[go: up one dir, main page]

CN112820633B - Gallium nitride layer and its homoepitaxial growth method - Google Patents

Gallium nitride layer and its homoepitaxial growth method Download PDF

Info

Publication number
CN112820633B
CN112820633B CN202110048565.7A CN202110048565A CN112820633B CN 112820633 B CN112820633 B CN 112820633B CN 202110048565 A CN202110048565 A CN 202110048565A CN 112820633 B CN112820633 B CN 112820633B
Authority
CN
China
Prior art keywords
gallium nitride
nitride substrate
edge
nitride layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110048565.7A
Other languages
Chinese (zh)
Other versions
CN112820633A (en
Inventor
罗晓菊
王颖慧
特洛伊·乔纳森·贝克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiate Semiconductor Technology Shanghai Co ltd
Original Assignee
Jiate Semiconductor Technology Shanghai Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiate Semiconductor Technology Shanghai Co ltd filed Critical Jiate Semiconductor Technology Shanghai Co ltd
Priority to CN202110048565.7A priority Critical patent/CN112820633B/en
Publication of CN112820633A publication Critical patent/CN112820633A/en
Application granted granted Critical
Publication of CN112820633B publication Critical patent/CN112820633B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The application specifically relates to a gallium nitride layer and a homoepitaxial growth method thereof, comprising the following steps: providing a gallium nitride substrate, wherein the crystal face of the gallium nitride substrate is a C crystal face, or the crystal face of the gallium nitride substrate is a crystal face which forms an off-angle alpha with the C crystal face; processing the edge of the gallium nitride substrate so that the (1-101) face is exposed by the edge of the gallium nitride substrate; and carrying out homoepitaxy on the surface of the gallium nitride substrate to obtain a gallium nitride layer which is grown in a homoepitaxy manner. The homoepitaxial growth method of the gallium nitride layer in the embodiment can avoid the formation of winged crystals, further avoid micro-cracks, fragments and pits formed by larger stress and elastic deformation between the gallium nitride layer epitaxially grown on the edge of the gallium nitride substrate and the gallium nitride layer epitaxially grown on the surface of the gallium nitride substrate, reduce dislocation density in the epitaxially grown gallium nitride layer and improve the quality of the epitaxially grown gallium nitride layer.

Description

氮化镓层及其同质外延生长方法Gallium nitride layer and its homoepitaxial growth method

技术领域Technical field

本申请属于半导体技术领域,具体涉及一种氮化镓层及其同质外延生长方法。The present application belongs to the field of semiconductor technology, and specifically relates to a gallium nitride layer and its homoepitaxial growth method.

背景技术Background technique

在已有的氮化镓(GaN)衬底上继续生长氮化镓层即为氮化镓的同质外延生长。然后,由于氮化镓衬底边缘处的晶面与氮化镓衬底的表面并非在同一个晶面,而各个晶面均可以作为晶种外延生长氮化镓,又不同晶面上外延生长氮化镓的生长晶向及生长速率均不相同,这样在外延生长过程中就很容易导致氮化镓衬底的边缘生长出与氮化镓衬底表面生长的氮化镓主体材料晶向不同的氮化镓材料;氮化镓的边缘外延生长的上述氮化镓材料成为翼晶(wings),翼晶的存在会导致氮化镓衬底边缘外延生长的氮化镓层与氮化镓衬底表面外延生长的氮化镓层之间存在较大的应力及弹性变形,从而容易导致边缘微裂纹、破片、凹坑(pits)的形成,如图1所示,还可以导致外延生长的氮化镓层中的位错密度大幅增加,从而降低同质外延生长的氮化镓层的良品率及质量。Continuing to grow a gallium nitride layer on an existing gallium nitride (GaN) substrate is the homoepitaxial growth of gallium nitride. Then, since the crystal plane at the edge of the gallium nitride substrate is not on the same crystal plane as the surface of the gallium nitride substrate, each crystal plane can be used as a seed to epitaxially grow gallium nitride, and the epitaxial growth is on different crystal planes. The growth crystal orientation and growth rate of gallium nitride are different, so during the epitaxial growth process, it is easy to cause the growth of the edge of the gallium nitride substrate to be different from the crystal orientation of the gallium nitride host material grown on the surface of the gallium nitride substrate. Gallium nitride material; the above-mentioned gallium nitride material grown epitaxially on the edge of gallium nitride becomes wings. The existence of wings will cause the gallium nitride layer epitaxially grown on the edge of the gallium nitride substrate to be in contact with the gallium nitride liner. There is large stress and elastic deformation between the epitaxially grown gallium nitride layers on the bottom surface, which can easily lead to the formation of edge micro-cracks, fragments, and pits (pits). As shown in Figure 1, it can also cause epitaxially grown nitrogen The dislocation density in the gallium layer increases significantly, thereby reducing the yield and quality of the homoepitaxially grown gallium nitride layer.

发明内容Contents of the invention

基于此,有必要针对上述背景技术中的问题,提供一种能够解决上述问题的氮化镓层及其同质外延生长方法。Based on this, it is necessary to provide a gallium nitride layer and its homoepitaxial growth method that can solve the above problems in the background technology.

本申请的一方面提供一种氮化镓层的同质外延生长方法,包括:One aspect of this application provides a homoepitaxial growth method of a gallium nitride layer, including:

提供氮化镓衬底,所述氮化镓衬底的晶面为C晶面,或所述氮化镓衬底的晶面为与C晶面呈偏角(offcut)α的晶面,所述偏角α的取值范围为:0°≤α≤62°或64°≤α≤90°;A gallium nitride substrate is provided, the crystal plane of the gallium nitride substrate is a C crystal plane, or the crystal plane of the gallium nitride substrate is a crystal plane with an offcut angle α from the C crystal plane, so The value range of the deflection angle α is: 0°≤α≤62° or 64°≤α≤90°;

对所述氮化镓衬底的边缘进行处理,以使得所述氮化镓衬底的边缘暴露出(1-101)面;Process the edge of the gallium nitride substrate so that the edge of the gallium nitride substrate exposes the (1-101) plane;

于所述氮化镓衬底的表面进行同质外延,以得到同质外延生长的氮化镓层。Homoepitaxial growth is performed on the surface of the gallium nitride substrate to obtain a homoepitaxially grown gallium nitride layer.

上述实施例中的氮化镓层的同质外延生长方法中,通过先对氮化镓衬底的边缘进行处理,使得氮化镓衬底的边缘暴露出(1-101)面,可以使得在氮化镓衬底的边缘及表面进行同质外延生长氮化镓层时形成晶面相同的氮化镓成核层,进而可以在氮化镓衬底的边缘及表面以相同或相近的横向和纵向生长速度生长氮化镓层,避免翼晶的形成,进而避免由于氮化镓衬底边缘外延生长的氮化镓层与氮化镓衬底表面外延生长的氮化镓层之间存在较大的应力及弹性变形而形成的微裂片、破片及凹坑,降低了外延生长的氮化镓层中的位错密度,提高了外延生长的氮化镓层的质量。In the homoepitaxial growth method of the gallium nitride layer in the above embodiment, the edge of the gallium nitride substrate is first processed so that the edge of the gallium nitride substrate exposes the (1-101) surface, so that the When the gallium nitride layer is homoepitaxially grown on the edge and surface of the gallium nitride substrate, a gallium nitride nucleation layer with the same crystal plane is formed, and then the same or similar lateral and The gallium nitride layer is grown at a longitudinal growth rate to avoid the formation of wing crystals, thereby avoiding the large gap between the epitaxially grown gallium nitride layer at the edge of the gallium nitride substrate and the epitaxially grown gallium nitride layer on the surface of the gallium nitride substrate. The micro-cracks, fragments and pits formed by the stress and elastic deformation reduce the dislocation density in the epitaxially grown gallium nitride layer and improve the quality of the epitaxially grown gallium nitride layer.

在其中一个实施例中,对所述氮化镓衬底的边缘进行处理,以使得所述氮化镓衬底的边缘暴露出(1-101)面包括:In one embodiment, processing the edge of the gallium nitride substrate so that the edge of the gallium nitride substrate exposes the (1-101) surface includes:

对所述氮化镓衬底的边缘进行切割;Cutting the edge of the gallium nitride substrate;

对切割后的所述氮化镓衬底的边缘进行倒角,直至所述氮化镓衬底的边缘暴露出(1-101)面。The edge of the cut gallium nitride substrate is chamfered until the edge of the gallium nitride substrate exposes the (1-101) surface.

在其中一个实施例中,对所述氮化镓衬底的边缘进行处理,以使得所述氮化镓衬底的边缘暴露出(1-101)面包括:In one embodiment, processing the edge of the gallium nitride substrate so that the edge of the gallium nitride substrate exposes the (1-101) surface includes:

对所述氮化镓衬底的边缘进行切割;Cutting the edge of the gallium nitride substrate;

对切割后的所述氮化镓衬底的边缘进行倒角;chamfering the edges of the cut gallium nitride substrate;

对倒角后的所述氮化镓衬底的边缘进行选择性刻蚀,直至所述氮化镓衬底的边缘暴露出(1-101)面。The edge of the chamfered gallium nitride substrate is selectively etched until the edge of the gallium nitride substrate exposes the (1-101) surface.

在其中一个实施例中,对所述氮化镓衬底的边缘进行处理,以使得所述氮化镓衬底的边缘暴露出(1-101)面包括:In one embodiment, processing the edge of the gallium nitride substrate so that the edge of the gallium nitride substrate exposes the (1-101) surface includes:

对所述氮化镓衬底的边缘行选择性刻蚀,直至所述氮化镓衬底的边缘暴露出(1-101)面。The edge of the gallium nitride substrate is selectively etched until the edge of the gallium nitride substrate exposes the (1-101) plane.

在其中一个实施例中,使用氢氧化钾溶液对所述氮化镓衬底的边缘进行选择性刻蚀。In one embodiment, a potassium hydroxide solution is used to selectively etch the edge of the gallium nitride substrate.

在其中一个实施例中,所述氢氧化钾溶液的温度为160℃~230℃。In one embodiment, the temperature of the potassium hydroxide solution is 160°C to 230°C.

在其中一个实施例中,所述氢氧化钾溶液的浓度为70g/ml至230℃下的氢氧化钾的饱和浓度之间。In one embodiment, the concentration of the potassium hydroxide solution is between 70 g/ml and the saturated concentration of potassium hydroxide at 230°C.

在其中一个实施例中,所述氢氧化钾溶液对所述氮化镓衬底的边缘进行选择性刻蚀的刻蚀速率为0.005μm/min~2μm/min。In one embodiment, the etching rate of the potassium hydroxide solution for selectively etching the edge of the gallium nitride substrate is 0.005 μm/min to 2 μm/min.

在其中一个实施例中,将所述氮化镓衬底置于外延炉内,采用HVPE、MOCVD或氨热法进行同质外延。In one embodiment, the gallium nitride substrate is placed in an epitaxial furnace, and homoepitaxial growth is performed using HVPE, MOCVD or ammonothermal method.

在其中一个实施例中,对所述氮化镓衬底的边缘进行处理后,且于所述氮化镓衬底的表面进行同质外延之前,还包括:In one embodiment, after processing the edge of the gallium nitride substrate and before performing homoepitaxial growth on the surface of the gallium nitride substrate, the method further includes:

对边缘进行处理后的所述氮化镓衬底进行清洗。The edge-processed gallium nitride substrate is cleaned.

本申请的还提供一种氮化镓层,所述氮化镓层采用上述任一方案中所述的同质外延生长方法而形成。The present application also provides a gallium nitride layer, which is formed using the homoepitaxial growth method described in any of the above solutions.

本申请中的氮化镓层在氮化镓衬底的边缘及表面以相同或相近的横向和纵向生长速度生长而成,不存在翼晶的形成,位于氮化镓衬底边缘处的氮化镓层与位于氮化镓衬底表面的氮化镓层之间不存在较大的应力及弹性变形,不会造成微裂片、破片及凹坑,氮化镓层中的位错密度交底,氮化镓层具有较高的质量。The gallium nitride layer in this application is grown on the edge and surface of the gallium nitride substrate at the same or similar lateral and longitudinal growth rates. There is no formation of wing crystals. The nitride layer located at the edge of the gallium nitride substrate There is no large stress and elastic deformation between the gallium layer and the gallium nitride layer located on the surface of the gallium nitride substrate, which will not cause micro-cracks, fragments and pits. The dislocation density in the gallium nitride layer is low, and the nitrogen The gallium layer has higher quality.

附图说明Description of the drawings

为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present application. Those of ordinary skill in the art can also obtain drawings of other embodiments based on these drawings without exerting creative efforts.

图1为现有技术中在氮化镓衬底外延生长氮化镓时,出现微裂纹及破片的示意图。Figure 1 is a schematic diagram showing the occurrence of microcracks and fragments when epitaxially growing gallium nitride on a gallium nitride substrate in the prior art.

图2为本申请一实施例中提供的氮化镓层的同质外延生长方法的流程图。FIG. 2 is a flow chart of a homoepitaxial growth method of a gallium nitride layer provided in an embodiment of the present application.

图3至图5为本申请不同实施例中提供的氮化镓层的同质外延生长方法中的对所述氮化镓衬底的边缘进行处理的流程图。3 to 5 are flow charts of processing the edge of the gallium nitride substrate in the homoepitaxial growth method of the gallium nitride layer provided in different embodiments of the present application.

具体实施方式Detailed ways

为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。In order to facilitate understanding of the present application, the present application will be described more fully below with reference to the relevant drawings. The preferred embodiments of the present application are shown in the accompanying drawings. However, the present application may be implemented in many different forms and is not limited to the embodiments described herein. Rather, these embodiments are provided so that a thorough understanding of the disclosure of the present application will be provided.

除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which this application belongs. The terminology used herein in the description of the application is for the purpose of describing specific embodiments only and is not intended to limit the application. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。Where "includes," "has," and "includes" are used herein, another component may also be added unless an explicit qualifying term is used, such as "only," "consisting of," etc. . Unless mentioned to the contrary, terms in the singular may include the plural and shall not be construed as being one in number.

本发明中,“偏角”一词为英文单词“offcut”的中文翻译。In the present invention, the word "offcut" is the Chinese translation of the English word "offcut".

在一个实施例中,请参考图2,本申请提供一种氮化镓层的同质外延生长方法,包括如下步骤:In one embodiment, please refer to Figure 2. This application provides a homoepitaxial growth method of a gallium nitride layer, including the following steps:

S10:提供氮化镓衬底,氮化镓衬底的晶面为C晶面,或氮化镓衬底的晶面为与C晶面呈偏角α的晶面,偏角α的取值范围为:0°≤α≤62°或64°≤α≤90°;S10: Provide a gallium nitride substrate. The crystal plane of the gallium nitride substrate is the C crystal plane, or the crystal face of the gallium nitride substrate is a crystal plane with a declination angle α from the C crystal plane. The value of the declination angle α The range is: 0°≤α≤62° or 64°≤α≤90°;

S20:对氮化镓衬底的边缘进行处理,以使得氮化镓衬底的边缘暴露出(1-101)面;S20: Process the edge of the gallium nitride substrate so that the edge of the gallium nitride substrate exposes the (1-101) surface;

S30:于氮化镓衬底的表面进行同质外延,以得到同质外延生长的氮化镓层。S30: Perform homoepitaxial growth on the surface of the gallium nitride substrate to obtain a homoepitaxially grown gallium nitride layer.

上述实施例中的氮化镓层的同质外延生长方法中,通过先对氮化镓衬底的边缘进行处理,使得氮化镓衬底的边缘暴露出(1-101)面,可以使得在氮化镓衬底的边缘及表面进行同质外延生长氮化镓层时形成晶面相同的氮化镓成核层,进而可以在氮化镓衬底的边缘及表面以相同或相近的横向和纵向生长速度生长氮化镓层,避免翼晶的形成,进而避免由于氮化镓衬底边缘外延生长的氮化镓层与氮化镓衬底表面外延生长的氮化镓层之间存在较大的应力及弹性变形而形成的微裂片、破片及凹坑,降低了外延生长的氮化镓层中的位错密度,提高了外延生长的氮化镓层的质量。In the homoepitaxial growth method of the gallium nitride layer in the above embodiment, the edge of the gallium nitride substrate is first processed so that the edge of the gallium nitride substrate exposes the (1-101) surface, so that the When the gallium nitride layer is homoepitaxially grown on the edge and surface of the gallium nitride substrate, a gallium nitride nucleation layer with the same crystal plane is formed, and then the same or similar lateral and The gallium nitride layer is grown at a longitudinal growth rate to avoid the formation of wing crystals, thereby avoiding the large gap between the epitaxially grown gallium nitride layer at the edge of the gallium nitride substrate and the epitaxially grown gallium nitride layer on the surface of the gallium nitride substrate. The micro-cracks, fragments and pits formed by the stress and elastic deformation reduce the dislocation density in the epitaxially grown gallium nitride layer and improve the quality of the epitaxially grown gallium nitride layer.

在步骤S10中,请参阅图2中的S10步骤,提供氮化镓衬底,所述氮化镓衬底的晶面为C晶面,或所述氮化镓衬底的晶面为与C晶面呈偏角α的晶面,所述偏角α的取值范围为:0°≤α≤62°或64°≤α≤90°。In step S10, please refer to step S10 in Figure 2 to provide a gallium nitride substrate. The crystal plane of the gallium nitride substrate is the C crystal plane, or the crystal plane of the gallium nitride substrate is the same as the C crystal plane. The crystal plane has a declination angle α, and the value range of the declination angle α is: 0°≤α≤62° or 64°≤α≤90°.

在一个示例中,氮化镓衬底的晶面可以为C晶面,即(0001)面,具体的,氮化镓衬底需要进行外延生长氮化镓层的表面可以为C晶面。In one example, the crystal plane of the gallium nitride substrate may be a C crystal plane, that is, the (0001) plane. Specifically, the surface of the gallium nitride substrate on which the gallium nitride layer needs to be epitaxially grown may be a C crystal plane.

在另一个示例中,氮化镓衬底的晶面可以为与C晶面呈偏角(offcut)α的晶面,偏角α的取值范围可以根据实际需要进行设定,在一个示例中,偏角α的取值范围可以为0°≤α≤62°,具体可以为0°、5°、10°、15°、20°、25°、30°、35°、40°、45°、50°、55°、60°或62°等等;在另一个示例中,偏角α的取值范围可以为64°≤α≤90°,具体可以为64°、70°、75°、80°、85°、或90°等等。由于后续步骤对氮化镓衬底的边缘进行处理后暴露出(1-101)面与C晶面的偏角在63°左右,氮化镓衬底的晶面与C晶面的偏角α如果取值63°,会由于加工问题导致氮化镓衬底的边缘过薄,所以氮化镓衬底的晶面与C晶面的偏角α的取值不能选择63°。In another example, the crystal plane of the gallium nitride substrate can be a crystal plane with an offcut angle α from the C crystal plane, and the value range of the offcut angle α can be set according to actual needs. In one example , the value range of the deflection angle α can be 0°≤α≤62°, specifically it can be 0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45° , 50°, 55°, 60° or 62°, etc.; in another example, the value range of the deflection angle α can be 64°≤α≤90°, specifically it can be 64°, 70°, 75°, 80°, 85°, or 90°, etc. Since the edge of the gallium nitride substrate is processed in subsequent steps, the off angle between the (1-101) plane and the C crystal plane is about 63°, and the off angle α between the crystal plane of the gallium nitride substrate and the C crystal plane is If the value is 63°, the edge of the gallium nitride substrate will be too thin due to processing problems, so the value of the off angle α between the crystal plane of the gallium nitride substrate and the C crystal plane cannot be selected to be 63°.

在步骤S20中,请参阅图2中的S20步骤及图3至图5,对氮化镓衬底的边缘进行处理,以使得氮化镓衬底的边缘暴露出(1-101)面。In step S20, please refer to step S20 in Figure 2 and Figures 3 to 5, the edge of the gallium nitride substrate is processed so that the edge of the gallium nitride substrate exposes the (1-101) surface.

在一个示例中,请参阅图3,步骤S20可以包括如下步骤:In an example, referring to Figure 3, step S20 may include the following steps:

S201:对氮化镓衬底的边缘进行切割;S201: Cutting the edge of the gallium nitride substrate;

S202:对切割后的氮化镓衬底的边缘进行选择性刻蚀,直至氮化镓衬底的边缘暴露出(1-101)面。S202: Selectively etch the edge of the cut gallium nitride substrate until the edge of the gallium nitride substrate exposes the (1-101) surface.

具体的,步骤S201中,可以使用但不仅限于磨轮或激光器等切割工具对氮化镓衬底的边缘进行切割。Specifically, in step S201, cutting tools such as grinding wheels or lasers may be used to cut the edge of the gallium nitride substrate, but are not limited thereto.

具体的,步骤S202中,可以使用氢氧化钾(KOH)溶液对氮化镓衬底的边缘进行选择性刻蚀;在该示例中,选择性刻蚀后氮化镓衬底的边缘暴露出(1-101)面。Specifically, in step S202, potassium hydroxide (KOH) solution can be used to selectively etch the edge of the gallium nitride substrate; in this example, after selective etching, the edge of the gallium nitride substrate is exposed ( 1-101) face.

在另一个示例中,如图4所示,步骤S20可以包括如下步骤:In another example, as shown in Figure 4, step S20 may include the following steps:

S201:对氮化镓衬底的边缘进行切割;S201: Cutting the edge of the gallium nitride substrate;

S202:对切割后的氮化镓衬底的边缘进行倒角,直至氮化镓衬底的边缘暴露出(1-101)面。S202: chamfer the edge of the cut gallium nitride substrate until the edge of the gallium nitride substrate exposes the (1-101) surface.

具体的,步骤S201中,可以使用但不仅限于磨轮或激光器等切割工具对氮化镓衬底的边缘进行切割。Specifically, in step S201, cutting tools such as grinding wheels or lasers may be used to cut the edge of the gallium nitride substrate, but are not limited thereto.

具体的,步骤S202中,可以使用但不仅限于磨轮对切割后的氮化镓衬底的边缘进行倒角;在该示例中,倒角后氮化镓衬底的边缘暴露出(1-101)面。Specifically, in step S202, a grinding wheel may be used, but is not limited to, to chamfer the edge of the cut gallium nitride substrate; in this example, the edge of the chamfered gallium nitride substrate is exposed (1-101) noodle.

在又一个示例中,请参阅图5,步骤S20可以包括如下步骤:In yet another example, referring to Figure 5, step S20 may include the following steps:

S201:对氮化镓衬底的边缘进行切割;S201: Cutting the edge of the gallium nitride substrate;

S202:对切割后的氮化镓衬底的边缘进行倒角;S202: chamfer the edge of the cut gallium nitride substrate;

S203:对倒角后的氮化镓衬底的边缘进行选择性刻蚀,直至氮化镓衬底的边缘暴露出(1-101)面。S203: Selectively etch the edge of the chamfered gallium nitride substrate until the edge of the gallium nitride substrate exposes the (1-101) surface.

具体的,步骤S201中,可以使用但不仅限于磨轮或激光器等切割工具对氮化镓衬底的边缘进行切割。Specifically, in step S201, cutting tools such as grinding wheels or lasers may be used to cut the edge of the gallium nitride substrate, but are not limited thereto.

具体的,步骤S202中,可以使用但不仅限于磨轮对切割后的氮化镓衬底的边缘进行倒角;在该示例中,倒角后氮化镓衬底的边缘并未暴露出(1-101)面,但接近暴露出(1-101)面。Specifically, in step S202, a grinding wheel may be used, but is not limited to, to chamfer the edge of the cut gallium nitride substrate; in this example, the edge of the chamfered gallium nitride substrate is not exposed (1- 101) surface, but close to exposing the (1-101) surface.

具体的,步骤S203中,可以使用氢氧化钾(KOH)溶液对氮化镓衬底的边缘进行选择性刻蚀。Specifically, in step S203, potassium hydroxide (KOH) solution may be used to selectively etch the edge of the gallium nitride substrate.

在又一个实施例中,步骤S20可以为对氮化镓衬底的边缘行选择性刻蚀,直至氮化镓衬底的边缘暴露出(1-101)面。具体的,可以使用氢氧化钾(KOH)溶液对氮化镓衬底的边缘进行选择性刻蚀。In another embodiment, step S20 may include selectively etching the edge of the gallium nitride substrate until the edge of the gallium nitride substrate exposes the (1-101) plane. Specifically, potassium hydroxide (KOH) solution can be used to selectively etch the edge of the gallium nitride substrate.

更为具体的,氢氧化钾溶液可以为高温高浓度的氢氧化钾溶液,氢氧化钾溶液的温度为160℃~230℃,譬如,氢氧化钾溶液的温度可以为诶160℃、180℃、200℃或230℃等等。氢氧化钾溶液的浓度为70g/ml(克每毫升)至230℃下的氢氧化钾的饱和浓度之间,本示例中,氢氧化钾溶液的浓度不仅包括70g/ml至230℃下的氢氧化钾的饱和浓度之间的若干个数值范围,也包括70g/ml,还包括30℃下的氢氧化钾的饱和浓度。优选地,氢氧化钾溶液的浓度可以为100g/ml~360g/ml,譬如,可以为100g/ml、150g/ml、200g/ml、250g/ml、300g/ml或360g/ml等等;更为优选地,氢氧化钾溶液的浓度可以为110g/ml~300g/ml,譬如,可以为110g/ml、150g/ml、200g/ml、250g/ml或300g/ml等等。More specifically, the potassium hydroxide solution can be a high-temperature and high-concentration potassium hydroxide solution. The temperature of the potassium hydroxide solution is 160°C to 230°C. For example, the temperature of the potassium hydroxide solution can be 160°C, 180°C, 200℃ or 230℃ etc. The concentration of the potassium hydroxide solution is between 70g/ml (grams per milliliter) and the saturation concentration of potassium hydroxide at 230°C. In this example, the concentration of the potassium hydroxide solution not only includes 70g/ml and hydrogen at 230°C. Several numerical ranges between the saturation concentration of potassium oxide, including 70 g/ml, and the saturation concentration of potassium hydroxide at 30°C. Preferably, the concentration of the potassium hydroxide solution can be 100g/ml~360g/ml, for example, it can be 100g/ml, 150g/ml, 200g/ml, 250g/ml, 300g/ml or 360g/ml, etc.; more Preferably, the concentration of the potassium hydroxide solution can be 110g/ml~300g/ml, for example, it can be 110g/ml, 150g/ml, 200g/ml, 250g/ml or 300g/ml, etc.

在一个示例中,氢氧化钾溶液对氮化镓衬底的边缘进行选择性刻蚀的刻蚀速率可以根据实际需要进行设定,本示例中,氢氧化钾溶液对氮化镓衬底的边缘进行选择性刻蚀的刻蚀速率可以为0.005μm/min~2μm/min;具体的,刻蚀速率可以为0.005μm/min、0.01μm/min、0.05μm/min、0.1μm/min、0.5μm/min、1μm/min、1.5μm/min或2μm/min等等。In one example, the etching rate of the potassium hydroxide solution for selectively etching the edge of the gallium nitride substrate can be set according to actual needs. In this example, the potassium hydroxide solution selectively etches the edge of the gallium nitride substrate. The etching rate for selective etching can be 0.005μm/min~2μm/min; specifically, the etching rate can be 0.005μm/min, 0.01μm/min, 0.05μm/min, 0.1μm/min, 0.5μm /min, 1μm/min, 1.5μm/min or 2μm/min, etc.

在一个可选的示例中,步骤S20之后还可以包括对边缘进行处理后的氮化镓衬底进行清洗的步骤。具体的,可以采用现有半导体领域常用的清洗工艺对边缘处理后的氮化镓衬底进行清洗,譬如,可以使用但不仅限于去离子水对边缘处理后的氮化镓衬底进行清洗。In an optional example, step S20 may also include a step of cleaning the gallium nitride substrate after edge processing. Specifically, the existing cleaning process commonly used in the semiconductor field can be used to clean the gallium nitride substrate after edge processing. For example, but not limited to, deionized water can be used to clean the gallium nitride substrate after edge processing.

需要说明的是,对边缘进行处理后的氮化镓衬底进行清洗后还需对氮化镓衬底进行干燥处理,具体的,可以采用但不仅限于加热工艺对氮化镓衬底进行干燥处理。It should be noted that after cleaning the edge-processed gallium nitride substrate, the gallium nitride substrate needs to be dried. Specifically, the gallium nitride substrate can be dried using, but is not limited to, a heating process. .

在步骤S30中,请参阅图2中的S30步骤,于氮化镓衬底的表面进行同质外延,以得到同质外延生长的氮化镓层。In step S30, please refer to step S30 in FIG. 2 to perform homoepitaxial growth on the surface of the gallium nitride substrate to obtain a homoepitaxially grown gallium nitride layer.

在一个示例中,可以将氮化镓衬底置于外延炉内,采用HVPE(Hydride VaporPhase Epitaxy,氢化物气相外延法)、MOCVD(Metal-organic Chemical VaporDePosition,金属有机化合物化学气相沉积)或氨热法进行同质外延。外延生长的温度及时间为本领域技术人员所知晓,此处不再累述。In one example, the gallium nitride substrate can be placed in an epitaxial furnace, using HVPE (Hydride VaporPhase Epitaxy, hydride vapor phase epitaxy), MOCVD (Metal-organic Chemical VaporDePosition, metal organic compound chemical vapor deposition) or ammonia thermal Method for homogeneous extension. The temperature and time of epitaxial growth are known to those skilled in the art and will not be described again here.

在外延生长氮化镓层的过程中,首先形成成核层,然后再以各个成核层进行横向和纵向的同时生长,进行横向上的合并聚拢,形成连续的块体,而在纵向上进行厚度的增长。形成的成核层一般以六面体的形式存在,形成面为(1-101)面。上述实施例中的氮化镓层的同质外延生长方法中,通过先对氮化镓衬底的边缘进行处理,使得氮化镓衬底的边缘暴露出(1-101)面,可以使得在氮化镓衬底的边缘及表面进行同质外延生长氮化镓层时形成晶面相同的氮化镓成核层,进而可以在氮化镓衬底的边缘及表面以相同或相近的横向和纵向生长速度生长氮化镓层,避免翼晶的形成,进而避免由于氮化镓衬底边缘外延生长的氮化镓层与氮化镓衬底表面外延生长的氮化镓层之间存在较大的应力及弹性变形而形成的微裂片、破片及凹坑(如图1所示),降低了外延生长的氮化镓层中的位错密度,提高了外延生长的氮化镓层的质量。In the process of epitaxial growth of the gallium nitride layer, a nucleation layer is first formed, and then each nucleation layer grows horizontally and vertically at the same time, merging and gathering in the transverse direction to form a continuous block, and then in the longitudinal direction. Growth in thickness. The formed nucleation layer generally exists in the form of a hexahedron, and the formation plane is the (1-101) plane. In the homoepitaxial growth method of the gallium nitride layer in the above embodiment, the edge of the gallium nitride substrate is first processed so that the edge of the gallium nitride substrate exposes the (1-101) surface, so that the When the gallium nitride layer is homoepitaxially grown on the edge and surface of the gallium nitride substrate, a gallium nitride nucleation layer with the same crystal plane is formed, and then the same or similar lateral and The gallium nitride layer is grown at a longitudinal growth rate to avoid the formation of wing crystals, thereby avoiding the large gap between the epitaxially grown gallium nitride layer at the edge of the gallium nitride substrate and the epitaxially grown gallium nitride layer on the surface of the gallium nitride substrate. The micro-cracks, fragments and pits formed by the stress and elastic deformation (as shown in Figure 1) reduce the dislocation density in the epitaxially grown gallium nitride layer and improve the quality of the epitaxially grown gallium nitride layer.

在又一个实施例中,本申请还提供一种氮化镓层,氮化镓层为采用如上述氮化镓层的同质外延生长方法而形成。In yet another embodiment, the present application also provides a gallium nitride layer. The gallium nitride layer is formed by using the above-mentioned homoepitaxial growth method of the gallium nitride layer.

本申请中的氮化镓层在氮化镓衬底的边缘及表面以相同或相近的横向和纵向生长速度生长而成,不存在翼晶的形成,位于氮化镓衬底边缘处的氮化镓层与位于氮化镓衬底表面的氮化镓层之间不存在较大的应力及弹性变形,不会造成微裂片、破片及凹坑,氮化镓层中的位错密度交底,氮化镓层具有较高的质量。The gallium nitride layer in this application is grown on the edge and surface of the gallium nitride substrate at the same or similar lateral and longitudinal growth rates. There is no formation of wing crystals. The nitride layer located at the edge of the gallium nitride substrate There is no large stress and elastic deformation between the gallium layer and the gallium nitride layer located on the surface of the gallium nitride substrate, which will not cause micro-cracks, fragments and pits. The dislocation density in the gallium nitride layer is low, and the nitrogen The gallium layer has higher quality.

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined in any way. To simplify the description, not all possible combinations of the technical features in the above-described embodiments are described. However, as long as there is no contradiction in the combination of these technical features, All should be considered to be within the scope of this manual.

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-described embodiments only express several implementation modes of the present application, and their descriptions are relatively specific and detailed, but they should not be construed as limiting the scope of the patent application. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all fall within the protection scope of the present application. Therefore, the protection scope of this patent application should be determined by the appended claims.

Claims (11)

1.一种氮化镓层的同质外延生长方法,其特征在于,包括:1. A homoepitaxial growth method of a gallium nitride layer, characterized by comprising: 提供氮化镓衬底,所述氮化镓衬底的晶面为与C晶面呈偏角α的晶面,所述偏角α的取值范围为:0°≤α≤62°;A gallium nitride substrate is provided, the crystal plane of the gallium nitride substrate is a crystal plane with an off angle α from the C crystal plane, and the value range of the off angle α is: 0°≤α≤62°; 对所述氮化镓衬底的边缘进行处理,以使得所述氮化镓衬底的边缘暴露出(1-101)面;Process the edge of the gallium nitride substrate so that the edge of the gallium nitride substrate exposes the (1-101) surface; 于所述氮化镓衬底的表面进行同质外延,以得到同质外延生长的氮化镓层。Homoepitaxial growth is performed on the surface of the gallium nitride substrate to obtain a homoepitaxially grown gallium nitride layer. 2.根据权利要求1所述的氮化镓层的同质外延生长方法,其特征在于,对所述氮化镓衬底的边缘进行处理,以使得所述氮化镓衬底的边缘暴露出(1-101)面包括:2. The homoepitaxial growth method of a gallium nitride layer according to claim 1, characterized in that the edge of the gallium nitride substrate is processed so that the edge of the gallium nitride substrate is exposed. (1-101) covers: 对所述氮化镓衬底的边缘进行切割;Cutting the edge of the gallium nitride substrate; 对切割后的所述氮化镓衬底的边缘进行倒角,直至所述氮化镓衬底的边缘暴露出(1-101)面。The edge of the cut gallium nitride substrate is chamfered until the edge of the gallium nitride substrate exposes the (1-101) surface. 3.根据权利要求1所述的氮化镓层的同质外延生长方法,其特征在于,对所述氮化镓衬底的边缘进行处理,以使得所述氮化镓衬底的边缘暴露出(1-101)面包括:3. The homoepitaxial growth method of a gallium nitride layer according to claim 1, characterized in that the edge of the gallium nitride substrate is processed so that the edge of the gallium nitride substrate is exposed. (1-101) covers: 对所述氮化镓衬底的边缘进行切割;Cutting the edge of the gallium nitride substrate; 对切割后的所述氮化镓衬底的边缘进行倒角;chamfering the edges of the cut gallium nitride substrate; 对倒角后的所述氮化镓衬底的边缘进行选择性刻蚀,直至所述氮化镓衬底的边缘暴露出(1-101)面。The edge of the chamfered gallium nitride substrate is selectively etched until the edge of the gallium nitride substrate exposes the (1-101) surface. 4.根据权利要求1所述的氮化镓层的同质外延生长方法,其特征在于,对所述氮化镓衬底的边缘进行处理,以使得所述氮化镓衬底的边缘暴露出(1-101)面包括:4. The homoepitaxial growth method of a gallium nitride layer according to claim 1, characterized in that the edge of the gallium nitride substrate is processed so that the edge of the gallium nitride substrate is exposed. (1-101) covers: 对所述氮化镓衬底的边缘行选择性刻蚀,直至所述氮化镓衬底的边缘暴露出(1-101)面。The edge of the gallium nitride substrate is selectively etched until the edge of the gallium nitride substrate exposes the (1-101) surface. 5.根据权利要求3或4所述的氮化镓层的同质外延生长方法,其特征在于,使用氢氧化钾溶液对所述氮化镓衬底的边缘进行选择性刻蚀。5. The homoepitaxial growth method of a gallium nitride layer according to claim 3 or 4, characterized in that a potassium hydroxide solution is used to selectively etch the edge of the gallium nitride substrate. 6.根据权利要求5所述的氮化镓层的同质外延生长方法,其特征在于,所述氢氧化钾溶液的温度为160℃~230℃。6. The homoepitaxial growth method of a gallium nitride layer according to claim 5, wherein the temperature of the potassium hydroxide solution is 160°C to 230°C. 7.根据权利要求5所述的氮化镓层的同质外延生长方法,其特征在于,所述氢氧化钾溶液的浓度为70g/ml至230℃下的氢氧化钾的饱和浓度之间。7. The homoepitaxial growth method of a gallium nitride layer according to claim 5, wherein the concentration of the potassium hydroxide solution is between 70 g/ml and the saturated concentration of potassium hydroxide at 230°C. 8.根据权利要求5所述的氮化镓层的同质外延生长方法,其特征在于,所述氢氧化钾溶液对所述氮化镓衬底的边缘进行选择性刻蚀的刻蚀速率为0.005μm/min~2μm/min。8. The homoepitaxial growth method of a gallium nitride layer according to claim 5, characterized in that the potassium hydroxide solution selectively etches the edge of the gallium nitride substrate at an etching rate of 0.005μm/min~2μm/min. 9.根据权利要求1所述的氮化镓层的同质外延生长方法,其特征在于,将所述氮化镓衬底置于外延炉内,采用HVPE、MOCVD或氨热法进行同质外延。9. The homoepitaxial growth method of the gallium nitride layer according to claim 1, characterized in that the gallium nitride substrate is placed in an epitaxial furnace, and HVPE, MOCVD or ammonothermal method is used for homoepitaxial growth. . 10.根据权利要求1所述的氮化镓层的同质外延生长方法,其特征在于,对所述氮化镓衬底的边缘进行处理后,且于所述氮化镓衬底的表面进行同质外延之前,还包括:10. The homoepitaxial growth method of a gallium nitride layer according to claim 1, characterized in that after processing the edge of the gallium nitride substrate, the surface of the gallium nitride substrate is Before homogeneous extension, it also includes: 对边缘进行处理后的所述氮化镓衬底进行清洗。The edge-processed gallium nitride substrate is cleaned. 11.一种氮化镓层,其特征在于,所述氮化镓层采用如权利要求1至10中任一项所述的同质外延生长方法而形成。11. A gallium nitride layer, characterized in that the gallium nitride layer is formed by the homoepitaxial growth method according to any one of claims 1 to 10.
CN202110048565.7A 2021-01-14 2021-01-14 Gallium nitride layer and its homoepitaxial growth method Active CN112820633B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110048565.7A CN112820633B (en) 2021-01-14 2021-01-14 Gallium nitride layer and its homoepitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110048565.7A CN112820633B (en) 2021-01-14 2021-01-14 Gallium nitride layer and its homoepitaxial growth method

Publications (2)

Publication Number Publication Date
CN112820633A CN112820633A (en) 2021-05-18
CN112820633B true CN112820633B (en) 2024-01-16

Family

ID=75869229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110048565.7A Active CN112820633B (en) 2021-01-14 2021-01-14 Gallium nitride layer and its homoepitaxial growth method

Country Status (1)

Country Link
CN (1) CN112820633B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769924A1 (en) * 1997-10-20 1999-04-23 Centre Nat Rech Scient PROCESS FOR MAKING AN EPITAXIAL LAYER OF GALLIUM NITRIDE, EPITAXIAL LAYER OF GALLIUM NITRIDE AND OPTOELECTRONIC COMPONENT EQUIPPED WITH SUCH A LAYER
KR20090084533A (en) * 2008-02-01 2009-08-05 삼성코닝정밀유리 주식회사 Gallium nitride base substrate and gallium nitride wafer manufacturing method
CN101919076A (en) * 2009-03-11 2010-12-15 住友电气工业株式会社 Group III nitride semiconductor device, epitaxial substrate and method for manufacturing group III nitride semiconductor device
CN102034853A (en) * 2009-09-24 2011-04-27 住友电气工业株式会社 Nitride semiconductor substrate, semiconductor device, and methods for manufacturing nitride semiconductor substrate and semiconductor device
CN103614769A (en) * 2013-10-25 2014-03-05 中国电子科技集团公司第五十五研究所 Gallium nitride homoepitaxy method based on in situ etching
CN107123588A (en) * 2017-06-26 2017-09-01 镓特半导体科技(上海)有限公司 A kind of gallium nitride wafer piece border processing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769924A1 (en) * 1997-10-20 1999-04-23 Centre Nat Rech Scient PROCESS FOR MAKING AN EPITAXIAL LAYER OF GALLIUM NITRIDE, EPITAXIAL LAYER OF GALLIUM NITRIDE AND OPTOELECTRONIC COMPONENT EQUIPPED WITH SUCH A LAYER
KR20090084533A (en) * 2008-02-01 2009-08-05 삼성코닝정밀유리 주식회사 Gallium nitride base substrate and gallium nitride wafer manufacturing method
CN101919076A (en) * 2009-03-11 2010-12-15 住友电气工业株式会社 Group III nitride semiconductor device, epitaxial substrate and method for manufacturing group III nitride semiconductor device
CN102034853A (en) * 2009-09-24 2011-04-27 住友电气工业株式会社 Nitride semiconductor substrate, semiconductor device, and methods for manufacturing nitride semiconductor substrate and semiconductor device
CN103614769A (en) * 2013-10-25 2014-03-05 中国电子科技集团公司第五十五研究所 Gallium nitride homoepitaxy method based on in situ etching
CN107123588A (en) * 2017-06-26 2017-09-01 镓特半导体科技(上海)有限公司 A kind of gallium nitride wafer piece border processing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氮化镓外延用硅衬底问题研究;王云彪;佟丽英;杨召杰;陶术鹤;;电子工艺技术(01);全文 *

Also Published As

Publication number Publication date
CN112820633A (en) 2021-05-18

Similar Documents

Publication Publication Date Title
US20200181799A1 (en) Method for Preparing GaN Substrate Material
CN109065438B (en) Preparation method of AlN thin film
CN109461644A (en) The preparation method and substrate of transparent single crystal AlN, ultraviolet light emitting device
CN110172732A (en) The method for preparing nitride single crystal substrates using transition metal nitride sacrificial layer
JP2007084435A (en) Single crystal GaN substrate manufacturing method and single crystal GaN substrate
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
US10161059B2 (en) Group III nitride bulk crystals and their fabrication method
US9234299B2 (en) Method for producing group III nitride single crystal
CN101661876B (en) Method for preparing nitride self-supported substrate
CN110164766A (en) A kind of gallium nitride device and preparation method thereof based on diamond substrate
CN105140111A (en) Method for removing punch-through defects on silicon carbide epitaxial surface
CN112820633B (en) Gallium nitride layer and its homoepitaxial growth method
CN105755536A (en) Nitride epitaxial growth technology adopting AlON buffer layer
CN101140865A (en) III nitride semi-conductor material and growing method thereof
CN105006427B (en) A kind of method that high-quality gallium nitride epitaxial structure is grown using low temperature buffer layer
CN114628238A (en) Semiconductor structure, self-supporting gallium nitride layer and preparation method thereof
CN101673670B (en) A method for reducing the warpage of III-nitride self-supporting sheets
CN112259446A (en) Method for efficiently preparing gallium nitride substrates
CN112813497B (en) Method for assisting growth of single crystal diamond through heteroepitaxy protection ring
JP3692452B2 (en) Method for producing gallium nitride single crystal thick film
CN104409336B (en) A kind of method that utilization low-melting-point metal eliminates outer layer growth thermal mismatching
JP5418437B2 (en) Single crystal GaN substrate
CN104362080A (en) Method for growing GaN-base thin film materials on Si substrate selectively
JPWO2007088958A1 (en) Compound semiconductor growth substrate and epitaxial growth method
CN102181921A (en) Method for preparing polarity controllable zinc oxide by adopting metal source chemical vapor deposition technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant