CN112909160B - Phase change memory cell with low operation power consumption and preparation method thereof - Google Patents
Phase change memory cell with low operation power consumption and preparation method thereof Download PDFInfo
- Publication number
- CN112909160B CN112909160B CN202110006493.XA CN202110006493A CN112909160B CN 112909160 B CN112909160 B CN 112909160B CN 202110006493 A CN202110006493 A CN 202110006493A CN 112909160 B CN112909160 B CN 112909160B
- Authority
- CN
- China
- Prior art keywords
- phase change
- plug
- material layer
- change material
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/231—Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/011—Manufacture or treatment of multistable switching devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
本发明公开了一种低操作功耗的相变存储单元及其制备方法,属于微纳米电子技术领域。低操作功耗的相变存储单元包括衬底以及依次设置在衬底上的底电极、第一绝缘层、相变材料层、第二绝缘层和顶电极,第一绝缘层中设置有相变材料插塞柱,围绕相变材料插塞柱的周围设有第一应力材料层,第一应力材料层的材料为热应力材料,第二绝缘层中设置有顶电极插塞柱,相变材料插塞柱与顶电极插塞柱在衬底上的投影不重合。在相变材料插塞柱周围设置第一应力材料层,当相变材料插塞柱受热时,第一应力材料层会为相变材料插塞柱提供平行于衬底方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。
The invention discloses a phase-change memory unit with low operation power consumption and a preparation method thereof, belonging to the technical field of micro-nano electronics. A phase-change memory cell with low operating power consumption includes a substrate and a bottom electrode, a first insulating layer, a phase-change material layer, a second insulating layer, and a top electrode sequentially arranged on the substrate, and the first insulating layer is provided with a phase change A material plug, a first stress material layer is arranged around the phase change material plug, the material of the first stress material layer is a thermal stress material, a top electrode plug is arranged in the second insulating layer, and the phase change material is The projections of the plug posts and the top electrode plug posts on the substrate do not coincide. A first stress material layer is arranged around the phase change material plug. When the phase change material plug is heated, the first stress material layer will provide the phase change material plug with compressive stress parallel to the direction of the substrate, thereby reducing the The activation energy of the phase change material plays a role in reducing the operating power consumption of the phase change memory cell.
Description
技术领域technical field
本发明涉及微纳米电子技术领域,特别涉及一种低操作功耗的相变存储单元及其制备方法。The invention relates to the technical field of micro-nano electronics, in particular to a phase-change memory unit with low operating power consumption and a preparation method thereof.
背景技术Background technique
随着科技发展导致的数据量呈指数式增长,海量的数据需要速度更快、容量更大的存储器来处理和存放,而且发展更高密度,更高速度的存储器是科技发展的迫切需要;传统的非易失固态存储虽然通过一些工艺结构上的改进可以在容量上可以做到满足基本要求,但是其读写速度相对较慢,使得其与速度很快但容量较小的内存之间存在一个较大的空白,这个空白需要容量较大和速度较快的新型存储来填补。而最新的研究表明,三维堆叠的相变存储交叉阵列是最有希望的候选者,相比其他新型存储技术,其较好的CMOS工艺兼容性、耐用性、稳定性等优异性能使得其备受关注。With the exponential increase in the amount of data caused by the development of science and technology, massive data requires faster and larger capacity memory to process and store, and the development of higher density and higher speed memory is an urgent need for scientific and technological development; traditional Although the non-volatile solid-state storage can meet the basic requirements in terms of capacity through some improvements in process structure, its read and write speed is relatively slow, which makes it a gap between it and the memory with fast speed but small capacity. Larger gap, which needs to be filled by new types of storage with larger capacity and faster speed. The latest research shows that the three-dimensional stacked phase-change memory crossbar array is the most promising candidate. Compared with other new memory technologies, its excellent performance such as better CMOS process compatibility, durability, and stability makes it popular. focus on.
相变存储器的存储原理是利用电脉冲产生的焦耳热使得相变存储材料单元在阻态较低的晶态和阻态较高的非晶态之间切换。这两个过程的能耗相对其他类型的存储较高,因此,传统相变存储器中存在较大的热量耗散。目前减小相变存储器件功耗的方案主要围绕在相变材料上,比如相变材料掺杂改性等。The storage principle of the phase change memory is to use the Joule heat generated by the electric pulse to make the phase change memory material unit switch between a crystalline state with a lower resistance state and an amorphous state with a higher resistance state. The energy consumption of these two processes is relatively high relative to other types of storage, so there is a large heat dissipation in traditional phase change memory. At present, the solutions for reducing the power consumption of phase-change memory devices mainly focus on phase-change materials, such as doping and modification of phase-change materials.
发明内容SUMMARY OF THE INVENTION
为了降低操作功耗,减少热量耗散,本发明实施例提供了一种低操作功耗的相变存储单元及其制备方法。所述技术方案如下:In order to reduce operating power consumption and heat dissipation, embodiments of the present invention provide a phase-change memory cell with low operating power consumption and a manufacturing method thereof. The technical solution is as follows:
一方面,本发明实施例提供了一种低操作功耗的相变存储单元,所述相变存储单元包括:In one aspect, an embodiment of the present invention provides a phase-change memory cell with low operating power consumption, the phase-change memory cell comprising:
衬底以及依次设置在所述衬底上的底电极、第一绝缘层、相变材料层、第二绝缘层和顶电极,a substrate and a bottom electrode, a first insulating layer, a phase change material layer, a second insulating layer and a top electrode sequentially arranged on the substrate,
所述第一绝缘层中设置有相变材料插塞柱,所述相变材料插塞柱的一端与所述相变材料层连接,所述相变材料插塞柱的另一端与所述底电极连接,围绕所述相变材料插塞柱的周围设有第一应力材料层,所述第一应力材料层的材料为热应力材料,所述热应力材料的热膨胀系数大于所述相变材料的热膨胀系数;The first insulating layer is provided with a phase change material plug, one end of the phase change material plug is connected to the phase change material layer, and the other end of the phase change material plug is connected to the bottom The electrodes are connected, a first stress material layer is arranged around the phase change material plug, the material of the first stress material layer is a thermal stress material, and the thermal expansion coefficient of the thermal stress material is larger than that of the phase change material the thermal expansion coefficient;
所述第二绝缘层中设置有顶电极插塞柱,所述顶电极插塞柱的一端与所述相变材料层连接,所述顶电极插塞柱的另一端与所述顶电极连接,所述相变材料插塞柱与所述顶电极插塞柱在所述衬底上的投影不重合。The second insulating layer is provided with a top electrode plug, one end of the top electrode plug is connected to the phase change material layer, and the other end of the top electrode plug is connected to the top electrode, The projections of the phase change material plugs and the top electrode plugs on the substrate do not coincide.
可选地,围绕所述顶电极插塞柱的周围设有第二应力材料层,所述第二应力材料层的材料为热应力材料。Optionally, a second stress material layer is provided around the top electrode plug, and the material of the second stress material layer is a thermal stress material.
可选地,所述相变材料插塞柱在所述衬底上的投影位于所述第二应力材料层在所述衬底上的投影内。Optionally, the projection of the phase change material plug on the substrate is within the projection of the second stress material layer on the substrate.
可选地,所述相变存储单元还包括:Optionally, the phase change memory unit further includes:
位于所述第一绝缘层和所述相变材料层之间的下应力材料层和位于所述第二绝缘层和所述相变材料层之间的上应力材料层,所述上应力材料层和下应力材料层的材料均为热应力材料。a lower stress material layer between the first insulating layer and the phase change material layer and an upper stress material layer between the second insulating layer and the phase change material layer, the upper stress material layer and the material of the lower stress material layer are all thermal stress materials.
可选地,所述热应力材料的膨胀系数至少为所述相变材料热膨胀系数的1.5倍。Optionally, the thermal expansion coefficient of the thermal stress material is at least 1.5 times the thermal expansion coefficient of the phase change material.
可选地,所述热应力材料为苯并环丁烯。Optionally, the thermal stress material is benzocyclobutene.
另一方面,本发明实施例还提供了一种低操作功耗的相变存储单元的制备方法,包括:On the other hand, an embodiment of the present invention also provides a method for fabricating a phase-change memory cell with low operating power consumption, including:
在衬底上形成底电极;forming a bottom electrode on the substrate;
在所述底电极上制备第一绝缘层,并对所述第一绝缘层进行图形化得到第一通孔,在所述第一通孔中制备相变材料插塞柱和第一应力材料层,所述相变材料插塞柱的一端与所述底电极连接,所述第一应力材料层围绕所述相变材料插塞柱的周围设置,所述第一应力材料层的材料为热应力材料,所述热应力材料的热膨胀系数大于所述相变材料的热膨胀系数;A first insulating layer is prepared on the bottom electrode, and the first insulating layer is patterned to obtain a first through hole, and a phase change material plug and a first stress material layer are prepared in the first through hole , one end of the phase change material plug is connected to the bottom electrode, the first stress material layer is arranged around the phase change material plug, and the material of the first stress material layer is thermal stress material, the thermal expansion coefficient of the thermal stress material is greater than the thermal expansion coefficient of the phase change material;
在所述第一绝缘层上制备相变材料层,所述相变材料插塞柱的另一端与所述相变材料层连接;preparing a phase change material layer on the first insulating layer, and the other end of the phase change material plug is connected to the phase change material layer;
在所述相变材料层上制备第二绝缘层,并对所述第二绝缘层进行图形化得到第二通孔,在所述第二通孔中制备顶电极插塞柱,所述顶电极插塞柱的一端与所述相变材料层连接,所述相变材料插塞柱与所述顶电极插塞柱在所述衬底上的投影不重合;A second insulating layer is prepared on the phase change material layer, and the second insulating layer is patterned to obtain a second through hole, and a top electrode plug is prepared in the second through hole, and the top electrode One end of the plug post is connected to the phase change material layer, and the projections of the phase change material plug post and the top electrode plug post on the substrate are not coincident;
在所述第二绝缘层上制备顶电极,所述顶电极插塞柱的另一端与所述顶电极连接。A top electrode is prepared on the second insulating layer, and the other end of the top electrode plug is connected to the top electrode.
可选地,所述方法还包括,在所述第二通孔中制备第二应力材料层,所述第二应力材料层围绕所述顶电极插塞柱的周围设置,所述第二应力材料层的材料为热应力材料。Optionally, the method further includes preparing a second stress material layer in the second through hole, the second stress material layer is disposed around the top electrode plug, the second stress material layer is The material of the layer is a thermally stressed material.
可选地,所述相变材料插塞柱在所述衬底上的投影位于所述第二应力材料层在所述衬底上的投影内。Optionally, the projection of the phase change material plug on the substrate is within the projection of the second stress material layer on the substrate.
可选地,应力材料的热膨胀系数至少为所述相变材料热膨胀系数的1.5倍。Optionally, the thermal expansion coefficient of the stress material is at least 1.5 times the thermal expansion coefficient of the phase change material.
本发明实施例提供的技术方案带来的有益效果至少包括:The beneficial effects brought by the technical solutions provided by the embodiments of the present invention include at least:
本申请中的相变存储单元包括衬底以及依次设置在衬底上的底电极、第一绝缘层、相变材料层、第二绝缘层和顶电极,第一绝缘层中设置有相变材料插塞柱,相变材料插塞柱的一端与相变材料层连接,相变材料插塞柱的另一端与底电极连接,围绕相变材料插塞柱的周围设有第一应力材料层,第一应力材料层的材料为热应力材料,热应力材料的热膨胀系数大于相变材料的热膨胀系数。第二绝缘层中设置有顶电极插塞柱,顶电极插塞柱的一端与相变材料层连接,顶电极插塞柱的另一端与顶电极连接,相变材料插塞柱与顶电极插塞柱在衬底上的投影不重合。The phase change memory cell in the present application includes a substrate and a bottom electrode, a first insulating layer, a phase change material layer, a second insulating layer and a top electrode sequentially arranged on the substrate, and the phase change material is arranged in the first insulating layer a plug, one end of the phase change material plug is connected to the phase change material layer, the other end of the phase change material plug is connected to the bottom electrode, and a first stress material layer is arranged around the phase change material plug, The material of the first stress material layer is a thermal stress material, and the thermal expansion coefficient of the thermal stress material is greater than that of the phase change material. The second insulating layer is provided with a top electrode plug, one end of the top electrode plug is connected to the phase change material layer, the other end of the top electrode plug is connected to the top electrode, and the phase change material plug is connected to the top electrode. The projections of the plugs on the substrate do not coincide.
在相变材料插塞柱周围设置第一应力材料层,当相变材料插塞柱受热时,由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,使得两者之间存在体积膨胀差,从而第一应力材料层会为相变材料插塞柱提供平行于衬底方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。A first stress material layer is arranged around the phase change material plug. When the phase change material plug is heated, since the thermal expansion coefficient of the thermal stress material is greater than that of the phase change material, there is a difference in volume expansion between the two. Therefore, the first stress material layer will provide compressive stress parallel to the substrate direction for the phase change material plug, thereby reducing the activation energy of the phase change material and reducing the operating power consumption of the phase change memory cell.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是本发明实施例提供的一种低操作功耗的相变存储单元的结构示意图;1 is a schematic structural diagram of a phase-change memory cell with low operating power consumption provided by an embodiment of the present invention;
图2是本发明实施例提供的另一种低操作功耗的相变存储单元的结构示意图;2 is a schematic structural diagram of another phase-change memory cell with low operating power consumption provided by an embodiment of the present invention;
图3是本发明实施例提供的一种低操作功耗的相变存储单元的制备方法的流程图;3 is a flowchart of a method for fabricating a phase-change memory cell with low operating power consumption provided by an embodiment of the present invention;
图4~图9是本发明实施例提供的一种低操作功耗的相变存储单元的制备方法的过程图;4 to 9 are process diagrams of a method for fabricating a phase-change memory cell with low operating power consumption according to an embodiment of the present invention;
图10是本发明实施例提供的另一种低操作功耗的相变存储单元的制备方法的流程图。FIG. 10 is a flowchart of another method for fabricating a phase-change memory cell with low operating power consumption according to an embodiment of the present invention.
附图说明:Description of drawings:
衬底100、底电极200、第一绝缘层300、第一应力材料层301、相变材料插塞柱302、下应力材料层303、相变材料层400、第二绝缘层500、第二应力材料层501、顶电极插塞柱502、上应力材料层503、顶电极600
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
本发明实施例提供了一种低操作功耗的相变存储单元。图1是本发明实施例提供的一种低操作功耗的相变存储单元的结构示意图,如图1所示,相变存储单元包括衬底100以及依次设置在衬底100上的底电极200、第一绝缘层300、相变材料层400、第二绝缘层500和顶电极600,Embodiments of the present invention provide a phase-change memory cell with low operating power consumption. FIG. 1 is a schematic structural diagram of a phase-change memory cell with low operating power consumption provided by an embodiment of the present invention. As shown in FIG. 1 , the phase-change memory cell includes a
第一绝缘层300中设置有相变材料插塞柱302,相变材料插塞柱302的一端与相变材料层400连接,相变材料插塞柱302的另一端与底电极200连接,围绕相变材料插塞柱302的周围设有第一应力材料层301,第一应力材料层301为热应力材料,热应力材料的热膨胀系数大于相变材料的热膨胀系数;The
第二绝缘层500中设置有顶电极插塞柱502,顶电极插塞柱502的一端与相变材料层400连接,相变材料插塞柱302与顶电极插塞柱502在衬底100上的投影不重合,顶电极插塞柱502的另一端与顶电极600连接。The second
相变材料插塞柱302与顶电极插塞柱502在衬底100上的投影不重合,使得顶电极600和底电极200在平行于衬底100方向上存在一定的距离,可以增大相变结构内的电流密度,降低温度耗散,提高热量利用效率,从而减少操作电流。The projections of the phase
相变存储器的存储原理是利用电脉冲产生的焦耳热使得相变存储材料单元在阻态较低的晶态和阻态较高的非晶态之间切换。在晶态和非静态之间切换的能量被称为相变材料的活化能,对相变材料施加物理应力,可以降低相变材料的活化能。在相变材料插塞柱302周围设置第一应力材料层301,当相变材料插塞柱302受热时,由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,使得两者之间存在体积膨胀差,从而第一应力材料层301会为相变材料插塞柱302提供平行于衬底100方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。The storage principle of the phase change memory is to use the Joule heat generated by the electric pulse to make the phase change memory material unit switch between a crystalline state with a lower resistance state and an amorphous state with a higher resistance state. The energy of switching between the crystalline state and the non-static state is called the activation energy of the phase change material. Applying physical stress to the phase change material can reduce the activation energy of the phase change material. A first
第一应力材料层301围绕在相变材料插塞柱302周围,可以理解的,其中周围是指沿圆周方向进行封闭围绕,但并不限定相变材料插塞柱302的截面形状,其可以为圆形,也可以是其他的封闭图形。对应的,第一应力材料层301的截面形状为包含相变材料插塞柱302的截面的封闭图形,并不限定为圆形,也可以是其他封闭图形。The first
可选地,第一应力材料层301的截面边缘和相变材料插塞柱302的截面边缘最小距离d不小于20nm,以保证第一应力材料层301和相变材料插塞柱302之间产生足够的体积变化,提供足够的压应力。Optionally, the minimum distance d between the cross-sectional edge of the first
优选地,第一应力材料层301的截面边缘和相变材料插塞柱302的截面边缘最小距离d为定值,以保证第一应力材料层301为相变材料插塞柱302提供的压应力是均匀的,从而使得相变材料的活化能变化是均匀的,进而保证相变单元功耗的稳定性。Preferably, the minimum distance d between the cross-sectional edge of the first
在一些实施例中,围绕顶电极插塞柱502的周围设有第二应力材料层501,所述第二应力材料层501的材料为热应力材料,热应力材料的热膨胀系数大于所述相变材料的热膨胀系数。在顶电极插塞柱502周围设置第二应力材料层501,当顶电极插塞柱502受热时,由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,使得两者之间存在体积膨胀差,从而第二应力材料层501会为相变材料层400提供垂直于衬底100方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。In some embodiments, a second
可选地,相变材料插塞柱302在衬底100上的投影位于第二应力材料在衬底100上的投影内。Optionally, the projection of the phase
第二应力材料层501围绕在顶电极插塞柱502周围,其中周围是指沿圆周方向进行封闭围绕,但并不限定顶电极插塞柱502的截面形状,其可以为圆形,也可以是其他的封闭图形。对应的,第二应力材料层501的截面形状,为包含相变材料插塞柱302或顶电极插塞柱502的封闭图形,并不限定为圆形,也可以是其他封闭图形。The second
相变材料插塞柱302在衬底100上的投影位于第二应力材料层501在衬底100上的投影内,当顶电极插塞柱502通电受热时,对第二应力材料层501进行加热。由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,第二应力材料层501膨胀变形会为相变材料插塞柱302提供垂直于衬底100方向的压应力,进一步降低相变材料插塞柱302的活化能,进而降低相变存储单元操作功耗。The projection of the phase
可选地,热应力材料的膨胀系数至少为相变材料的热膨胀系数的1.5倍,以保证热应力材料和相变材料之间产生足够的压应力,对相变材料的活化能产生影响。具体地,热应力材料可以为热膨胀系数较大的绝缘材料,比如苯并环丁烯。相变材料可以为锗碲、锑碲、锗锑碲等相变材料中的一种或两种及以上的混合。Optionally, the thermal expansion coefficient of the thermal stress material is at least 1.5 times the thermal expansion coefficient of the phase change material to ensure that sufficient compressive stress is generated between the thermal stress material and the phase change material to affect the activation energy of the phase change material. Specifically, the thermal stress material may be an insulating material with a large thermal expansion coefficient, such as benzocyclobutene. The phase change material may be one or a mixture of two or more phase change materials such as germanium tellurium, antimony tellurium and germanium antimony tellurium.
可选地,图2是本发明实施例提供的另一种低操作功耗的相变存储单元的结构示意图。与图1所示的相变存储单元相比,图2所示的相变存储单元还包括:位于第一绝缘层300和相变材料层400之间的下应力材料层303和位于第二绝缘层500和相变材料层400之间的上应力材料层503,上应力材料层503和下应力材料层303的材料均为热应力材料。Optionally, FIG. 2 is a schematic structural diagram of another phase-change memory cell with low operating power consumption provided by an embodiment of the present invention. Compared with the phase change memory cell shown in FIG. 1 , the phase change memory cell shown in FIG. 2 further includes: a lower
由于下应力材料层303和上应力材料层503均与相变材料层400接触,扩大了压应力的作用范围,使得相变材料的活化能能够进一步降低。Since both the lower
可选地,下应力材料层303和上应力材料层503的厚度均不超过20nm,以减少变形对相变材料单元的整体性的影响。Optionally, the thicknesses of both the lower
图3是本发明实施例提供的一种低操作功耗的相变存储单元的制备方法的流程图,用于制备图1所示的相变存储单元。如图3所示,该方法包括:FIG. 3 is a flowchart of a method for fabricating a phase-change memory cell with low operating power consumption according to an embodiment of the present invention, which is used to fabricate the phase-change memory cell shown in FIG. 1 . As shown in Figure 3, the method includes:
步骤S11:在衬底上形成底电极。Step S11: forming a bottom electrode on the substrate.
可选地,衬底100可以是ITO导电玻璃或表面覆盖有Ni/Au、Ti/Au、Ag、Ti/Pt等导电薄膜的任意衬底100。Optionally, the
可选地,底电极200的材料可以为钨、钛钨、钛铂、镍金等金属材料,底电极200的厚度在10nm-200nm之间。Optionally, the material of the
具体地,如图4所示,以硅片为例,将硅片依次放置在丙酮,酒精中进行超声洗涤,约十分钟;超声完成后使用氮气枪将表面残留的液体吹净烘干待用。Specifically, as shown in Fig. 4, taking the silicon wafer as an example, the silicon wafer is placed in acetone and alcohol for ultrasonic cleaning for about ten minutes; after the ultrasonication is completed, the residual liquid on the surface is blown and dried by a nitrogen gun for use. .
可以使用磁控溅射或者电子束蒸发在洁净的硅片上蒸镀一层金属导电层如钛铂,镍金等,其厚度在10nm-200nm之间。A metal conductive layer such as titanium platinum, nickel gold, etc. can be evaporated on the clean silicon wafer by magnetron sputtering or electron beam evaporation, and its thickness is between 10nm-200nm.
步骤S12:在所述底电极上制备第一绝缘层,并对所述第一绝缘层进行图形化得到第一通孔,在所述第一通孔中制备相变材料插塞柱和第一应力材料层,所述相变材料插塞柱的一端与所述底电极连接,所述第一应力材料层围绕所述相变材料插塞柱的周围设置,所述第一应力材料层的材料为热应力材料,热应力材料的热膨胀系数大于所述相变材料的热膨胀系数。Step S12 : preparing a first insulating layer on the bottom electrode, patterning the first insulating layer to obtain a first through hole, and preparing a phase change material plug and a first through hole in the first through hole A stress material layer, one end of the phase change material plug is connected to the bottom electrode, the first stress material layer is arranged around the phase change material plug, the material of the first stress material layer is Being a thermal stress material, the thermal expansion coefficient of the thermal stress material is greater than the thermal expansion coefficient of the phase change material.
可选地,热应力材料的膨胀系数至少为相变材料的热膨胀系数的1.5倍,以使得热应力材料和相变材料之间产生足够的压应力,从而影响相变材料的活化能。具体地,热应力材料可以为热膨胀系数较大的绝缘材料,比如苯并环丁烯。相变材料可以为锗碲、锑碲、锗锑碲等相变材料中的一种或两种及以上的混合。Optionally, the thermal expansion coefficient of the thermal stress material is at least 1.5 times the thermal expansion coefficient of the phase change material, so that sufficient compressive stress is generated between the thermal stress material and the phase change material, thereby affecting the activation energy of the phase change material. Specifically, the thermal stress material may be an insulating material with a large thermal expansion coefficient, such as benzocyclobutene. The phase change material may be one or a mixture of two or more phase change materials such as germanium tellurium, antimony tellurium and germanium antimony tellurium.
在一些实施例中,步骤S12可以包括:In some embodiments, step S12 may include:
步骤S121,在所述底电极上制备第一绝缘层。Step S121, preparing a first insulating layer on the bottom electrode.
具体地,使用PECVD(Plasma Enhanced Chemical Vapour Deposition,等离子体增强化学气相沉积)、磁控溅射或ALD(Atomic Layer Deposition,原子层沉积)在底电极200上生长一层致密的二氧化硅或者氧化铝等其他绝缘材料作为第一绝缘层300,厚度可以根据设计需求,达到微米级以上。Specifically, using PECVD (Plasma Enhanced Chemical Vapour Deposition, plasma enhanced chemical vapor deposition), magnetron sputtering or ALD (Atomic Layer Deposition, atomic layer deposition) to grow a dense layer of silicon dioxide or oxide on the
步骤S122,对所述第一绝缘层进行图形化得到第一通孔。Step S122, patterning the first insulating layer to obtain a first through hole.
具体地,如图5所示,结合光刻或者其他掩模工艺,将图形转移到第一绝缘层300上。利用刻蚀的方法,刻蚀出第一通孔,此处刻蚀的深度应当略过刻蚀,以保证底电极200可以裸露出来。Specifically, as shown in FIG. 5 , the pattern is transferred onto the first insulating
步骤S123中,在第一通孔中制备第一应力材料层。In step S123, a first stress material layer is prepared in the first through hole.
具体地,利用磁控溅射等方法往第一通孔中填充热膨胀系数较大的绝缘材料作为应力材料,填充高度不低于第一通孔的深度,剥离完成后再利用CMP(Chemical-MechanicalPolishing,化学机械抛光)平整表面完成制备。Specifically, use magnetron sputtering and other methods to fill the first through hole with an insulating material with a larger thermal expansion coefficient as a stress material, the filling height is not lower than the depth of the first through hole, and then use CMP (Chemical-Mechanical Polishing) after the peeling is completed. , chemical mechanical polishing) flat surface to complete the preparation.
步骤S124中,第一应力材料层中制备相变材料插塞柱。In step S124, a phase change material plug is prepared in the first stress material layer.
具体地,如图6所示,结合光刻或者其他掩模工艺,对上一步第一应力材料层301表面进行图形化得到容纳相变材料插塞柱302的空间,并在空间中制备相变材料插塞柱302。Specifically, as shown in FIG. 6, combined with photolithography or other mask processes, pattern the surface of the first
相变材料插塞柱302的制备一般可通过磁控溅射、脉冲激光沉积、原子层沉积等常用半导体薄膜沉积方法完成。The preparation of the phase
可选地,第一应力材料层301的截面边缘和该图形的截面边缘最小距离不小于20nm,以保证第一应力材料层301和相变材料插塞柱302之间产生足够的体积变化,提供足够的压应力。Optionally, the minimum distance between the cross-sectional edge of the first
优选地,第一应力材料层301的截面边缘和相变材料插塞柱302的截面边缘最小距离为定值,以保证第一应力材料层301为相变材料插塞柱302提供的压应力是均匀的,从而使得相变材料的活化能变化是均匀的,进而保证相变单元功耗的稳定性。Preferably, the minimum distance between the cross-sectional edge of the first
步骤S13:在所述第一绝缘层上制备相变材料层,所述相变材料插塞柱的另一端与所述相变材料层连接。Step S13: A phase change material layer is prepared on the first insulating layer, and the other end of the phase change material plug is connected to the phase change material layer.
在一些实施例中,步骤S13可以与步骤S124合并,即如图7所示,通过一次沉积获取相变材料插塞柱302和相变材料层400。In some embodiments, step S13 may be combined with step S124 , that is, as shown in FIG. 7 , the phase change material plug posts 302 and the phase
步骤S14:在所述相变材料层上制备第二绝缘层,并对所述第二绝缘层进行图形化得到第二通孔,在所述第二通孔中制备顶电极插塞柱,所述顶电极插塞柱的一端与所述相变材料层连接,所述相变材料插塞柱与所述顶电极插塞柱在所述衬底上的投影不重合。Step S14: preparing a second insulating layer on the phase change material layer, patterning the second insulating layer to obtain a second through hole, and preparing a top electrode plug in the second through hole, so that the One end of the top electrode plug is connected to the phase change material layer, and the projection of the phase change material plug and the top electrode plug on the substrate are not coincident.
在一些实施例中,步骤S14可以包括:In some embodiments, step S14 may include:
步骤S141,在所述相变材料层上制备第二绝缘层。Step S141, preparing a second insulating layer on the phase change material layer.
具体地,使用PECVD、磁控溅射或ALD在底电极200上生长一层致密的二氧化硅或者氧化铝等其他绝缘材料作为第二绝缘层500,厚度可以根据设计需求,达到微米级以上。Specifically, PECVD, magnetron sputtering, or ALD is used to grow a dense layer of other insulating materials such as silicon dioxide or aluminum oxide on the
步骤S142,对所述第二绝缘层进行图形化得到第二通孔。Step S142, patterning the second insulating layer to obtain second through holes.
具体地,如图8所示,结合光刻或者其他掩模工艺,将图形转移到第二绝缘层500上。利用刻蚀的方法,刻蚀出第二通孔,此处刻蚀的深度应当略过刻蚀,以保证底电极200可以裸露出来。第二通孔在衬底100上的投影与第一通孔在衬底100上的投影不重合,以保证相变材料插塞柱302与顶电极插塞柱502在衬底100上的投影不重合。Specifically, as shown in FIG. 8 , the pattern is transferred onto the second insulating
步骤S143中,在第二通孔中制备顶电极插塞柱。In step S143, a top electrode plug post is prepared in the second through hole.
具体地,利用磁控溅射等方法往第一通孔中填充顶电极600材料。填充高度不低于第二通孔的深度,剥离完成后再利用化学机械抛光(CMP)平整表面完成制备。Specifically, the material of the
在另一些实施例中,步骤S143也可以是如图9和图1所示,先在第二通孔中制备第二应力材料层501,再制备顶电极插塞柱502。具体方法参见步骤S123和步骤S124,在此不再赘述。In other embodiments, step S143 may also be as shown in FIG. 9 and FIG. 1 , firstly preparing the second
步骤S15:在所述第二绝缘层上制备顶电极,所述顶电极插塞柱的另一端与所述顶电极连接。Step S15: A top electrode is prepared on the second insulating layer, and the other end of the top electrode plug is connected to the top electrode.
可选地,顶电极600的材料可以为钨、钛钨、钛铂、镍金等金属材料。Optionally, the material of the
本申请的实施例中相变材料插塞柱302与顶电极插塞柱502在衬底100上的投影不重合,使得顶电极600和底电极200在平行于衬底100方向上存在一定的距离,可以增大相变结构内的电流密度,降低温度耗散,减少操作电流。In the embodiment of the present application, the projections of the phase change material plugs 302 and the top electrode plugs 502 on the
相变存储器的存储原理是利用电脉冲产生的焦耳热使得相变存储材料单元在阻态较低的晶态和阻态较高的非晶态之间切换。在晶态和非静态之间切换的能量被称为相变材料的活化能,对相变材料施加物理应力,可以降低相变材料的活化能。在相变材料插塞柱302周围设置第一应力材料层301,当相变材料插塞柱302受热时,由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,使得两者之间存在体积膨胀差,从而第一应力材料层301会为相变材料插塞柱302提供平行于衬底100方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。The storage principle of the phase change memory is to use the Joule heat generated by the electric pulse to make the phase change memory material unit switch between a crystalline state with a lower resistance state and an amorphous state with a higher resistance state. The energy of switching between the crystalline state and the non-static state is called the activation energy of the phase change material. Applying physical stress to the phase change material can reduce the activation energy of the phase change material. A first
图10是本发明实施例提供的一种低操作功耗的相变存储单元的制备方法的流程图,用于制备图2所示的相变存储单元。如图10所示,该方法与图3所示方法的区别在于:FIG. 10 is a flowchart of a method for fabricating a phase-change memory cell with low operating power consumption provided by an embodiment of the present invention, which is used to fabricate the phase-change memory cell shown in FIG. 2 . As shown in Figure 10, the difference between this method and the method shown in Figure 3 is:
步骤S22中,先在底电极200上制备第一绝缘层300和下应力材料层303,对所述第一绝缘层300和下应力材料层303进行图形化得到第一通孔,再在所述第一通孔中制备相变材料插塞柱302和第一应力材料层301。In step S22, a first insulating
步骤S24中,先在相变材料层400上制备上应力材料层503和第二绝缘层500,对所述第二绝缘层500和上应力材料层503进行图形化得到第二通孔,再在所述第二通孔中制备顶电极插塞柱502。In step S24, an upper
其余步骤与图3所示方法相同,在此不再赘述。The remaining steps are the same as the method shown in FIG. 3 , and are not repeated here.
由于下应力材料层303和上应力材料层503均与相变材料层400接触,扩大了压应力的作用范围,使得相变材料的活化能能够进一步降低。Since both the lower
可选地,下应力材料层303和上应力材料层503的厚度均不超过20nm,以减少变形对相变材料单元的整体性的影响。Optionally, the thicknesses of both the lower
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection of the present invention. within the range.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110006493.XA CN112909160B (en) | 2021-01-05 | 2021-01-05 | Phase change memory cell with low operation power consumption and preparation method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110006493.XA CN112909160B (en) | 2021-01-05 | 2021-01-05 | Phase change memory cell with low operation power consumption and preparation method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112909160A CN112909160A (en) | 2021-06-04 |
| CN112909160B true CN112909160B (en) | 2022-04-08 |
Family
ID=76112135
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110006493.XA Active CN112909160B (en) | 2021-01-05 | 2021-01-05 | Phase change memory cell with low operation power consumption and preparation method thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112909160B (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1933207A (en) * | 2006-10-13 | 2007-03-21 | 中国科学院上海微系统与信息技术研究所 | Phase transformation memory storing unit and producing method thereof |
| JP2011103323A (en) * | 2009-11-10 | 2011-05-26 | Hitachi Ltd | Semiconductor memory device |
| CN107017341A (en) * | 2017-03-28 | 2017-08-04 | 华中科技大学 | A kind of asymmetric ring-type microelectrode phase-change memory cell and device |
| US10454027B1 (en) * | 2018-08-14 | 2019-10-22 | Newport Fab, Llc | Phase-change material (PCM) radio frequency (RF) switches with stressor layers and contact adhesion layers |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100448893B1 (en) * | 2002-08-23 | 2004-09-16 | 삼성전자주식회사 | Phase-changeable memory device and method for fabricating the same |
| KR100687750B1 (en) * | 2005-09-07 | 2007-02-27 | 한국전자통신연구원 | Phase change type memory device using antimony and selenium metal alloy and manufacturing method thereof |
| US20070249086A1 (en) * | 2006-04-19 | 2007-10-25 | Philipp Jan B | Phase change memory |
| JP2009099854A (en) * | 2007-10-18 | 2009-05-07 | Elpida Memory Inc | Method of manufacturing vertical phase change memory device |
| JP2009177073A (en) * | 2008-01-28 | 2009-08-06 | Renesas Technology Corp | Semiconductor device and method of manufacturing the same |
| US8031518B2 (en) * | 2009-06-08 | 2011-10-04 | Micron Technology, Inc. | Methods, structures, and devices for reducing operational energy in phase change memory |
| CN101937971A (en) * | 2010-08-18 | 2011-01-05 | 中国科学院半导体研究所 | Vertical phase change memory and its preparation method |
| CN105405971B (en) * | 2015-12-04 | 2018-02-06 | 江苏时代全芯存储科技有限公司 | Phase change memory and its manufacturing method |
| CN110635030B (en) * | 2019-09-24 | 2021-10-01 | 华中科技大学 | Vertical electrode configuration for nanoscale phase-change memory cells |
-
2021
- 2021-01-05 CN CN202110006493.XA patent/CN112909160B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1933207A (en) * | 2006-10-13 | 2007-03-21 | 中国科学院上海微系统与信息技术研究所 | Phase transformation memory storing unit and producing method thereof |
| JP2011103323A (en) * | 2009-11-10 | 2011-05-26 | Hitachi Ltd | Semiconductor memory device |
| CN107017341A (en) * | 2017-03-28 | 2017-08-04 | 华中科技大学 | A kind of asymmetric ring-type microelectrode phase-change memory cell and device |
| US10454027B1 (en) * | 2018-08-14 | 2019-10-22 | Newport Fab, Llc | Phase-change material (PCM) radio frequency (RF) switches with stressor layers and contact adhesion layers |
Non-Patent Citations (1)
| Title |
|---|
| The Structure of Phase‐Change Chalcogenides and Their High‐Pressure Behavior;Kailang Xu等;《Phys. Status Solidi RRL》;20181227;第13卷;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112909160A (en) | 2021-06-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7488967B2 (en) | Structure for confining the switching current in phase memory (PCM) cells | |
| CN100461484C (en) | Phase-change memory storage unit and preparation method thereof | |
| CN100563041C (en) | Device unit structure and manufacturing method of a resistance memory | |
| CN100530739C (en) | Phase change memory unit with loop phase change material and its making method | |
| CN110212088B (en) | A two-dimensional material phase change memory cell | |
| CN108807667B (en) | A three-dimensional stacked memory and its preparation method | |
| CN102832340B (en) | Phase transition storage unit and manufacture method thereof | |
| WO2014040356A1 (en) | Phase change memory location for replacing dram and flash and manufacturing method therefor | |
| CN112652714A (en) | Preparation method of phase change memory array | |
| CN101101962A (en) | Gallium-adulterated Ga3Sb8Te1 phase change memory unit and its making method | |
| US20090206317A1 (en) | Phase change memory device and method for manufacturing the same | |
| CN102097585A (en) | Preparation method of quasi-edge contact nano phase-change memory cell | |
| CN112909160B (en) | Phase change memory cell with low operation power consumption and preparation method thereof | |
| CN102593350B (en) | Phase change memory cell and producing method thereof | |
| CN101764195A (en) | Method for making nano-sized phase change memory | |
| CN100397561C (en) | A kind of preparation method of nanophase change memory device unit | |
| CN110797458B (en) | Memristor and preparation method thereof | |
| CN112909161B (en) | Low-power-consumption phase change memory unit with buffer layer and preparation method thereof | |
| CN103531710B (en) | A kind of high-speed low-power-consumption phase change memory unit and preparation method thereof | |
| CN102522500B (en) | A kind of preparation method of phase-change random access memory array | |
| CN113889571B (en) | A high performance phase change memory and its preparation method | |
| CN106159085A (en) | Phase-change memory cell and preparation method thereof | |
| CN102054934B (en) | Preparation method of planar phase change storage | |
| CN100461485C (en) | Current limiter based on chalcogenide phase change material and manufacturing method | |
| CN114361202A (en) | Phase change memory cell and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |