312 can determine the configuration of filter coefficients or other units within the DPD-CFR system 304, and can generally configure CFR and DPD modules within the DPD-CFR system 304, as discussed below. Therefore, by continuously monitoring and updating the model provided by the DPD-CFR system 304 (e.g., through the feedback data 308 and the DPD/CFR adaptation engine 312), optimal DPD and CFR processing can be achieved. For example, aspects of monitoring and updating the model (e.g., such as the functions of the DPD/CFR adaptation engine 312) can be implemented as software stored in a memory (e.g., within the BRAM 103 or within another on-chip memory location) and executed by one or more on-chip processors (e.g., PROC 110). Note that in some embodiments, the baseband and DFE chip 202, DAC 204, and ADC 310 may be implemented as a single chip (e.g., in an RFSoC device). The examples of monitoring and updating the models provided above are not meant to be limiting in any way, and it will be appreciated that while other approaches are possible, embodiments of the present disclosure are not limited by any of the examples provided.

现在参照图4A,其中示出了被使用于实现本公开的各个方面的DPD-CFR系统304的更详细的视图。如图所示,DPD-CFR系统304可包括数字倾斜滤波器402、CFR模块404、DPD模块406、单边带希尔伯特滤波器412和数字倾斜均衡器414。注意,DPD-CFR系统304的一个或多个组件可以在诸如图1的可编程逻辑器件那样的可编程逻辑器件中实现。Referring now to FIG. 4A , there is shown a more detailed view of a DPD-CFR system 304 used to implement various aspects of the present disclosure. As shown, the DPD-CFR system 304 may include a digital shelving filter 402, a CFR module 404, a DPD module 406, a single sideband Hilbert filter 412, and a digital shelving equalizer 414. Note that one or more components of the DPD-CFR system 304 may be implemented in a programmable logic device such as the programmable logic device of FIG. 1 .

仍然参考图4A,更详细地描述了DPD-CFR系统304的功能。例如,在一些实施例中,可以包括以上讨论的复合信号c(n)的输入信号x(n)被提供给数字倾斜滤波器402。在各种情形下,数字倾斜滤波器402可以用于对模拟倾斜滤波器208(图2)建模。因此,作为示例,数字倾斜滤波器402的输出可以类似于模拟倾斜滤波器208的输出。在一些实施例中,数字倾斜滤波器402的输出,标记为被提供作为CFR模块404的输入。在各种实施例中,CFR模块404可以执行CFR处理以减小进入信号(例如,数字倾斜滤波器402的输出,)的PAPR。尽管本实施例不限于由CFR模块404使用的任何特定CFR技术,但是示例性CFR技术可以包括:自适应基带、中频(IF)限幅和滤波、峰值窗或其他合适的技术。在CFR处理之后,CFR模块404向DPD模块406提供标记为的输出。如图所示,数字倾斜滤波器402的输出也沿着数据路径421被提供,在其中将时延引入到信号(例如,在方块423处)。举例来说,CFR模块404的输出进一步沿着数据路径427被提供,然后组合器425被使用来来组合CFR模块404的输出与延时的信号产生信号 Still referring to FIG. 4A , the functionality of the DPD-CFR system 304 is described in more detail. For example, in some embodiments, an input signal x(n), which may include the composite signal c(n) discussed above, is provided to a digital tilt filter 402. In various cases, the digital tilt filter 402 may be used to model the analog tilt filter 208 ( FIG. 2 ). Thus, as an example, the output of the digital tilt filter 402 may be similar to the output of the analog tilt filter 208. In some embodiments, the output of the digital tilt filter 402, labeled is provided as an input to the CFR module 404. In various embodiments, the CFR module 404 may perform CFR processing to reduce the incoming signal (eg, the output of the digital tilt filter 402, ). Although the present embodiment is not limited to any particular CFR technique used by CFR module 404, exemplary CFR techniques may include: adaptive baseband, intermediate frequency (IF) clipping and filtering, peak windowing, or other suitable techniques. After CFR processing, CFR module 404 provides DPD module 406 with a signal labeled As shown in the figure, the output of the digital tilt filter 402 is also provided along the data path 421, where a delay is introduced into the signal (e.g., at block 423). For example, the output of CFR module 404 Further along the data path 427 is provided, and then the combiner 425 is used to combine the output of the CFR module 404 With delayed signal Generate signal

在一些实施例中,DPD模块406用于对CATV放大器的逆基带、视频和谐波分量建模并将其添加到进入的信号中。参照图4B,其中示出了DPD模块406的更详细的视图。如图所示,CFR模块404的输出被提供作为包括非线性数据路径405的DPD模块406的输入。在各种实施例中,非线性数据路径405包括多个不同的并行数据路径单元,包括视频带宽DPD数据路径408、基带DPD数据路径409、二次谐波DPD数据路径410和3次谐波DPD数据路径411。通常,非线性数据路径405用于对CATV放大器的逆非线性行为进行建模,并将其添加到输入信号中。更具体地,非线性数据路径405的每个不同的并行数据路径单元用于对CATV放大器的逆非线性行为的不同方面进行建模并将其添加到输入信号(例如,CFR模块404的输出)。例如,视频带宽DPD数据路径408可以建模并添加逆非线性视频带宽分量,基带DPD数据路径409可以建模并添加逆非线性基带分量,第二谐波DPD数据路径410可以建模并添加逆二次谐波分量,第三谐波DPD数据路径411可以建模并添加逆三次谐波分量。如图所示,视频带宽DPD数据路径408、基带DPD数据路径409、二次谐波DPD数据路径410和三次谐波DPD数据路径411中的每个数据路径的输出组合在一起,以提供复合信号x’(n),该信号对CATV放大器的基带、视频和谐波分量进行建模。In some embodiments, the DPD module 406 is used to model the inverse baseband, video and harmonic components of the CATV amplifier and add them to the incoming signal. Referring to FIG. 4B , a more detailed view of the DPD module 406 is shown. As shown, the output of the CFR module 404 is provided as an input to a DPD module 406 that includes a nonlinear data path 405. In various embodiments, the nonlinear data path 405 includes a plurality of different parallel data path units, including a video bandwidth DPD data path 408, a baseband DPD data path 409, a second harmonic DPD data path 410, and a third harmonic DPD data path 411. In general, the nonlinear data path 405 is used to model the inverse nonlinear behavior of the CATV amplifier and add it to the input signal. More specifically, each different parallel data path unit of the nonlinear data path 405 is used to model a different aspect of the inverse nonlinear behavior of the CATV amplifier and add it to the input signal (e.g., the output of the CFR module 404). ). For example, the video bandwidth DPD datapath 408 can model and add an inverse nonlinear video bandwidth component, the baseband DPD datapath 409 can model and add an inverse nonlinear baseband component, the second harmonic DPD datapath 410 can model and add an inverse second harmonic component, and the third harmonic DPD datapath 411 can model and add an inverse third harmonic component. As shown, the output of each of the video bandwidth DPD datapath 408, the baseband DPD datapath 409, the second harmonic DPD datapath 410, and the third harmonic DPD datapath 411 are combined to provide a composite signal x'(n) that models the baseband, video, and harmonic components of the CATV amplifier.

返回到图4A,由组合器429将非线性数据路径405的输出(例如,复合信号x’(n))和信号进行组合,产生信号x”(n)。此后,信号x”(n)被提供作为单边带希尔伯特滤波器412的输入,可用于进一步调制信号x’(n),以及单边带希尔伯特滤波器412的输出作为输入提供到数字倾斜均衡器414。作为示例,数字倾斜均衡器414可以用于对模拟倾斜滤波器208(图2)的逆进行建模并添加到进入的信号。因此,作为示例,数字倾斜均衡器414的输出可能不受模拟倾斜滤波器208的影响(例如,或可以消除其影响)。如图4A所示,在一些实施例中,输入信号x(n)也沿着路径416传输,其中路径416是线性数据路径。在一些示例中,数据路径416可以在输入信号x(n)中仅仅引入时间延迟(例如,在方块417处)。此外,沿数据路径416传输的输入信号x(n)绕过数字倾斜滤波器402、CFR模块404、DPD模块406、单边带希尔伯特滤波器412和数字倾斜均衡器414。这样,沿着数据路径416传输的输入信号x(n)的信号调制的质量将保持不受DPD-CFR系统304的其他单元的影响。另外,如图4A所示,数字倾斜均衡器414的输出和时间延迟的输入信号x(n)419由组合器431进行组合以提供输出信号z(n)。参照图2、3和4A,DPD-CFR系统304的输出z(n)可以由RF DAC 204和模拟倾斜滤波器208进一步处理,从而产生信号y(n)。举例来说,信号y(n)可被计算为:Returning to FIG. 4A , the output of the nonlinear data path 405 (eg, the composite signal x′(n)) and the signal are combined to produce a signal x"(n). Thereafter, the signal x"(n) is provided as an input to a single sideband Hilbert filter 412, which may be used to further modulate the signal x'(n), and the output of the single sideband Hilbert filter 412 is provided as an input to a digital tilt equalizer 414. As an example, the digital tilt equalizer 414 may be used to model the inverse of the analog tilt filter 208 (FIG. 2) and added to the incoming signal. Thus, as an example, the output of the digital tilt equalizer 414 may not be affected by the analog tilt filter 208 (e.g., or its effects may be eliminated). As shown in FIG. 4A, in some embodiments, the input signal x(n) is also transmitted along path 416, where path 416 is a linear data path. In some examples, the data path 416 may introduce only a time delay in the input signal x(n) (e.g., at block 417). In addition, the input signal x(n) transmitted along the data path 416 bypasses the digital tilt filter 402, the CFR module 404, the DPD module 406, the single sideband Hilbert filter 412, and the digital tilt equalizer 414. In this way, the quality of the signal modulation of the input signal x(n) transmitted along the data path 416 will remain unaffected by the other elements of the DPD-CFR system 304. In addition, as shown in Figure 4A, the output of the digital tilt equalizer 414 and the time delayed input signal x(n) 419 are combined by the combiner 431 to provide an output signal z(n). Referring to Figures 2, 3 and 4A, the output z(n) of the DPD-CFR system 304 can be further processed by the RF DAC 204 and the analog tilt filter 208 to produce a signal y(n). For example, the signal y(n) can be calculated as:

其中ATF=模拟倾斜滤波器,DTE=数字倾斜均衡器,符号‘*’用于代表数学卷积运算,以及DTE*ATF=1(统一传递函数)。Where ATF = analog shelving filter, DTE = digital shelving equalizer, the symbol ‘*’ is used to represent the mathematical convolution operation, and DTE*ATF = 1 (uniform transfer function).

参照图5A,提供了示例性输入频谱502。在一些实施例中,输入信号x(n)(图4A)可以包括输入频谱502。如上所述,输入频谱502可以包括(例如,由DUC 302)以不同频率混合的多个不同载波中的每个载波,如前所述,其中多个不同载波中的每个载波在约66MHz至约1218MHz的全带宽频率上并排布置。参照图5B,提供了示例性输出频谱504。在一些实施例中,输出信号z(n)(图4A)可以包括输出频谱504。如图5B所示,输出频谱504包括已经由DPD-CFR系统304添加到信号中的一个或多个非线性分量506。作为由DPD-CFR系统304执行处理的结果,CATV放大器效率和信号质量得以改善,并降低了功耗。Referring to FIG. 5A , an exemplary input spectrum 502 is provided. In some embodiments, the input signal x(n) ( FIG. 4A ) may include the input spectrum 502. As described above, the input spectrum 502 may include each of a plurality of different carriers mixed at different frequencies (e.g., by the DUC 302 ), as previously described, wherein each of the plurality of different carriers is arranged side by side at a full bandwidth frequency of about 66 MHz to about 1218 MHz. Referring to FIG. 5B , an exemplary output spectrum 504 is provided. In some embodiments, the output signal z(n) ( FIG. 4A ) may include the output spectrum 504. As shown in FIG. 5B , the output spectrum 504 includes one or more nonlinear components 506 that have been added to the signal by the DPD-CFR system 304. As a result of the processing performed by the DPD-CFR system 304, CATV amplifier efficiency and signal quality are improved, and power consumption is reduced.

现在参照图6A、6B、7A、7B、7C、8A、8B、9A、9B、10A、10B和11,图上示出了多个数据,其显示的多个数据表明本公开的各个实施例的至少一些益处和优点。首先参照图6A,其中示出了曲线602,其示出了随时间采样的倾斜滤波器输出(例如,模拟倾斜滤波器208)的标准化幅度。曲线图602包括未执行CFR处理的第一数据集604。这样,第一数据集604表现出大的峰值(例如,大于约0.78),这可能导致CATV放大器中更多的非线性。曲线图602还包括执行CFR处理的第二数据集606,其示出了减小的峰值幅度(例如,小于约0.78)。因此,由CFR处理提供的减小的峰值使得CATV放大器的效率提高。此外,可以在不牺牲调制错误率(MER)性能的情况下执行CFR处理。图6B提供了曲线图608,其示出由已经对其执行了CFR处理的功率谱610(例如,在模拟倾斜滤波器208的输出处),示出了由CFR处理提供的减小的峰值幅度的益处。应当指出,图6A和6B中所示的数据包括模拟数据,其中出于模拟目的,模拟倾斜滤波器208已用数字模型代替。Now with reference to Figures 6A, 6B, 7A, 7B, 7C, 8A, 8B, 9A, 9B, 10A, 10B and 11, a plurality of data are shown in the figure, and the plurality of data shown indicate at least some benefits and advantages of various embodiments of the present disclosure. First with reference to Figure 6A, a curve 602 is shown therein, which shows the normalized amplitude of the tilt filter output (e.g., analog tilt filter 208) sampled over time. The graph 602 includes a first data set 604 that does not perform CFR processing. In this way, the first data set 604 exhibits a large peak value (e.g., greater than about 0.78), which may result in more nonlinearity in the CATV amplifier. The graph 602 also includes a second data set 606 that performs CFR processing, which shows a reduced peak amplitude (e.g., less than about 0.78). Therefore, the reduced peak value provided by the CFR processing improves the efficiency of the CATV amplifier. In addition, the CFR processing can be performed without sacrificing the modulation error rate (MER) performance. 6B provides a graph 608 showing a power spectrum 610 (e.g., at the output of the analog shelving filter 208) on which CFR processing has been performed, illustrating the benefit of reduced peak amplitude provided by the CFR processing. It should be noted that the data shown in FIGS. 6A and 6B include simulated data, where the analog shelving filter 208 has been replaced with a digital model for simulation purposes.

参照图7A、7B和7C,在其中示出了曲线702、708、714,其示出随时间采样的放大器输出(例如,CATV放大器212)的标准化幅度。通常,曲线图702、708、714的数据提供对CFR处理的有效性的验证,并且可以包括反馈数据(例如,诸如反馈数据308)的快照。如上所述,这种反馈数据可以包括CATV放大器的输出信号,DPD/CFR自适应引擎312可以使用该CATV放大器的输出信号来更新DPD-CFR系统304内的模型,从而DPD-CFR系统304可以适应CATV放大器运行时的行为。在一些情况下,曲线702、708、714的数据可以提供在不同的CATV放大器处的反馈数据的快照,以便实时地(例如,经由DPD-CFR系统304)观察和适配该系统,从而在不同的CATV放大器之间提供一致性。备选地,在一些示例中,曲线702、708、714的数据可以提供在特定的CATV放大器处、在不同的时间窗口处的反馈数据的快照,以便观察特定CATV放大器随时间的性能。现在参考图7A,曲线图702包括未执行CFR处理的第一数据集,其包括峰704(例如,具有大于约0.78的幅度),并且可以指示CATV放大器中的更多非线性。曲线图702还包括在其中执行CFR处理的第二数据集706,其示出减小的峰值幅度(例如,小于约0.78)。类似地,曲线708(图7B)和曲线714(图7C)示出了其中未执行CFR处理的数据集的峰值710、716,以及其中执行过CFR处理的数据集712、718。如前所述,由CFR处理所提供的降低的峰值使得CATV放大器的效率提高。Referring to Figures 7A, 7B, and 7C, curves 702, 708, 714 are shown therein, which show the normalized amplitude of the amplifier output (e.g., CATV amplifier 212) sampled over time. In general, the data of the curves 702, 708, 714 provide verification of the effectiveness of the CFR process and may include a snapshot of feedback data (e.g., such as feedback data 308). As described above, such feedback data may include the output signal of the CATV amplifier, which the DPD/CFR adaptive engine 312 may use to update the model within the DPD-CFR system 304 so that the DPD-CFR system 304 can adapt to the behavior of the CATV amplifier during operation. In some cases, the data of the curves 702, 708, 714 may provide a snapshot of the feedback data at different CATV amplifiers so that the system can be observed and adapted in real time (e.g., via the DPD-CFR system 304) to provide consistency between different CATV amplifiers. Alternatively, in some examples, the data of curves 702, 708, 714 can provide snapshots of feedback data at different time windows at a specific CATV amplifier to observe the performance of a specific CATV amplifier over time. Now referring to FIG. 7A, graph 702 includes a first data set without CFR processing, which includes a peak 704 (e.g., having an amplitude greater than about 0.78), and can indicate more nonlinearities in the CATV amplifier. Graph 702 also includes a second data set 706 in which CFR processing is performed, which shows a reduced peak amplitude (e.g., less than about 0.78). Similarly, curve 708 (FIG. 7B) and curve 714 (FIG. 7C) show peaks 710, 716 of a data set in which CFR processing is not performed, and data sets 712, 718 in which CFR processing is performed. As previously described, the reduced peak provided by CFR processing improves the efficiency of the CATV amplifier.

现在参照图8A,其中示出了在1122MHz下的单个载波的累积分布函数(CCDF)曲线802,其示出了不执行CFR处理的第一CCDF曲线804和由于执行CFR处理而产生的第二CCDF曲线806。CCDF曲线用于显示信号在等于或高于给定功率水平上花费的时间,其中功率水平以相对于平均信号功率(例如波峰因数)的dB表示。换句话说,CCDF曲线用于显示信号等于或高于给定功率电平的概率。参照图8A,x轴示出了高于平均信号功率(例如波峰因数)的dB值,并且y轴示出了信号花费在或高于由x轴指定的功率电平的时间百分比。与第一CCDF曲线804(不具有CFR)相比,第二CCDF曲线806(具有CFR)呈现出波峰因数降低约2dB。结果,预期CATV放大器将提供更一致和更有效的性能。图8B提供了曲线图808,其示出已经对其执行CFR处理的功率谱810,其对应于第二CCDF曲线806(具有CFR),其中波峰因数已经通过CFR处理而减小。Now referring to FIG. 8A, there is shown a cumulative distribution function (CCDF) curve 802 of a single carrier at 1122MHz, which shows a first CCDF curve 804 without CFR processing and a second CCDF curve 806 generated due to CFR processing. The CCDF curve is used to display the time that a signal spends at or above a given power level, where the power level is expressed in dB relative to the average signal power (e.g., crest factor). In other words, the CCDF curve is used to display the probability that a signal is equal to or higher than a given power level. Referring to FIG. 8A, the x-axis shows a dB value higher than the average signal power (e.g., crest factor), and the y-axis shows the percentage of time that a signal spends at or above the power level specified by the x-axis. Compared with the first CCDF curve 804 (without CFR), the second CCDF curve 806 (with CFR) presents a crest factor reduction of about 2dB. As a result, it is expected that the CATV amplifier will provide more consistent and more efficient performance. FIG. 8B provides a graph 808 showing a power spectrum 810 on which CFR processing has been performed, corresponding to the second CCDF curve 806 (with CFR), where the crest factor has been reduced by the CFR processing.

参照图9A和9B,示出了CATV放大器传递函数的曲线902、908,其示出了幅度-幅度失真(AM/AM),其中AM/AM失真用于测量信号的增益压缩或扩展。换句话说,当CATV放大器增益不再随输入功率恒定时(例如,当输出功率不再与输入功率线性相关时),AM/AM失真的非线性将增加。在本示例中,曲线图902(图9A)提供其中未执行CFR处理的数据,而曲线图908(图9B)提供其中进行CFR处理的数据。此外,曲线图902包括不对其执行DPD处理的第一曲线904和对其执行DPD处理的第二曲线906。参考第一曲线904,可以看出,更大的输入功率导致输出功率的压缩增加(例如,CATV放大器非线性增加的证据)。使用DPD处理(没有CFR),第二曲线906示出了可以基本上校正CATV放大器的非线性并减少信号压缩。曲线图908还包括对其不执行DPD处理的第一曲线910和对其执行DPD处理的第二曲线912。通过执行CFR处理并减小PAPR(对于曲线908中所示的数据),标准化输入功率被限制为大约0.8。参考第一曲线910(没有DPD),信号压缩相对较少,从而导致CATV放大器的控制和效率更高。在该示例中,使用DPD处理(具有CFR),与第一曲线910相比,第二曲线912显示出较小的改进,因为通过限制输入功率(通过CFR处理),DPD处理的非线性较小纠正。With reference to Fig. 9A and 9B, curves 902, 908 of CATV amplifier transfer function are shown, which show amplitude-amplitude distortion (AM/AM), wherein AM/AM distortion is used to measure the gain compression or expansion of the signal. In other words, when the CATV amplifier gain is no longer constant with the input power (e.g., when the output power is no longer linearly related to the input power), the nonlinearity of AM/AM distortion will increase. In this example, graph 902 (Fig. 9A) provides data in which CFR processing is not performed, and graph 908 (Fig. 9B) provides data in which CFR processing is performed. In addition, graph 902 includes a first curve 904 to which DPD processing is not performed and a second curve 906 to which DPD processing is performed. With reference to the first curve 904, it can be seen that a greater input power leads to an increase in compression of the output power (e.g., evidence of an increase in nonlinearity of the CATV amplifier). Using DPD processing (without CFR), the second curve 906 shows that the nonlinearity of the CATV amplifier can be substantially corrected and signal compression can be reduced. The graph 908 also includes a first graph 910 for which DPD processing is not performed and a second graph 912 for which DPD processing is performed. By performing CFR processing and reducing the PAPR (for the data shown in the graph 908), the normalized input power is limited to approximately 0.8. Referring to the first graph 910 (without DPD), the signal compression is relatively small, resulting in greater control and efficiency of the CATV amplifier. In this example, using DPD processing (with CFR), the second graph 912 shows a smaller improvement compared to the first graph 910 because the nonlinearity of the DPD processing is less corrected by limiting the input power (through the CFR processing).

图10A和10B提供了使用和不使用CFR处理的示例性DPD性能(例如,DPD输出稳定性能)。图10A包括曲线图1002,该曲线图1002提供其中不执行CFR处理的数据。图10B包括曲线图1008,曲线1008提供执行CFR处理的数据。此外,曲线图1002(没有CFR)包括表示DPD输入信号的第一曲线1004和表示DPD输出信号的第二曲线1006。在该示例中,如果没有CFR处理,DPD输出信号(1006)不稳定,并且开始发散,超出大约2的DPD输出信号范围。如上所述,更大的输入功率会导致输出功率中的压缩增加,使CATV放大器具有更多的非线性。为了避免CATV放大器在这样的高功率区域中运行,可以执行CFR处理。例如,曲线图1008(具有CFR)包括代表DPD输入信号的第一曲线1010和代表DPD输出信号的第二曲线1012。在该示例中,由于执行了CFR处理,所以DPD输出信号(1012)是稳定的并且不会发散。对于曲线1008的数据,施加了1.3dB的CFR。然而,在各种实施例中,可以根据特定CATV放大器或特定安装/部署的需要来调整所施加的CFR量。另外,尽管本公开已经描述了DPD和CFR的优点,但是应当理解,各种实施例可以采用DPD和CFR处理中的一种或两种。然而,在至少一些示例中,通过针对给定部署同时使用DPD处理和CFR处理,可以实现最大的CATV放大器效率,同时还避免了DPD发散。10A and 10B provide exemplary DPD performance (e.g., DPD output stability performance) with and without CFR processing. FIG. 10A includes a graph 1002 that provides data where CFR processing is not performed. FIG. 10B includes a graph 1008 that provides data where CFR processing is performed. In addition, graph 1002 (without CFR) includes a first curve 1004 representing a DPD input signal and a second curve 1006 representing a DPD output signal. In this example, without CFR processing, the DPD output signal (1006) is unstable and begins to diverge, exceeding the DPD output signal range of approximately 2. As described above, greater input power results in increased compression in the output power, making the CATV amplifier more nonlinear. In order to avoid the CATV amplifier from operating in such a high power region, CFR processing can be performed. For example, graph 1008 (with CFR) includes a first curve 1010 representing a DPD input signal and a second curve 1012 representing a DPD output signal. In this example, due to the CFR processing performed, the DPD output signal (1012) is stable and does not diverge. For the data of curve 1008, a CFR of 1.3dB is applied. However, in various embodiments, the amount of CFR applied can be adjusted according to the needs of a specific CATV amplifier or a specific installation/deployment. In addition, although the present disclosure has described the advantages of DPD and CFR, it should be understood that various embodiments can adopt one or both of DPD and CFR processing. However, in at least some examples, by using DPD processing and CFR processing for a given deployment simultaneously, maximum CATV amplifier efficiency can be achieved while also avoiding DPD divergence.

参照图11,示出了包括用于CATV放大器的调制误差比(MER)数据的表,该表示出了将DPD-CFR系统304提供的校正应用于MER数据的效果。举例来说,MER是一种用于量化使用数字调制(例如QAM)的通信系统中数字无线电(或数字TV)发射机或接收机性能的度量值。对于图11的例子,被测CATV放大器模块可在V=34V下工作。为了将MER数据与电缆行业规范(MER=41dB,4KQAM,76.8dbmV/75Ω)进行比较,CATV放大器使用六个载波进行测试,其中第一载波是具有204MHz载波频率的4K QAM信号,第二载波是具有396MHz载波频率的4K QAM信号,第三载波是具有588MHz载波频率的4K QAM信号,第四载波是具有786MHz载波频率的4KQAM信号,第五载波是具有930MHz载波频率的4K QAM信号,第六载波是具有1122MHz载波频率的4K QAM信号。在第一测试1102中,在CATV放大器以440mA的偏置电流工作并且没有DPD或CFR校正的情况下,没有一个被测试的载波满足MER=41dB的指标。在第二测试1104中,在CATV放大器以440mA的偏置电流工作、具有DPD校正但没有CFR校正的情况下,第一载波不满足MER=41dB的指标。此外,在第二测试1104中,DPD稳定性降低并且DPD发散。在第三测试1106中,在CATV放大器以440mA的偏置电流工作并且应用了DPD和CFR校正的情况下,所有被测试的载波都满足MER=41dB的指标并且避免了DPD发散。还应指出,通过以440mA的偏置电流运行CATV放大器(与以530mA的偏置电流运行CATV放大器的某些应用相比),在保持MER的同时,每个放大器的功耗可降低约3瓦。Referring to FIG. 11 , a table including modulation error ratio (MER) data for a CATV amplifier is shown, which shows the effect of applying the correction provided by the DPD-CFR system 304 to the MER data. For example, MER is a metric used to quantify the performance of a digital radio (or digital TV) transmitter or receiver in a communication system using digital modulation (e.g., QAM). For the example of FIG. 11 , the CATV amplifier module under test may operate at V=34V. In order to compare the MER data with the cable industry specification (MER=41dB, 4KQAM, 76.8dbmV/75Ω), the CATV amplifier is tested using six carriers, wherein the first carrier is a 4K QAM signal with a 204MHz carrier frequency, the second carrier is a 4K QAM signal with a 396MHz carrier frequency, the third carrier is a 4K QAM signal with a 588MHz carrier frequency, the fourth carrier is a 4K QAM signal with a 786MHz carrier frequency, the fifth carrier is a 4K QAM signal with a 930MHz carrier frequency, and the sixth carrier is a 4K QAM signal with a 1122MHz carrier frequency. In the first test 1102, none of the tested carriers met the MER=41dB specification when the CATV amplifier was operated at a bias current of 440mA and without DPD or CFR correction. In the second test 1104, the first carrier did not meet the MER=41dB specification when the CATV amplifier was operated at a bias current of 440mA, with DPD correction but without CFR correction. In addition, in the second test 1104, DPD stability was reduced and DPD diverged. In the third test 1106, all tested carriers met the MER=41dB specification and avoided DPD divergence when the CATV amplifier was operated at a bias current of 440mA and DPD and CFR correction were applied. It should also be noted that by running the CATV amplifier at a bias current of 440mA (compared to some applications of running the CATV amplifier at a bias current of 530mA), the power consumption of each amplifier can be reduced by about 3 watts while maintaining MER.

现在参照图12,示出了根据各种实施例的用于在DPD-CFR系统中执行波峰因数降低处理和数字预失真处理的方法1200。方法1200开始于方框1202,其中在诸如图4A的DPD-CFR系统304的DPD-CFR系统的输入处接收输入信号。如上所述,在一些实施例中,输入信号可以包括输入信号x(n)(图4A),其还可以包括由DUC 302(图3)生成的复合信号c(n)。在一些示例中,方法1200进行到方框1204,其中在DPD-CFR系统的CFR模块处,对输入信号执行CFR处理,以生成第一输出信号。例如,CFR处理可以由CFR模块404(图4A)执行。在各种情况下,执行CFR处理是为了降低输入信号的峰值对平均值功率比(PAPR)。在一些实施例中,输入信号包括标记为的信号(图4A),并且第一输出信号包括标记为的信号(图4A)。方法1200进行到方框1206,其中在DPD-CFR系统的DPD模块处对第一输出信号执行DPD处理,以生成DPD-CFR输出信号。在一些实施例中,DPD模块包括耦接到CFR模块输出的非线性数据路径。另外,DPD模块的非线性数据路径可以包括图4B的非线性数据路径406。这样,非线性数据路径可以包括多个并行数据路径单元。在一些示例中,多个并行数据路径单元包括视频带宽DPD数据路径404、基带DPD数据路径406、二次谐波DPD数据路径408和三次谐波DPD数据路径410。在一些示例中,每个不同的并行数据路径单元可以用于将CATV放大器的逆非线性行为的不同方面添加到输入信号。在一些实施例中,组合器组合多个并行数据路径单元中的每一个的输出以生成复合信号x’(n)(图4B),其中复合信号x’(n)对CATV放大器的基带、视频和谐波分量进行建模。在各种实施例中,方法1200进行到方框1208,其中将DPD-CFR输出信号提供给CATV放大器(例如,诸如图2的CATV放大器212)。根据本公开的实施例,DPD-CFR输出信号被配置为减小信号的PAPR并补偿CATV放大器的多个非线性分量。然后,方法1200可以进行到方框1210,其中可以使用从CATV放大器的输出端接收到的反馈数据(例如,图3的反馈数据308)来更新DPD-CFR系统的配置。应当看到,可以在方法1200之前、之中和之后实施附加的方法步骤,并且上述的一些方法步骤可以根据方法1200的各种实施例被替换或消除而不脱离本发明的范围。Referring now to FIG. 12 , a method 1200 for performing crest factor reduction processing and digital predistortion processing in a DPD-CFR system is shown in accordance with various embodiments. The method 1200 begins at block 1202, where an input signal is received at an input of a DPD-CFR system, such as the DPD-CFR system 304 of FIG. 4A . As described above, in some embodiments, the input signal may include an input signal x(n) ( FIG. 4A ), which may also include a composite signal c(n) generated by the DUC 302 ( FIG. 3 ). In some examples, the method 1200 proceeds to block 1204, where CFR processing is performed on the input signal at a CFR module of the DPD-CFR system to generate a first output signal. For example, the CFR processing may be performed by the CFR module 404 ( FIG. 4A ). In various cases, the CFR processing is performed to reduce a peak-to-average power ratio (PAPR) of the input signal. In some embodiments, the input signal includes a signal labeled signal (FIG. 4A), and the first output signal includes a signal labeled signal (FIG. 4A). Method 1200 proceeds to block 1206, where DPD processing is performed on the first output signal at the DPD module of the DPD-CFR system to generate a DPD-CFR output signal. In some embodiments, the DPD module includes a nonlinear data path coupled to the CFR module output. In addition, the nonlinear data path of the DPD module may include the nonlinear data path 406 of FIG. 4B. In this way, the nonlinear data path may include a plurality of parallel data path units. In some examples, the plurality of parallel data path units include a video bandwidth DPD data path 404, a baseband DPD data path 406, a second harmonic DPD data path 408, and a third harmonic DPD data path 410. In some examples, each different parallel data path unit may be used to add different aspects of the inverse nonlinear behavior of the CATV amplifier to the input signal. In some embodiments, a combiner combines the output of each of the plurality of parallel data path units to generate a composite signal x'(n) (FIG. 4B), wherein the composite signal x'(n) models the baseband, video, and harmonic components of the CATV amplifier. In various embodiments, method 1200 proceeds to block 1208, where the DPD-CFR output signal is provided to a CATV amplifier (e.g., such as CATV amplifier 212 of FIG. 2 ). According to an embodiment of the present disclosure, the DPD-CFR output signal is configured to reduce the PAPR of the signal and compensate for multiple nonlinear components of the CATV amplifier. Method 1200 may then proceed to block 1210, where the configuration of the DPD-CFR system may be updated using feedback data received from the output of the CATV amplifier (e.g., feedback data 308 of FIG. 3 ). It should be appreciated that additional method steps may be implemented before, during, and after method 1200, and that some of the method steps described above may be replaced or eliminated according to various embodiments of method 1200 without departing from the scope of the present invention.

应当指出,各种配置(例如,图4B中的电缆网络200、DFE系统300和DPD-CFR系统304的组件,并行数据路径单元的数量以及其他特征和附图中所示的组件)仅是示例性的,并且不旨在限制所附权利要求中具体记载的内容。本领域技术人员将理解,可以使用其他配置。另外,虽然示出了示例性电缆网络200,但是本文公开的DPD-CFR系统可以用于其他通信系统中,例如,其中其他通信系统部署表现出有害的非线性行为的放大器。It should be noted that the various configurations (e.g., the components of the cable network 200, DFE system 300, and DPD-CFR system 304 in FIG. 4B, the number of parallel data path units, and other features and components shown in the drawings) are exemplary only and are not intended to limit the contents specifically recited in the appended claims. Those skilled in the art will understand that other configurations may be used. In addition, although an exemplary cable network 200 is shown, the DPD-CFR system disclosed herein may be used in other communication systems, for example, where the other communication systems deploy amplifiers that exhibit harmful nonlinear behavior.

如上所述,电缆行业正在基于DOCSIS 3.1标准部署新的高数据速率和宽带远程PHY节点,以满足对互联网、电话和视频服务更高数据速率的需求。DOCSIS 3.1支持4096(4K)正交幅度调制(QAM),并使用正交分频复用(OFDM)。这样,DOCSIS 3.1的发射信号质量要求比当前标准DOCSIS 3.0更高。由于与DOCSIS 3.1相关的功能更加复杂,因此有线电视(CATV)放大器可能会工作在非线性区域内。CATV放大器的非线性效应将大大降低发射信号的质量。此外,提供高数据速率和DOCSIS 3.1更复杂功能的新组件本身也会消耗功率。然而,由于到每个节点(例如,每个远程PHY节点)的电源功率是固定的,所以应减少其他组件(例如,CATV放大器)的功耗。因此,虽然期望提供DOCSIS 3.1的先进性能,但是同时提供改进的发射信号质量和降低其他组件(例如,CATV放大器)的功耗是具有挑战性的。As described above, the cable industry is deploying new high data rate and broadband remote PHY nodes based on the DOCSIS 3.1 standard to meet the demand for higher data rates for Internet, telephone and video services. DOCSIS 3.1 supports 4096 (4K) quadrature amplitude modulation (QAM) and uses orthogonal frequency division multiplexing (OFDM). As a result, the transmission signal quality requirements of DOCSIS 3.1 are higher than those of the current standard DOCSIS 3.0. Due to the more complex functions associated with DOCSIS 3.1, cable television (CATV) amplifiers may operate in a nonlinear region. The nonlinear effects of CATV amplifiers will greatly reduce the quality of the transmitted signal. In addition, the new components that provide high data rates and more complex functions of DOCSIS 3.1 will also consume power themselves. However, since the power supply power to each node (e.g., each remote PHY node) is fixed, the power consumption of other components (e.g., CATV amplifiers) should be reduced. Therefore, while it is desirable to provide the advanced performance of DOCSIS 3.1, it is challenging to simultaneously provide improved transmit signal quality and reduce power consumption of other components (eg, CATV amplifiers).

在至少一些现有技术中,在模拟传输路径中实现了在1.2GHz电缆频谱上具有高达22dB的深衰减的倾斜均衡器(倾斜滤波器),以补偿同轴电缆的损耗(例如,从CATV放大器到电缆调制解调器)。但是,与当前的DOCSIS 3.0标准相比,使用4K QAM OFDM调制的DOCSIS3.1波形显示出较高的峰值对平均值功率比(PAPR)。这样,对于DOCSIS 3.0中CATV放大器的相同RMS功率输出,DOCSIS 3.1波形的峰值将位于CATV放大器的非线性区域。因此,发射信号的质量会下降。数字预失真(DPD)可用于提高CATV放大器的信号质量,例如,通过使CATV运行在更高效率的区域中。DPD已经用于无线通信技术,其中无线通信技术的信号带宽比起用于有线通信技术的信号带宽窄得多。此外,在无线通信中,无线部件的非线性效应的谐波不会落入信号带宽中。这样,用于无线通信的DPD只需要对围绕基带频率投影的非线性分量进行建模。但是,对于电缆应用,CATV放大器信号的非线性效应的谐波会落入信号带宽。因此,用于电缆应用的DPD实现方案应当对于CATV放大器的非线性效应的谐波分量进行建模。另外,具有深衰减的倾斜均衡器不能在数字域中实现,并且数字倾斜均衡器的实施方案将因为数模转换器(DAC)的有限数字分辨率而降低低频载波的传输波形质量。对于集成电路(IC)解决方案,已经发现在数字前端(DFE)芯片中实现的DPD数据路径可以提供一种对于CATV放大器的非线性效应的谐波分量和CATV放大器中发送频谱上的深度衰减进行建模的解决方案。因此,本公开的实施例提供了CATV放大器的改善的发射信号质量和降低的功耗。In at least some prior art, a shelving equalizer (shelving filter) with a deep attenuation of up to 22 dB on the 1.2 GHz cable spectrum is implemented in the analog transmission path to compensate for the loss of the coaxial cable (e.g., from the CATV amplifier to the cable modem). However, compared with the current DOCSIS 3.0 standard, the DOCSIS3.1 waveform using 4K QAM OFDM modulation shows a higher peak-to-average power ratio (PAPR). In this way, for the same RMS power output of the CATV amplifier in DOCSIS 3.0, the peak of the DOCSIS 3.1 waveform will be located in the nonlinear region of the CATV amplifier. Therefore, the quality of the transmitted signal will decrease. Digital pre-distortion (DPD) can be used to improve the signal quality of the CATV amplifier, for example, by making the CATV operate in a more efficient area. DPD has been used in wireless communication technology, in which the signal bandwidth of the wireless communication technology is much narrower than the signal bandwidth used for wired communication technology. In addition, in wireless communication, the harmonics of the nonlinear effects of the wireless components will not fall into the signal bandwidth. In this way, the DPD used for wireless communication only needs to model the nonlinear components projected around the baseband frequency. However, for cable applications, the harmonics of the nonlinear effects of CATV amplifier signals can fall into the signal bandwidth. Therefore, the DPD implementation scheme for cable applications should be modeled for the harmonic components of the nonlinear effects of CATV amplifiers. In addition, the tilt equalizer with deep attenuation cannot be implemented in the digital domain, and the implementation scheme of the digital tilt equalizer will reduce the transmission waveform quality of the low-frequency carrier because of the limited digital resolution of the digital-to-analog converter (DAC). For integrated circuit (IC) solutions, it has been found that the DPD data path implemented in the digital front end (DFE) chip can provide a solution for modeling the harmonic components of the nonlinear effects of CATV amplifiers and the deep attenuation on the transmission spectrum in the CATV amplifier. Therefore, the embodiments of the present disclosure provide the improved transmission signal quality and reduced power consumption of the CATV amplifier.

考虑到以上一般性理解,下面总体上描述用于CATV放大器的预失真的方法和电路的各种实施例。因为上述实施例中的一个或多个实施例是通过使用特定类型的IC来示例说明的,所以以下提供了这种IC的详细描述。然而,应理解,其他类型的IC可受益于本文描述的一个或多个实施例。In view of the above general understanding, various embodiments of the method and circuit for predistortion of CATV amplifiers are generally described below. Because one or more of the above embodiments are illustrated by using a specific type of IC, a detailed description of such IC is provided below. However, it should be understood that other types of ICs may benefit from one or more embodiments described herein.

可编程逻辑器件(“PLD”)是一种众所周知可被编程以执行指定的逻辑功能的集成电路。一种类型的PLD,即现场可编程门阵列(“FPGA”),通常包括可编程片的阵列。这些可编程片可以包括例如输入/输出块(“IOB”)、可配置逻辑块(“CLB”)、专用随机存取存储块(“BRAM”)、乘法器、数字信号处理块(“DSP”)、处理器、时钟管理器、延迟锁相环(“DLL”)等。如本文所使用的,“包括”和“包含”是指包括而不作限制。A programmable logic device ("PLD") is a well-known integrated circuit that can be programmed to perform a specified logic function. One type of PLD, a field programmable gate array ("FPGA"), typically includes an array of programmable chips. These programmable chips may include, for example, input/output blocks ("IOBs"), configurable logic blocks ("CLBs"), application specific random access memory blocks ("BRAMs"), multipliers, digital signal processing blocks ("DSPs"), processors, clock managers, delay locked loops ("DLLs"), etc. As used herein, "includes" and "comprising" mean including without limitation.

每个可编程片通常包括可编程互连和可编程逻辑。可编程互连通常包括通过可编程互连点(“PIP”)互连的许多不同长度的互连线。可编程逻辑使用可编程单元来实现用户设计的逻辑,可编程单元可以包括例如函数发生器、寄存器、算术逻辑等。Each programmable slice typically includes programmable interconnects and programmable logic. The programmable interconnects typically include many interconnect lines of different lengths interconnected by programmable interconnect points ("PIPs"). Programmable logic uses programmable cells to implement user-designed logic, which may include, for example, function generators, registers, arithmetic logic, etc.

可编程互连和可编程逻辑通常可以通过将配置数据流加载到内部配置存储单元而进行编程,该内部配置存储单元定义了如何配置可编程单元。配置数据可以从存储器(例如,从外部PROM)读取,或者通过外部设备被写入到FPGA。然后,各个存储单元的集体状态决定了FPGA的功能。The programmable interconnect and programmable logic can usually be programmed by loading a stream of configuration data into internal configuration memory cells, which define how the programmable cells are configured. The configuration data can be read from a memory (e.g., from an external PROM) or written to the FPGA by an external device. The collective state of the individual memory cells then determines the functionality of the FPGA.

另一类PLD是复杂可编程逻辑器件(CPLD)。CPLD包含两个或多个“功能块”,它们连接在一起并通过互连开关矩阵连接到输入/输出(“I/O”)资源。CPLD的每个功能块都包括一个两级AND/OR结构,类似于在可编程逻辑阵列(“PLA”)和可编程阵列逻辑(“PAL”)器件中使用的结构。在CPLD中,配置数据通常是片上存储在非易失性存储器中。在某些CPLD中,配置数据是片上存储在非易失性存储器中,然后作为初始配置(编程)序列的一部分下载到易失性存储器中。Another type of PLD is the Complex Programmable Logic Device (CPLD). A CPLD contains two or more "functional blocks" that are connected together and to input/output ("I/O") resources through an interconnect switch matrix. Each functional block of a CPLD includes a two-level AND/OR structure similar to that used in programmable logic array ("PLA") and programmable array logic ("PAL") devices. In a CPLD, configuration data is typically stored on-chip in nonvolatile memory. In some CPLDs, configuration data is stored on-chip in nonvolatile memory and then downloaded to volatile memory as part of the initial configuration (programming) sequence.

通常,对于这些可编程逻辑器件(“PLD”)中的每一个,器件的功能为此目的被提供给器件的配置数据控制。配置数据可以存储在易失性存储器(例如,FPGA和某些CPLD中常见的静态存储单元)、非易失性存储器(例如,在某些CPLD中,例如FLASH存储器)或任何其他类型的存储单元中。Typically, for each of these programmable logic devices ("PLDs"), the functionality of the device is controlled for this purpose by configuration data provided to the device. The configuration data may be stored in volatile memory (e.g., static memory cells common in FPGAs and some CPLDs), non-volatile memory (e.g., FLASH memory in some CPLDs), or any other type of memory cell.

通过应用诸如金属层之类的处理层来对其他PLD进行编程,其中处理层以可编程方式互连器件上的各种单元。这些PLD被称为掩模可编程器件。也可以以其他方式(例如,使用保险丝或反熔丝技术)来实现PLD。术语“PLD”和“可编程逻辑器件”包括但不限于这些示例性器件,以及包括仅部分可编程的器件。例如,一种类型的PLD包括硬编码晶体管逻辑和以可编程方式互连硬编码晶体管逻辑的可编程开关结构的组合。Other PLDs are programmed by applying a processing layer, such as a metal layer, that interconnects the various elements on the device in a programmable manner. These PLDs are referred to as mask programmable devices. PLDs may also be implemented in other ways (e.g., using fuse or anti-fuse technology). The terms "PLD" and "programmable logic device" include, but are not limited to, these exemplary devices, as well as devices that are only partially programmable. For example, one type of PLD includes a combination of hard-coded transistor logic and a programmable switch structure that programmably interconnects the hard-coded transistor logic.

如上所述,高级FPGA可以包括在阵列中的几种不同类型的可编程逻辑块。例如,图1示出了示例性FPGA架构100。FPGA架构100包括大量不同的可编程片,包括多千兆位收发器(“MGT”)101、可配置逻辑块(“CLB”)102、随机存取存储器块(“BRAM”)103、输入/输出块(“IOB”)104、配置和时钟逻辑(“CONFIG/CLOCKS”)105、数字信号处理块(“DSP”)106、专用输入/输出块(“I/O”)107(例如,配置端口和时钟端口)以及其他可编程逻辑108,例如数字时钟管理器、模数转换器、系统监视逻辑等。一些FPGA还包括专用处理器块(“PROC”)110。在一些实施例中,FPGA架构100包括RF数据转换器子系统,其包含多个射频模数转换器(RF-ADC)和多个射频数模转换器(RF-DAC)。在各种示例中,可以将RF-ADC和RF-DAC各自配置为用于实数数据,或者可以将其成对配置为用于实数和虚数I/Q数据。在至少一些示例中,FPGA架构100可以实现RFSoC器件。As described above, advanced FPGAs can include several different types of programmable logic blocks in an array. For example, FIG. 1 shows an exemplary FPGA architecture 100. FPGA architecture 100 includes a large number of different programmable slices, including multi-gigabit transceivers ("MGTs") 101, configurable logic blocks ("CLBs") 102, random access memory blocks ("BRAMs") 103, input/output blocks ("IOBs") 104, configuration and clock logic ("CONFIG/CLOCKS") 105, digital signal processing blocks ("DSPs") 106, dedicated input/output blocks ("I/Os") 107 (e.g., configuration ports and clock ports), and other programmable logic 108, such as digital clock managers, analog-to-digital converters, system monitoring logic, etc. Some FPGAs also include dedicated processor blocks ("PROCs") 110. In some embodiments, FPGA architecture 100 includes an RF data converter subsystem that includes multiple radio frequency analog-to-digital converters (RF-ADCs) and multiple radio frequency digital-to-analog converters (RF-DACs). In various examples, the RF-ADC and RF-DAC can be configured individually for real data, or can be configured in pairs for real and imaginary I/Q data.In at least some examples, FPGA architecture 100 can implement an RFSoC device.

在一些FPGA中,每个可编程片可以包括至少一个可编程互连单元(“INT”)111,其具有到相同片内的可编程逻辑单元的输入和输出端120的连接,如在图1的顶部所包括的示例所示。每个可编程互连单元111还可以包括到同一片或其他片中的相邻可编程互连单元的互连段122的连接。每个可编程互连单元111还可以包括到逻辑块之间的通用路由资源的互连段124的连接(未示出)。通用路由资源可以包括逻辑块(未示出)与用于连接互连段的开关块(未示出)之间的路由通道,其中所述逻辑块包括互连段(例如,互连段124)。通用路由资源的互连段(例如,互连段124)可以跨越一个或多个逻辑块。可编程互连单元111与通用路由资源一起实现了用于所示FPGA的可编程互连结构(“可编程互连”)。In some FPGAs, each programmable slice may include at least one programmable interconnect cell ("INT") 111 having connections to input and output terminals 120 of programmable logic cells within the same slice, as shown in the example included at the top of FIG. Each programmable interconnect cell 111 may also include connections to interconnect segments 122 of adjacent programmable interconnect cells in the same slice or other slices. Each programmable interconnect cell 111 may also include connections to interconnect segments 124 of general routing resources between logic blocks (not shown). General routing resources may include routing channels between logic blocks (not shown) and switch blocks (not shown) for connecting interconnect segments, wherein the logic blocks include interconnect segments (e.g., interconnect segments 124). Interconnect segments of general routing resources (e.g., interconnect segments 124) may span one or more logic blocks. Programmable interconnect cells 111, together with general routing resources, implement a programmable interconnect structure ("programmable interconnect") for the FPGA shown.

在一个示例性实施例中,CLB 102可以包括可被编程为实现用户逻辑的可配置逻辑单元(“CLE”)112,以及单个可编程互连单元(“INT”)111。BRAM 103除了包括一个或多个可编程互连单元之外,还可以包括BRAM逻辑单元(“BRL”)113。通常,片中包括的互连单元的数量取决于片的高度。在图示的例子中,BRAM片具有与五个CLB相同的高度,但是也可以使用其他数目(例如四个)。除了适当数量的可编程互连单元之外,DSP片106还可以包括DSP逻辑单元(“DSPL”)114。除了可编程互连单元111的一个实例之外,IOB 104还可以包括例如输入/输出逻辑单元(“IOL”)115的两个实例。本领域技术人员将清楚,例如,典型地连接到I/O逻辑单元115的实际的I/O焊盘通常不限于输入/输出逻辑单元115的区域。In an exemplary embodiment, CLB 102 may include configurable logic elements (“CLEs”) 112 that may be programmed to implement user logic, and a single programmable interconnect cell (“INT”) 111. BRAM 103 may include a BRAM logic cell (“BRL”) 113 in addition to one or more programmable interconnect cells. Typically, the number of interconnect cells included in a slice depends on the height of the slice. In the illustrated example, the BRAM slice has the same height as the five CLBs, but other numbers (e.g., four) may also be used. In addition to an appropriate number of programmable interconnect cells, DSP slice 106 may also include a DSP logic cell (“DSPL”) 114. In addition to one instance of programmable interconnect cell 111, IOB 104 may also include, for example, two instances of input/output logic cell (“IOL”) 115. It will be clear to those skilled in the art that, for example, the actual I/O pads that are typically connected to I/O logic cell 115 are generally not limited to the area of input/output logic cell 115.

在图1的示例中,靠近管芯中心(水平示出)的区域(例如,由图1所示的区域105、107和108形成)可以用于配置、时钟和其他控制逻辑。从该水平区域延伸的列109(垂直示出)或其他列可用于在FPGA的整个宽度上分配时钟和配置信号。In the example of Figure 1, an area near the center of the die (shown horizontally) (e.g., formed by areas 105, 107, and 108 shown in Figure 1) can be used for configuration, clock, and other control logic. Column 109 (shown vertically) or other columns extending from this horizontal area can be used to distribute clock and configuration signals across the width of the FPGA.

利用图1所示的架构的一些FPGA包括破坏构成FPGA的大部分规则柱状结构的附加逻辑块。所述附加逻辑块可以是可编程块和/或专用逻辑。例如,PROC 110跨越几列CLB和BRAM。PROC 110可以包括各种组件,其范围可以从单个微处理器到包括微处理器、存储器控制器、外围器件等的完整可编程处理系统。Some FPGAs utilizing the architecture shown in FIG. 1 include additional logic blocks that disrupt the mostly regular columnar structure that makes up the FPGA. The additional logic blocks may be programmable blocks and/or dedicated logic. For example, PROC 110 spans several columns of CLBs and BRAMs. PROC 110 may include a variety of components that may range from a single microprocessor to a complete programmable processing system including a microprocessor, memory controller, peripherals, etc.

一方面,PROC 110被实现为专用电路,例如,作为硬连线处理器,其被制造为实现IC的可编程电路的管芯的一部分。PROC 110可以代表多种不同的处理器类型和/或系统,其复杂程度从单个处理器(例如,能够执行程序代码的单个内核)到具有一个或多个内核、模块、协同工作处理器、接口等的整个处理器系统。In one aspect, PROC 110 is implemented as a dedicated circuit, e.g., as a hardwired processor that is manufactured as part of a die implementing the programmable circuitry of an IC. PROC 110 may represent a variety of different processor types and/or systems ranging in complexity from a single processor (e.g., a single core capable of executing program code) to an entire processor system having one or more cores, modules, cooperating processors, interfaces, etc.

另一方面,PROC 110从架构100中被省略,并且可以用所描述的可编程块中的一个或多个其他变体来代替。此外,此类块可用于形成“软处理器”,因为可编程电路的各个块可用于形成可执行程序代码的处理器,就像PROC 110一样。On the other hand, PROC 110 is omitted from architecture 100 and may be replaced with one or more other variations of the described programmable blocks. In addition, such blocks may be used to form a "soft processor" in that individual blocks of programmable circuitry may be used to form a processor that executes program code, just as PROC 110 does.

短语“可编程电路”可以指IC内的可编程电路单元,例如,本文描述的各种可编程或可配置电路块或片,以及选择性地耦接各种电路块、片和/或根据加载到IC中的配置数据的单元的互连电路。例如,在PROC 110外部的诸如CLB 102和BRAM 103之类的图1中所示的部分可以被认为是IC的可编程电路。The phrase "programmable circuitry" may refer to programmable circuit elements within an IC, such as the various programmable or configurable circuit blocks or slices described herein, and interconnect circuitry that selectively couples the various circuit blocks, slices, and/or elements according to configuration data loaded into the IC. For example, portions shown in FIG. 1 such as CLB 102 and BRAM 103 that are external to PROC 110 may be considered programmable circuitry of the IC.

在一些实施例中,直到将配置数据加载到IC中时,可编程电路的功能和连通性才被建立。一组配置数据可用于对IC(例如FPGA)的可编程电路进行编程。在某些情况下,配置数据被称为“配置比特流”。通常,在不首先将配置比特流加载到IC中的情况下,可编程电路将无法工作或起作用。配置比特流有效地实现或实例化了可编程电路内的特定电路设计。电路设计规定了例如可编程电路块的功能方面以及各种可编程电路块之间的物理连接。In some embodiments, the functionality and connectivity of the programmable circuits are not established until the configuration data is loaded into the IC. A set of configuration data can be used to program the programmable circuits of an IC (e.g., an FPGA). In some cases, the configuration data is referred to as a "configuration bitstream". Typically, the programmable circuit will not work or function without first loading the configuration bitstream into the IC. The configuration bitstream effectively implements or instantiates a specific circuit design within the programmable circuit. The circuit design specifies, for example, the functional aspects of the programmable circuit blocks and the physical connections between the various programmable circuit blocks.

在一些实施例中,“硬连线”或“硬化”电路,即,不可编程的电路,被制造为IC的一部分。与可编程电路不同,硬连线电路或电路块不是在IC被制造之后通过加载配置比特流而被实施的。硬连线电路通常被认为具有例如专用电路块和互连,这些电路块和互连在不首先将配置比特流加载到IC(例如PROC 110)的情况下即可工作。In some embodiments, "hardwired" or "hardened" circuits, i.e., circuits that are not programmable, are manufactured as part of an IC. Unlike programmable circuits, hardwired circuits or circuit blocks are not implemented after the IC is manufactured by loading a configuration bitstream. Hardwired circuits are generally considered to have, for example, dedicated circuit blocks and interconnects that operate without first loading a configuration bitstream into the IC (e.g., PROC 110).

在某些情况下,硬连线电路可以具有一种或多种操作模式,可以根据寄存器设置或存储在IC内一个或多个存储单元中的值来设置或选择一种或多种操作模式。例如,可以通过将配置比特流加载到IC中来设置操作模式。尽管具有这种能力,但是硬连线电路不被认为是可编程电路,因为当硬连线电路被制造为IC的一部分时,该硬连线电路是可操作的并且具有特定功能。In some cases, a hardwired circuit may have one or more operating modes that may be set or selected based on register settings or values stored in one or more memory cells within the IC. For example, the operating mode may be set by loading a configuration bitstream into the IC. Despite this capability, a hardwired circuit is not considered a programmable circuit because when a hardwired circuit is manufactured as part of an IC, it is operational and has a specific function.

如上所述,图1旨在说明可用于实现包括可编程电路(例如,可编程结构)的IC的示例性架构。例如,在图1的顶部所包括的一行中逻辑块的数量、行的相对宽度、行的数量和顺序、行中包含的逻辑块的类型、逻辑块的相对大小以及互连/逻辑实现方式仅仅是示例性的。例如,在实际的IC中,无论CLB出现在何处,通常都包括一个以上的相邻CLB行,以促进用户逻辑的有效实现,但是相邻CLB行的数量随IC的整体尺寸而变化。此外,图1的FPGA示出了可编程IC的一个示例,该IC的示例可采用这里描述的互连电路的示例。本文所述的互连电路可以用在其他类型的可编程IC中,例如CPLD或具有用于选择性地耦接逻辑单元的可编程互连结构的任何类型的可编程IC。As described above, FIG. 1 is intended to illustrate an exemplary architecture that can be used to implement an IC that includes programmable circuits (e.g., programmable structures). For example, the number of logic blocks in a row, the relative widths of the rows, the number and order of the rows, the types of logic blocks contained in the rows, the relative sizes of the logic blocks, and the interconnect/logic implementation methods included at the top of FIG. 1 are merely exemplary. For example, in an actual IC, no matter where the CLBs appear, more than one adjacent CLB row is typically included to facilitate efficient implementation of user logic, but the number of adjacent CLB rows varies with the overall size of the IC. In addition, the FPGA of FIG. 1 shows an example of a programmable IC that can employ the example of the interconnect circuit described herein. The interconnect circuit described herein can be used in other types of programmable ICs, such as CPLDs or any type of programmable IC having a programmable interconnect structure for selectively coupling logic cells.

应当指出,可以实现用于CATV放大器的CFR的方法和电路的IC不限于图1所示的示例性IC,以及具有其他配置的IC或其他类型的IC也可以实现用于CATV放大器的CFR的方法和电路。It should be noted that the IC that can implement the method and circuit for CFR of CATV amplifier is not limited to the exemplary IC shown in FIG. 1 , and ICs having other configurations or other types of ICs can also implement the method and circuit for CFR of CATV amplifier.

现在参照图2,图上示出了电缆网络200,该电缆网络200示出了从数据光纤(例如,可以包括光纤)开始,经过远程节点并到达最终用户位置(例如,在房屋处)的信号路径。电缆网络200可以是混合光纤同轴网络的一部分,其中数据光纤从中央头端行进到远程节点,同轴电缆从远程节点行进到最终用户。在一些示例中,远程节点包括基于DOCSIS 3.1标准的远程PHY节点。在一些实施例中,远程PHY节点可以包括基带和数字前端(DFE)芯片202、数模转换器(DAC)204、驱动器206(例如,可以包括放大器)、模拟倾斜滤波器208、功率分配器210和CATV放大器212。在各个示例中,基带和DFE芯片202可以被实现为单个的芯片,或者被实现为包括基带处理器芯片和单独DFE芯片的单独的芯片。在一些实施例中,例如,取决于到DAC 204的输入端,DAC 204可以被实现为RF DAC或IF DAC。此外,在一些实施例中,基带和DFE芯片202以及DAC 204可以被实现为单个芯片(例如,在RFSoC器件中)。此外,可以在诸如图1的可编程逻辑器件的可编程逻辑器件中实现远程PHY节点的一个或多个组件。如图2所示,数据光纤作为输入连接至基带和DFE芯片202,基带和DFE芯片202的输出作为输入连接至DAC 204。功率谱214(无斜率)提供了在基带和DFE芯片202的输出处的信号形状的一个示例。DAC 204的输出作为输入连接到驱动器206,驱动器206的输出作为输入连接到模拟倾斜滤波器208。对于电缆应用,模拟倾斜滤波器208可用于改变信号功率谱上的增益。换句话说,模拟倾斜滤波器208用于在功率谱上的信号功率电平中增加斜率。功率谱216示出了与功率谱214相比在模拟倾斜滤波器208的输出处的信号中的斜率(例如,在本示例中为正斜率)。Referring now to FIG. 2 , a cable network 200 is shown showing a signal path starting from a data fiber (e.g., which may include an optical fiber), passing through a remote node and arriving at an end-user location (e.g., at a premises). The cable network 200 may be part of a hybrid fiber-coaxial network, where the data fiber travels from a central headend to the remote node and the coaxial cable travels from the remote node to the end-user. In some examples, the remote node includes a remote PHY node based on the DOCSIS 3.1 standard. In some embodiments, the remote PHY node may include a baseband and digital front end (DFE) chip 202, a digital-to-analog converter (DAC) 204, a driver 206 (e.g., which may include an amplifier), an analog tilt filter 208, a power divider 210, and a CATV amplifier 212. In various examples, the baseband and DFE chip 202 may be implemented as a single chip, or as separate chips including a baseband processor chip and a separate DFE chip. In some embodiments, for example, depending on the input to the DAC 204, the DAC 204 may be implemented as an RF DAC or an IF DAC. In addition, in some embodiments, the baseband and DFE chip 202 and the DAC 204 can be implemented as a single chip (e.g., in an RFSoC device). In addition, one or more components of the remote PHY node can be implemented in a programmable logic device such as the programmable logic device of FIG. 1. As shown in FIG. 2, the data fiber is connected as an input to the baseband and DFE chip 202, and the output of the baseband and DFE chip 202 is connected as an input to the DAC 204. The power spectrum 214 (no slope) provides an example of the shape of the signal at the output of the baseband and DFE chip 202. The output of the DAC 204 is connected as an input to the driver 206, and the output of the driver 206 is connected as an input to the analog tilt filter 208. For cable applications, the analog tilt filter 208 can be used to change the gain on the signal power spectrum. In other words, the analog tilt filter 208 is used to add a slope in the signal power level on the power spectrum. The power spectrum 216 shows the slope (e.g., a positive slope in this example) in the signal at the output of the analog tilt filter 208 compared to the power spectrum 214.

在一些实施例中,模拟倾斜滤波器208的输出作为输入被连接到功率分配器210。如图2所示,功率分配器210包括具有单个输入和四个输出的1×4功率分配器。然而,在一些实施例中,功率分配器210可以包括具有单个输入和两个输出的1×2功率分配器、1×2功率分配器的级联(例如,以产生四个输出)或另一类型的功率分配器。在本示例中,功率分配器210的四个输出中的每个输出作为输入连接到CATV放大器212。然后,每个CATV放大器212的输出耦接到同轴电缆,该同轴电缆在最终用户位置(例如,在房子)进一步耦接到电缆调制解调器。在至少一些实施例中,电缆网络200实施“节点+0”架构,这意味着在远程PHY节点与最终用户位置之间沿着同轴电缆路径没有额外的CATV放大器(除了在远程PHY节点处的CATV放大器212之外)。图2还示出了显示同轴电缆损耗谱(例如,具有负斜率)的功率谱218、显示CATV放大器212的输出信号的功率谱219以及显示到达最终用户位置的信号的功率(无斜率)的功率谱220。如前所述,模拟倾斜滤波器208用于补偿同轴电缆损耗(例如,从CATV放大器212到在最终用户位置处的电缆调制解调器)。In some embodiments, the output of the analog tilt filter 208 is connected to a power divider 210 as an input. As shown in Figure 2, the power divider 210 includes a 1×4 power divider with a single input and four outputs. However, in some embodiments, the power divider 210 may include a 1×2 power divider with a single input and two outputs, a cascade of 1×2 power dividers (e.g., to produce four outputs), or another type of power divider. In this example, each of the four outputs of the power divider 210 is connected to a CATV amplifier 212 as an input. Then, the output of each CATV amplifier 212 is coupled to a coaxial cable, which is further coupled to a cable modem at an end-user location (e.g., in a house). In at least some embodiments, the cable network 200 implements a "node + 0" architecture, which means that there is no additional CATV amplifier (except the CATV amplifier 212 at the remote PHY node) along the coaxial cable path between the remote PHY node and the end-user location. 2 also shows a power spectrum 218 showing the coaxial cable loss spectrum (e.g., with a negative slope), a power spectrum 219 showing the output signal of the CATV amplifier 212, and a power spectrum 220 showing the power of the signal reaching the end user location (no slope). As previously described, the analog shelving filter 208 is used to compensate for coaxial cable losses (e.g., from the CATV amplifier 212 to the cable modem at the end user location).

在至少一些现有的电缆网络中,CATV放大器工作在线性区域中。这意味着,CATV放大器的输出处的非线性程度足够低,以至于不需要进行其他信号处理,并且CATV放大器的输出处的信号可以直接通过同轴电缆发送到最终用户位置的电缆调制解调器,用于解调和信息传输。然而,随着向更复杂功能的转变以及与DOCSIS 3.1相关的附加功耗组件的出现,并且由于到每个节点(例如,每个远程PHY节点)的电源供给是固定的,因此希望减少诸如CATV放大器那样的其它组件的功耗。当前,CATV放大器的效率约为2-3%,因此,例如,一个具有20瓦输入功率的CATV放大器将输出约二分之一瓦的输出功率。对于四个CATV放大器(例如,如图2所示),100瓦的输入功率将输出约2瓦的输出功率。因此,非常希望使得CATV放大器更有效。In at least some existing cable networks, CATV amplifiers operate in a linear region. This means that the nonlinearity at the output of the CATV amplifier is low enough that no other signal processing is required, and the signal at the output of the CATV amplifier can be directly sent to the cable modem at the end-user location via a coaxial cable for demodulation and information transmission. However, with the transition to more complex functions and the emergence of additional power consumption components associated with DOCSIS 3.1, and because the power supply to each node (e.g., each remote PHY node) is fixed, it is desirable to reduce the power consumption of other components such as CATV amplifiers. Currently, the efficiency of CATV amplifiers is about 2-3%, so, for example, a CATV amplifier with 20 watts of input power will output an output power of about one-half watt. For four CATV amplifiers (e.g., as shown in Figure 2), an input power of 100 watts will output an output power of about 2 watts. Therefore, it is highly desirable to make CATV amplifiers more efficient.

为使CATV放大器更有效而正在探索的至少一种选择是使CATV放大器在更非线性的区域中工作。然而,这样做意味着,如根据本公开的实施例所提供的,在没有某种附加的数字信号处理的情况下,CATV放大器的输出处的信号可能不能直接在同轴电缆上发送到终端用户位置。举例来说,本文公开的实施例在基带和DFE芯片202内添加功能,如下文更详细地论述,使得即使CATV放大器在非线性区域中操作,基带和DFE芯片202也能够反转或更改信号,以使CATV放大器输出端的信号仍然是线性的,并且可以通过最终用户位置的电缆调制解调器方便地进行解调。换句话说,如果CATV放大器具有非线性“x”,则基带和DFE芯片202内的功能被配置为添加逆非线性的“1/x”,其将通过有线电视放大器的非线性“x”被抵消。这样,CATV放大器输出端的信号是干净且线性的。通常,预先添加非线性的处理(例如,诸如在基带和DFE芯片202处添加逆非线性)被称为预先失真或预失真。在基带和DFE芯片202的环境中,由于失真是数字添加的,所以预失真可以被称为数字预失真(DPD)。根据各种实施例,在了解CATV放大器(例如,诸如CATV放大器212)具有的非线性“x”的类型的情况下执行DPD处理,使得DPD处理可以添加适当的逆非线性“1/x”。此外,在了解基带和DFE芯片202与CATV放大器212之间的信号链(包括由DAC 204、驱动器206和模拟倾斜滤波器208中的每一个引入的任何影响和/或失真)的情况下执行DPD处理。在各种实施例中,通过本文公开的DPD处理,CATV放大器效率得以提高并且功耗得以降低。At least one option being explored to make CATV amplifiers more efficient is to operate the CATV amplifiers in a more nonlinear region. However, doing so means that, as provided in accordance with embodiments of the present disclosure, the signal at the output of the CATV amplifier may not be directly sent to the end-user location on the coaxial cable without some additional digital signal processing. For example, the embodiments disclosed herein add functionality within the baseband and DFE chip 202, as discussed in more detail below, so that even if the CATV amplifier operates in a nonlinear region, the baseband and DFE chip 202 are able to invert or change the signal so that the signal at the output of the CATV amplifier is still linear and can be conveniently demodulated by the cable modem at the end-user location. In other words, if the CATV amplifier has a nonlinearity "x", the functionality within the baseband and DFE chip 202 is configured to add an inverse nonlinearity of "1/x", which will be offset by the nonlinearity "x" of the cable TV amplifier. In this way, the signal at the output of the CATV amplifier is clean and linear. Typically, the process of adding nonlinearity in advance (e.g., such as adding an inverse nonlinearity at the baseband and DFE chip 202) is referred to as pre-distortion or pre-distortion. In the context of the baseband and DFE chip 202, the pre-distortion may be referred to as digital pre-distortion (DPD) because the distortion is added digitally. According to various embodiments, the DPD process is performed with knowledge of the type of nonlinearity "x" that a CATV amplifier (e.g., such as CATV amplifier 212) has, so that the DPD process can add the appropriate inverse nonlinearity "1/x". In addition, the DPD process is performed with knowledge of the signal chain between the baseband and DFE chip 202 and the CATV amplifier 212, including any effects and/or distortion introduced by each of the DAC 204, the driver 206, and the analog shelving filter 208. In various embodiments, CATV amplifier efficiency is improved and power consumption is reduced through the DPD process disclosed herein.

在一些实施例中,基带和DFE芯片202内的功能(被配置为添加逆非线性)可以很大程度上实现为DFE功能,其中基带输出信号作为输入被提供给DFE芯片。这样,现在参照图3,其中示出了DFE系统300,其提供被配置为执行本公开的一个或多个方面的DFE设计。在一些实施例中,DFE系统300包括数字上变频器(DUC)302。在各种示例中,DUC 302用于将一个或多个数据通道从基带转换为通带信号,其中通带信号包括在一个或多个指定射频或中频(RF或IF)组的调制载波。举例来说,DUC 302通过执行插值(例如,增加采样率)、滤波(例如,提供频谱整形和插值图像的拒绝)以及混合(例如,将信号频谱移动到所需的载波频率)来实现这一点。通常,在DUC 302的输入处的采样率是较低的(例如,数字通信系统的符号速率),而输出的采样要高得多(例如输入到DAC的输入采样率),DAC将数字采样转换为模拟波形以进行进一步的模拟处理和频率转换。In some embodiments, functions within the baseband and DFE chip 202 (configured to add inverse nonlinearity) can be largely implemented as DFE functions, where the baseband output signal is provided as an input to the DFE chip. As such, reference is now made to FIG. 3 , which shows a DFE system 300 that provides a DFE design configured to perform one or more aspects of the present disclosure. In some embodiments, the DFE system 300 includes a digital upconverter (DUC) 302. In various examples, the DUC 302 is used to convert one or more data channels from baseband to a passband signal, where the passband signal includes a modulated carrier at one or more specified radio frequency or intermediate frequency (RF or IF) groups. For example, the DUC 302 achieves this by performing interpolation (e.g., increasing the sampling rate), filtering (e.g., providing spectral shaping and rejection of interpolated images), and mixing (e.g., moving the signal spectrum to a desired carrier frequency). Typically, the sampling rate at the input of the DUC 302 is low (e.g., the symbol rate of a digital communication system), while the samples at the output are much higher (e.g., the input sampling rate to the DAC), which converts the digital samples to an analog waveform for further analog processing and frequency conversion.

如在图3的示例中所示,基带数据输入被提供给DUC 302。基带数据输入包括多个不同的载波,分别表示为s1(n)、s2(n)、s3(n)、s4(n)、s5(n)和s6(n)。在一些实施例中,基带数据输入的采样率约为204.8MHz,对应于OFDM符号时钟。举例来说,DUC 302通过初始执行基带数据输入的插值来生成多个不同载波(例如,从基带数据输入),在本示例中,用于将采样率提高八倍,并且由此从第一时钟域(例如,204.8MHz时钟域)过渡到第二时钟域(例如,1638.4MHz时钟域)。在插值处理之后,将多个不同载波中的每个与来自数控振荡器(NCO)的信号混合,每个NCO具有不同的频率,以将多个不同载波中的每个载波的频率移动到期望的载波频率。例如,载波s1(n)与具有第一频率的第一NCO(NCO1)混合,载波s2(n)与具有第二频率的第二NCO(NCO2)混合,载波s3(n)与具有第三频率的第三NCO(NCO3)混合,载波s4(n)与具有第四频率的第四NCO(NCO4)混合,载波s5(n)与具有第五频率的第五NCO(NCO5)混合,载波s6(n)与具有第六频率的第六NCO(NCO6)混合。在混合处理之后,多个不同载波中的每个载波被组合形成复合信号c(n)。因此,复合信号c(n)包括以不同频率混合的多个不同载波中的每个载波。在一些实施例中,并且作为混合处理的结果,复合信号c(n)可以看起来与图5A所示的信号基本相同,其中多个不同载波中的每个载波在频率上并排布置。在某些情况下,在生成复合信号c(n)之后,可以可选地执行另一次插值处理,在图3的示例中,可以用于将复合信号c(n)的采样率提高两倍,从而从第二时钟域(例如1638.4MHz时钟域)过渡到第三时钟域(例如,3276.8MHz时钟域)。在由DUC 302进行信号处理之后,将复合信号c(n)作为输入提供给DPD-CFR系统304,这将在下面更详细地描述。在一些实施例中,DPD-CFR系统304的输出可以经历复数-实数信号转换306,而复数-实数信号转换306的输出被提供为DAC的输入(例如,可以是图2的DAC 204)。另外,DFE系统300的一个或多个组件可以在诸如图1的可编程逻辑器件那样的可编程逻辑器件中实现。As shown in the example of FIG. 3 , a baseband data input is provided to a DUC 302. The baseband data input includes a plurality of different carriers, denoted as s 1 (n), s 2 (n), s 3 (n), s 4 (n), s 5 (n), and s 6 (n). In some embodiments, the sampling rate of the baseband data input is approximately 204.8 MHz, corresponding to an OFDM symbol clock. For example, the DUC 302 generates the plurality of different carriers (e.g., from the baseband data input) by initially performing interpolation of the baseband data input, in this example, to increase the sampling rate by a factor of eight and thereby transition from a first clock domain (e.g., a 204.8 MHz clock domain) to a second clock domain (e.g., a 1638.4 MHz clock domain). After the interpolation process, each of the plurality of different carriers is mixed with a signal from a numerically controlled oscillator (NCO), each NCO having a different frequency, to shift the frequency of each of the plurality of different carriers to a desired carrier frequency. For example, carrier s 1 (n) is mixed with a first NCO (NCO1) having a first frequency, carrier s 2 (n) is mixed with a second NCO (NCO2) having a second frequency, carrier s 3 (n) is mixed with a third NCO (NCO3) having a third frequency, carrier s 4 (n) is mixed with a fourth NCO (NCO4) having a fourth frequency, carrier s 5 (n) is mixed with a fifth NCO (NCO5) having a fifth frequency, and carrier s 6 (n) is mixed with a sixth NCO (NCO6) having a sixth frequency. After the mixing process, each of the multiple different carriers is combined to form a composite signal c (n). Therefore, the composite signal c (n) includes each of the multiple different carriers mixed at different frequencies. In some embodiments, and as a result of the mixing process, the composite signal c (n) may appear substantially the same as the signal shown in FIG. 5A, where each of the multiple different carriers is arranged side by side in frequency. In some cases, after generating the composite signal c(n), another interpolation process may be optionally performed, which in the example of FIG. 3 may be used to increase the sampling rate of the composite signal c(n) by a factor of two, thereby transitioning from the second clock domain (e.g., the 1638.4 MHz clock domain) to the third clock domain (e.g., the 3276.8 MHz clock domain). After signal processing by the DUC 302, the composite signal c(n) is provided as an input to the DPD-CFR system 304, which will be described in more detail below. In some embodiments, the output of the DPD-CFR system 304 may undergo a complex-to-real signal conversion 306, and the output of the complex-to-real signal conversion 306 is provided as an input to a DAC (e.g., which may be the DAC 204 of FIG. 2). In addition, one or more components of the DFE system 300 may be implemented in a programmable logic device such as the programmable logic device of FIG. 1.

如先前所讨论的,DPD并且因此DPD系统304在已知CATV放大器具有的非线性“x”的类型的情况下以及在已知基带和DFE芯片202与CATV放大器212之间的信号链的情况下起作用,以便DPD系统304可以有效地实施适当的DPD处理(例如,包括添加适当的逆非线性“1/x”)。例如,DPD系统304可以用于对CATV放大器建模(例如,包括非线性效应和信号链)。这样,可以基于反馈数据308来生成和/或更新由DPD系统304提供的模型,其中反馈数据308可以包括CATV放大器(例如,CATV放大器212)的输出信号。在一些实施例中,反馈数据308通过模数转换器(ADC)310进行处理,并作为数字反馈数据311提供给DPD自适应引擎312。在各种示例中,基于数字反馈数据311,DPD自适应引擎312更新DPD系统304,使得DPD系统304可以适应CATV放大器的运行时间行为。更具体地,在一些实施例中,DPD自适应引擎312可以确定DPD系统304内的滤波器系数或其他单元的配置,并且通常可以在DPD系统304内配置DPD模块,如下面所讨论的。因此,通过连续监视和更新由DPD系统304(例如,通过反馈数据308和DPD自适应引擎312)提供的模型,可以实现最佳的DPD处理。举例来说,监视和更新模型的方面(例如,诸如DPD适配引擎312的功能)可以被实现为存储在存储器中(例如,在BRAM 103内或在另一个片上存储器位置内)的软件,并由一个或多个片上处理器(例如PROC 110)执行。注意,在一些实施例中,基带和DFE芯片202、DAC 204和ADC 310可以被实现为单个芯片(例如,在RFSoC器件中)。监视和更新以上提供的模型的示例并不意味着以任何方式进行限制,并且将会看到,尽管其他方法是可能的,但是本公开的实施例不受所提供的任何示例的限制。As previously discussed, DPD and therefore DPD system 304 functions in the knowledge of the type of nonlinearity "x" that the CATV amplifier has and in the knowledge of the signal chain between the baseband and DFE chip 202 and the CATV amplifier 212, so that the DPD system 304 can effectively implement appropriate DPD processing (e.g., including adding the appropriate inverse nonlinearity "1/x"). For example, the DPD system 304 can be used to model the CATV amplifier (e.g., including nonlinear effects and signal chains). In this way, the model provided by the DPD system 304 can be generated and/or updated based on feedback data 308, where the feedback data 308 can include the output signal of the CATV amplifier (e.g., CATV amplifier 212). In some embodiments, the feedback data 308 is processed by an analog-to-digital converter (ADC) 310 and provided to the DPD adaptation engine 312 as digital feedback data 311. In various examples, based on the digital feedback data 311, the DPD adaptation engine 312 updates the DPD system 304 so that the DPD system 304 can adapt to the run-time behavior of the CATV amplifier. More specifically, in some embodiments, the DPD adaptation engine 312 may determine the configuration of filter coefficients or other units within the DPD system 304, and may generally configure the DPD module within the DPD system 304, as discussed below. Thus, by continuously monitoring and updating the model provided by the DPD system 304 (e.g., via feedback data 308 and the DPD adaptation engine 312), optimal DPD processing may be achieved. By way of example, aspects of monitoring and updating the model (e.g., such as the functionality of the DPD adaptation engine 312) may be implemented as software stored in a memory (e.g., within a BRAM 103 or within another on-chip memory location) and executed by one or more on-chip processors (e.g., PROC 110). Note that in some embodiments, the baseband and DFE chip 202, DAC 204, and ADC 310 may be implemented as a single chip (e.g., in an RFSoC device). The examples of monitoring and updating the models provided above are not meant to be limiting in any way, and it will be appreciated that, although other approaches are possible, embodiments of the present disclosure are not limited by any of the examples provided.

现在参照图4A,其中示出了上述的用于实现本公开的各个方面的DPD系统304的更详细的视图。如上所述,DPD系统304可以用于对CATV放大器的非线性效应进行建模。这样,可以基于反馈数据(例如,诸如反馈数据308)来生成和/或更新由DPD系统304提供的模型,其中反馈数据可以包括通过ADC(例如,诸如ADC 310)处理的CATV放大器的输出信号,反馈数据可以提供给DPD适配引擎312,使得DPD系统304可以适配于CATV放大器的非线性行为。因此,CATV放大器的非线性效应的DPD系统304模型可以用于实现DPD系统304(例如,数字倾斜滤波器402、非线性数据路径405、单边带希尔伯特滤波器412以及数字倾斜均衡器414)的各种特征。注意,DPD系统304的一个或多个组件可以在诸如图1的可编程逻辑器件之类的可编程逻辑器件中实现。Referring now to FIG. 4A , a more detailed view of the DPD system 304 described above for implementing various aspects of the present disclosure is shown. As described above, the DPD system 304 can be used to model the nonlinear effects of a CATV amplifier. In this way, a model provided by the DPD system 304 can be generated and/or updated based on feedback data (e.g., such as feedback data 308), wherein the feedback data may include an output signal of the CATV amplifier processed by an ADC (e.g., such as ADC 310), and the feedback data may be provided to a DPD adaptation engine 312 so that the DPD system 304 can adapt to the nonlinear behavior of the CATV amplifier. Therefore, the DPD system 304 model of the nonlinear effects of the CATV amplifier can be used to implement various features of the DPD system 304 (e.g., digital tilt filter 402, nonlinear data path 405, single sideband Hilbert filter 412, and digital tilt equalizer 414). Note that one or more components of the DPD system 304 can be implemented in a programmable logic device such as the programmable logic device of FIG. 1 .

仍然参考图4A,更详细地描述了DPD系统304的功能。例如,在一些实施例中,可以包括以上讨论的复合信号c(n)的输入信号x(n)被提供给数字倾斜滤波器402。在各种情形下,数字倾斜滤波器402可以用于对模拟倾斜滤波器208(图2)建模。因此,作为示例,数字倾斜滤波器402的输出可以类似于模拟倾斜滤波器208的输出。在一些实施例中,数字倾斜滤波器402的输出作为输入被提供到非线性数据路径405,所述非线性数据路径405包括多个不同的并行数据路径单元,包括视频带宽DPD数据路径404,基带DPD数据路径406,二次谐波DPD数据路径408和三次谐波DPD数据路径410。通常,非线性数据路径405用于对CATV放大器的逆非线性行为进行建模并将其添加到输入信号中。更具体地,非线性数据路径405的每个不同的并行数据路径单元用于对CATV放大器的逆非线性行为的不同方面进行建模并将其添加到输入信号(例如,数字倾斜滤波器402的输出)。例如,视频带宽DPD数据路径404可以建模并添加逆非线性视频带宽分量,基带DPD数据路径406可以建模并添加逆非线性基带分量,二次谐波DPD数据路径408可以建模并添加逆非线性二次谐波分量,三次谐波DPD数据路径410可以建模并添加逆三次谐波分量。如图所示,视频带宽DPD数据路径404、基带DPD数据路径406、二次谐波DPD数据路径和三次谐波DPD数据路径410中的每个数据路径的输出随后被组合,以提供对CATV放大器的基带、视频和谐波分量进行建模的复合信号x’(n)。Still referring to FIG. 4A , the functionality of the DPD system 304 is described in more detail. For example, in some embodiments, an input signal x(n), which may include the composite signal c(n) discussed above, is provided to a digital tilt filter 402. In various cases, the digital tilt filter 402 may be used to model the analog tilt filter 208 ( FIG. 2 ). Thus, as an example, the output of the digital tilt filter 402 may be similar to the output of the analog tilt filter 208. In some embodiments, the output of the digital tilt filter 402 is provided as an input to a nonlinear data path 405, which includes a plurality of different parallel data path units, including a video bandwidth DPD data path 404, a baseband DPD data path 406, a second harmonic DPD data path 408, and a third harmonic DPD data path 410. In general, the nonlinear data path 405 is used to model the inverse nonlinear behavior of the CATV amplifier and add it to the input signal. More specifically, each different parallel data path unit of the nonlinear data path 405 is used to model a different aspect of the inverse nonlinear behavior of the CATV amplifier and add it to the input signal (e.g., the output of the digital shelving filter 402). For example, the video bandwidth DPD data path 404 can model and add an inverse nonlinear video bandwidth component, the baseband DPD data path 406 can model and add an inverse nonlinear baseband component, the second harmonic DPD data path 408 can model and add an inverse nonlinear second harmonic component, and the third harmonic DPD data path 410 can model and add an inverse third harmonic component. As shown, the output of each of the video bandwidth DPD data path 404, the baseband DPD data path 406, the second harmonic DPD data path, and the third harmonic DPD data path 410 are then combined to provide a composite signal x'(n) that models the baseband, video, and harmonic components of the CATV amplifier.

在一些实施例中,非线性数据路径405的输出(例如,复合信号x’(n))作为输入被提供给单边带希尔伯特滤波器412,其可以用于进一步调制复合信号x’(n),并且将单边带希尔伯特滤波器412的输出作为输入提供给数字倾斜均衡器414。举例来说,数字倾斜均衡器414可用于将模拟倾斜滤波器208的逆(图2)进行建模并将其添加到输入信号。因此,举例来说,数字倾斜均衡器414的输出可能不受模拟倾斜滤波器208的影响(例如,或可以消除该影响)。如图4所示,在一些实施例中,DPD输入信号x(n)也沿着路径416传输,其中路径416是线性数据路径。在一些示例中,数据路径416可以在DPD输入信号x(n)中仅仅引入时间延迟(例如,在方块417处)。此外,沿数据路径416传输的DPD输入信号x(n)绕过数字倾斜滤波器402、非线性数据路径405、单边带希尔伯特滤波器412和数字倾斜均衡器414。这样,沿着数据路径416传输的DPD输入信号x(n)的信号调制的质量将保持不受DPD系统304的其他单元的影响。另外,如图4所示,数字倾斜均衡器414的输出和延时的DPD输入信号x(n)419被组合以提供DPD输出信号y(n)。In some embodiments, the output of the nonlinear data path 405 (e.g., the composite signal x'(n)) is provided as an input to a single sideband Hilbert filter 412, which can be used to further modulate the composite signal x'(n), and the output of the single sideband Hilbert filter 412 is provided as an input to a digital tilt equalizer 414. For example, the digital tilt equalizer 414 can be used to model the inverse of the analog tilt filter 208 (Figure 2) and add it to the input signal. Thus, for example, the output of the digital tilt equalizer 414 may not be affected by the analog tilt filter 208 (e.g., or the effect may be eliminated). As shown in Figure 4, in some embodiments, the DPD input signal x(n) is also transmitted along a path 416, where the path 416 is a linear data path. In some examples, the data path 416 may introduce only a time delay (e.g., at block 417) in the DPD input signal x(n). In addition, the DPD input signal x(n) transmitted along the data path 416 bypasses the digital shelving filter 402, the nonlinear data path 405, the single sideband Hilbert filter 412, and the digital shelving equalizer 414. Thus, the quality of the signal modulation of the DPD input signal x(n) transmitted along the data path 416 remains unaffected by the other elements of the DPD system 304. In addition, as shown in FIG4 , the output of the digital shelving equalizer 414 and the delayed DPD input signal x(n) 419 are combined to provide the DPD output signal y(n).

参照图5A,提供了示例性DPD输入频谱502。在一些实施例中,DPD输入信号x(n)(图4)可以包括DPD输入频谱502。如上所述,DPD输入频谱502可以包括以不同频率混合的多个不同载波中的每一个(例如,通过DUC 302),如先前所描述的,其中多个不同载波中的每个载波在约66MHz至约1218MHz的全带宽频率上并排布置。参照图5B,提供了示例性DPD输出频谱504。在一些实施例中,DPD输出信号y(n)(图4A)可以包括DPD输出频谱504。参照图5B,DPD输出频谱504包括已经由DPD系统304添加到信号的一个或多个非线性分量506。如下面更详细地描述的,并且作为由DPD系统304执行处理的结果,CATV放大器效率和信号质量得到改善,功耗被降低。Referring to FIG. 5A , an exemplary DPD input spectrum 502 is provided. In some embodiments, the DPD input signal x(n) ( FIG. 4 ) may include the DPD input spectrum 502. As described above, the DPD input spectrum 502 may include each of a plurality of different carriers mixed at different frequencies (e.g., by the DUC 302), as previously described, wherein each of the plurality of different carriers is arranged side by side over a full bandwidth frequency of about 66 MHz to about 1218 MHz. Referring to FIG. 5B , an exemplary DPD output spectrum 504 is provided. In some embodiments, the DPD output signal y(n) ( FIG. 4A ) may include the DPD output spectrum 504. Referring to FIG. 5B , the DPD output spectrum 504 includes one or more nonlinear components 506 that have been added to the signal by the DPD system 304. As described in more detail below, and as a result of the processing performed by the DPD system 304, CATV amplifier efficiency and signal quality are improved and power consumption is reduced.

现在参照图13-16,示出了包括图解表示的等式,其示出了非线性数据路径405(图4A)的每个不同的并行数据路径单元是如何被导出的,例如,作为DPD输入信号x(n)(图4A)的函数。例如,图13提供了用于导出逆非线性基带分量的方程,其中该逆非线性基带分量对应于基带DPD数据路径406,该方程被表示为:Referring now to FIGS. 13-16 , equations including graphical representations are shown showing how each of the different parallel data path elements of the nonlinear data path 405 ( FIG. 4A ) are derived, for example, as a function of the DPD input signal x(n) ( FIG. 4A ). For example, FIG. 13 provides an equation for deriving an inverse nonlinear baseband component corresponding to the baseband DPD data path 406, which is represented as:

图14提供了用于导出逆非线性视频带宽分量的方程,其中该逆非线性视频带宽分量对应于视频带宽DPD数据路径404,该方程被表示为:FIG. 14 provides an equation for deriving the inverse non-linear video bandwidth component corresponding to the video bandwidth DPD data path 404, which is expressed as:

图15提供了用于导出逆二次谐波分量的方程,其中该逆二次谐波分量对应于二次谐波DPD数据路径408,该方程被表示为:FIG. 15 provides an equation for deriving the inverse second harmonic component corresponding to the second harmonic DPD data path 408, which is expressed as:

图16提供了用于导出逆三次谐波分量的方程,其中该逆三次谐波分量对应于三次谐波DPD数据路径410,该方程被表示为:FIG. 16 provides an equation for deriving the inverse third harmonic component corresponding to the third harmonic DPD data path 410, which is expressed as:

现在参照图17-23中,示出了表明本公开的各个实施例的至少一些益处和优点的多个数据。首先参照图17,图上示出了单个载波的功率谱1700,其示出了CATV放大器的非线性效应。功率谱1700以及图18-22的功率谱是通过使用100kHz的分辨率带宽和1MHz的视频带宽的频谱分析仪生成的。在本示例中,单载波的载波频率等于254MHz,CATV放大器工作在V=34V,其偏置电流=320mA,CATV放大器输出=76dbmV。在一些实施例中,对于功率谱1700示出的波形是4K QAM DOCSIS 3.1波形。如图17所示,功率谱1700还包括非线性基带分量1704、非线性视频带宽分量1706、二次谐波分量1708和三次谐波分量1710。如上所述,功率谱1700用于单个载波。但是,如前所述,考虑将多个不同的载波在频率上并排布置。在这种情况下,功率谱1700的非线性分量(例如,非线性基带分量1704、非线性视频带宽分量1706、二次谐波分量1708和三次谐波分量1710)肯定会影响并恶化相邻载波的功率谱。Now, with reference to FIGS. 17-23, a plurality of data indicating at least some benefits and advantages of various embodiments of the present disclosure are shown. First, with reference to FIG. 17, a power spectrum 1700 of a single carrier is shown, which shows the nonlinear effects of a CATV amplifier. The power spectrum 1700 and the power spectrum of FIGS. 18-22 are generated by a spectrum analyzer using a resolution bandwidth of 100kHz and a video bandwidth of 1MHz. In this example, the carrier frequency of the single carrier is equal to 254MHz, the CATV amplifier operates at V=34V, its bias current=320mA, and the CATV amplifier output=76dbmV. In some embodiments, the waveform shown for the power spectrum 1700 is a 4K QAM DOCSIS 3.1 waveform. As shown in FIG. 17, the power spectrum 1700 also includes a nonlinear baseband component 1704, a nonlinear video bandwidth component 1706, a second harmonic component 1708, and a third harmonic component 1710. As described above, the power spectrum 1700 is for a single carrier. However, as previously described, it is considered that multiple different carriers are arranged side by side in frequency. In this case, the nonlinear components of the power spectrum 1700 (eg, the nonlinear baseband component 1704, the nonlinear video bandwidth component 1706, the second harmonic component 1708, and the third harmonic component 1710) will certainly affect and deteriorate the power spectra of adjacent carriers.

现在参照图18,图上中示出了功率谱1700(包括CATV放大器的非线性效应)和被叠加在功率谱1700上的功率谱1800,示出了施加基带DPD校正的结果。换句话说,功率谱1800示出了通过基带DPD数据路径406添加逆非线性基带分量的有益效果(例如,在CATV放大器的输出端处)。具体地,如图18所示,并作为施加基带DPD校正的结果,功率谱1700的非线性基带分量1704已经被校正(去除),如功率谱1800的分量1802所示。在图18的示例中,如箭头1804所示,基带DPD校正带来功率谱1800中的大约10dB的改善。Referring now to FIG. 18 , there is shown a power spectrum 1700 (including the nonlinear effects of the CATV amplifier) and a power spectrum 1800 superimposed on the power spectrum 1700, showing the result of applying the baseband DPD correction. In other words, the power spectrum 1800 shows the beneficial effect of adding the inverse nonlinear baseband component through the baseband DPD data path 406 (e.g., at the output of the CATV amplifier). Specifically, as shown in FIG. 18 , and as a result of applying the baseband DPD correction, the nonlinear baseband component 1704 of the power spectrum 1700 has been corrected (removed), as shown in component 1802 of the power spectrum 1800. In the example of FIG. 18 , as shown by arrow 1804, the baseband DPD correction brings about an improvement of about 10 dB in the power spectrum 1800.

图19示出了功率谱1700(包括CATV放大器的非线性效应)和被叠加在功率谱1700上的功率谱1900,示出了施加二次谐波DPD校正的结果。换句话说,功率谱1900示出了通过二次谐波DPD数据路径408添加逆二次谐波分量的有益效果(例如,在CATV放大器的输出端处)。具体地,如图19所示,并且作为施加二次谐波校正的结果,功率谱1700的二次谐波分量1708已经被校正(去除),如功率谱1900的分量1902所示。如图19的例子所示,二次谐波DPD校正可带来功率谱1900中的大约5dB的改善。FIG. 19 shows power spectrum 1700 (including the nonlinear effects of the CATV amplifier) and power spectrum 1900 superimposed on power spectrum 1700, showing the result of applying the second harmonic DPD correction. In other words, power spectrum 1900 shows the beneficial effect of adding the inverse second harmonic component through second harmonic DPD data path 408 (e.g., at the output of the CATV amplifier). Specifically, as shown in FIG. 19, and as a result of applying the second harmonic correction, the second harmonic component 1708 of power spectrum 1700 has been corrected (removed), as shown in component 1902 of power spectrum 1900. As shown in the example of FIG. 19, the second harmonic DPD correction can bring about an improvement of about 5dB in power spectrum 1900.

参照图20,其中示出了功率谱1700(包括CATV放大器的非线性效应)和叠加在功率谱1700上的功率谱2000,示出了施加三次谐波DPD校正的结果。换句话说,功率谱2000示出了通过三次谐波DPD数据路径410添加逆三次谐波分量的有益效果(例如,在CATV放大器的输出处)。具体地,如图20所示,并且作为施加三次谐波校正的结果,已经对功率谱1700的三次谐波分量1710进行了校正(去除),如功率谱2000的分量2002所示。如图20的例子所示,三次谐波DPD校正带来功率谱2000中的大约5dB的改善。Referring to FIG. 20 , there is shown a power spectrum 1700 (including the nonlinear effects of the CATV amplifier) and a power spectrum 2000 superimposed on the power spectrum 1700, showing the result of applying the third harmonic DPD correction. In other words, the power spectrum 2000 shows the beneficial effect of adding the inverse third harmonic component through the third harmonic DPD data path 410 (e.g., at the output of the CATV amplifier). Specifically, as shown in FIG. 20 , and as a result of applying the third harmonic correction, the third harmonic component 1710 of the power spectrum 1700 has been corrected (removed), as shown in component 2002 of the power spectrum 2000. As shown in the example of FIG. 20 , the third harmonic DPD correction brings about an improvement of about 5 dB in the power spectrum 2000.

参照图21,其中示出了两个载波2103、2105的功率谱2100,其示出了CATV放大器的非线性效应。图21还包括叠加在功率谱2100上的功率谱2102,示出了施加基带DPD校正的结果,以及叠加在功率谱2100和2102上的功率谱2104,示出了施加基带DPD校正和视频带宽DPD校正的结果。换句话说,功率谱2102示出了通过基带DPD数据路径406添加逆非线性基带分量的有益效果(例如,在CATV放大器的输出处)。类似地,功率谱2104示出了通过基带DPD数据路径406添加逆非线性基带分量和通过视频带宽DPD数据路径404添加逆非线性视频带宽分量两者的有益效果(例如,在CATV放大器的输出处)。作为单独施加基带DPD校正的结果(功率谱2102),与功率谱2100相比,功率谱2102示出了校正(例如,如箭头2112所示)。而且,作为施加基带DPD校正和视频带宽DPD校正的结果(功率谱2104),与功率谱2100相比,功率谱2104示出了校正(例如,如箭头2106和2110所示)。具体地,与箭头2108所示的区域相比(例如,在施加基带DPD校正和视频带宽DPD校正之前),在箭头2110所示的区域中功率谱2104呈现的改善尤其显着。这是因为载波2105具有更高的功率,导致更高的非线性水平。这样,载波2105将从DPD系统304提供的校正中受益更多。Referring to FIG. 21 , a power spectrum 2100 of two carriers 2103, 2105 is shown, which illustrates the nonlinear effects of the CATV amplifier. FIG. 21 also includes a power spectrum 2102 superimposed on the power spectrum 2100, illustrating the result of applying baseband DPD correction, and a power spectrum 2104 superimposed on the power spectra 2100 and 2102, illustrating the result of applying baseband DPD correction and video bandwidth DPD correction. In other words, the power spectrum 2102 illustrates the beneficial effect of adding an inverse nonlinear baseband component through the baseband DPD data path 406 (e.g., at the output of the CATV amplifier). Similarly, the power spectrum 2104 illustrates the beneficial effect of adding an inverse nonlinear baseband component through the baseband DPD data path 406 and adding an inverse nonlinear video bandwidth component through the video bandwidth DPD data path 404 (e.g., at the output of the CATV amplifier). As a result of applying baseband DPD correction alone (power spectrum 2102), the power spectrum 2102 illustrates the correction (e.g., as indicated by arrow 2112) compared to the power spectrum 2100. Moreover, as a result of applying the baseband DPD correction and the video bandwidth DPD correction (power spectrum 2104), the power spectrum 2104 shows the correction (e.g., as shown by arrows 2106 and 2110) compared to the power spectrum 2100. Specifically, the improvement shown by the power spectrum 2104 in the area shown by arrow 2110 is particularly significant compared to the area shown by arrow 2108 (e.g., before applying the baseband DPD correction and the video bandwidth DPD correction). This is because the carrier 2105 has a higher power, resulting in a higher level of nonlinearity. As such, the carrier 2105 will benefit more from the correction provided by the DPD system 304.

图22示出了功率谱2200,其包括在大约66MHz至大约1218MHz的全带宽频率上并排布置的六个不同载波。在一些实施例中,针对功率谱2200示出的波形是4K QAM DOCSIS 3.1波形。在一些示例中,功率谱2200可以是在模拟倾斜滤波器208(图2)的输出处。图22还示出了由于施加了由DPD系统304提供的校正而生成的相邻信道功率比(ACPR)校正2202。为了本公开的目的,ACPR可以被描述为相邻信道中的功率与主信道功率的比值,并且期望ACPR值尽可能低。因此,图22中所示的ACPR校正2202是有利的。FIG. 22 shows a power spectrum 2200 including six different carriers arranged side by side at full bandwidth frequencies of about 66 MHz to about 1218 MHz. In some embodiments, the waveform shown for the power spectrum 2200 is a 4K QAM DOCSIS 3.1 waveform. In some examples, the power spectrum 2200 may be at the output of the analog tilt filter 208 (FIG. 2). FIG. 22 also shows an adjacent channel power ratio (ACPR) correction 2202 generated due to the application of the correction provided by the DPD system 304. For purposes of this disclosure, ACPR may be described as the ratio of power in an adjacent channel to the power of a main channel, and an ACPR value is desired to be as low as possible. Therefore, the ACPR correction 2202 shown in FIG. 22 is advantageous.

参照图23,其中示出了包括用于CATV放大器的调制误差比(MER)数据的表,该表示出了将DPD系统304提供的校正施加到MER数据的效果。举例来说,MER是一种用于量化使用数字调制(例如QAM)的通信系统中数字无线电(或数字TV)发射机或接收机性能的度量。对于图23的例子,被测的CATV放大器模块可在V=34V的条件下工作。将MER数据与电缆行业规范(MER=41dB,4KQAM,76.8dbmV/75Ω)进行比较。CATV放大器使用六个载波进行测试,其中第一载波是载波频率为204MHz的4K QAM信号,第二载波是载波频率为396MHz的4K QAM信号,第三载波是载波频率为588MHz的4K QAM信号,第四载波是载波频率为786MHz的4K QAM信号,第五载波是载波频率为930MHz的4K QAM信号,第六载波是载波频率为1122MHz的4KQAM信号。在第一测试2302中,在CATV放大器在530mA的偏置电流下工作并且没有DPD校正的情况下,第六载波不满足MER=41dB的规格。然而,在施加了DPD校正(例如,通过DPD系统304)的情况下,所有载波都满足MER规范。在第二测试2304中,CATV放大器在440mA的偏置电流下工作(与530mA的偏置电流相比,每个放大器减少了约3瓦),并且没有DPD校正,所有测试的载波均不满足MER=41dB的规格。然而,在施加了DPD校正(例如,通过DPD系统304)的情况下,所有载波都满足MER规范。Referring to FIG. 23 , a table including modulation error ratio (MER) data for a CATV amplifier is shown, which shows the effect of applying the correction provided by the DPD system 304 to the MER data. For example, MER is a metric used to quantify the performance of a digital radio (or digital TV) transmitter or receiver in a communication system using digital modulation (e.g., QAM). For the example of FIG. 23 , the CATV amplifier module under test can operate under the condition of V=34V. The MER data is compared with the cable industry specification (MER=41dB, 4KQAM, 76.8dbmV/75Ω). The CATV amplifier is tested using six carriers, wherein the first carrier is a 4K QAM signal with a carrier frequency of 204MHz, the second carrier is a 4K QAM signal with a carrier frequency of 396MHz, the third carrier is a 4K QAM signal with a carrier frequency of 588MHz, the fourth carrier is a 4K QAM signal with a carrier frequency of 786MHz, the fifth carrier is a 4K QAM signal with a carrier frequency of 930MHz, and the sixth carrier is a 4K QAM signal with a carrier frequency of 1122MHz. In the first test 2302, the sixth carrier does not meet the MER=41 dB specification when the CATV amplifier is operated at a bias current of 530 mA and without DPD correction. However, with DPD correction applied (e.g., by the DPD system 304), all carriers meet the MER specification. In the second test 2304, the CATV amplifier is operated at a bias current of 440 mA (about 3 watts less per amplifier compared to the bias current of 530 mA), and without DPD correction, all tested carriers do not meet the MER=41 dB specification. However, with DPD correction applied (e.g., by the DPD system 304), all carriers meet the MER specification.

现在参照图24,其中示出了根据各种实施例的用于在DPD系统中执行数字预失真处理的方法2400。方法2400开始于方框2402,在方框2402处,在诸如图4的DPD系统304那样的DPD系统的输入端处接收DPD输入信号。如上所述,在一些实施例中,DPD输入信号可以包括DPD输入信号x(n)(图4),其还可以包括由DUC 302(图3)生成的复合信号c(n)。在一些示例中,方法2400进行到方框2404,在方框2404处,提供耦接到DPD系统的输入端的非线性数据路径。例如,非线性数据路径可以包括图4A的非线性数据路径405。这样,非线性数据路径可以包括多个并行数据路径单元。在一些示例中,多个并行数据路径单元包括视频带宽DPD数据路径404、基带DPD数据路径406、二次谐波DPD数据路径408和三次谐波DPD数据路径410。在一些实施例中,方法2400进行到方框2406,在方框2406,每个不同的并行数据路径单元可用于将CATV放大器的逆非线性行为的不同方面添加到输入信号中。在一些示例中,方法2400然后前进至方框2408,在方框2408,第一组合器组合多个并行数据路径单元中的每一个的输出以生成第一预失真信号。在某些情况下,第一预失真信号可以包括对CATV放大器的基带、视频和谐波分量建模的复合信号x’(n)(图4A)。在一些实施例中,方法2400进行到方框2410,在方框2410,提供与非线性数据路径并行的、耦接到输入端的线性数据路径,并且其中线性数据路径生成第二预失真信号。在一些实施例中,第二预失真信号可以包括时间延迟的DPD输入信号x(n)419(图4A)。然后该方法进行到方框2412,在方框2412,第二组合器组合第一预失真信号和第二预失真信号以生成DPD输出信号。在一些实施例中,DPD输出信号可以包括DPD输出信号y(n)(图4A)。在各种实施例中,该方法前进到方框2414,在方框2414,将DPD输出信号提供给CATV放大器(例如,图2的CATV放大器212)。根据本公开的实施例,DPD输出信号被配置为补偿CATV放大器的多个非线性分量。将会看到,可以在方法2400之前、期间和之后实施附加的方法步骤,并且可以根据方法2400的各种实施例来替换或消除上述的一些方法步骤,而不脱离本公开的范围。Referring now to FIG. 24 , a method 2400 for performing digital predistortion processing in a DPD system is shown in accordance with various embodiments. The method 2400 begins at block 2402 where a DPD input signal is received at an input of a DPD system, such as the DPD system 304 of FIG. 4 . As described above, in some embodiments, the DPD input signal may include a DPD input signal x(n) ( FIG. 4 ), which may also include a composite signal c(n) generated by the DUC 302 ( FIG. 3 ). In some examples, the method 2400 proceeds to block 2404 where a nonlinear data path coupled to the input of the DPD system is provided. For example, the nonlinear data path may include the nonlinear data path 405 of FIG. 4A . As such, the nonlinear data path may include a plurality of parallel data path units. In some examples, the plurality of parallel data path units include a video bandwidth DPD data path 404, a baseband DPD data path 406, a second harmonic DPD data path 408, and a third harmonic DPD data path 410. In some embodiments, the method 2400 proceeds to block 2406, where each different parallel data path unit can be used to add different aspects of the inverse nonlinear behavior of the CATV amplifier to the input signal. In some examples, the method 2400 then proceeds to block 2408, where a first combiner combines the output of each of the plurality of parallel data path units to generate a first predistortion signal. In some cases, the first predistortion signal may include a composite signal x'(n) (FIG. 4A) that models baseband, video, and harmonic components of the CATV amplifier. In some embodiments, the method 2400 proceeds to block 2410, where a linear data path coupled to the input terminal is provided in parallel with the nonlinear data path, and wherein the linear data path generates a second predistortion signal. In some embodiments, the second predistortion signal may include a time delayed DPD input signal x(n) 419 (FIG. 4A). The method then proceeds to block 2412, where a second combiner combines the first predistortion signal and the second predistortion signal to generate a DPD output signal. In some embodiments, the DPD output signal may include a DPD output signal y(n) (FIG. 4A). In various embodiments, the method proceeds to block 2414, where the DPD output signal is provided to a CATV amplifier (e.g., CATV amplifier 212 of FIG. 2). According to an embodiment of the present disclosure, the DPD output signal is configured to compensate for multiple nonlinear components of the CATV amplifier. It will be appreciated that additional method steps may be implemented before, during, and after method 2400, and some of the method steps described above may be replaced or eliminated according to various embodiments of method 2400 without departing from the scope of the present disclosure.

应当指出,各种配置(例如,电缆网络200、DFE系统300和DPD系统304的部件,图4A中的并行数据路径单元的数量以及图上所示的其他特征和组件)仅仅是示例性的,并且不旨在限制所附权利要求书中具体叙述的内容。本领域技术人员将理解,可以使用其他配置。而且,尽管示出了示例性电缆网络200,但是本文公开的DPD系统可以用于其他通信系统中,例如,其中其他通信系统部署表现出有害的非线性行为的放大器。It should be noted that the various configurations (e.g., the components of the cable network 200, the DFE system 300, and the DPD system 304, the number of parallel data path units in FIG. 4A, and other features and components shown in the figures) are merely exemplary and are not intended to limit the contents specifically recited in the appended claims. Those skilled in the art will understand that other configurations can be used. Moreover, although an exemplary cable network 200 is shown, the DPD system disclosed herein can be used in other communication systems, for example, where other communication systems deploy amplifiers that exhibit harmful nonlinear behavior.

本发明可以被表示为,但不限于,以下的一个或多个实施例。The present invention may be represented by, but not limited to, one or more of the following embodiments.

示例1:一种波峰因数降低(CFR)系统,包括:数字倾斜滤波器,其耦接到CFR系统的输入端,其中数字倾斜滤波器被配置为接收系统输入信号并在数字倾斜滤波器输出端处生成数字倾斜滤波器输出信号;CFR模块,其耦接至数字倾斜滤波器输出端,其中CFR模块被配置为接收数字倾斜滤波器输出信号并对数字倾斜滤波器输出信号进行CFR处理,以在CFR模块输出端处生成CFR模块输出信号;数字倾斜均衡器,其耦接到CFR模块输出端,其中数字倾斜均衡器被配置为接收CFR模块输出信号并生成系统输出信号。Example 1: A crest factor reduction (CFR) system comprises: a digital tilt filter coupled to an input of a CFR system, wherein the digital tilt filter is configured to receive a system input signal and generate a digital tilt filter output signal at an output of the digital tilt filter; a CFR module coupled to an output of the digital tilt filter, wherein the CFR module is configured to receive the digital tilt filter output signal and perform CFR processing on the digital tilt filter output signal to generate a CFR module output signal at an output of the CFR module; and a digital tilt equalizer coupled to an output of the CFR module, wherein the digital tilt equalizer is configured to receive the CFR module output signal and generate a system output signal.

示例2:示例1的CFR系统,还包括:耦接到CFR模块输出端的数字预失真(DPD)模块,其中DPD模块被配置为接收CFR模块输出信号并对CFR模块输出信号执行DPD处理,以在DPD模块输出端生成DPD模块输出信号;其中数字倾斜均衡器耦接到DPD模块输出端,并且其中数字倾斜均衡器被配置为接收DPD模块输出信号并生成系统输出信号。Example 2: The CFR system of Example 1 further includes: a digital predistortion (DPD) module coupled to an output end of a CFR module, wherein the DPD module is configured to receive a CFR module output signal and perform DPD processing on the CFR module output signal to generate a DPD module output signal at the DPD module output end; wherein a digital tilt equalizer is coupled to the DPD module output end, and wherein the digital tilt equalizer is configured to receive the DPD module output signal and generate a system output signal.

示例3:示例1的CFR系统,其中系统输入信号具有第一峰值对平均值功率比(PAPR),并且其中CFR模块输出信号具有小于第一PAPR的第二PAPR。Example 3: The CFR system of Example 1, wherein the system input signal has a first peak-to-average power ratio (PAPR), and wherein the CFR module output signal has a second PAPR that is less than the first PAPR.

示例4:示例2的CFR系统,还包括:第一线性数据路径,其耦接到CFR系统的输入端并与CFR模块和DPD模块并联,以生成第一时延信号;以及第一组合器,其被配置为组合数字倾斜均衡器输出信号和第一时延信号以生成系统输出信号。Example 4: The CFR system of Example 2 also includes: a first linear data path coupled to the input of the CFR system and connected in parallel with the CFR module and the DPD module to generate a first delayed signal; and a first combiner configured to combine the digital tilt equalizer output signal and the first delayed signal to generate a system output signal.

示例5:示例4的CFR系统,还包括:第二线性数据路径,其耦接到CFR系统的输入端并与CFR模块并联,以生成第二时延信号;第二组合器,其被配置为合并CFR模块输出信号和第二时延信号,以生成第一输出信号;以及第三组合器,其用于组合第一输出信号和DPD模块输出信号,以生成系统输出信号。Example 5: The CFR system of Example 4 also includes: a second linear data path coupled to the input end of the CFR system and connected in parallel with the CFR module to generate a second delayed signal; a second combiner configured to combine the CFR module output signal and the second delayed signal to generate a first output signal; and a third combiner for combining the first output signal and the DPD module output signal to generate a system output signal.

示例6:示例2的CFR系统,其中DPD模块还包括:耦接到CFR模块输出端的非线性数据路径,其中非线性数据路径包括多个并行数据路径单元,多个并行数据路径单元中的每个并行数据路径单元都耦接到CFR模块输出端并被配置为向CFR模块输出信号添加与放大器的非线性分量相对应的不同的逆非线性分量,并且其中组合器被配置为组合多个并行数据路径单元的每个并行数据路径单元的输出,以生成DPD模块输出信号。Example 6: The CFR system of Example 2, wherein the DPD module further comprises: a nonlinear data path coupled to an output of the CFR module, wherein the nonlinear data path comprises a plurality of parallel data path units, each of the plurality of parallel data path units being coupled to the CFR module output and configured to add a different inverse nonlinear component corresponding to a nonlinear component of the amplifier to the CFR module output signal, and wherein the combiner is configured to combine the output of each of the plurality of parallel data path units to generate a DPD module output signal.

示例7:示例1的CFR系统,其中数模转换器(DAC)被配置为接收系统输出信号并生成DAC输出信号,其中模拟倾斜滤波器被配置为接收DAC输出信号并生成模拟倾斜滤波器输出信号,并且其中数字倾斜滤波器被配置为对模拟倾斜滤波器建模。Example 7: The CFR system of Example 1, wherein the digital-to-analog converter (DAC) is configured to receive a system output signal and generate a DAC output signal, wherein the analog tilt filter is configured to receive the DAC output signal and generate an analog tilt filter output signal, and wherein the digital tilt filter is configured to model the analog tilt filter.

示例8:示例7的CFR系统,其中数字倾斜均衡器被配置为对模拟倾斜滤波器的逆进行建模。Example 8: The CFR system of Example 7, wherein the digital shelving equalizer is configured to model the inverse of an analog shelving filter.

示例9:示例2的CFR系统,还包括单边带希尔伯特滤波器,其中单边带希尔伯特滤波器输入端被配置为接收DPD模块输出信号,并且其中单边带希尔伯特滤波器输出端被耦接到数字倾斜均衡器输入端。Example 9: The CFR system of Example 2, further comprising a single sideband Hilbert filter, wherein the single sideband Hilbert filter input is configured to receive the DPD module output signal, and wherein the single sideband Hilbert filter output is coupled to the digital tilt equalizer input.

示例10:示例1的CFR系统,还包括适配引擎,其被配置为从放大器输出端接收反馈数据,其中适配引擎被配置为基于该反馈数据更新CFR模块的配置。Example 10: The CFR system of Example 1, further comprising an adaptation engine configured to receive feedback data from the amplifier output, wherein the adaptation engine is configured to update a configuration of the CFR module based on the feedback data.

示例11:被配置为执行波峰因数降低(CFR)处理的数字前端(DFE)系统,该DFE系统包括:数字上变频器(DUC),其被配置为接收和转换基带数据输入信号以生成复合信号;CFR系统,其包括数字倾斜滤波器、CFR模块和数字倾斜均衡器,其中数字倾斜滤波器被配置为接收复合信号并生成数字倾斜滤波器输出信号,CFR模块被配置为接收数字倾斜滤波器输出信号并对数字倾斜滤波器输出信号执行CFR处理以生成CFR模块输出信号,数字倾斜均衡器被配置为接收CFR模块输出信号并生成CFR系统输出信号,CFR系统输出信号被耦接到放大器;以及适配引擎,其被配置为从放大器的输出端接收反馈数据,其中适配引擎被配置为基于反馈数据更新CFR系统的配置。Example 11: A digital front end (DFE) system configured to perform crest factor reduction (CFR) processing, the DFE system comprising: a digital up converter (DUC) configured to receive and convert a baseband data input signal to generate a composite signal; a CFR system comprising a digital tilt filter, a CFR module, and a digital tilt equalizer, wherein the digital tilt filter is configured to receive the composite signal and generate a digital tilt filter output signal, the CFR module is configured to receive the digital tilt filter output signal and perform CFR processing on the digital tilt filter output signal to generate a CFR module output signal, the digital tilt equalizer is configured to receive the CFR module output signal and generate a CFR system output signal, and the CFR system output signal is coupled to an amplifier; and an adaptation engine configured to receive feedback data from an output of the amplifier, wherein the adaptation engine is configured to update the configuration of the CFR system based on the feedback data.

示例12:示例11的DFE系统,其中CFR处理被配置为降低数字倾斜滤波器输出信号的峰值对平均值功率比(PAPR)。Example 12: The DFE system of Example 11, wherein the CFR processing is configured to reduce a peak-to-average power ratio (PAPR) of the digital shelving filter output signal.

示例13:示例11的DFE系统,其中CFR系统还包括:数字预失真(DPD)模块,其包括耦接到CFR模块输出端的非线性数据路径,其中非线性数据路径包括多个并行数据路径单元,每个并行数据路径单元被耦接到CFR模块输出端并被配置为对与放大器的非线性分量相对应的不同的逆非线性分量进行建模,其中组合器被配置为组合多个并行数据路径单元中的每一个并行数据路径单元的输出,以生成DPD模块输出信号,并且其中数字倾斜均衡器被配置为接收DPD模块输出信号并生成CFR系统输出信号。Example 13: The DFE system of Example 11, wherein the CFR system further comprises: a digital predistortion (DPD) module comprising a nonlinear data path coupled to an output of the CFR module, wherein the nonlinear data path comprises a plurality of parallel data path units, each parallel data path unit being coupled to the output of the CFR module and configured to model a different inverse nonlinear component corresponding to a nonlinear component of the amplifier, wherein a combiner is configured to combine an output of each of the plurality of parallel data path units to generate a DPD module output signal, and wherein a digital tilt equalizer is configured to receive the DPD module output signal and generate a CFR system output signal.

示例14:示例11的DFE系统,其中数模转换器(DAC)被配置为接收CFR系统输出信号并生成DAC输出信号,其中模拟倾斜滤波器配置被为接收DAC输出信号并生成模拟倾斜滤波器输出信号,并且其中数字倾斜滤波器被配置为对模拟倾斜滤波器进行建模。Example 14: The DFE system of Example 11, wherein the digital-to-analog converter (DAC) is configured to receive the CFR system output signal and generate a DAC output signal, wherein the analog shelving filter is configured to receive the DAC output signal and generate an analog shelving filter output signal, and wherein the digital shelving filter is configured to model the analog shelving filter.

示例15:示例14的DFE系统,其中,数字倾斜均衡器被配置为对模拟倾斜滤波器的逆进行建模。Example 15: The DFE system of Example 14, wherein the digital shelving equalizer is configured to model the inverse of an analog shelving filter.

示例16:一种方法,包括:在波峰因数降低(CFR)系统的数字倾斜滤波器处接收输入信号,并在数字倾斜滤波器输出端处生成数字倾斜滤波器输出信号;在CFR系统的CFR模块处对数字倾斜滤波器输出信号执行CFR处理以生成CFR模块输出信号,其中CFR处理被配置为降低数字倾斜滤波器输出信号的峰值对平均值功率比(PAPR);在CFR系统的数字倾斜均衡器处接收CFR模块输出信号并生成系统输出信号;以及将系统输出信号提供给放大器。Example 16: A method comprising: receiving an input signal at a digital tilt filter of a crest factor reduction (CFR) system and generating a digital tilt filter output signal at an output end of the digital tilt filter; performing CFR processing on the digital tilt filter output signal at a CFR module of the CFR system to generate a CFR module output signal, wherein the CFR processing is configured to reduce a peak-to-average power ratio (PAPR) of the digital tilt filter output signal; receiving the CFR module output signal at a digital tilt equalizer of the CFR system and generating a system output signal; and providing the system output signal to an amplifier.

示例17:示例16的方法,还包括:响应于从放大器的输出端接收的反馈数据,更新CFR系统的配置。Example 17: The method of Example 16, further comprising updating a configuration of the CFR system in response to feedback data received from an output of the amplifier.

示例18:示例16的方法,还包括:在CFR系统的数字预失真(DPD)模块处对CFR模块输出信号执行DPD处理,以生成DPD模块输出信号;以及在CFR系统的数字倾斜均衡器处接收DPD模块输出信号并生成系统输出信号。Example 18: The method of Example 16 also includes: performing DPD processing on the CFR module output signal at a digital predistortion (DPD) module of the CFR system to generate a DPD module output signal; and receiving the DPD module output signal at a digital tilt equalizer of the CFR system and generating a system output signal.

示例19:示例18的方法,其中DPD模块还包括:耦接到CFR模块输出端的非线性数据路径,其中非线性数据路径包括多个并行数据路径单元,每个并行数据路径单元都耦接到CFR模块输出端并被配置为对与放大器的非线性分量相对应的不同的逆非线性分量进行建模,并且其中组合器被配置为组合多个并行数据路径单元的每个并行数据路径单元的输出,以生成DPD模块输出信号。Example 19: The method of Example 18, wherein the DPD module further comprises: a nonlinear data path coupled to an output of the CFR module, wherein the nonlinear data path comprises a plurality of parallel data path units, each parallel data path unit being coupled to the output of the CFR module and configured to model a different inverse nonlinear component corresponding to a nonlinear component of the amplifier, and wherein the combiner is configured to combine the output of each parallel data path unit of the plurality of parallel data path units to generate a DPD module output signal.

示例20:示例16的方法,还包括:响应于将系统输出信号提供给放大器同时使放大器工作在非线性区域,减小放大器的功耗。Example 20: The method of Example 16, further comprising: reducing power consumption of the amplifier in response to providing the system output signal to the amplifier while operating the amplifier in a nonlinear region.

示例21:一种数字预失真(DPD)系统,包括:被配置为接收DPD输入信号的输入端;以及耦接到输入端的非线性数据路径,其中该非线性数据路径包括多个并行数据路径单元,每个并行数据路径单元都耦接到所述输入端,其中多个并行数据路径单元中的每个并行数据路径单元被配置为向DPD输入信号添加对应于放大器的非线性分量的不同的逆非线性分量,并且其中第一组合器被配置为组合多个并行数据路径单元中的每个并行数据路径单元的输出以生成第一预失真信号;线性数据路径,其与非线性数据路径并行地耦接到所述输入端,以生成第二预失真信号;以及第二组合器,其被配置为组合第一预失真信号和第二预失真信号以生成DPD输出信号。Example 21: A digital predistortion (DPD) system comprising: an input terminal configured to receive a DPD input signal; and a nonlinear data path coupled to the input terminal, wherein the nonlinear data path includes a plurality of parallel data path units, each of which is coupled to the input terminal, wherein each of the plurality of parallel data path units is configured to add a different inverse nonlinear component corresponding to a nonlinear component of an amplifier to the DPD input signal, and wherein a first combiner is configured to combine the output of each of the plurality of parallel data path units to generate a first predistortion signal; a linear data path coupled to the input terminal in parallel with the nonlinear data path to generate a second predistortion signal; and a second combiner configured to combine the first predistortion signal and the second predistortion signal to generate a DPD output signal.

示例22:示例21的DPD系统,其中多个并行数据路径单元包括基带DPD数据路径、视频带宽DPD数据路径、二次谐波DPD数据路径和三次谐波DPD数据路径。Example 22: The DPD system of Example 21, wherein the plurality of parallel data path units include a baseband DPD data path, a video bandwidth DPD data path, a second harmonic DPD data path, and a third harmonic DPD data path.

示例23:示例22的DPD系统,其中基带DPD数据路径被配置为将逆非线性基带分量添加到DPD输入信号。Example 23: The DPD system of Example 22, wherein the baseband DPD data path is configured to add an inverse nonlinear baseband component to the DPD input signal.

示例24:示例22的DPD系统,其中视频带宽DPD数据路径被配置为将逆非线性视频带宽分量添加到DPD输入信号。Example 24: The DPD system of Example 22, wherein the video bandwidth DPD data path is configured to add an inverse non-linear video bandwidth component to the DPD input signal.

示例25:示例22的DPD系统,其中二次谐波DPD数据路径被配置为将逆二次谐波分量添加到DPD输入信号。Example 25: The DPD system of Example 22, wherein the second harmonic DPD data path is configured to add an inverse second harmonic component to the DPD input signal.

示例26:示例22的DPD系统,其中三次谐波DPD数据路径被配置为将逆三次谐波分量添加到DPD输入信号。Example 26: The DPD system of Example 22, wherein the third harmonic DPD data path is configured to add an inverse third harmonic component to the DPD input signal.

示例27:示例21的DPD系统,还包括数字倾斜滤波器,其被配置为对模拟倾斜滤波器进行建模,其中数字倾斜滤波器输入端耦接到所述输入端,并且其中数字倾斜滤波器输出端被耦接到非线性数据路径。Example 27: The DPD system of Example 21 further includes a digital tilt filter configured to model an analog tilt filter, wherein the digital tilt filter input is coupled to the input, and wherein the digital tilt filter output is coupled to the nonlinear data path.

示例28:示例21的DPD系统,还包括数字倾斜均衡器,其被配置为对模拟倾斜滤波器的逆进行建模,其中数字倾斜均衡器输入端被配置为接收第一预失真信号,并且其中第二组合器被配置为将数字倾斜均衡器输出组合到第二预失真信号以生成DPD输出信号。Example 28: The DPD system of Example 21 further includes a digital tilt equalizer configured to model the inverse of an analog tilt filter, wherein the digital tilt equalizer input is configured to receive a first predistortion signal, and wherein the second combiner is configured to combine the digital tilt equalizer output to the second predistortion signal to generate a DPD output signal.

示例29:示例28的DPD系统,还包括单边带希尔伯特滤波器,其中单边带希尔伯特滤波器输入端被配置为接收第一预失真信号,并且其中单边带希尔伯特滤波器输出端被耦接到数字倾斜均衡器输入端。Example 29: The DPD system of Example 28, further comprising a single sideband Hilbert filter, wherein the single sideband Hilbert filter input is configured to receive the first predistortion signal, and wherein the single sideband Hilbert filter output is coupled to the digital tilt equalizer input.

示例30:示例21的DPD系统,其中DPD输出信号耦接到放大器输入端以生成放大的输出信号,并且其中DPD输出信号被配置为补偿放大器的多个非线性分量。Example 30: The DPD system of Example 21, wherein the DPD output signal is coupled to an amplifier input to generate an amplified output signal, and wherein the DPD output signal is configured to compensate for a plurality of nonlinear components of the amplifier.

示例31:配置为执行数字预失真(DPD)处理的数字前端(DFE)系统,所述DFE系统包括:数字上变频器(DUC),其被配置为接收和转换基带数据输入信号以生成复合信号;以及DPD系统,其被配置为在DPD输入处接收复合信号并对复合信号执行DPD处理,其中DPD输入端被耦接到多个并行数据路径单元,其中多个并行数据路径单元中的至少一个并行数据路径单元被配置为向复合信号添加与放大器的非线性谐波分量相对应的逆谐波分量,其中组合器被配置为组合多个数据路径单元中的每个数据路径单元的输出以生成DPD输出信号,其中DPD输出信号被耦接到放大器;其中DPD输出信号被配置为补偿放大器的非线性谐波分量。Example 31: A digital front end (DFE) system configured to perform digital predistortion (DPD) processing, the DFE system comprising: a digital up converter (DUC) configured to receive and convert a baseband data input signal to generate a composite signal; and a DPD system configured to receive the composite signal at a DPD input and perform DPD processing on the composite signal, wherein the DPD input is coupled to a plurality of parallel data path units, wherein at least one of the plurality of parallel data path units is configured to add an inverse harmonic component corresponding to a nonlinear harmonic component of an amplifier to the composite signal, wherein a combiner is configured to combine the output of each of the plurality of data path units to generate a DPD output signal, wherein the DPD output signal is coupled to the amplifier; wherein the DPD output signal is configured to compensate for the nonlinear harmonic component of the amplifier.

示例32:示例30的DFE系统,其中多个并行数据路径单元包括基带DPD数据路径、视频带宽DPD数据路径、二次谐波DPD数据路径和三次谐波DPD数据路径。Example 32: The DFE system of Example 30, wherein the plurality of parallel data path units include a baseband DPD data path, a video bandwidth DPD data path, a second harmonic DPD data path, and a third harmonic DPD data path.

示例33:示例31的DFE系统,其中DUC被配置为对基带数据输入信号执行插值处理以生成插值信号,并且其中DUC被配置为对插值信号执行混合处理以生成复合信号。Example 33: The DFE system of Example 31, wherein the DUC is configured to perform interpolation processing on the baseband data input signal to generate an interpolated signal, and wherein the DUC is configured to perform mixing processing on the interpolated signal to generate a composite signal.

示例34:示例31的DFE系统,其中DPD系统还包括数字倾斜滤波器,其被配置为对模拟倾斜滤波器进行建模,其中数字倾斜滤波器输入端被配置为接收复合信号,并且其中数字倾斜滤波器输出端被耦接到多个并行数据路径单元。Example 34: The DFE system of Example 31, wherein the DPD system further comprises a digital shelving filter configured to model an analog shelving filter, wherein an input of the digital shelving filter is configured to receive a composite signal, and wherein an output of the digital shelving filter is coupled to a plurality of parallel data path units.

示例35:示例31的DFE系统,其中DPD系统还包括数字倾斜均衡器,其被配置为对模拟倾斜滤波器的逆模型进行建模,其中数字倾斜均衡器输入端被配置为接收多个数据路径单元中的每个数据路径单元的组合输出,并且其中另一个组合器被配置为将数字倾斜均衡器输出组合到线性DPD信号,以生成DPD输出信号。Example 35: The DFE system of Example 31, wherein the DPD system further comprises a digital tilt equalizer configured to model an inverse model of an analog tilt filter, wherein an input of the digital tilt equalizer is configured to receive a combined output of each of a plurality of data path units, and wherein another combiner is configured to combine the digital tilt equalizer outputs to a linear DPD signal to generate a DPD output signal.

示例36:一种方法,包括:在数字预失真(DPD)系统的输入处接收DPD输入信号;在耦接到DPD系统的输入端的非线性数据路径上接收DPD输入信号,其中非线性数据路径包括多个并行数据路径单元,每个并行数据路径单元耦接到所述输入端;通过多个并行数据路径单元的每个并行数据路径单元向DPD输入信号添加与放大器的非线性分量相对应的逆非线性分量;由第一组合器组合多个并行数据路径单元中的每个并行数据路径单元的输出以生成第一预失真信号;在与所述非线性数据路径并行地耦接到所述输入端的线性数据路径处接收所述DPD输入信号,以生成第二预失真信号;由第二组合器组合第一预失真信号和第二预失真信号,以生成DPD输出信号。Example 36: A method comprising: receiving a digital predistortion (DPD) input signal at an input of a DPD system; receiving the DPD input signal on a nonlinear data path coupled to the input end of the DPD system, wherein the nonlinear data path includes a plurality of parallel data path units, each parallel data path unit coupled to the input end; adding an inverse nonlinear component corresponding to a nonlinear component of an amplifier to the DPD input signal through each parallel data path unit of the plurality of parallel data path units; combining the output of each parallel data path unit in the plurality of parallel data path units by a first combiner to generate a first predistortion signal; receiving the DPD input signal at a linear data path coupled to the input end in parallel with the nonlinear data path to generate a second predistortion signal; combining the first predistortion signal and the second predistortion signal by a second combiner to generate a DPD output signal.

示例37:示例36的方法,其中多个并行数据路径单元包括基带DPD数据路径、视频带宽DPD数据路径、二次谐波DPD数据路径和三次谐波DPD数据路径。Example 37: The method of Example 36, wherein the plurality of parallel data path units include a baseband DPD data path, a video bandwidth DPD data path, a second harmonic DPD data path, and a third harmonic DPD data path.

示例38:示例37的方法,还包括:通过基带DPD数据路径将逆非线性基带分量添加到DPD输入信号;通过视频带宽DPD数据路径将逆非线性视频带宽分量添加到DPD输入信号;通过二次谐波DPD数据路径将逆二次谐波分量添加到DPD输入信号;以及通过三次谐波DPD数据路径将逆三次谐波分量添加到DPD输入信号。Example 38: The method of Example 37 also includes: adding an inverse nonlinear baseband component to the DPD input signal through a baseband DPD data path; adding an inverse nonlinear video bandwidth component to the DPD input signal through a video bandwidth DPD data path; adding an inverse second harmonic component to the DPD input signal through a second harmonic DPD data path; and adding an inverse third harmonic component to the DPD input signal through a third harmonic DPD data path.

示例39:示例36的方法,还包括:将DPD输出信号提供到放大器输入端以生成放大的输出信号,其中DPD输出信号被配置为补偿放大器的多个非线性分量。Example 39: The method of Example 36, further comprising: providing the DPD output signal to an amplifier input to generate an amplified output signal, wherein the DPD output signal is configured to compensate for multiple nonlinear components of the amplifier.

示例40:示例36的方法,还包括:响应于将DPD输出信号提供给放大器同时使放大器工作在非线性区域,减小放大器的功耗。Example 40: The method of Example 36, further comprising: reducing power consumption of the amplifier in response to providing the DPD output signal to the amplifier while operating the amplifier in a nonlinear region.

尽管已经示出和描述了特定的实施例,但是应当理解,并不旨在将所要求保护的发明限于优选实施例,并且对于本领域技术人员显而易见的是,可以进行各种改变和修改,而不背离要求保护的发明的精神和范围。因此,说明书和附图应被认为是说明性而非限制性的。要求保护的发明旨在覆盖替代、修改和等同物。Although specific embodiments have been shown and described, it should be understood that the claimed invention is not intended to be limited to the preferred embodiments, and it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the claimed invention. Therefore, the specification and drawings should be regarded as illustrative rather than restrictive. The claimed invention is intended to cover alternatives, modifications, and equivalents.

Claims (14)

1. A crest factor reduction CFR system, wherein said CFR system comprises:
A digital tilt filter coupled to an input of the CFR system, wherein the digital tilt filter is configured to receive a system input signal and generate a digital tilt filter output signal at a digital tilt filter output;
a CFR module coupled to the digital tilted filter output, wherein the CFR module is configured to receive the digital tilted filter output signal and CFR process the digital tilted filter output signal to generate a CFR module output signal at a CFR module output; and
A digital tilt equalizer coupled to the CFR module output, wherein the digital tilt equalizer is configured to receive the CFR module output signal and generate a system output signal;
a first linear data path coupled to an input of the CFR system and in parallel with the CFR module and DPD module to generate a first delay signal;
A first combiner configured to combine a digital tilt equalizer output signal and the first delay signal to generate the system output signal;
a second linear data path coupled to an input of the CFR module and in parallel with the CFR module to generate a second time-delayed signal; and
A second combiner configured to combine the CFR module output signal and the second time-delayed signal to generate a first output signal.
2. The CFR system of claim 1 further comprising:
A digital predistortion DPD module coupled to the CFR module output, wherein the DPD module is configured to receive the CFR module output signal and perform DPD processing on the CFR module output signal to generate a DPD module output signal at a DPD module output;
wherein the digital tilt equalizer is coupled to the DPD module output and the digital tilt equalizer is configured to receive the DPD module output signal and generate the system output signal.
3. The CFR system of claim 1, wherein the system input signal has a first peak-to-average power ratio, PAPR, and the CFR module output signal has a second PAPR that is less than the first PAPR.
4. The CFR system of claim 1 further comprising:
A third combiner configured to combine the first output signal and the DPD module output signal to generate the system output signal.
5. The CFR system of claim 2 wherein the DPD module further comprises:
A nonlinear data path coupled to the CFR module output, wherein the nonlinear data path comprises a plurality of parallel data path units, each of the parallel data path units coupled to the CFR module output, each of the plurality of parallel data path units configured to add a different inverse nonlinear component corresponding to the nonlinear component of the amplifier to the CFR module output signal, and wherein a combiner is configured to combine the outputs of each of the plurality of parallel data path units to generate the DPD module output signal.
6. The CFR system of claim 1 wherein a digital-to-analog converter, DAC, is configured to receive the system output signal and generate a DAC output signal, wherein an analog tilt filter is configured to receive the DAC output signal and generate an analog tilt filter output signal, and wherein the digital tilt filter is configured to model the analog tilt filter.
7. The CFR system of claim 6 wherein the digital tilt equalizer is configured to model an inverse of the analog tilt filter.
8. The CFR system of claim 2 further comprising:
A single sideband hilbert filter having a single sideband hilbert filter input configured to receive the DPD module output signal, the single sideband hilbert filter output coupled to the digital tilt equalizer input.
9. The CFR system of claim 1 further comprising:
an adaptation engine configured to receive feedback data from an amplifier output, wherein the adaptation engine is configured to update a configuration of the CFR module based on the feedback data.
10. A digital front end DFE system configured to perform crest factor reduction, CFR, processing, the DFE system comprising:
A digital up-converter DUC configured to receive and convert the baseband data input signal to generate a composite signal;
A CFR system including a digital tilt filter, a CFR module, and a digital tilt equalizer, wherein the digital tilt filter is configured to receive a composite signal and generate a digital tilt filter output signal, the CFR module is configured to receive the digital tilt filter output signal and perform CFR processing on the digital tilt filter output signal to generate a CFR module output signal, the digital tilt equalizer is configured to receive the CFR module output signal and generate a CFR system output signal, the CFR system output signal coupled to an amplifier; and
An adaptation engine configured to receive feedback data from an output of an amplifier, wherein the adaptation engine is configured to update a configuration of the CFR system based on the feedback data, the CFR system further comprising:
a first linear data path coupled to an input of the CFR system and in parallel with the CFR module and DPD module to generate a first delay signal;
A first combiner configured to combine a digital tilt equalizer output signal and the first delay signal,
To generate the system output signal;
a second linear data path coupled to an input of the CFR module and connected in parallel with the CFR module,
To generate a second time-delayed signal; and
A second combiner configured to combine the CFR module output signal and the second time-delayed signal to generate a first output signal.
11. The DFE system of claim 10, wherein the CFR process is configured to reduce a peak-to-average power ratio, PAPR, of the digital ramp filter output signal.
12. The DFE system of claim 10, wherein the CFR system further comprises:
A digitally predistorted DPD module comprising a nonlinear data path coupled to a CFR module output, wherein the nonlinear data path comprises a plurality of parallel data path units, each of the parallel data path units coupled to the CFR module output, each of the plurality of parallel data path units configured to model a different inverse nonlinear component corresponding to a nonlinear component of an amplifier, a combiner configured to combine the outputs of each of the plurality of parallel data path units to generate a DPD module output signal, the digital tilt equalizer configured to receive the DPD module output signal and to generate the CFR system output signal.
13. The DFE system of claim 10, wherein a digital-to-analog converter, DAC, is configured to receive the CFR system output signal and generate a DAC output signal, wherein an analog tilt filter is configured to receive the DAC output signal and generate an analog tilt filter output signal, and wherein the digital tilt filter is configured to model the analog tilt filter.
14. The DFE system of claim 13, wherein the digital tilt equalizer is configured to model an inverse of the analog tilt filter.
CN201980062088.0A 2018-09-26 2019-09-10 Method and circuit for reducing crest factor for cable television amplifier Active CN112740633B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US16/142,893 US10411656B1 (en) 2018-09-26 2018-09-26 Method of and circuit for crest factor reduction for a cable TV amplifier
US16/142,893 2018-09-26
US16/142,295 US10944444B2 (en) 2018-09-26 2018-09-26 Method of and circuit for predistortion for a cable TV amplifier
US16/142,295 2018-09-26
PCT/US2019/050435 WO2020068414A1 (en) 2018-09-26 2019-09-10 Method of and circuit for crest factor reduction for a cable tv amplifier

Publications (2)

Publication Number Publication Date
CN112740633A CN112740633A (en) 2021-04-30
CN112740633B true CN112740633B (en) 2024-05-24

Family

ID=68165703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980062088.0A Active CN112740633B (en) 2018-09-26 2019-09-10 Method and circuit for reducing crest factor for cable television amplifier

Country Status (5)

Country Link
EP (1) EP3857832A1 (en)
JP (1) JP7499758B2 (en)
KR (1) KR102807700B1 (en)
CN (1) CN112740633B (en)
WO (1) WO2020068414A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113740706A (en) * 2021-08-18 2021-12-03 中国科学院新疆天文台 RFSoC signal capturing and spectrum analyzing device and method
US12389319B2 (en) 2022-06-30 2025-08-12 Hewlett Packard Enterprise Development Lp Power management for virtualized RAN

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205704A (en) * 2011-09-15 2014-12-10 电力波技术有限公司 Digital pre- distortion filter system and method
CN106464216A (en) * 2014-05-01 2017-02-22 赛灵思公司 Waveform-Different Repeaters

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102940B1 (en) * 2007-07-16 2012-01-24 Lockheed Martin Corporation Receive frequency band interference protection system using predistortion linearization
US8837633B2 (en) 2011-10-21 2014-09-16 Xilinx, Inc. Systems and methods for digital processing based on active signal channels of a communication system
US9280315B2 (en) * 2011-10-27 2016-03-08 Intel Corporation Vector processor having instruction set with vector convolution function for fir filtering
WO2015045218A1 (en) * 2013-09-30 2015-04-02 日本電気株式会社 Transmitter and transmission control method
EP3166223B1 (en) * 2015-10-13 2020-09-02 Analog Devices Global Unlimited Company Ultra wide band digital pre-distortion
US10250194B2 (en) * 2015-11-13 2019-04-02 Analog Devices Global Broadband envelope tracking
JP6585026B2 (en) * 2015-12-29 2019-10-02 アナログ・デヴァイシズ・グローバル Digital predistortion and upward tilt and cable communication
US10033413B2 (en) * 2016-05-19 2018-07-24 Analog Devices Global Mixed-mode digital predistortion
CN110326214B (en) * 2017-03-02 2023-06-23 住友电气工业株式会社 Distortion compensation device and distortion compensation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205704A (en) * 2011-09-15 2014-12-10 电力波技术有限公司 Digital pre- distortion filter system and method
CN106464216A (en) * 2014-05-01 2017-02-22 赛灵思公司 Waveform-Different Repeaters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
数字中频与FPGA;王水;吴继华;;电子设计技术(09);第168-169页+第171-173页 *

Also Published As

Publication number Publication date
KR20210063368A (en) 2021-06-01
KR102807700B1 (en) 2025-05-13
JP7499758B2 (en) 2024-06-14
CN112740633A (en) 2021-04-30
WO2020068414A1 (en) 2020-04-02
JP2022502907A (en) 2022-01-11
EP3857832A1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
US10411656B1 (en) Method of and circuit for crest factor reduction for a cable TV amplifier
CN107810601B (en) Device for preprocessing input signal and method for data transmission
US10715702B1 (en) Method of and circuit for predistortion for a cable TV amplifier
KR102616755B1 (en) Ultra-high data rate digital millimeter-wave transmitter with energy-efficient spectral filtering
CN106572039B (en) System and method for driving a load with a broadband signal
US10944444B2 (en) Method of and circuit for predistortion for a cable TV amplifier
CN111436225B (en) Predistortion circuit of wireless transmitter and method of generating predistortion baseband signal
EP3314837B1 (en) Waveform adaptable digital predistortion
KR101752040B1 (en) Systems and methods for digital processing based on active signal channels of a communication system
US7746167B1 (en) Method of and circuit for adapting parameters for a predistortion circuit in an integrated circuit
JP2020504926A (en) Power amplifier predistortion method and circuit
EP2321899A1 (en) Method of and circuit for reducing distortion in a power amplifier
CN112740633B (en) Method and circuit for reducing crest factor for cable television amplifier
US10622951B1 (en) Digital communications circuits and systems
Bleickert Evaluation and characterization of a reduced-bandwidth sampling system for predistorting broadband E-Band communication links
Murugesu Open-loop Temperature-compensated Digital Predistortion for Power Amplifiers
Budimir et al. LDMOS RF power amplifiers with improved IMD performance
EP2040375A1 (en) Power amplifier module and method of generating a drain voltage for a power amplifier
Julius Design and implementation of an ETSI-SDR OFDM transmitter with power amplifier linearizer
Giofrè et al. Evaluating GaN Doherty architectures for 4G Picocells, WiMax and microwave backhaul links
Naraharisetti Linearization of Concurrent Dual-Band Power Amplifier Using Digital Predistortion
Debnath Implementation of digital predistortion linearization algorithms for power amplifiers using FPGAs
Cesari et al. Some results on a digital, adaptive, rf power amplifier linearizer based on the passivity theory

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant