[go: up one dir, main page]

CN112817086B - Mach-Zehnder interferometer based on TM0 mode light and preparation method - Google Patents

Mach-Zehnder interferometer based on TM0 mode light and preparation method Download PDF

Info

Publication number
CN112817086B
CN112817086B CN202110014134.9A CN202110014134A CN112817086B CN 112817086 B CN112817086 B CN 112817086B CN 202110014134 A CN202110014134 A CN 202110014134A CN 112817086 B CN112817086 B CN 112817086B
Authority
CN
China
Prior art keywords
face
waveguide
segment
mode
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110014134.9A
Other languages
Chinese (zh)
Other versions
CN112817086A (en
Inventor
赵瑛璇
黄海阳
仇超
甘甫烷
盛振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202110014134.9A priority Critical patent/CN112817086B/en
Publication of CN112817086A publication Critical patent/CN112817086A/en
Application granted granted Critical
Publication of CN112817086B publication Critical patent/CN112817086B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12159Interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供一种基于TM0模式光的马赫曾德尔干涉仪及其制备方法,结构包括:输入波导、第一模式转换器、连接臂、第二模式转换器及输出波导,其中,第二模式转化器与第一模式转换器的结构相同,具有双层锥形结构。本发明实现无论输入端输入TM0模式的入射光还是TE1模式的输入光,连接臂包括直波导段,其输出端均可以输出TM0模式和TE1模式的出射光;可以有效解决现有技术存在的马赫曾德尔干涉仪对温度较为敏感、结构复杂、尺寸大等问题:可以实现与CMOS工艺兼容,便于批量化生产。

Figure 202110014134

The invention provides a Mach-Zehnder interferometer based on TM0 mode light and a preparation method thereof. The structure includes: an input waveguide, a first mode converter, a connecting arm, a second mode converter and an output waveguide, wherein the second mode converter The structure of the converter is the same as that of the first mode converter, and has a double-layer pyramid structure. The invention realizes that no matter the input end inputs the incident light of TM0 mode or the input light of TE1 mode, the connecting arm includes a straight waveguide section, and its output end can output the outgoing light of TM0 mode and TE1 mode; it can effectively solve the Mach existing in the prior art. Zehnder interferometers are sensitive to temperature, complex in structure, and large in size: they can be compatible with CMOS technology and facilitate mass production.

Figure 202110014134

Description

基于TM0模式光的马赫曾德尔干涉仪及制备方法Mach-Zehnder interferometer based on TM0 mode light and preparation method

技术领域technical field

本发明属于光学技术领域,特别是涉及一种基于TM0模式光的马赫曾德尔干涉仪及其制备方法。The invention belongs to the technical field of optics, in particular to a Mach-Zehnder interferometer based on TM0 mode light and a preparation method thereof.

背景技术Background technique

马赫曾德尔干涉仪(Mach Zehnder Interferometer,MZI)是光学基础器件,被广泛应用于现代光纤传输系统中。由于硅基材料的热光系数较大,基于硅基的马赫曾德尔干涉仪普遍对于温度敏感,为了解决该问题,现有马赫曾德尔干涉仪普遍采用双连接臂结构。然而,现有技术中的方式存在结构复杂,尺寸大等问题,特别是基于TM0模式光的马赫曾德尔干涉仪。Mach Zehnder Interferometer (MZI) is an optical basic device and is widely used in modern optical fiber transmission systems. Due to the large thermo-optic coefficient of silicon-based materials, silicon-based Mach-Zehnder interferometers are generally sensitive to temperature. In order to solve this problem, existing Mach-Zehnder interferometers generally adopt a double-link structure. However, the methods in the prior art have problems such as complex structure and large size, especially the Mach-Zehnder interferometer based on TM0 mode light.

因此,如何有效解决现有技术中基于TM0模式光的马赫曾德尔干涉仪对温度敏感等问题实属必要。Therefore, it is necessary to effectively solve the problem that the Mach-Zehnder interferometer based on TM0 mode light is sensitive to temperature in the prior art.

发明内容SUMMARY OF THE INVENTION

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种马赫曾德尔干涉仪,用于解决现有技术中的基于TM0模式光的马赫曾德尔干涉仪存在的对温度较为敏感、结构复杂、尺寸大等问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a Mach-Zehnder interferometer, which is used to solve the problems of temperature-sensitive and structural problems of the Mach-Zehnder interferometer based on TMO mode light in the prior art. complex, large size, etc.

为实现上述目的及其他相关目的,本发明提供一种基于TM0模式光的马赫曾德尔干涉仪,所述马赫曾德尔干涉仪包括:To achieve the above object and other related objects, the present invention provides a Mach-Zehnder interferometer based on TM0 mode light, the Mach-Zehnder interferometer comprising:

输入波导;input waveguide;

第一模式转换器,与所述输入波导相连接,所述第一模式转换器具有双层锥形结构;a first mode converter connected to the input waveguide, the first mode converter having a double-layer tapered structure;

第二模式转换器,位于所述第一模式转换器的一侧并与所述第一模式转换器之间具有间距,所述第二模式转化器与所述第一模式转换器的结构相同且对称设置;The second mode converter is located on one side of the first mode converter and has a space between the first mode converter and the second mode converter, the second mode converter and the first mode converter have the same structure and Symmetrical settings;

连接臂,位于所述第一模式转换器与所述第二模式转换器之间,一端与所述第一模式转换器相连接,另一端与所述第二模式转换器相连接,且所述连接臂包括直波导段;a connecting arm, located between the first mode converter and the second mode converter, one end is connected with the first mode converter, the other end is connected with the second mode converter, and the the connecting arm includes a straight waveguide segment;

输出波导,与所述第二模式转换器连接,以输出包括TM0模式光的混合模式输出光。An output waveguide is connected to the second mode converter to output mixed mode output light including TM0 mode light.

可选地,所述第一模式转换器包括:依次相连接的第一对称传输段、第二对称传输段和第三对称传输段,其中,所述第一对称传输段与所述输入波导连接,所述第三对称传输段与所述连接臂连接;所述第二模式转换器包括:依次相连接的第四对称传输段、第五对称传输段和第六对称传输段,其中,所述第四对称传输段与所述连接臂连接,所述第六对称传输段与所述输出波导连接。Optionally, the first mode converter includes: a first symmetrical transmission section, a second symmetrical transmission section and a third symmetrical transmission section connected in sequence, wherein the first symmetrical transmission section is connected to the input waveguide , the third symmetrical transmission section is connected with the connecting arm; the second mode converter includes: a fourth symmetrical transmission section, a fifth symmetrical transmission section and a sixth symmetrical transmission section connected in sequence, wherein the The fourth symmetrical transmission section is connected with the connecting arm, and the sixth symmetrical transmission section is connected with the output waveguide.

可选地,所述第一对称传输段包括第一上波导段和位于其下方且关于其对称的第一下波导段,所述第二对称传输段包括第二上波导段和位于其下方且关于其对称的第二下波导段;所述第五对称传输段包括第五上波导段和位于其下方且关于其对称的第五下波导段,所述第六对称传输段包括第六上波导段和位于其下方且关于其对称的第六下波导段,以构成所述双层锥形结构。Optionally, the first symmetrical transmission section includes a first upper waveguide section and a first lower waveguide section located below and symmetrical about it, and the second symmetrical transmission section includes a second upper waveguide section and a first lower waveguide section located below and symmetrical about it. A second lower waveguide section symmetric about it; the fifth symmetric transmission section includes a fifth upper waveguide section and a fifth lower waveguide section located below and symmetric about it, the sixth symmetric transmission section includes a sixth upper waveguide segment and a sixth lower waveguide segment located below and symmetrical about it to form the double-layered tapered structure.

可选地,所述第一下波导段与所述第一上波导段的厚度之和、所述第二下波导段与所述第二上波导段的厚度之和、所述第三对称传输段的厚度相等;所述第四对称传输段的厚度、所述第五下波导段与所述第五上波导段的厚度之和、所述第六下波导段与所述第六上波导段的厚度之和相等。Optionally, the sum of the thicknesses of the first lower waveguide segment and the first upper waveguide segment, the sum of the thicknesses of the second lower waveguide segment and the second upper waveguide segment, and the third symmetrical transmission thickness of the fourth symmetrical transmission segment, the sum of the thicknesses of the fifth lower waveguide segment and the fifth upper waveguide segment, the sixth lower waveguide segment and the sixth upper waveguide segment The sum of the thicknesses is equal.

可选地,所述第一上波导段与所述第一下波导段的厚度相等,所述输入波导的厚度为所述第一上波导厚度的2倍;所述第二上波导段与所述第二下波导段的厚度相等;所述第五上波导段与所述第五下波导段的厚度相等;所述第六上波导段与所述第六下波导段的厚度相等。Optionally, the thicknesses of the first upper waveguide section and the first lower waveguide section are equal, and the thickness of the input waveguide is twice the thickness of the first upper waveguide section; the second upper waveguide section is the same as the thickness of the first upper waveguide section. The thicknesses of the second lower waveguide segment are equal; the thicknesses of the fifth upper waveguide segment and the fifth lower waveguide segment are equal; and the thicknesses of the sixth upper waveguide segment and the sixth lower waveguide segment are equal.

可选地,所述第一下波导段具有窄端面和宽端面,所述第一上波导段具有窄端面和宽端面,且所述第一下波导段的窄端面与所述第一上波导段的窄端面宽度相等,所述第一下波导段的宽端面大出所述第一上波导段宽端面两侧各自预设距离;所述第二下波导段具有窄端面和宽端面,所述第二上波导段具有窄端面和宽端面,且所述第二下波导段的宽端面与所述第一下波导段的宽端面的宽度相等,所述第二上波导段的窄端面与所述第一上波导段的宽端面连接且宽度相等,所述第二下波导段的窄端面与所述第二上波导段的宽端面的宽度相等;所述第五下波导段具有窄端面和宽端面,所述第五上波导段具有窄端面和宽端面,且所述第五下波导段的窄端面与所述第五上波导段的宽端面的宽度相等;所述第六下波导段具有窄端面和宽端面,所述第六上波导段具有窄端面和宽端面,且所述第六下波导段的窄端面与所述第六上波导段的窄端面宽度相等且与所述输出波导连接,所述第六下波导段的宽端面的宽度与第五下波导段的宽端面的宽度相等,所述第六下波导段的宽端面大出所述第六上波导段宽端面两侧各自所述预设距离。Optionally, the first lower waveguide section has a narrow end face and a wide end face, the first upper waveguide section has a narrow end face and a wide end face, and the narrow end face of the first lower waveguide section is connected to the first upper waveguide section. The widths of the narrow end faces of the first lower waveguide segment are equal to each other, and the wide end face of the first lower waveguide segment is larger than the respective preset distances on both sides of the wide end face of the first upper waveguide segment; the second lower waveguide segment has a narrow end face and a wide end face, so The second upper waveguide section has a narrow end face and a wide end face, and the width of the wide end face of the second lower waveguide section is equal to the width of the wide end face of the first lower waveguide section, and the narrow end face of the second upper waveguide section is the same as the width of the wide end face of the first lower waveguide section. The wide end faces of the first upper waveguide segment are connected and have the same width, the narrow end face of the second lower waveguide segment has the same width as the wide end face of the second upper waveguide segment; the fifth lower waveguide segment has a narrow end face and a wide end face, the fifth upper waveguide section has a narrow end face and a wide end face, and the width of the narrow end face of the fifth lower waveguide section is equal to the width of the wide end face of the fifth upper waveguide section; the sixth lower waveguide section has the same width. The segment has a narrow end face and a wide end face, the sixth upper waveguide segment has a narrow end face and a wide end face, and the narrow end face of the sixth lower waveguide segment has the same width as the narrow end face of the sixth upper waveguide segment and is equal to the width of the narrow end face of the sixth upper waveguide segment. The output waveguide is connected, the width of the wide end face of the sixth lower waveguide section is equal to the width of the wide end face of the fifth lower waveguide section, and the wide end face of the sixth lower waveguide section is larger than the wide end face of the sixth upper waveguide section the preset distances on both sides respectively.

可选地,所述输入波导的宽度为0.40μm-0.50μm,所述第一上波导的窄端面的宽度为0.40μm-0.50μm,所述第一上波导段的宽端面的宽度为0.50μm-0.60μm,所述预设距离为0.45μm-0.55μm,所述第二上波导的宽端面的宽度为0.57μm-0.67μm,所述第三对称传输段的窄端面宽度为0.40μm-0.50μm;所述第一对称传输段的长度为28μm-29μm,所述第二对称传输段的长度为24μm-26μm,所述第三对称传输段的长度为5μm-10μm;所述连接臂的所述直波导段的宽度为0.40μm-0.50μm,所述第五上波导的宽端面的宽度为0.57μm-0.67μm,所述第五上波导的窄端面的宽度为0.40μm-0.50μm,所述第六上波导段的宽端面的宽度为0.50μm-0.60μm,所述第四对称传输段的窄端面宽度为0.40μm-0.50μm;所述第五对称传输段的长度为24μm-26μm,所述第四对称传输段的长度为5μm-10μm。Optionally, the width of the input waveguide is 0.40 μm-0.50 μm, the width of the narrow end face of the first upper waveguide is 0.40 μm-0.50 μm, and the width of the wide end face of the first upper waveguide segment is 0.50 μm -0.60 μm, the preset distance is 0.45 μm-0.55 μm, the width of the wide end face of the second upper waveguide is 0.57 μm-0.67 μm, and the width of the narrow end face of the third symmetrical transmission section is 0.40 μm-0.50 μm μm; the length of the first symmetrical transmission segment is 28 μm-29 μm, the length of the second symmetrical transmission segment is 24 μm-26 μm, and the length of the third symmetrical transmission segment is 5 μm-10 μm; The width of the straight waveguide segment is 0.40 μm-0.50 μm, the width of the wide end face of the fifth upper waveguide is 0.57 μm-0.67 μm, and the width of the narrow end face of the fifth upper waveguide is 0.40 μm-0.50 μm, so The width of the wide end face of the sixth upper waveguide section is 0.50 μm-0.60 μm, the width of the narrow end face of the fourth symmetrical transmission section is 0.40 μm-0.50 μm; the length of the fifth symmetrical transmission section is 24 μm-26 μm, The length of the fourth symmetrical transmission segment is 5 μm-10 μm.

可选地,所述马赫曾德尔干涉仪包括SOI衬底,所述SOI衬底包括底层硅层、埋氧层及顶层硅层,所述第一模式转换器、所述连接臂及所述第二模式转换器均通过刻蚀所述顶层硅层而形成。Optionally, the Mach-Zehnder interferometer includes an SOI substrate, the SOI substrate includes a bottom silicon layer, a buried oxide layer and a top silicon layer, the first mode converter, the connecting arm and the first mode converter. Both mode converters are formed by etching the top silicon layer.

可选地,所述马赫曾德尔干涉仪还包括保护层,所述保护层位于所述埋氧层的上表面,且完全覆盖所述第一模式转换器、所述连接臂及所述第二模式转换器。Optionally, the Mach-Zehnder interferometer further includes a protective layer, the protective layer is located on the upper surface of the buried oxide layer and completely covers the first mode converter, the connecting arm and the second Mode converter.

可选地,所述连接臂的所述直波导段的宽度为569nm。Optionally, the width of the straight waveguide section of the connecting arm is 569 nm.

可选地,自所述输入波导段输入TM0模式的入射光;在所述第一对称传输段,TM0和TE1的有效折射率相等,TM0模式转换为TE1模式;在所述第二对称传输段,部分TE1模式光转换回TM0模式光,以得到TM0和TE1的混合模式的光。Optionally, the incident light in the TM0 mode is input from the input waveguide section; in the first symmetrical transmission section, the effective refractive indices of TM0 and TE1 are equal, and the TM0 mode is converted into the TE1 mode; in the second symmetrical transmission section , and part of the TE1 mode light is converted back to the TM0 mode light to obtain the mixed mode light of TM0 and TE1.

另外,本发明还提供一种如上述方案中任一项所述的基于TM0模式光的马赫曾德尔干涉仪的制备方法,其特征在于,所述制备方法包括步骤:In addition, the present invention also provides a preparation method of a Mach-Zehnder interferometer based on TMO mode light as described in any one of the above solutions, wherein the preparation method comprises the steps:

提供SOI衬底,所述SOI衬底包括底层硅层、埋氧层及顶层硅层;An SOI substrate is provided, the SOI substrate includes a bottom silicon layer, a buried oxide layer and a top silicon layer;

刻蚀所述顶层硅层,以形成所述第一模式转换器、所述连接臂及所述第二模式转换器。The top silicon layer is etched to form the first mode converter, the connecting arm and the second mode converter.

如上所述,本发明的基于TM0模式光的马赫曾德尔干涉仪及其制备方法,实现无论输入端输入TM0模式的入射光还是TE1模式的输入光,其输出端均可以输出TM0模式和TE1模式的出射光;可以有效解决现有技术存在的马赫曾德尔干涉仪对温度较为敏感、结构复杂、尺寸大等问题:可以实现与CMOS工艺兼容,便于批量化生产。As mentioned above, the Mach-Zehnder interferometer based on TM0 mode light of the present invention and the preparation method thereof realize that no matter the input end inputs the incident light of the TM0 mode or the input light of the TE1 mode, the output end can output the TM0 mode and the TE1 mode. It can effectively solve the problems of the Mach-Zehnder interferometer existing in the prior art being relatively sensitive to temperature, complex in structure and large in size; it can be compatible with the CMOS process and facilitate mass production.

附图说明Description of drawings

图1-2显示为本发明提供的马赫曾德尔干涉仪的结构俯视示意图;其中,图1显示为整体结构示意图,图2显示为局部放大示意图。1-2 are schematic top views of the structure of the Mach-Zehnder interferometer provided by the present invention; wherein, FIG. 1 is a schematic diagram of the overall structure, and FIG. 2 is a schematic diagram of a partial enlarged view.

图3-7显示为本发明提供的马赫曾德尔干涉仪制备中各步骤得到的结构截面示意图。3-7 are schematic cross-sectional views of the structure obtained by each step in the preparation of the Mach-Zehnder interferometer provided by the present invention.

图8显示为本发明提供的马赫曾德尔干涉仪中连接臂的宽度与不同模式入射光的有效折射率相对于温度的变化率的曲线。FIG. 8 is a graph showing the width of the connecting arm in the Mach-Zehnder interferometer provided by the present invention and the change rate of the effective refractive index of the incident light in different modes with respect to the temperature.

图9显示为本发明提供的马赫曾德尔干涉仪在26.85℃及56.85℃两不同温度条件下入射光波长与输入损耗的曲线图。FIG. 9 is a graph showing the wavelength of incident light and the input loss of the Mach-Zehnder interferometer provided by the present invention under two different temperature conditions of 26.85°C and 56.85°C.

图10-14显示为本发明提供的马赫曾德尔干涉仪器件的整体性能仿真结果示意图,其中,图10-13为不同输入输出模式下输入损耗的曲线图;图14为器件的仿真模场示意图。10-14 are schematic diagrams showing the overall performance simulation results of the Mach-Zehnder interferometer device provided by the present invention, wherein, FIG. 10-13 is a graph of input loss under different input and output modes; FIG. 14 is a schematic diagram of the simulated mode field of the device .

图15显示为本发明马赫曾德尔干涉仪一示例中TM0与TE1输出比例约为50:50示意图。FIG. 15 is a schematic diagram showing an output ratio of TM0 and TE1 of about 50:50 in an example of the Mach-Zehnder interferometer of the present invention.

元件标号说明Component label description

11 输入波导11 Input Waveguide

12 第一模式转换器12 First Mode Converter

121 第一对称传输段121 First symmetrical transmission segment

121a 第一上波导段121a first upper waveguide section

121b 第一下波导段121b First lower waveguide segment

122 第二对称传输段122 Second symmetrical transmission segment

122a 第二上波导段122a Second upper waveguide section

122b 第二下波导段122b Second lower waveguide section

123 第三对称传输段123 Third symmetrical transmission segment

13 连接臂13 connecting arm

14 第二模式转换器14 Second Mode Converter

15 输出波导15 Output waveguide

201 底层硅层201 Bottom silicon layer

202 埋氧层202 Buried Oxygen Layer

203 顶层硅层203 Top silicon layer

204 刻蚀掩膜层204 Etch mask layer

205 初始层205 Initial layer

206 上波导段层206 Upper waveguide segment layer

207 下波导段层207 Lower waveguide segment layer

208 保护层208 protective layer

具体实施方式Detailed ways

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention.

如在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。When describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional views showing the device structure will not be partially enlarged according to the general scale, and the schematic diagrams are only examples, which should not limit the protection scope of the present invention. In addition, the three-dimensional spatial dimensions of length, width and depth should be included in the actual production.

为了方便描述,此处可能使用诸如“之下”、“下方”、“低于”、“下面”、“上方”、“上”等的空间关系词语来描述附图中所示的一个元件或特征与其他元件或特征的关系。将理解到,这些空间关系词语意图包含使用中或操作中的器件的、除了附图中描绘的方向之外的其他方向。此外,当一层被称为在两层“之间”时,它可以是所述两层之间仅有的层,或者也可以存在一个或多个介于其间的层。另外,本发明中使用的“介于……之间”包括两个端点值。For convenience of description, spatially relative terms such as "below," "below," "below," "below," "above," "on," etc. may be used herein to describe an element shown in the figures or The relationship of a feature to other components or features. It will be understood that these spatially relative terms are intended to encompass other directions of the device in use or operation than those depicted in the figures. In addition, when a layer is referred to as being 'between' two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Additionally, "between" as used in the present invention includes both endpoints.

在本申请的上下文中,所描述的第一特征在第二特征“之上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。In the context of this application, descriptions of structures where a first feature is "on" a second feature can include embodiments in which the first and second features are formed in direct contact, and can also include further features formed over the first and second features. Embodiments between the second features such that the first and second features may not be in direct contact.

需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,其组件布局型态也可能更为复杂。It should be noted that the diagrams provided in this embodiment are only to illustrate the basic concept of the present invention in a schematic way, so the diagrams only show the components related to the present invention rather than the number, shape and the number of components in the actual implementation. For dimension drawing, the type, quantity and proportion of each component can be arbitrarily changed in actual implementation, and the component layout may also be more complicated.

如图1所示,本发明提供一种基于TM0模式光的马赫曾德尔干涉仪,所述马赫曾德尔干涉仪包括:输入波导11、第一模式转换器12、连接臂13、第二模式转换器14及输出波导15。基于本发明设计,可以得到基于TM0模式光的温度不敏感马赫曾德尔干涉仪。无论输入端输入TM0模式的入射光还是TE1模式的输入光,其输出端均可以输出TM0模式和TE1模式的出射光;温度不敏感马赫曾德尔干涉仪中两个模式转换器通过一个连接臂相连接,结构简单,具有较小的损耗。同时,本发明的干涉仪可以实现与CMOS工艺兼容,便于批量化生产。As shown in FIG. 1 , the present invention provides a Mach-Zehnder interferometer based on TM0 mode light. The Mach-Zehnder interferometer includes: an input waveguide 11 , a first mode converter 12 , a connecting arm 13 , and a second mode converter 14 and output waveguide 15. Based on the design of the present invention, a temperature-insensitive Mach-Zehnder interferometer based on TM0 mode light can be obtained. Regardless of whether the input end receives the incident light in TM0 mode or the input light in TE1 mode, the output end can output the outgoing light in TM0 mode and TE1 mode; the two mode converters in the temperature-insensitive Mach-Zehnder interferometer are connected to each other through a connecting arm. Connection, simple structure, with less loss. At the same time, the interferometer of the present invention can be compatible with the CMOS process, which is convenient for mass production.

如图1和2所示,输入波导11可以为直波导,各处具有相同宽度。As shown in Figures 1 and 2, the input waveguide 11 may be a straight waveguide with the same width everywhere.

另外,本发明的干涉仪包括第一模式转换器12和第二模式转换器14。在一示例中,二者为完全相同的双层锥形结构,在干涉仪的结构中关于中间的连接臂13对称设置。双层锥形结构是指转换器结构中包括上下两层材料层组成,两层材料层具有不相同的部分,自输入波导接收信号之后继续传输至连接臂,再经过同样结构对称设置的转换器自输出波导输出。In addition, the interferometer of the present invention includes a first mode converter 12 and a second mode converter 14 . In an example, the two are identical double-layer cone structures, which are symmetrically arranged with respect to the middle connecting arm 13 in the structure of the interferometer. The double-layer tapered structure means that the converter structure consists of upper and lower material layers. The two material layers have different parts. After receiving the signal from the input waveguide, it continues to transmit to the connecting arm, and then passes through the converter with the same structure symmetrically arranged. output from the output waveguide.

在一示例中,所述第一模式转换器12具体包括:依次相连接的第一对称传输段121、第二对称传输段122和第三对称传输段123,第一模式转换器12一端(第一对称传输段121)与输入波导11相连接,另一端(第三对称传输段123)与连接臂13相连接,如图2所示。In an example, the first mode converter 12 specifically includes: a first symmetric transmission section 121, a second symmetric transmission section 122 and a third symmetric transmission section 123 connected in sequence, one end of the first mode converter 12 (the first symmetric transmission section 123). A symmetrical transmission section 121) is connected to the input waveguide 11, and the other end (the third symmetrical transmission section 123) is connected to the connecting arm 13, as shown in FIG. 2 .

另外,在一示例中,所述第二模式转换器14具体包括:依次相连接的第四对称传输段、第五对称传输段和第六对称传输段,第二模式转换器14一端(第六对称传输段)与输出波导15相连接,另一端(第四对称传输段)与连接臂13相连接,可参见图1中结构所示。In addition, in an example, the second mode converter 14 specifically includes: a fourth symmetrical transmission section, a fifth symmetrical transmission section and a sixth symmetrical transmission section connected in sequence, one end of the second mode converter 14 (the sixth symmetrical transmission section) The symmetrical transmission section) is connected to the output waveguide 15, and the other end (the fourth symmetrical transmission section) is connected to the connecting arm 13, as shown in the structure shown in FIG. 1 .

需要说明的是,第一模式转换器12与第二模式转换器14结构完全相同且对称设置指的是,第一模式转换器的第一对称传输段与第二模式转换器的第六对称传输段结构相同结构对称设置,二者的大小尺寸均相同,同理,第一模式转换器的第二对称传输段与第二模式转换器的第五对称传输段结构相同结构对称设置,第一模式转换器的第三对称传输段与第二模式转换器的第四对称传输段结构相同结构对称设置。可以理解为相当于第二模式转换器为将第一模式转换器旋转180°后依次连接在连接臂13的后面。It should be noted that the structure of the first mode converter 12 and the second mode converter 14 are identical in structure and symmetrically arranged means that the first symmetrical transmission section of the first mode converter and the sixth symmetrical transmission section of the second mode converter The segment structure is the same and the structure is symmetrically arranged, and the size and dimensions of the two are the same. Similarly, the second symmetrical transmission segment of the first mode converter and the fifth symmetrical transmission segment of the second mode converter have the same structure and are symmetrically arranged. The first mode The third symmetrical transmission section of the converter and the fourth symmetrical transmission section of the second mode converter have the same structure and are symmetrically arranged. It can be understood that the second mode converter is connected to the back of the connecting arm 13 in turn after rotating the first mode converter by 180°.

如图2和图6所示,作为示例,所述第一对称传输段121包括第一上波导段121a和位于其下方且关于其对称的第一下波导段121b,所述第二对称传输段122包括第二上波导段122a和位于其下方且关于其对称的第二下波导段122b。需要说明的是,这里的对称是下波导的结构尺寸关于上波导的两侧对称,第一上波导段121a自身尺寸变化对称变化,如,呈等腰梯形结构,进而,第一下波导段121b超出第一上波导段121a的部分在图中显示的上下两侧(实际为第一上波导段延伸方向的左右两侧)对称分布。As shown in FIG. 2 and FIG. 6 , as an example, the first symmetrical transmission section 121 includes a first upper waveguide section 121a and a first lower waveguide section 121b located below and symmetrical therewith, and the second symmetrical transmission section 122 includes a second upper waveguide segment 122a and a second lower waveguide segment 122b located below and symmetrical therewith. It should be noted that the symmetry here is that the structure size of the lower waveguide is symmetrical with respect to both sides of the upper waveguide, and the size of the first upper waveguide segment 121a itself changes symmetrically, for example, in an isosceles trapezoid structure, and further, the first lower waveguide segment 121b The portion beyond the first upper waveguide segment 121a is symmetrically distributed on the upper and lower sides shown in the figure (actually the left and right sides in the extending direction of the first upper waveguide segment).

同理,参见第二对称传输段122,所述第五对称传输段包括第五上波导段和位于其下方且关于其对称的第五下波导段;参见第一对称传输段121,所述第六对称传输段包括第六上波导段和位于其下方且关于其对称的第六下波导段。Similarly, referring to the second symmetric transmission section 122, the fifth symmetric transmission section includes a fifth upper waveguide section and a fifth lower waveguide section located below and symmetric about it; refer to the first symmetric transmission section 121, the The six-symmetric transmission segment includes a sixth upper waveguide segment and a sixth lower waveguide segment located below and symmetric about it.

基于上述设计,本发明得到的第一模式转换器和第二模式转换器实际包括上下两层结构,构成双层锥形结构,以利于适应TM0模式的光,是针对TM0模式的光进行的对应设计,由于TE0模式和TM0模式的有效折射率差别很大,必须设计不同的结构以完成不同模式的传输。在双侧锥形模式中,由于结构的横截面对称性被打破,在双层锥形结构中,有利于设计TM0模式与TE1模式有效折射率相同,基于设计实现TM0模式与TE1模式的转换。Based on the above design, the first mode converter and the second mode converter obtained by the present invention actually include an upper and lower two-layer structure, forming a double-layer tapered structure, so as to adapt to the light of the TM0 mode, which corresponds to the light of the TM0 mode Design, since the effective refractive indices of TE0 mode and TM0 mode are very different, different structures must be designed to complete the transmission of different modes. In the double-sided tapered mode, since the cross-sectional symmetry of the structure is broken, in the double-layered tapered structure, it is beneficial to design the effective refractive index of the TM0 mode and the TE1 mode to be the same, and realize the conversion of the TM0 mode and the TE1 mode based on the design.

作为示例,本发明各个对称传输段的上下波导段基于同一材料层刻蚀形成。从而所述第一下波导段121b与所述第一上波导段121a的厚度之和为该层材料层的厚度;所述第二下波导段122b与所述第二上波导段122a的厚度之和为该层材料层的厚度;所述第三对称传输段123的厚度为该层材料层的厚度,从而三者上表面相平齐。同理,可以理解的是,所述第四对称传输段的厚度、所述第五下波导段与所述第五上波导段的厚度之和、所述第六下波导段与所述第六上波导段的厚度之和相等。As an example, the upper and lower waveguide segments of each symmetrical transmission segment of the present invention are formed by etching based on the same material layer. Therefore, the sum of the thicknesses of the first lower waveguide segment 121b and the first upper waveguide segment 121a is the thickness of the material layer; the sum of the thicknesses of the second lower waveguide segment 122b and the second upper waveguide segment 122a and is the thickness of the material layer; the thickness of the third symmetrical transmission section 123 is the thickness of the material layer, so that the upper surfaces of the three are flush. Similarly, it can be understood that the thickness of the fourth symmetrical transmission segment, the sum of the thicknesses of the fifth lower waveguide segment and the fifth upper waveguide segment, the thickness of the sixth lower waveguide segment and the sixth The sum of the thicknesses of the upper waveguide segments is equal.

在一示例中,所述第一上波导段与所述第一下波导段的厚度相等,另外,所述输入波导的厚度为所述第一上波导厚度的2倍,所述输入波导11也基于同一材料层刻蚀形成;同理,可以理解的是,所述第二上波导段与所述第二下波导段的厚度相等;所述第五上波导段与所述第五下波导段的厚度相等;所述第六上波导段与所述第六下波导段的厚度相等。另外,所述输出波导15也可以是基于同一材料层刻蚀形成,与输入波导11厚度相同。In an example, the thicknesses of the first upper waveguide section and the first lower waveguide section are equal. In addition, the thickness of the input waveguide is twice the thickness of the first upper waveguide, and the input waveguide 11 is also thick. It is formed by etching from the same material layer; for the same reason, it can be understood that the thicknesses of the second upper waveguide section and the second lower waveguide section are equal; the fifth upper waveguide section and the fifth lower waveguide section have the same thickness. The thicknesses of the sixth upper waveguide segment and the sixth lower waveguide segment are equal. In addition, the output waveguide 15 may also be formed by etching based on the same material layer, and has the same thickness as the input waveguide 11 .

在一具体示例中,输入波导的厚度为200-240nm,可以为上述两端点值,也可以为中间任意数值。如本示例中选择为220nm。可选地,所述第一上波导段121a的厚度为100-120nm,本示例中选择为110nm,为输入波导厚度的一半,同时,对应所述第一下波导段121的厚度可以为110nm。基于此,可以理解的是,各对称传输段的上波导段的厚度均可以与第一上波导段有相同的选择设计,各对称传输段的下波导段的厚度均可以与第一下波导段有相同的选择设计。另外,第三对称传输段和第四对称传输段为单层结构,厚度与输入波导相同。In a specific example, the thickness of the input waveguide is 200-240 nm, which may be the above-mentioned value at both ends, or may be any value in between. 220nm is chosen as in this example. Optionally, the thickness of the first upper waveguide segment 121a is 100-120 nm, which is selected as 110 nm in this example, which is half of the thickness of the input waveguide. Meanwhile, the thickness corresponding to the first lower waveguide segment 121 may be 110 nm. Based on this, it can be understood that the thickness of the upper waveguide section of each symmetrical transmission section can have the same selection design as that of the first upper waveguide section, and the thickness of the lower waveguide section of each symmetrical transmission section can be the same as the thickness of the first lower waveguide section. There are the same selection designs. In addition, the third symmetrical transmission section and the fourth symmetrical transmission section are single-layer structures with the same thickness as the input waveguide.

如图2所示,作为示例,所述第一下波导段121b具有窄端面和宽端面,所述第一上波导段121a具有窄端面和宽端面,且所述第一下波导段121b的窄端面与所述第一上波导段121a的窄端面宽度相等,均为W0;所述第一下波导段的宽端面大出所述第一上波导段宽端面两侧各自预设距离Ws。在一示例中,输入波导11的宽度也为W0。As shown in FIG. 2 , as an example, the first lower waveguide section 121b has a narrow end face and a wide end face, the first upper waveguide section 121a has a narrow end face and a wide end face, and the first lower waveguide section 121b has a narrow end face and a wide end face. The width of the end face and the narrow end face of the first upper waveguide section 121a is equal, both W0; the wide end face of the first lower waveguide section is larger than the preset distance Ws on both sides of the wide end face of the first upper waveguide section. In one example, the width of the input waveguide 11 is also W0.

所述第二下波导段122b具有窄端面和宽端面,所述第二上波导段122a具有窄端面和宽端面,所述第二下波导段122b的宽端面与所述第一下波导段121b的宽端面的宽度相等,所述第二上波导段122a的窄端面与所述第一上波导段121a的宽端面连接且宽度相等,均为W1,所述第二下波导段122b的窄端面与所述第二上波导段122a的宽端面的宽度相等,均为W2。The second lower waveguide section 122b has a narrow end face and a wide end face, the second upper waveguide section 122a has a narrow end face and a wide end face, and the wide end face of the second lower waveguide section 122b is the same as the first lower waveguide section 121b. The width of the wide end face of the second upper waveguide segment 122a is equal to the width of the wide end face of the second upper waveguide segment 122a. The width is equal to the width of the wide end face of the second upper waveguide segment 122a, and both are W2.

所述第三对称传输段123具有窄端面和宽端面,所述第三对称传输段的宽端面与第二上波导段122a的宽端面宽度W2相等。另外,在一示例中,连接臂13仅有直波导段构成,包括多模波导,其宽度与第三对称传输段123的窄端面的宽度W3相等。The third symmetrical transmission section 123 has a narrow end face and a wide end face, and the wide end face of the third symmetrical transmission section is equal to the width W2 of the wide end face of the second upper waveguide section 122a. In addition, in an example, the connecting arm 13 is composed of only a straight waveguide section, including a multi-mode waveguide, the width of which is equal to the width W3 of the narrow end face of the third symmetrical transmission section 123 .

同理,可以理解的是第五对称传输段有相同与第二对称传输段的设计,第六对称传输段有相同与第一对称传输段的设计,第四对称传输段有相同与第三对称传输段的设计。所述第五下波导段具有窄端面和宽端面,所述第五上波导段具有窄端面和宽端面,且所述第五下波导段的窄端面与所述第五上波导段的宽端面的宽度相等;所述第六下波导段具有窄端面和宽端面,所述第六上波导段具有窄端面和宽端面,且所述第六下波导段的窄端面与所述第六上波导段的窄端面宽度相等且与所述输出波导连接,所述第六下波导段的宽端面的宽度与第五下波导段的宽端面的宽度相等,所述第六下波导段的宽端面大出所述第六上波导段宽端面两侧各自所述预设距离。Similarly, it can be understood that the fifth symmetrical transmission segment has the same design as the second symmetrical transmission segment, the sixth symmetrical transmission segment has the same design as the first symmetrical transmission segment, and the fourth symmetrical transmission segment has the same design as the third symmetrical transmission segment. Design of the transmission segment. The fifth lower waveguide section has a narrow end face and a wide end face, the fifth upper waveguide section has a narrow end face and a wide end face, and the narrow end face of the fifth lower waveguide section and the wide end face of the fifth upper waveguide section The width of the sixth lower waveguide segment is equal to that of a narrow end face and a wide end face, the sixth upper waveguide segment has a narrow end face and a wide end face, and the narrow end face of the sixth lower waveguide segment is the same as the sixth upper waveguide segment. The width of the narrow end face of the segment is the same and is connected to the output waveguide, the width of the wide end face of the sixth lower waveguide segment is equal to the width of the wide end face of the fifth lower waveguide segment, and the wide end face of the sixth lower waveguide segment is larger The preset distances on both sides of the broad end face of the sixth upper waveguide segment are obtained.

作为示例,所述输入波导的宽度W0为0.40μm-0.50μm,所述第一上波导的窄端面的宽度W0为0.40μm-0.50μm,所述第一上波导段的宽端面的宽度W1为0.50μm-0.60μm,所述预设距离Ws为0.45μm-0.55μm,所述第二上波导的宽端面的宽度W2为0.57μm-0.67μm,所述第三对称传输段的窄端面宽度W3为0.40μm-0.50μm。另外,所述第一对称传输段121的长度Ltp1为28μm-29μm,所述第二对称传输段122的长度Ltp2为24μm-26μm,所述第三对称传输段123的长度Ltp3为5μm-10μm。另外,所述连接臂13的所述直波导段的宽度W3为0.40μm-0.50μm。同理,所述第五上波导的宽端面的宽度为0.57μm-0.67μm,所述第五上波导的窄端面的宽度为0.50μm-0.60μm,所述第六上波导段的宽端面的宽度为0.50μm-0.60μm,所述第六上波导段的窄端面的宽度为0.40μm-0.50μm,所述第四对称传输段的窄端面宽度为0.40μm-0.50μm。另外,所述第六对称传输段的长度为28μm-29μm,所述第五对称传输段的长度为24μm-26μm,所述第四对称传输段的长度为5μm-10μm。As an example, the width W0 of the input waveguide is 0.40 μm-0.50 μm, the width W0 of the narrow end face of the first upper waveguide is 0.40 μm-0.50 μm, and the width W1 of the wide end face of the first upper waveguide segment is 0.50 μm-0.60 μm, the preset distance Ws is 0.45 μm-0.55 μm, the width W2 of the wide end face of the second upper waveguide is 0.57 μm-0.67 μm, and the width of the narrow end face of the third symmetrical transmission section W3 0.40μm-0.50μm. In addition, the length Ltp1 of the first symmetrical transmission segment 121 is 28 μm-29 μm, the length Ltp2 of the second symmetrical transmission segment 122 is 24 μm-26 μm, and the length Ltp3 of the third symmetrical transmission segment 123 is 5 μm-10 μm. In addition, the width W3 of the straight waveguide section of the connecting arm 13 is 0.40 μm-0.50 μm. Similarly, the width of the wide end face of the fifth upper waveguide is 0.57 μm-0.67 μm, the width of the narrow end face of the fifth upper waveguide is 0.50 μm-0.60 μm, and the width of the wide end face of the sixth upper waveguide segment is 0.57 μm-0.67 μm. The width is 0.50 μm-0.60 μm, the width of the narrow end face of the sixth upper waveguide segment is 0.40 μm-0.50 μm, and the width of the narrow end face of the fourth symmetrical transmission segment is 0.40 μm-0.50 μm. In addition, the length of the sixth symmetrical transmission segment is 28 μm-29 μm, the length of the fifth symmetrical transmission segment is 24 μm-26 μm, and the length of the fourth symmetrical transmission segment is 5 μm-10 μm.

另外,需要说明的是,上述尺寸参数在上述范围之内需要具有一一对应的关系,有利于本发明模式转换的实现。下面以几个示例进行说明:譬如:在第一示例中,所述输入波导的宽度W0为0.45μm,所述第一上波导的窄端面的宽度W0为0.45μm,所述第一上波导段的宽端面的宽度W1为0.55μm,所述预设距离Ws为0.5μm,所述第二上波导的宽端面的宽度W2为0.62μm,所述第三对称传输段的窄端面宽度W3为0.45μm。另外,所述第一对称传输段121的长度Ltp1为28.5μm,所述第二对称传输段122的长度Ltp2为24μm,所述第三对称传输段123的长度Ltp3为5μm。在第二示例中,所述输入波导的宽度W0为0.41μm,所述第一上波导的窄端面的宽度W0为0.41μm,所述第一上波导段的宽端面的宽度W1为0.51μm,所述预设距离Ws为0.46μm,所述第二上波导的宽端面的宽度W2为0.58μm,所述第三对称传输段的窄端面宽度W3为0.41μm。另外,所述第一对称传输段121的长度Ltp1为28.1μm,所述第二对称传输段122的长度Ltp2为24.5μm,所述第三对称传输段123的长度Ltp3为6μm。在第三示例中,所述输入波导的宽度W0为0.43μm,所述第一上波导的窄端面的宽度W0为0.43μm,所述第一上波导段的宽端面的宽度W1为0.53μm,所述预设距离Ws为0.48μm,所述第二上波导的宽端面的宽度W2为0.60μm,所述第三对称传输段的窄端面宽度W3为0.43μm。另外,所述第一对称传输段121的长度Ltp1为28.3μm,所述第二对称传输段122的长度Ltp2为25μm,所述第三对称传输段123的长度Ltp3为7μm。在第四示例中,所述输入波导的宽度W0为0.47μm,所述第一上波导的窄端面的宽度W0为0.47μm,所述第一上波导段的宽端面的宽度W1为0.57μm,所述预设距离Ws为0.52μm,所述第二上波导的宽端面的宽度W2为0.64μm,所述第三对称传输段的窄端面宽度W3为0.47μm。另外,所述第一对称传输段121的长度Ltp1为28.7μm,所述第二对称传输段122的长度Ltp2为25.5μm,所述第三对称传输段123的长度Ltp3为8μm。在第五示例中,所述输入波导的宽度W0为0.49μm,所述第一上波导的窄端面的宽度W0为0.49μm,所述第一上波导段的宽端面的宽度W1为0.59μm,所述预设距离Ws为0.54μm,所述第二上波导的宽端面的宽度W2为0.66μm,所述第三对称传输段的窄端面宽度W3为0.47μm。另外,所述第一对称传输段121的长度Ltp1为28.9μm,所述第二对称传输段122的长度Ltp2为26μm,所述第三对称传输段123的长度Ltp3为10μm。In addition, it should be noted that the above-mentioned size parameters need to have a one-to-one correspondence within the above-mentioned range, which is beneficial to the realization of the mode conversion of the present invention. Several examples are described below. For example, in the first example, the width W0 of the input waveguide is 0.45 μm, the width W0 of the narrow end face of the first upper waveguide is 0.45 μm, and the first upper waveguide segment is 0.45 μm. The width W1 of the wide end face is 0.55 μm, the preset distance Ws is 0.5 μm, the width W2 of the wide end face of the second upper waveguide is 0.62 μm, and the narrow end face width W3 of the third symmetrical transmission section is 0.45 μm. In addition, the length Ltp1 of the first symmetrical transmission segment 121 is 28.5 μm, the length Ltp2 of the second symmetrical transmission segment 122 is 24 μm, and the length Ltp3 of the third symmetrical transmission segment 123 is 5 μm. In the second example, the width W0 of the input waveguide is 0.41 μm, the width W0 of the narrow end face of the first upper waveguide is 0.41 μm, and the width W1 of the wide end face of the first upper waveguide segment is 0.51 μm, The preset distance Ws is 0.46 μm, the width W2 of the wide end face of the second upper waveguide is 0.58 μm, and the width W3 of the narrow end face of the third symmetrical transmission section is 0.41 μm. In addition, the length Ltp1 of the first symmetrical transmission segment 121 is 28.1 μm, the length Ltp2 of the second symmetrical transmission segment 122 is 24.5 μm, and the length Ltp3 of the third symmetrical transmission segment 123 is 6 μm. In the third example, the width W0 of the input waveguide is 0.43 μm, the width W0 of the narrow end face of the first upper waveguide is 0.43 μm, and the width W1 of the wide end face of the first upper waveguide segment is 0.53 μm, The preset distance Ws is 0.48 μm, the width W2 of the wide end face of the second upper waveguide is 0.60 μm, and the width W3 of the narrow end face of the third symmetrical transmission section is 0.43 μm. In addition, the length Ltp1 of the first symmetrical transmission segment 121 is 28.3 μm, the length Ltp2 of the second symmetrical transmission segment 122 is 25 μm, and the length Ltp3 of the third symmetrical transmission segment 123 is 7 μm. In the fourth example, the width W0 of the input waveguide is 0.47 μm, the width W0 of the narrow end face of the first upper waveguide is 0.47 μm, and the width W1 of the wide end face of the first upper waveguide segment is 0.57 μm, The preset distance Ws is 0.52 μm, the width W2 of the wide end face of the second upper waveguide is 0.64 μm, and the width W3 of the narrow end face of the third symmetrical transmission section is 0.47 μm. In addition, the length Ltp1 of the first symmetrical transmission segment 121 is 28.7 μm, the length Ltp2 of the second symmetrical transmission segment 122 is 25.5 μm, and the length Ltp3 of the third symmetrical transmission segment 123 is 8 μm. In the fifth example, the width W0 of the input waveguide is 0.49 μm, the width W0 of the narrow end face of the first upper waveguide is 0.49 μm, and the width W1 of the wide end face of the first upper waveguide segment is 0.59 μm, The preset distance Ws is 0.54 μm, the width W2 of the wide end face of the second upper waveguide is 0.66 μm, and the width W3 of the narrow end face of the third symmetrical transmission section is 0.47 μm. In addition, the length Ltp1 of the first symmetrical transmission segment 121 is 28.9 μm, the length Ltp2 of the second symmetrical transmission segment 122 is 26 μm, and the length Ltp3 of the third symmetrical transmission segment 123 is 10 μm.

作为示例,所述马赫曾德尔干涉仪包括SOI衬底,所述SOI衬底包括底层硅层201、埋氧层202及顶层硅层,所述第一模式转换器12、所述连接臂13及所述第二模式转换器14均通过刻蚀所述顶层硅层而形成。其中,采用两次刻蚀的方式形成各个对称传输的上波导段层206和下波导段层207,也就是说,可以认为各个上波导段组成上波导段层206,可以认为各个下波导段组成下波导段层207,具体可以参见图3-6的示意。本发明基于Y分支对称结构的马赫曾德尔干涉仪的温度不敏感马赫曾德尔干涉仪中的第一模式转换器、连接臂及第二模式转换器基于SOI衬底制备而得到,由于SOI衬底中的硅的热光系数很大(可达到1.86×10-4RIU/K,其中,RIU为折射率单位),可以引起相当大的随温度变化的波长飘移(约80pm/K),在此基础上,通过设置连接臂的宽度及厚度等参数可以实现对温度不敏感;同时,本发明的温度不敏感马赫曾德尔干涉仪可以实现与CMOS工艺兼容,便于批量化生产。马赫曾德尔干涉仪中两个模式转换器通过一个连接臂相连接,结构简单,具有较小的损耗。另外,在一可选示例中,所述输入波导和所述输出波导也基于所述顶层硅层制备得到。As an example, the Mach-Zehnder interferometer includes an SOI substrate, the SOI substrate includes a bottom silicon layer 201 , a buried oxide layer 202 and a top silicon layer, the first mode converter 12 , the connecting arm 13 and the The second mode converters 14 are formed by etching the top silicon layer. Wherein, the upper waveguide segment layer 206 and the lower waveguide segment layer 207 of each symmetrical transmission are formed by two etchings, that is to say, it can be considered that each upper waveguide segment constitutes the upper waveguide segment layer 206, and each lower waveguide segment can be considered to constitute The lower waveguide segment layer 207 can be referred to the schematic diagrams in FIGS. 3-6 for details. The first mode converter, the connecting arm and the second mode converter in the temperature-insensitive Mach-Zehnder interferometer based on the Y-branch symmetric structure of the Mach-Zehnder interferometer of the present invention are prepared based on the SOI substrate. The thermo-optic coefficient of the silicon in the material is very large (up to 1.86×10-4RIU/K, where RIU is the refractive index unit), which can cause a considerable wavelength shift (about 80pm/K) with temperature. Based on this On the other hand, the temperature insensitivity can be realized by setting parameters such as the width and thickness of the connecting arm; at the same time, the temperature insensitive Mach-Zehnder interferometer of the present invention can be compatible with the CMOS process and is convenient for mass production. The two mode converters in the Mach-Zehnder interferometer are connected by a connecting arm, which has a simple structure and small loss. In addition, in an optional example, the input waveguide and the output waveguide are also prepared based on the top silicon layer.

作为示例,如图7所示,所述温度不敏感马赫曾德尔干涉仪还包括保护层208,所述保护层208位于所述埋氧层202的上表面,且完全覆盖所述第一模式转换器、所述连接臂及所述第二模式转换器,以实现对所述第一模式转换器、所述连接臂及所述第二模式转换器的保护。在一示例中,所述保护层208可以包括但不仅限于氧化硅层。As an example, as shown in FIG. 7 , the temperature-insensitive Mach-Zehnder interferometer further includes a protective layer 208 , the protective layer 208 is located on the upper surface of the buried oxide layer 202 and completely covers the first mode conversion The device, the connecting arm and the second mode converter are used to protect the first mode converter, the connecting arm and the second mode converter. In one example, the protective layer 208 may include, but is not limited to, a silicon oxide layer.

作为示例,所述连接臂13的宽度可以根据实际需要进行设定,优选地,所述连接臂13的宽度为569nm,其中,为实现器件的温度不敏感特性,多模波导的宽度需要满足不同模式下的dneff/dT系数相等;图8显示为本发明提供的温度不敏感马赫曾德尔干涉仪中连接臂的宽度与不同模式入射光的有效折射率相对于温度的变化率的曲线,选择两种模式的入射光具有相同的有效折射率相对于温度的变化率(dneff/dT)时所对应的所述连接臂13的宽度即为可以实现温度不敏感时对应的所述连接臂13的宽度,可以看到当多模波导的宽度为569nm时,TM0和TE1模式下的dneff/dT系数均为1.289*10-4/K,此时器件可以实现温度不敏感特性。As an example, the width of the connecting arm 13 can be set according to actual needs. Preferably, the width of the connecting arm 13 is 569 nm. In order to achieve the temperature insensitivity of the device, the width of the multimode waveguide needs to meet different requirements. The d neff /dT coefficients in the mode are equal; Figure 8 shows the curve of the width of the connecting arm and the rate of change of the effective refractive index of the incident light in different modes relative to the temperature in the temperature-insensitive Mach-Zehnder interferometer provided by the present invention. When the two modes of incident light have the same effective refractive index change rate with respect to temperature (d neff /dT), the corresponding width of the connecting arm 13 is the corresponding connecting arm 13 when temperature insensitivity can be realized. It can be seen that when the width of the multimode waveguide is 569 nm, the dneff/dT coefficients in TM 0 and TE 1 modes are both 1.289*10 -4 /K, and the device can achieve temperature insensitivity.

另外,请参阅图9,为验证器件的温度特性,对器件在20℃和50℃下的传输光谱进行仿真,其中,以入射光为TM0模式,输出光以TM0模式作为示例,由图9可知,仿真结果如所示,器件随温度变化的温度灵敏度仅为15pm/℃,器件具有温度不敏感特性。本发明的温度不敏感马赫曾德尔干涉仪在不同的温度下具有大致相同的性能,本发明的温度不敏感马赫曾德尔干涉仪的性能受温度影响不大,亦即图9进一步证明了本发明的温度不敏感马赫曾德尔干涉仪对温度不敏感。In addition, please refer to Figure 9. In order to verify the temperature characteristics of the device, the transmission spectrum of the device at 20°C and 50°C is simulated. The incident light is taken as TM0 mode, and the output light is taken as an example in TM0 mode, as can be seen from Figure 9 , the simulation results are shown, the temperature sensitivity of the device with temperature change is only 15pm/℃, and the device has temperature insensitive characteristics. The temperature-insensitive Mach-Zehnder interferometer of the present invention has approximately the same performance at different temperatures, and the performance of the temperature-insensitive Mach-Zehnder interferometer of the present invention is not greatly affected by temperature, that is, FIG. 9 further proves the present invention The temperature-insensitive Mach-Zehnder interferometer is insensitive to temperature.

另外,请参阅图10至图13,其中,本发明器件中间得到的是混合模式的光,输出光并非混合模式,最终得到单一输出光,其中,如图所示,输入、输出一共有四种情况:即以TM0模式入射,输出光为TM0模式;以TM0模式入射,输出光为TE1模式;以TE1模式入射,输出光为TM0模式;以TE1模式入射,输出光为TE1模式;器件中间的569nm宽度波导(连接臂)传输的为混合模式光,器件两端采用对称图形以得到单一输出光。图中结果可见,为验证器件的整体性能进行仿真,本发明的温度不敏感马赫曾德尔干涉仪无论输入的是TM0模式的入射光还是TE1模式的入射光,均可得到TM0模式和TE1模式的混合模式出射光。器件整体的仿真结果如上图所示,器件在各个端口下的的插入损耗小于0.3dB,消光比大于20dB。另外,图14显示为器件的仿真模场示意图。In addition, please refer to FIG. 10 to FIG. 13 , in which, the mixed mode light is obtained in the middle of the device of the present invention, and the output light is not a mixed mode, and finally a single output light is obtained. As shown in the figure, there are four types of input and output. Situation: that is, incident in TM0 mode, the output light is TM0 mode; incident in TM0 mode, output light is TE1 mode; incident in TE1 mode, output light is TM0 mode; incident in TE1 mode, output light is TE1 mode; The 569nm wide waveguide (connecting arm) transmits mixed-mode light, and the two ends of the device adopt a symmetrical pattern to obtain a single output light. As can be seen from the results in the figure, in order to verify the overall performance of the device and simulate, the temperature-insensitive Mach-Zehnder interferometer of the present invention can obtain the TM0 mode and TE1 mode regardless of the input of the incident light in the TM0 mode or the incident light in the TE1 mode. Blend mode outgoing light. The overall simulation results of the device are shown in the figure above. The insertion loss of the device under each port is less than 0.3dB, and the extinction ratio is greater than 20dB. In addition, FIG. 14 shows a schematic diagram of the simulated mode field of the device.

需要说明的是,基于本发明的设计,器件包括两个完全相同的双层锥形结构和一个多模波导构成。温度不敏感马赫曾德尔干涉仪无论输入端输入TM0模式的入射光还是TE1模式的输入光,其输出端均可以输出TM0模式和TE1模式的出射光。双层锥形结构的目的是得到混合模式,工作原理可以是:例如,当以TM0模式入射到器件中时,在波导的宽度由W0变化到W1的部分存在一个模式混合区,在此模式混合区内TM0和TE1的有效折射率相等,同时结构在垂直方向上的对称性被刻蚀部分打破,此时TM0模式转换为TE1模式。在该结构的波导宽度W1-W2变化区间,当W2的宽度为0.62μm时,会有部分TE1模式转换回TM0模式,从而可以得到TM0和TE1的混合模式。此时经过双层锥形模式耦合器后的TM0与TE1的比例约为50:50,仿真结果如图15所示。自所述输入波导段输入TM0模式的入射光;在所述第一对称传输段,TM0和TE1的有效折射率相等,TM0模式转换为TE1模式;在所述第二对称传输段,部分TE1模式光转换回TM0模式光,以得到TM0和TE1的混合模式的光。进一步,器件最终制备得到一个马赫曾德尔干涉仪,混合模式光的作用是为了使得器件温度不敏感,在器件的右侧加了一个对称结构可以将混合模式的光再次转换回单一模式的光,从而得到干涉图样,本发明的结构可以视为特殊的MZI结构。It should be noted that, based on the design of the present invention, the device includes two identical double-layer tapered structures and a multi-mode waveguide. The temperature-insensitive Mach-Zehnder interferometer can output both the TM0 mode and the TE1 mode outgoing light at the output no matter whether the input end inputs the TM0 mode incident light or the TE1 mode input light. The purpose of the double-layer tapered structure is to obtain mixed modes, and the working principle can be: for example, when the TM0 mode is incident into the device, there is a mode mixing region in the part where the width of the waveguide changes from W0 to W1, where the modes mix The effective refractive indices of TM0 and TE1 in the region are equal, and the symmetry of the structure in the vertical direction is broken by the etching part, at this time, the TM0 mode is converted into the TE1 mode. In the variation interval of the waveguide width W1-W2 of the structure, when the width of W2 is 0.62 μm, part of the TE1 mode will be converted back to the TM0 mode, so that the mixed mode of TM0 and TE1 can be obtained. At this time, the ratio of TM0 to TE1 after passing through the double-layer tapered mode coupler is about 50:50. The simulation results are shown in Figure 15. The incident light in the TM0 mode is input from the input waveguide section; in the first symmetrical transmission section, the effective refractive indices of TM0 and TE1 are equal, and the TM0 mode is converted into the TE1 mode; in the second symmetrical transmission section, part of the TE1 mode The light is converted back to TM0 mode light to obtain mixed mode light of TM0 and TE1. Further, the device is finally prepared to obtain a Mach-Zehnder interferometer. The function of the mixed-mode light is to make the device temperature insensitive. A symmetrical structure is added to the right side of the device to convert the mixed-mode light back to a single-mode light again. Thereby an interference pattern is obtained, and the structure of the present invention can be regarded as a special MZI structure.

另外,参见图1-7所示,本发明还提供一种如上述方案中任一项所述的基于TM0模式光的马赫曾德尔干涉仪的制备方法,其中,各个材料层的结构及材料构成及特征描述可以参见本发明在干涉仪结构中的描述,在此不再赘述。制备过程中首先是掩膜版沉积,之后是旋涂光刻胶进行光刻,再进行硅刻蚀,最后沉积上包层。所述制备方法具体包括步骤:In addition, referring to FIGS. 1-7 , the present invention also provides a method for preparing a Mach-Zehnder interferometer based on TMO mode light as described in any one of the above solutions, wherein the structure and material composition of each material layer are For the description of the features, reference may be made to the description of the structure of the interferometer in the present invention, which will not be repeated here. In the preparation process, the mask plate is deposited first, then the photoresist is spin-coated for photolithography, then silicon etching is performed, and finally the upper cladding layer is deposited. The preparation method specifically comprises the steps:

1)提供SOI衬底,所述SOI衬底包括底层硅层201、埋氧层202及顶层硅层203;1) Provide an SOI substrate, the SOI substrate includes a bottom silicon layer 201, a buried oxide layer 202 and a top silicon layer 203;

2)基于刻蚀掩膜层204刻蚀所述顶层硅层203,以形成所述第一模式转换器12、所述连接臂12及所述第二模式转换器14。其中,采用两次刻蚀的方式形成各个对称传输的上波导段层206和下波导段层207,如进行第一次刻蚀形成初始层205,然后,进行第二次刻蚀形成上波导段层206和下波导段层207。也就是说,可以认为各个上波导段组成上波导段层206,可以认为各个下波导段组成下波导段层207。另外,还可以包括沉积保护层208的步骤。2) Etching the top silicon layer 203 based on the etching mask layer 204 to form the first mode converter 12 , the connecting arm 12 and the second mode converter 14 . Wherein, the upper waveguide segment layer 206 and the lower waveguide segment layer 207 for each symmetrical transmission are formed by two etchings, for example, the initial layer 205 is formed by the first etching, and then the upper waveguide segment is formed by the second etching layer 206 and lower waveguide segment layer 207. That is to say, it can be considered that each upper waveguide segment constitutes the upper waveguide segment layer 206 , and each lower waveguide segment can be considered to constitute the lower waveguide segment layer 207 . Additionally, the step of depositing a protective layer 208 may also be included.

综上所述,本发明的基于TM0模式光的马赫曾德尔干涉仪及其制备方法,实现无论输入端输入TM0模式的入射光还是TE1模式的输入光,其输出端均可以输出TM0模式和TE1模式的出射光;可以有效解决现有技术存在的马赫曾德尔干涉仪对温度较为敏感、结构复杂、尺寸大等问题:可以实现与CMOS工艺兼容,便于批量化生产,可以在硅光子工艺平台实现高质量大规模生产。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。To sum up, the Mach-Zehnder interferometer based on TM0 mode light and the preparation method thereof of the present invention can realize that the output end can output both the TM0 mode and the TE1 mode regardless of whether the input end inputs the TM0 mode incident light or the TE1 mode input light. Mode of outgoing light; can effectively solve the problems of the Mach-Zehnder interferometer existing in the prior art that are sensitive to temperature, complex in structure, large in size, etc.; can be compatible with CMOS process, easy for mass production, and can be realized on the silicon photonics process platform High quality mass production. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.

Claims (9)

1.一种基于TM0模式光的马赫曾德尔干涉仪,其特征在于,所述马赫曾德尔干涉仪包括:1. a Mach-Zehnder interferometer based on TM0 mode light, is characterized in that, described Mach-Zehnder interferometer comprises: 输入波导;input waveguide; 第一模式转换器,与所述输入波导相连接,所述第一模式转换器具有双层锥形结构;a first mode converter connected to the input waveguide, the first mode converter having a double-layer tapered structure; 第二模式转换器,位于所述第一模式转换器的一侧并与所述第一模式转换器之间具有间距,所述第二模式转化器与所述第一模式转换器的结构相同且对称设置;The second mode converter is located on one side of the first mode converter and has a space between the first mode converter and the second mode converter, the second mode converter and the first mode converter have the same structure and Symmetrical settings; 连接臂,位于所述第一模式转换器与所述第二模式转换器之间,一端与所述第一模式转换器相连接,另一端与所述第二模式转换器相连接,且所述连接臂包括直波导段;a connecting arm, located between the first mode converter and the second mode converter, one end is connected with the first mode converter, the other end is connected with the second mode converter, and the the connecting arm includes a straight waveguide segment; 输出波导,与所述第二模式转换器连接,以输出包括TM0模式光的混合模式输出光;an output waveguide, connected to the second mode converter, to output mixed mode output light including TM0 mode light; 所述第一模式转换器包括:依次相连接的第一对称传输段、第二对称传输段和第三对称传输段;所述第一对称传输段与所述输入波导连接,所述第三对称传输段与所述连接臂连接;所述第二模式转换器包括:依次相连接的第四对称传输段、第五对称传输段和第六对称传输段;所述第四对称传输段与所述连接臂连接,所述第六对称传输段与所述输出波导连接;所述第一对称传输段包括第一上波导段和位于其下方且关于其对称的第一下波导段;所述第二对称传输段包括第二上波导段和位于其下方且关于其对称的第二下波导段;所述第五对称传输段包括第五上波导段和位于其下方且关于其对称的第五下波导段;所述第六对称传输段包括第六上波导段和位于其下方且关于其对称的第六下波导段,以构成所述双层锥形结构;The first mode converter includes: a first symmetrical transmission section, a second symmetrical transmission section and a third symmetrical transmission section connected in sequence; the first symmetrical transmission section is connected with the input waveguide, and the third symmetrical transmission section is connected to the input waveguide. The transmission section is connected with the connecting arm; the second mode converter includes: a fourth symmetrical transmission section, a fifth symmetrical transmission section and a sixth symmetrical transmission section connected in sequence; the fourth symmetrical transmission section is connected to the The connecting arm is connected, and the sixth symmetrical transmission section is connected with the output waveguide; the first symmetrical transmission section includes a first upper waveguide section and a first lower waveguide section located below and symmetrical about it; the second The symmetric transmission section includes a second upper waveguide section and a second lower waveguide section located below and symmetric about it; the fifth symmetric transmission section includes a fifth upper waveguide section and a fifth lower waveguide section located below and symmetric about it segment; the sixth symmetrical transmission segment includes a sixth upper waveguide segment and a sixth lower waveguide segment located below and symmetric about it, so as to form the double-layered tapered structure; 其中,自所述输入波导段输入TM0模式或者TE1模式的入射光;在所述第一对称传输段,TM0和TE1的有效折射率相等,TM0模式转换为TE1模式;在所述第二对称传输段,部分TE1模式光转换回TM0模式光,以得到TM0和TE1的混合模式的光;所述连接臂的宽度保证了TM0、TE1模式的光在其中传输时有效折射率相对于温度的变化率相等。Wherein, the incident light of TM0 mode or TE1 mode is input from the input waveguide section; in the first symmetrical transmission section, the effective refractive indices of TM0 and TE1 are equal, and the TM0 mode is converted to the TE1 mode; in the second symmetrical transmission section segment, part of the TE1 mode light is converted back to the TM0 mode light to obtain the mixed mode light of TM0 and TE1; the width of the connecting arm ensures the change rate of the effective refractive index relative to the temperature when the TM0 and TE1 mode light is transmitted in it equal. 2.根据权利要求1所述的基于TM0模式光的马赫曾德尔干涉仪,其特征在于,所述第一下波导段与所述第一上波导段的厚度之和、所述第二下波导段与所述第二上波导段的厚度之和及所述第三对称传输段的厚度相等;所述第四对称传输段的厚度、所述第五下波导段与所述第五上波导段的厚度之和及所述第六下波导段与所述第六上波导段的厚度之和相等。2 . The Mach-Zehnder interferometer based on TM0 mode light according to claim 1 , wherein the sum of the thicknesses of the first lower waveguide segment and the first upper waveguide segment, the second lower waveguide The sum of the thicknesses of the second upper waveguide segment and the third symmetrical transmission segment is equal to the thickness of the third symmetrical transmission segment; the thicknesses of the fourth symmetrical transmission segment, the fifth lower waveguide segment and the fifth upper waveguide segment are equal. and the sum of the thicknesses of the sixth lower waveguide segment and the sixth upper waveguide segment is equal. 3.根据权利要求2所述的基于TM0模式光的马赫曾德尔干涉仪,其特征在于,所述第一上波导段与所述第一下波导段的厚度相等,所述输入波导的厚度为所述第一上波导厚度的2倍;所述第二上波导段与所述第二下波导段的厚度相等;所述第五上波导段与所述第五下波导段的厚度相等;所述第六上波导段与所述第六下波导段的厚度相等。3 . The Mach-Zehnder interferometer based on TM0 mode light according to claim 2 , wherein the thicknesses of the first upper waveguide segment and the first lower waveguide segment are equal, and the thickness of the input waveguide is 3 . The thickness of the first upper waveguide section is twice the thickness of the first upper waveguide section; the thicknesses of the second upper waveguide section and the second lower waveguide section are equal; the thicknesses of the fifth upper waveguide section and the fifth lower waveguide section are equal; The thicknesses of the sixth upper waveguide section and the sixth lower waveguide section are equal. 4.根据权利要求1所述的基于TM0模式光的马赫曾德尔干涉仪,其特征在于,所述第一下波导段具有窄端面和宽端面,所述第一上波导段具有窄端面和宽端面,且所述第一下波导段的窄端面与所述第一上波导段的窄端面宽度相等,所述第一下波导段的宽端面大出所述第一上波导段宽端面两侧各自预设距离;所述第二下波导段具有窄端面和宽端面,所述第二上波导段具有窄端面和宽端面,且所述第二下波导段的宽端面与所述第一下波导段的宽端面的宽度相等,所述第二上波导段的窄端面与所述第一上波导段的宽端面连接且宽度相等,所述第二下波导段的窄端面与所述第二上波导段的宽端面的宽度相等;所述第五下波导段具有窄端面和宽端面,所述第五上波导段具有窄端面和宽端面,且所述第五下波导段的窄端面与所述第五上波导段的宽端面的宽度相等;所述第六下波导段具有窄端面和宽端面,所述第六上波导段具有窄端面和宽端面,且所述第六下波导段的窄端面与所述第六上波导段的窄端面宽度相等且与所述输出波导连接,所述第六下波导段的宽端面的宽度与第五下波导段的宽端面的宽度相等,所述第六下波导段的宽端面大出所述第六上波导段宽端面两侧各自所述预设距离。4 . The Mach-Zehnder interferometer based on TM0 mode light according to claim 1 , wherein the first lower waveguide segment has a narrow end face and a wide end face, and the first upper waveguide segment has a narrow end face and a wide end face 4 . The width of the narrow end face of the first lower waveguide segment is equal to the width of the narrow end face of the first upper waveguide segment, and the wide end face of the first lower waveguide segment is larger than the two sides of the wide end face of the first upper waveguide segment. respectively preset distances; the second lower waveguide segment has a narrow end surface and a wide end surface, the second upper waveguide segment has a narrow end surface and a wide end surface, and the wide end surface of the second lower waveguide segment is the same as the first lower waveguide segment. The width of the wide end face of the waveguide section is equal, the narrow end face of the second upper waveguide section is connected to the wide end face of the first upper waveguide section and has the same width, and the narrow end face of the second lower waveguide section is the same as the second upper waveguide section. The widths of the wide end faces of the upper waveguide segment are equal; the fifth lower waveguide segment has a narrow end face and a wide end face, the fifth upper waveguide segment has a narrow end face and a wide end face, and the narrow end face of the fifth lower waveguide segment is the same as the width. The widths of the wide end faces of the fifth upper waveguide section are equal; the sixth lower waveguide section has a narrow end face and a wide end face, the sixth upper waveguide section has a narrow end face and a wide end face, and the sixth lower waveguide section has a narrow end face and a wide end face. The width of the narrow end face is equal to the narrow end face of the sixth upper waveguide segment and is connected to the output waveguide, and the width of the wide end face of the sixth lower waveguide segment is equal to the width of the wide end face of the fifth lower waveguide segment, so The wide end face of the sixth lower waveguide segment is larger than the preset distance on both sides of the broad end face of the sixth upper waveguide segment. 5.根据权利要求4所述的基于TM0模式光的马赫曾德尔干涉仪,其特征在于,所述输入波导的宽度为0.40μm-0.50μm,所述第一上波导的窄端面的宽度为0.40μm-0.50μm,所述第一上波导段的宽端面的宽度为0.50μm-0.60μm,所述预设距离为0.45μm-0.55μm,所述第二上波导的宽端面的宽度为0.57μm-0.67μm,所述第三对称传输段的窄端面宽度为0.40μm-0.50μm;所述第一对称传输段的长度为28μm-29μm,所述第二对称传输段的长度为24μm-26μm,所述第三对称传输段的长度为5μm-10μm;所述连接臂的所述直波导段的宽度为0.40μm-0.50μm,所述第五上波导的宽端面的宽度为0.57μm-0.67μm,所述第五上波导的窄端面的宽度为0.40μm-0.50μm,所述第六上波导段的宽端面的宽度为0.50μm-0.60μm,所述第四对称传输段的窄端面宽度为0.40μm-0.50μm;所述第六对称传输段的长度为28μm-29μm,所述第五对称传输段的长度为24μm-26μm,所述第四对称传输段的长度为5μm-10μm。5 . The Mach-Zehnder interferometer based on TM0 mode light according to claim 4 , wherein the width of the input waveguide is 0.40 μm-0.50 μm, and the width of the narrow end face of the first upper waveguide is 0.40 μm. 6 . μm-0.50 μm, the width of the wide end face of the first upper waveguide segment is 0.50 μm-0.60 μm, the preset distance is 0.45 μm-0.55 μm, and the width of the wide end face of the second upper waveguide is 0.57 μm -0.67μm, the width of the narrow end face of the third symmetrical transmission section is 0.40μm-0.50μm; the length of the first symmetrical transmission section is 28μm-29μm, the length of the second symmetrical transmission section is 24μm-26μm, The length of the third symmetrical transmission section is 5 μm-10 μm; the width of the straight waveguide section of the connecting arm is 0.40 μm-0.50 μm, and the width of the wide end face of the fifth upper waveguide is 0.57 μm-0.67 μm , the width of the narrow end face of the fifth upper waveguide is 0.40 μm-0.50 μm, the width of the wide end face of the sixth upper waveguide segment is 0.50 μm-0.60 μm, and the width of the narrow end face of the fourth symmetrical transmission segment is 0.40 μm-0.50 μm; the length of the sixth symmetrical transmission segment is 28 μm-29 μm, the length of the fifth symmetrical transmission segment is 24 μm-26 μm, and the length of the fourth symmetrical transmission segment is 5 μm-10 μm. 6.根据权利要求1所述的基于TM0模式光的马赫曾德尔干涉仪,其特征在于,所述马赫曾德尔干涉仪包括SOI衬底,所述SOI衬底包括底层硅层、埋氧层及顶层硅层,所述第一模式转换器、所述连接臂及所述第二模式转换器均通过刻蚀所述顶层硅层而形成。6 . The Mach-Zehnder interferometer based on TM0 mode light according to claim 1 , wherein the Mach-Zehnder interferometer comprises an SOI substrate, and the SOI substrate comprises an underlying silicon layer, a buried oxide layer and The top silicon layer, the first mode converter, the connecting arm and the second mode converter are all formed by etching the top silicon layer. 7.根据权利要求6所述的基于TM0模式光的马赫曾德尔干涉仪,其特征在于,所述马赫曾德尔干涉仪还包括保护层,所述保护层位于所述埋氧层的上表面,且完全覆盖所述第一模式转换器、所述连接臂及所述第二模式转换器。7. The Mach-Zehnder interferometer based on TM0 mode light according to claim 6, wherein the Mach-Zehnder interferometer further comprises a protective layer, and the protective layer is located on the upper surface of the buried oxygen layer, And completely cover the first mode converter, the connecting arm and the second mode converter. 8.根据权利要求1所述的基于TM0模式光的马赫曾德尔干涉仪,其特征在于,所述连接臂的所述直波导段的宽度为569nm。8 . The Mach-Zehnder interferometer based on TM0 mode light according to claim 1 , wherein the width of the straight waveguide section of the connecting arm is 569 nm. 9 . 9.一种如权利要求1至8中任一项所述的基于TM0模式光的马赫曾德尔干涉仪的制备方法,其特征在于,所述制备方法包括步骤:9. A preparation method of a Mach-Zehnder interferometer based on TMO mode light as described in any one of claims 1 to 8, wherein the preparation method comprises the steps: 提供SOI衬底,所述SOI衬底包括底层硅层、埋氧层及顶层硅层;An SOI substrate is provided, the SOI substrate includes a bottom silicon layer, a buried oxide layer and a top silicon layer; 刻蚀所述顶层硅层,以形成所述第一模式转换器、所述连接臂及所述第二模式转换器。The top silicon layer is etched to form the first mode converter, the connecting arm and the second mode converter.
CN202110014134.9A 2021-01-06 2021-01-06 Mach-Zehnder interferometer based on TM0 mode light and preparation method Active CN112817086B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110014134.9A CN112817086B (en) 2021-01-06 2021-01-06 Mach-Zehnder interferometer based on TM0 mode light and preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110014134.9A CN112817086B (en) 2021-01-06 2021-01-06 Mach-Zehnder interferometer based on TM0 mode light and preparation method

Publications (2)

Publication Number Publication Date
CN112817086A CN112817086A (en) 2021-05-18
CN112817086B true CN112817086B (en) 2022-08-02

Family

ID=75857942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110014134.9A Active CN112817086B (en) 2021-01-06 2021-01-06 Mach-Zehnder interferometer based on TM0 mode light and preparation method

Country Status (1)

Country Link
CN (1) CN112817086B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117055161B (en) * 2023-08-18 2024-09-17 南通大学 Adiabatic optical circulator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158850A (en) * 2015-07-23 2015-12-16 电子科技大学 Electro-optic mode converter with Mach-Zehnder interferometer structure and implementing method thereof
CN105223647A (en) * 2015-11-04 2016-01-06 江苏尚飞光电科技有限公司 A kind of polarization beam splitting spinner and method for designing thereof
CN105785507A (en) * 2014-12-26 2016-07-20 江苏尚飞光电科技有限公司 Polarization beam-splitting rotator
CN108227076A (en) * 2016-12-09 2018-06-29 颖飞公司 Broadband Polarization Beam Rotator Based on Silicon Waveguide
CN109283616A (en) * 2018-12-10 2019-01-29 中国科学院上海微系统与信息技术研究所 Temperature-Insensitive Mach-Zehnder Interferometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105785507A (en) * 2014-12-26 2016-07-20 江苏尚飞光电科技有限公司 Polarization beam-splitting rotator
CN105158850A (en) * 2015-07-23 2015-12-16 电子科技大学 Electro-optic mode converter with Mach-Zehnder interferometer structure and implementing method thereof
CN105223647A (en) * 2015-11-04 2016-01-06 江苏尚飞光电科技有限公司 A kind of polarization beam splitting spinner and method for designing thereof
CN108227076A (en) * 2016-12-09 2018-06-29 颖飞公司 Broadband Polarization Beam Rotator Based on Silicon Waveguide
CN109283616A (en) * 2018-12-10 2019-01-29 中国科学院上海微系统与信息技术研究所 Temperature-Insensitive Mach-Zehnder Interferometer

Also Published As

Publication number Publication date
CN112817086A (en) 2021-05-18

Similar Documents

Publication Publication Date Title
US20080193080A1 (en) Interface device for performing mode transformation in optical waveguides
US20080193079A1 (en) Interface Device For Performing Mode Transformation in Optical Waveguides
CN112230338B (en) Ultra-wideband on-chip polarization beam splitting rotator based on reverse biconical asymmetric coupler
JP2007114253A (en) Waveguide-type optical branching element
Torrijos-Morán et al. Ultra-compact optical switches using slow light bimodal silicon waveguides
Chen et al. Reconfigurable optical interleaver modules with tunable wavelength transfer matrix function using polymer photonics lightwave circuits
CN112817086B (en) Mach-Zehnder interferometer based on TM0 mode light and preparation method
Chen et al. Coupling-controlled multiport thermo-optic switch using polymer waveguide array
US11520175B2 (en) Active region-less modulator and method
CN104090375A (en) Optical isolating device and method
CN111758055B (en) Waveguide type optical interferometer loop
CN115291321A (en) Mode-insensitive polymer variable optical attenuator based on two-stage MZI structure
JP2024533557A (en) Electro-optical modulator, its manufacturing method, and optical communication system
CN105824075A (en) Folded reflection-type arrayed waveguide grating wavelength division multiplexer assisted by micro-ring reflective optical waveguide
CN114675373A (en) Low insertion loss, large bandwidth and compact multimode interference coupler based on thick Si3N4 material
Sabri et al. Broadband SiN interleaver with a ring assisted MZI using a tapered MMI coupler
CN109283616B (en) Temperature-insensitive Mach-Zehnder interferometer
CN216434437U (en) Wavelength selection all-optical switch based on surface plasmon polaritons
CN1845484B (en) Structure of realizing ROADM and method for manufacturing same
CN105549151A (en) Optical switch based on plane waveguide and manufacturing method thereof
CN115755272A (en) Polymer/silicon nitride hybrid integrated variable optical attenuator and preparation method thereof
CN110426865B (en) Thermo-optical switch utilizing guided mode reflection displacement effect and multimode interference effect in silicon waveguide corner mirror
US11796738B2 (en) Temperature-insensitive Mach-Zehnder interferometer
Wangüemert-Pérez et al. Bricked patterning: a new concept to enhance the capabilities of subwavelength grating waveguides
JP5759039B1 (en) Optical coupling structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant