[go: up one dir, main page]

CN112909160B - Phase change memory cell with low operation power consumption and preparation method thereof - Google Patents

Phase change memory cell with low operation power consumption and preparation method thereof Download PDF

Info

Publication number
CN112909160B
CN112909160B CN202110006493.XA CN202110006493A CN112909160B CN 112909160 B CN112909160 B CN 112909160B CN 202110006493 A CN202110006493 A CN 202110006493A CN 112909160 B CN112909160 B CN 112909160B
Authority
CN
China
Prior art keywords
phase change
plug
material layer
change material
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110006493.XA
Other languages
Chinese (zh)
Other versions
CN112909160A (en
Inventor
徐�明
徐开朗
缪向水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN202110006493.XA priority Critical patent/CN112909160B/en
Publication of CN112909160A publication Critical patent/CN112909160A/en
Application granted granted Critical
Publication of CN112909160B publication Critical patent/CN112909160B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种低操作功耗的相变存储单元及其制备方法,属于微纳米电子技术领域。低操作功耗的相变存储单元包括衬底以及依次设置在衬底上的底电极、第一绝缘层、相变材料层、第二绝缘层和顶电极,第一绝缘层中设置有相变材料插塞柱,围绕相变材料插塞柱的周围设有第一应力材料层,第一应力材料层的材料为热应力材料,第二绝缘层中设置有顶电极插塞柱,相变材料插塞柱与顶电极插塞柱在衬底上的投影不重合。在相变材料插塞柱周围设置第一应力材料层,当相变材料插塞柱受热时,第一应力材料层会为相变材料插塞柱提供平行于衬底方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。

Figure 202110006493

The invention discloses a phase-change memory unit with low operation power consumption and a preparation method thereof, belonging to the technical field of micro-nano electronics. A phase-change memory cell with low operating power consumption includes a substrate and a bottom electrode, a first insulating layer, a phase-change material layer, a second insulating layer, and a top electrode sequentially arranged on the substrate, and the first insulating layer is provided with a phase change A material plug, a first stress material layer is arranged around the phase change material plug, the material of the first stress material layer is a thermal stress material, a top electrode plug is arranged in the second insulating layer, and the phase change material is The projections of the plug posts and the top electrode plug posts on the substrate do not coincide. A first stress material layer is arranged around the phase change material plug. When the phase change material plug is heated, the first stress material layer will provide the phase change material plug with compressive stress parallel to the direction of the substrate, thereby reducing the The activation energy of the phase change material plays a role in reducing the operating power consumption of the phase change memory cell.

Figure 202110006493

Description

一种低操作功耗的相变存储单元及其制备方法A phase-change memory cell with low operating power consumption and method of making the same

技术领域technical field

本发明涉及微纳米电子技术领域,特别涉及一种低操作功耗的相变存储单元及其制备方法。The invention relates to the technical field of micro-nano electronics, in particular to a phase-change memory unit with low operating power consumption and a preparation method thereof.

背景技术Background technique

随着科技发展导致的数据量呈指数式增长,海量的数据需要速度更快、容量更大的存储器来处理和存放,而且发展更高密度,更高速度的存储器是科技发展的迫切需要;传统的非易失固态存储虽然通过一些工艺结构上的改进可以在容量上可以做到满足基本要求,但是其读写速度相对较慢,使得其与速度很快但容量较小的内存之间存在一个较大的空白,这个空白需要容量较大和速度较快的新型存储来填补。而最新的研究表明,三维堆叠的相变存储交叉阵列是最有希望的候选者,相比其他新型存储技术,其较好的CMOS工艺兼容性、耐用性、稳定性等优异性能使得其备受关注。With the exponential increase in the amount of data caused by the development of science and technology, massive data requires faster and larger capacity memory to process and store, and the development of higher density and higher speed memory is an urgent need for scientific and technological development; traditional Although the non-volatile solid-state storage can meet the basic requirements in terms of capacity through some improvements in process structure, its read and write speed is relatively slow, which makes it a gap between it and the memory with fast speed but small capacity. Larger gap, which needs to be filled by new types of storage with larger capacity and faster speed. The latest research shows that the three-dimensional stacked phase-change memory crossbar array is the most promising candidate. Compared with other new memory technologies, its excellent performance such as better CMOS process compatibility, durability, and stability makes it popular. focus on.

相变存储器的存储原理是利用电脉冲产生的焦耳热使得相变存储材料单元在阻态较低的晶态和阻态较高的非晶态之间切换。这两个过程的能耗相对其他类型的存储较高,因此,传统相变存储器中存在较大的热量耗散。目前减小相变存储器件功耗的方案主要围绕在相变材料上,比如相变材料掺杂改性等。The storage principle of the phase change memory is to use the Joule heat generated by the electric pulse to make the phase change memory material unit switch between a crystalline state with a lower resistance state and an amorphous state with a higher resistance state. The energy consumption of these two processes is relatively high relative to other types of storage, so there is a large heat dissipation in traditional phase change memory. At present, the solutions for reducing the power consumption of phase-change memory devices mainly focus on phase-change materials, such as doping and modification of phase-change materials.

发明内容SUMMARY OF THE INVENTION

为了降低操作功耗,减少热量耗散,本发明实施例提供了一种低操作功耗的相变存储单元及其制备方法。所述技术方案如下:In order to reduce operating power consumption and heat dissipation, embodiments of the present invention provide a phase-change memory cell with low operating power consumption and a manufacturing method thereof. The technical solution is as follows:

一方面,本发明实施例提供了一种低操作功耗的相变存储单元,所述相变存储单元包括:In one aspect, an embodiment of the present invention provides a phase-change memory cell with low operating power consumption, the phase-change memory cell comprising:

衬底以及依次设置在所述衬底上的底电极、第一绝缘层、相变材料层、第二绝缘层和顶电极,a substrate and a bottom electrode, a first insulating layer, a phase change material layer, a second insulating layer and a top electrode sequentially arranged on the substrate,

所述第一绝缘层中设置有相变材料插塞柱,所述相变材料插塞柱的一端与所述相变材料层连接,所述相变材料插塞柱的另一端与所述底电极连接,围绕所述相变材料插塞柱的周围设有第一应力材料层,所述第一应力材料层的材料为热应力材料,所述热应力材料的热膨胀系数大于所述相变材料的热膨胀系数;The first insulating layer is provided with a phase change material plug, one end of the phase change material plug is connected to the phase change material layer, and the other end of the phase change material plug is connected to the bottom The electrodes are connected, a first stress material layer is arranged around the phase change material plug, the material of the first stress material layer is a thermal stress material, and the thermal expansion coefficient of the thermal stress material is larger than that of the phase change material the thermal expansion coefficient;

所述第二绝缘层中设置有顶电极插塞柱,所述顶电极插塞柱的一端与所述相变材料层连接,所述顶电极插塞柱的另一端与所述顶电极连接,所述相变材料插塞柱与所述顶电极插塞柱在所述衬底上的投影不重合。The second insulating layer is provided with a top electrode plug, one end of the top electrode plug is connected to the phase change material layer, and the other end of the top electrode plug is connected to the top electrode, The projections of the phase change material plugs and the top electrode plugs on the substrate do not coincide.

可选地,围绕所述顶电极插塞柱的周围设有第二应力材料层,所述第二应力材料层的材料为热应力材料。Optionally, a second stress material layer is provided around the top electrode plug, and the material of the second stress material layer is a thermal stress material.

可选地,所述相变材料插塞柱在所述衬底上的投影位于所述第二应力材料层在所述衬底上的投影内。Optionally, the projection of the phase change material plug on the substrate is within the projection of the second stress material layer on the substrate.

可选地,所述相变存储单元还包括:Optionally, the phase change memory unit further includes:

位于所述第一绝缘层和所述相变材料层之间的下应力材料层和位于所述第二绝缘层和所述相变材料层之间的上应力材料层,所述上应力材料层和下应力材料层的材料均为热应力材料。a lower stress material layer between the first insulating layer and the phase change material layer and an upper stress material layer between the second insulating layer and the phase change material layer, the upper stress material layer and the material of the lower stress material layer are all thermal stress materials.

可选地,所述热应力材料的膨胀系数至少为所述相变材料热膨胀系数的1.5倍。Optionally, the thermal expansion coefficient of the thermal stress material is at least 1.5 times the thermal expansion coefficient of the phase change material.

可选地,所述热应力材料为苯并环丁烯。Optionally, the thermal stress material is benzocyclobutene.

另一方面,本发明实施例还提供了一种低操作功耗的相变存储单元的制备方法,包括:On the other hand, an embodiment of the present invention also provides a method for fabricating a phase-change memory cell with low operating power consumption, including:

在衬底上形成底电极;forming a bottom electrode on the substrate;

在所述底电极上制备第一绝缘层,并对所述第一绝缘层进行图形化得到第一通孔,在所述第一通孔中制备相变材料插塞柱和第一应力材料层,所述相变材料插塞柱的一端与所述底电极连接,所述第一应力材料层围绕所述相变材料插塞柱的周围设置,所述第一应力材料层的材料为热应力材料,所述热应力材料的热膨胀系数大于所述相变材料的热膨胀系数;A first insulating layer is prepared on the bottom electrode, and the first insulating layer is patterned to obtain a first through hole, and a phase change material plug and a first stress material layer are prepared in the first through hole , one end of the phase change material plug is connected to the bottom electrode, the first stress material layer is arranged around the phase change material plug, and the material of the first stress material layer is thermal stress material, the thermal expansion coefficient of the thermal stress material is greater than the thermal expansion coefficient of the phase change material;

在所述第一绝缘层上制备相变材料层,所述相变材料插塞柱的另一端与所述相变材料层连接;preparing a phase change material layer on the first insulating layer, and the other end of the phase change material plug is connected to the phase change material layer;

在所述相变材料层上制备第二绝缘层,并对所述第二绝缘层进行图形化得到第二通孔,在所述第二通孔中制备顶电极插塞柱,所述顶电极插塞柱的一端与所述相变材料层连接,所述相变材料插塞柱与所述顶电极插塞柱在所述衬底上的投影不重合;A second insulating layer is prepared on the phase change material layer, and the second insulating layer is patterned to obtain a second through hole, and a top electrode plug is prepared in the second through hole, and the top electrode One end of the plug post is connected to the phase change material layer, and the projections of the phase change material plug post and the top electrode plug post on the substrate are not coincident;

在所述第二绝缘层上制备顶电极,所述顶电极插塞柱的另一端与所述顶电极连接。A top electrode is prepared on the second insulating layer, and the other end of the top electrode plug is connected to the top electrode.

可选地,所述方法还包括,在所述第二通孔中制备第二应力材料层,所述第二应力材料层围绕所述顶电极插塞柱的周围设置,所述第二应力材料层的材料为热应力材料。Optionally, the method further includes preparing a second stress material layer in the second through hole, the second stress material layer is disposed around the top electrode plug, the second stress material layer is The material of the layer is a thermally stressed material.

可选地,所述相变材料插塞柱在所述衬底上的投影位于所述第二应力材料层在所述衬底上的投影内。Optionally, the projection of the phase change material plug on the substrate is within the projection of the second stress material layer on the substrate.

可选地,应力材料的热膨胀系数至少为所述相变材料热膨胀系数的1.5倍。Optionally, the thermal expansion coefficient of the stress material is at least 1.5 times the thermal expansion coefficient of the phase change material.

本发明实施例提供的技术方案带来的有益效果至少包括:The beneficial effects brought by the technical solutions provided by the embodiments of the present invention include at least:

本申请中的相变存储单元包括衬底以及依次设置在衬底上的底电极、第一绝缘层、相变材料层、第二绝缘层和顶电极,第一绝缘层中设置有相变材料插塞柱,相变材料插塞柱的一端与相变材料层连接,相变材料插塞柱的另一端与底电极连接,围绕相变材料插塞柱的周围设有第一应力材料层,第一应力材料层的材料为热应力材料,热应力材料的热膨胀系数大于相变材料的热膨胀系数。第二绝缘层中设置有顶电极插塞柱,顶电极插塞柱的一端与相变材料层连接,顶电极插塞柱的另一端与顶电极连接,相变材料插塞柱与顶电极插塞柱在衬底上的投影不重合。The phase change memory cell in the present application includes a substrate and a bottom electrode, a first insulating layer, a phase change material layer, a second insulating layer and a top electrode sequentially arranged on the substrate, and the phase change material is arranged in the first insulating layer a plug, one end of the phase change material plug is connected to the phase change material layer, the other end of the phase change material plug is connected to the bottom electrode, and a first stress material layer is arranged around the phase change material plug, The material of the first stress material layer is a thermal stress material, and the thermal expansion coefficient of the thermal stress material is greater than that of the phase change material. The second insulating layer is provided with a top electrode plug, one end of the top electrode plug is connected to the phase change material layer, the other end of the top electrode plug is connected to the top electrode, and the phase change material plug is connected to the top electrode. The projections of the plugs on the substrate do not coincide.

在相变材料插塞柱周围设置第一应力材料层,当相变材料插塞柱受热时,由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,使得两者之间存在体积膨胀差,从而第一应力材料层会为相变材料插塞柱提供平行于衬底方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。A first stress material layer is arranged around the phase change material plug. When the phase change material plug is heated, since the thermal expansion coefficient of the thermal stress material is greater than that of the phase change material, there is a difference in volume expansion between the two. Therefore, the first stress material layer will provide compressive stress parallel to the substrate direction for the phase change material plug, thereby reducing the activation energy of the phase change material and reducing the operating power consumption of the phase change memory cell.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1是本发明实施例提供的一种低操作功耗的相变存储单元的结构示意图;1 is a schematic structural diagram of a phase-change memory cell with low operating power consumption provided by an embodiment of the present invention;

图2是本发明实施例提供的另一种低操作功耗的相变存储单元的结构示意图;2 is a schematic structural diagram of another phase-change memory cell with low operating power consumption provided by an embodiment of the present invention;

图3是本发明实施例提供的一种低操作功耗的相变存储单元的制备方法的流程图;3 is a flowchart of a method for fabricating a phase-change memory cell with low operating power consumption provided by an embodiment of the present invention;

图4~图9是本发明实施例提供的一种低操作功耗的相变存储单元的制备方法的过程图;4 to 9 are process diagrams of a method for fabricating a phase-change memory cell with low operating power consumption according to an embodiment of the present invention;

图10是本发明实施例提供的另一种低操作功耗的相变存储单元的制备方法的流程图。FIG. 10 is a flowchart of another method for fabricating a phase-change memory cell with low operating power consumption according to an embodiment of the present invention.

附图说明:Description of drawings:

衬底100、底电极200、第一绝缘层300、第一应力材料层301、相变材料插塞柱302、下应力材料层303、相变材料层400、第二绝缘层500、第二应力材料层501、顶电极插塞柱502、上应力材料层503、顶电极600Substrate 100, bottom electrode 200, first insulating layer 300, first stress material layer 301, phase change material plug 302, lower stress material layer 303, phase change material layer 400, second insulating layer 500, second stress Material layer 501, top electrode plug 502, upper stress material layer 503, top electrode 600

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.

本发明实施例提供了一种低操作功耗的相变存储单元。图1是本发明实施例提供的一种低操作功耗的相变存储单元的结构示意图,如图1所示,相变存储单元包括衬底100以及依次设置在衬底100上的底电极200、第一绝缘层300、相变材料层400、第二绝缘层500和顶电极600,Embodiments of the present invention provide a phase-change memory cell with low operating power consumption. FIG. 1 is a schematic structural diagram of a phase-change memory cell with low operating power consumption provided by an embodiment of the present invention. As shown in FIG. 1 , the phase-change memory cell includes a substrate 100 and a bottom electrode 200 arranged on the substrate 100 in sequence. , the first insulating layer 300, the phase change material layer 400, the second insulating layer 500 and the top electrode 600,

第一绝缘层300中设置有相变材料插塞柱302,相变材料插塞柱302的一端与相变材料层400连接,相变材料插塞柱302的另一端与底电极200连接,围绕相变材料插塞柱302的周围设有第一应力材料层301,第一应力材料层301为热应力材料,热应力材料的热膨胀系数大于相变材料的热膨胀系数;The first insulating layer 300 is provided with a phase change material plug 302, one end of the phase change material plug 302 is connected to the phase change material layer 400, and the other end of the phase change material plug 302 is connected to the bottom electrode 200, surrounding the A first stress material layer 301 is arranged around the phase change material plug 302, the first stress material layer 301 is a thermal stress material, and the thermal expansion coefficient of the thermal stress material is greater than that of the phase change material;

第二绝缘层500中设置有顶电极插塞柱502,顶电极插塞柱502的一端与相变材料层400连接,相变材料插塞柱302与顶电极插塞柱502在衬底100上的投影不重合,顶电极插塞柱502的另一端与顶电极600连接。The second insulating layer 500 is provided with a top electrode plug 502 , one end of the top electrode plug 502 is connected to the phase change material layer 400 , and the phase change material plug 302 and the top electrode plug 502 are on the substrate 100 The projections do not overlap, and the other end of the top electrode plug 502 is connected to the top electrode 600 .

相变材料插塞柱302与顶电极插塞柱502在衬底100上的投影不重合,使得顶电极600和底电极200在平行于衬底100方向上存在一定的距离,可以增大相变结构内的电流密度,降低温度耗散,提高热量利用效率,从而减少操作电流。The projections of the phase change material plugs 302 and the top electrode plugs 502 on the substrate 100 do not overlap, so that there is a certain distance between the top electrode 600 and the bottom electrode 200 in the direction parallel to the substrate 100, which can increase the phase transition The current density within the structure reduces temperature dissipation and improves heat utilization efficiency, thereby reducing operating current.

相变存储器的存储原理是利用电脉冲产生的焦耳热使得相变存储材料单元在阻态较低的晶态和阻态较高的非晶态之间切换。在晶态和非静态之间切换的能量被称为相变材料的活化能,对相变材料施加物理应力,可以降低相变材料的活化能。在相变材料插塞柱302周围设置第一应力材料层301,当相变材料插塞柱302受热时,由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,使得两者之间存在体积膨胀差,从而第一应力材料层301会为相变材料插塞柱302提供平行于衬底100方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。The storage principle of the phase change memory is to use the Joule heat generated by the electric pulse to make the phase change memory material unit switch between a crystalline state with a lower resistance state and an amorphous state with a higher resistance state. The energy of switching between the crystalline state and the non-static state is called the activation energy of the phase change material. Applying physical stress to the phase change material can reduce the activation energy of the phase change material. A first stress material layer 301 is arranged around the phase change material plug 302. When the phase change material plug 302 is heated, since the thermal expansion coefficient of the thermal stress material is greater than that of the phase change material, there is a volume between the two. Therefore, the first stress material layer 301 will provide a compressive stress parallel to the direction of the substrate 100 for the phase change material plug 302, thereby reducing the activation energy of the phase change material and reducing the operating power consumption of the phase change memory cell. effect.

第一应力材料层301围绕在相变材料插塞柱302周围,可以理解的,其中周围是指沿圆周方向进行封闭围绕,但并不限定相变材料插塞柱302的截面形状,其可以为圆形,也可以是其他的封闭图形。对应的,第一应力材料层301的截面形状为包含相变材料插塞柱302的截面的封闭图形,并不限定为圆形,也可以是其他封闭图形。The first stress material layer 301 surrounds the phase change material plug 302. It can be understood that the surrounding refers to a closed surrounding along the circumferential direction, but does not limit the cross-sectional shape of the phase change material plug 302, which can be A circle can also be other closed shapes. Correspondingly, the cross-sectional shape of the first stress material layer 301 is a closed figure including the cross-section of the phase change material plug 302 , which is not limited to a circle, and may also be other closed figures.

可选地,第一应力材料层301的截面边缘和相变材料插塞柱302的截面边缘最小距离d不小于20nm,以保证第一应力材料层301和相变材料插塞柱302之间产生足够的体积变化,提供足够的压应力。Optionally, the minimum distance d between the cross-sectional edge of the first stress material layer 301 and the cross-sectional edge of the phase change material plug 302 is not less than 20 nm, so as to ensure the generation between the first stressed material layer 301 and the phase change material plug 302. Sufficient volume change to provide sufficient compressive stress.

优选地,第一应力材料层301的截面边缘和相变材料插塞柱302的截面边缘最小距离d为定值,以保证第一应力材料层301为相变材料插塞柱302提供的压应力是均匀的,从而使得相变材料的活化能变化是均匀的,进而保证相变单元功耗的稳定性。Preferably, the minimum distance d between the cross-sectional edge of the first stress material layer 301 and the cross-sectional edge of the phase change material plug 302 is a fixed value to ensure the compressive stress provided by the first stress material layer 301 for the phase change material plug 302 is uniform, so that the activation energy change of the phase change material is uniform, thereby ensuring the stability of the power consumption of the phase change unit.

在一些实施例中,围绕顶电极插塞柱502的周围设有第二应力材料层501,所述第二应力材料层501的材料为热应力材料,热应力材料的热膨胀系数大于所述相变材料的热膨胀系数。在顶电极插塞柱502周围设置第二应力材料层501,当顶电极插塞柱502受热时,由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,使得两者之间存在体积膨胀差,从而第二应力材料层501会为相变材料层400提供垂直于衬底100方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。In some embodiments, a second stress material layer 501 is provided around the top electrode plug 502 , the material of the second stress material layer 501 is a thermal stress material, and the thermal expansion coefficient of the thermal stress material is greater than the phase transition The thermal expansion coefficient of the material. A second stress material layer 501 is arranged around the top electrode plug 502. When the top electrode plug 502 is heated, since the thermal expansion coefficient of the thermal stress material is greater than that of the phase change material, there is a difference in volume expansion between the two. , so that the second stress material layer 501 provides the phase change material layer 400 with a compressive stress perpendicular to the direction of the substrate 100 , thereby reducing the activation energy of the phase change material and reducing the operating power consumption of the phase change memory cell.

可选地,相变材料插塞柱302在衬底100上的投影位于第二应力材料在衬底100上的投影内。Optionally, the projection of the phase change material plug 302 on the substrate 100 is within the projection of the second stress material on the substrate 100 .

第二应力材料层501围绕在顶电极插塞柱502周围,其中周围是指沿圆周方向进行封闭围绕,但并不限定顶电极插塞柱502的截面形状,其可以为圆形,也可以是其他的封闭图形。对应的,第二应力材料层501的截面形状,为包含相变材料插塞柱302或顶电极插塞柱502的封闭图形,并不限定为圆形,也可以是其他封闭图形。The second stress material layer 501 surrounds the top electrode plug 502, wherein the surrounding refers to a closed surrounding along the circumferential direction, but does not limit the cross-sectional shape of the top electrode plug 502, which may be a circle or a Other closed graphics. Correspondingly, the cross-sectional shape of the second stress material layer 501 is a closed figure including the phase change material plug 302 or the top electrode plug 502 , which is not limited to a circle, but can also be other closed figures.

相变材料插塞柱302在衬底100上的投影位于第二应力材料层501在衬底100上的投影内,当顶电极插塞柱502通电受热时,对第二应力材料层501进行加热。由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,第二应力材料层501膨胀变形会为相变材料插塞柱302提供垂直于衬底100方向的压应力,进一步降低相变材料插塞柱302的活化能,进而降低相变存储单元操作功耗。The projection of the phase change material plug 302 on the substrate 100 is located within the projection of the second stress material layer 501 on the substrate 100. When the top electrode plug 502 is electrified and heated, the second stress material layer 501 is heated . Since the thermal expansion coefficient of the thermal stress material is greater than the thermal expansion coefficient of the phase change material, the expansion and deformation of the second stress material layer 501 will provide the phase change material plug 302 with a compressive stress in the direction perpendicular to the substrate 100, further reducing the phase change material plug The activation energy of the pillars 302, thereby reducing the operating power consumption of the phase change memory cell.

可选地,热应力材料的膨胀系数至少为相变材料的热膨胀系数的1.5倍,以保证热应力材料和相变材料之间产生足够的压应力,对相变材料的活化能产生影响。具体地,热应力材料可以为热膨胀系数较大的绝缘材料,比如苯并环丁烯。相变材料可以为锗碲、锑碲、锗锑碲等相变材料中的一种或两种及以上的混合。Optionally, the thermal expansion coefficient of the thermal stress material is at least 1.5 times the thermal expansion coefficient of the phase change material to ensure that sufficient compressive stress is generated between the thermal stress material and the phase change material to affect the activation energy of the phase change material. Specifically, the thermal stress material may be an insulating material with a large thermal expansion coefficient, such as benzocyclobutene. The phase change material may be one or a mixture of two or more phase change materials such as germanium tellurium, antimony tellurium and germanium antimony tellurium.

可选地,图2是本发明实施例提供的另一种低操作功耗的相变存储单元的结构示意图。与图1所示的相变存储单元相比,图2所示的相变存储单元还包括:位于第一绝缘层300和相变材料层400之间的下应力材料层303和位于第二绝缘层500和相变材料层400之间的上应力材料层503,上应力材料层503和下应力材料层303的材料均为热应力材料。Optionally, FIG. 2 is a schematic structural diagram of another phase-change memory cell with low operating power consumption provided by an embodiment of the present invention. Compared with the phase change memory cell shown in FIG. 1 , the phase change memory cell shown in FIG. 2 further includes: a lower stress material layer 303 located between the first insulating layer 300 and the phase change material layer 400 and a second insulating layer 303 . The materials of the upper stress material layer 503 between the layer 500 and the phase change material layer 400 , the upper stress material layer 503 and the lower stress material layer 303 are all thermal stress materials.

由于下应力材料层303和上应力材料层503均与相变材料层400接触,扩大了压应力的作用范围,使得相变材料的活化能能够进一步降低。Since both the lower stress material layer 303 and the upper stress material layer 503 are in contact with the phase change material layer 400 , the action range of the compressive stress is expanded, so that the activation energy of the phase change material can be further reduced.

可选地,下应力材料层303和上应力材料层503的厚度均不超过20nm,以减少变形对相变材料单元的整体性的影响。Optionally, the thicknesses of both the lower stress material layer 303 and the upper stress material layer 503 are not more than 20 nm, so as to reduce the influence of deformation on the integrity of the phase change material unit.

图3是本发明实施例提供的一种低操作功耗的相变存储单元的制备方法的流程图,用于制备图1所示的相变存储单元。如图3所示,该方法包括:FIG. 3 is a flowchart of a method for fabricating a phase-change memory cell with low operating power consumption according to an embodiment of the present invention, which is used to fabricate the phase-change memory cell shown in FIG. 1 . As shown in Figure 3, the method includes:

步骤S11:在衬底上形成底电极。Step S11: forming a bottom electrode on the substrate.

可选地,衬底100可以是ITO导电玻璃或表面覆盖有Ni/Au、Ti/Au、Ag、Ti/Pt等导电薄膜的任意衬底100。Optionally, the substrate 100 may be ITO conductive glass or any substrate 100 whose surface is covered with conductive thin films such as Ni/Au, Ti/Au, Ag, Ti/Pt, etc.

可选地,底电极200的材料可以为钨、钛钨、钛铂、镍金等金属材料,底电极200的厚度在10nm-200nm之间。Optionally, the material of the bottom electrode 200 may be metal materials such as tungsten, titanium-tungsten, titanium-platinum, nickel-gold, and the like, and the thickness of the bottom electrode 200 is between 10 nm and 200 nm.

具体地,如图4所示,以硅片为例,将硅片依次放置在丙酮,酒精中进行超声洗涤,约十分钟;超声完成后使用氮气枪将表面残留的液体吹净烘干待用。Specifically, as shown in Fig. 4, taking the silicon wafer as an example, the silicon wafer is placed in acetone and alcohol for ultrasonic cleaning for about ten minutes; after the ultrasonication is completed, the residual liquid on the surface is blown and dried by a nitrogen gun for use. .

可以使用磁控溅射或者电子束蒸发在洁净的硅片上蒸镀一层金属导电层如钛铂,镍金等,其厚度在10nm-200nm之间。A metal conductive layer such as titanium platinum, nickel gold, etc. can be evaporated on the clean silicon wafer by magnetron sputtering or electron beam evaporation, and its thickness is between 10nm-200nm.

步骤S12:在所述底电极上制备第一绝缘层,并对所述第一绝缘层进行图形化得到第一通孔,在所述第一通孔中制备相变材料插塞柱和第一应力材料层,所述相变材料插塞柱的一端与所述底电极连接,所述第一应力材料层围绕所述相变材料插塞柱的周围设置,所述第一应力材料层的材料为热应力材料,热应力材料的热膨胀系数大于所述相变材料的热膨胀系数。Step S12 : preparing a first insulating layer on the bottom electrode, patterning the first insulating layer to obtain a first through hole, and preparing a phase change material plug and a first through hole in the first through hole A stress material layer, one end of the phase change material plug is connected to the bottom electrode, the first stress material layer is arranged around the phase change material plug, the material of the first stress material layer is Being a thermal stress material, the thermal expansion coefficient of the thermal stress material is greater than the thermal expansion coefficient of the phase change material.

可选地,热应力材料的膨胀系数至少为相变材料的热膨胀系数的1.5倍,以使得热应力材料和相变材料之间产生足够的压应力,从而影响相变材料的活化能。具体地,热应力材料可以为热膨胀系数较大的绝缘材料,比如苯并环丁烯。相变材料可以为锗碲、锑碲、锗锑碲等相变材料中的一种或两种及以上的混合。Optionally, the thermal expansion coefficient of the thermal stress material is at least 1.5 times the thermal expansion coefficient of the phase change material, so that sufficient compressive stress is generated between the thermal stress material and the phase change material, thereby affecting the activation energy of the phase change material. Specifically, the thermal stress material may be an insulating material with a large thermal expansion coefficient, such as benzocyclobutene. The phase change material may be one or a mixture of two or more phase change materials such as germanium tellurium, antimony tellurium and germanium antimony tellurium.

在一些实施例中,步骤S12可以包括:In some embodiments, step S12 may include:

步骤S121,在所述底电极上制备第一绝缘层。Step S121, preparing a first insulating layer on the bottom electrode.

具体地,使用PECVD(Plasma Enhanced Chemical Vapour Deposition,等离子体增强化学气相沉积)、磁控溅射或ALD(Atomic Layer Deposition,原子层沉积)在底电极200上生长一层致密的二氧化硅或者氧化铝等其他绝缘材料作为第一绝缘层300,厚度可以根据设计需求,达到微米级以上。Specifically, using PECVD (Plasma Enhanced Chemical Vapour Deposition, plasma enhanced chemical vapor deposition), magnetron sputtering or ALD (Atomic Layer Deposition, atomic layer deposition) to grow a dense layer of silicon dioxide or oxide on the bottom electrode 200 Other insulating materials such as aluminum are used as the first insulating layer 300 , and the thickness can be above the micrometer level according to design requirements.

步骤S122,对所述第一绝缘层进行图形化得到第一通孔。Step S122, patterning the first insulating layer to obtain a first through hole.

具体地,如图5所示,结合光刻或者其他掩模工艺,将图形转移到第一绝缘层300上。利用刻蚀的方法,刻蚀出第一通孔,此处刻蚀的深度应当略过刻蚀,以保证底电极200可以裸露出来。Specifically, as shown in FIG. 5 , the pattern is transferred onto the first insulating layer 300 in combination with photolithography or other mask processes. Using the etching method, the first through hole is etched, and the depth of the etching here should be skipped to ensure that the bottom electrode 200 can be exposed.

步骤S123中,在第一通孔中制备第一应力材料层。In step S123, a first stress material layer is prepared in the first through hole.

具体地,利用磁控溅射等方法往第一通孔中填充热膨胀系数较大的绝缘材料作为应力材料,填充高度不低于第一通孔的深度,剥离完成后再利用CMP(Chemical-MechanicalPolishing,化学机械抛光)平整表面完成制备。Specifically, use magnetron sputtering and other methods to fill the first through hole with an insulating material with a larger thermal expansion coefficient as a stress material, the filling height is not lower than the depth of the first through hole, and then use CMP (Chemical-Mechanical Polishing) after the peeling is completed. , chemical mechanical polishing) flat surface to complete the preparation.

步骤S124中,第一应力材料层中制备相变材料插塞柱。In step S124, a phase change material plug is prepared in the first stress material layer.

具体地,如图6所示,结合光刻或者其他掩模工艺,对上一步第一应力材料层301表面进行图形化得到容纳相变材料插塞柱302的空间,并在空间中制备相变材料插塞柱302。Specifically, as shown in FIG. 6, combined with photolithography or other mask processes, pattern the surface of the first stress material layer 301 in the previous step to obtain a space for accommodating the phase change material plug 302, and prepare a phase change in the space Material plug post 302 .

相变材料插塞柱302的制备一般可通过磁控溅射、脉冲激光沉积、原子层沉积等常用半导体薄膜沉积方法完成。The preparation of the phase change material plug 302 can generally be completed by magnetron sputtering, pulsed laser deposition, atomic layer deposition and other common semiconductor thin film deposition methods.

可选地,第一应力材料层301的截面边缘和该图形的截面边缘最小距离不小于20nm,以保证第一应力材料层301和相变材料插塞柱302之间产生足够的体积变化,提供足够的压应力。Optionally, the minimum distance between the cross-sectional edge of the first stress material layer 301 and the cross-sectional edge of the pattern is not less than 20 nm, to ensure sufficient volume change between the first stress material layer 301 and the phase change material plug 302, providing sufficient compressive stress.

优选地,第一应力材料层301的截面边缘和相变材料插塞柱302的截面边缘最小距离为定值,以保证第一应力材料层301为相变材料插塞柱302提供的压应力是均匀的,从而使得相变材料的活化能变化是均匀的,进而保证相变单元功耗的稳定性。Preferably, the minimum distance between the cross-sectional edge of the first stress material layer 301 and the cross-sectional edge of the phase change material plug 302 is a fixed value, so as to ensure that the compressive stress provided by the first stress material layer 301 for the phase change material plug 302 is Uniform, so that the activation energy change of the phase change material is uniform, thereby ensuring the stability of the power consumption of the phase change unit.

步骤S13:在所述第一绝缘层上制备相变材料层,所述相变材料插塞柱的另一端与所述相变材料层连接。Step S13: A phase change material layer is prepared on the first insulating layer, and the other end of the phase change material plug is connected to the phase change material layer.

在一些实施例中,步骤S13可以与步骤S124合并,即如图7所示,通过一次沉积获取相变材料插塞柱302和相变材料层400。In some embodiments, step S13 may be combined with step S124 , that is, as shown in FIG. 7 , the phase change material plug posts 302 and the phase change material layer 400 are obtained by one deposition.

步骤S14:在所述相变材料层上制备第二绝缘层,并对所述第二绝缘层进行图形化得到第二通孔,在所述第二通孔中制备顶电极插塞柱,所述顶电极插塞柱的一端与所述相变材料层连接,所述相变材料插塞柱与所述顶电极插塞柱在所述衬底上的投影不重合。Step S14: preparing a second insulating layer on the phase change material layer, patterning the second insulating layer to obtain a second through hole, and preparing a top electrode plug in the second through hole, so that the One end of the top electrode plug is connected to the phase change material layer, and the projection of the phase change material plug and the top electrode plug on the substrate are not coincident.

在一些实施例中,步骤S14可以包括:In some embodiments, step S14 may include:

步骤S141,在所述相变材料层上制备第二绝缘层。Step S141, preparing a second insulating layer on the phase change material layer.

具体地,使用PECVD、磁控溅射或ALD在底电极200上生长一层致密的二氧化硅或者氧化铝等其他绝缘材料作为第二绝缘层500,厚度可以根据设计需求,达到微米级以上。Specifically, PECVD, magnetron sputtering, or ALD is used to grow a dense layer of other insulating materials such as silicon dioxide or aluminum oxide on the bottom electrode 200 as the second insulating layer 500, and the thickness can reach the micron level or more according to design requirements.

步骤S142,对所述第二绝缘层进行图形化得到第二通孔。Step S142, patterning the second insulating layer to obtain second through holes.

具体地,如图8所示,结合光刻或者其他掩模工艺,将图形转移到第二绝缘层500上。利用刻蚀的方法,刻蚀出第二通孔,此处刻蚀的深度应当略过刻蚀,以保证底电极200可以裸露出来。第二通孔在衬底100上的投影与第一通孔在衬底100上的投影不重合,以保证相变材料插塞柱302与顶电极插塞柱502在衬底100上的投影不重合。Specifically, as shown in FIG. 8 , the pattern is transferred onto the second insulating layer 500 in combination with photolithography or other mask processes. Using the etching method, the second through hole is etched, and the depth of the etching should be skipped to ensure that the bottom electrode 200 can be exposed. The projection of the second through hole on the substrate 100 does not coincide with the projection of the first through hole on the substrate 100 to ensure that the projections of the phase change material plug 302 and the top electrode plug 502 on the substrate 100 do not coincide coincide.

步骤S143中,在第二通孔中制备顶电极插塞柱。In step S143, a top electrode plug post is prepared in the second through hole.

具体地,利用磁控溅射等方法往第一通孔中填充顶电极600材料。填充高度不低于第二通孔的深度,剥离完成后再利用化学机械抛光(CMP)平整表面完成制备。Specifically, the material of the top electrode 600 is filled into the first through hole by a method such as magnetron sputtering. The filling height is not lower than the depth of the second through hole, and after the peeling is completed, chemical mechanical polishing (CMP) is used to flatten the surface to complete the preparation.

在另一些实施例中,步骤S143也可以是如图9和图1所示,先在第二通孔中制备第二应力材料层501,再制备顶电极插塞柱502。具体方法参见步骤S123和步骤S124,在此不再赘述。In other embodiments, step S143 may also be as shown in FIG. 9 and FIG. 1 , firstly preparing the second stress material layer 501 in the second through hole, and then preparing the top electrode plug 502 . For the specific method, refer to step S123 and step S124, which will not be repeated here.

步骤S15:在所述第二绝缘层上制备顶电极,所述顶电极插塞柱的另一端与所述顶电极连接。Step S15: A top electrode is prepared on the second insulating layer, and the other end of the top electrode plug is connected to the top electrode.

可选地,顶电极600的材料可以为钨、钛钨、钛铂、镍金等金属材料。Optionally, the material of the top electrode 600 may be metal materials such as tungsten, titanium-tungsten, titanium-platinum, nickel-gold and the like.

本申请的实施例中相变材料插塞柱302与顶电极插塞柱502在衬底100上的投影不重合,使得顶电极600和底电极200在平行于衬底100方向上存在一定的距离,可以增大相变结构内的电流密度,降低温度耗散,减少操作电流。In the embodiment of the present application, the projections of the phase change material plugs 302 and the top electrode plugs 502 on the substrate 100 do not overlap, so that there is a certain distance between the top electrode 600 and the bottom electrode 200 in a direction parallel to the substrate 100 , which can increase the current density in the phase change structure, reduce the temperature dissipation, and reduce the operating current.

相变存储器的存储原理是利用电脉冲产生的焦耳热使得相变存储材料单元在阻态较低的晶态和阻态较高的非晶态之间切换。在晶态和非静态之间切换的能量被称为相变材料的活化能,对相变材料施加物理应力,可以降低相变材料的活化能。在相变材料插塞柱302周围设置第一应力材料层301,当相变材料插塞柱302受热时,由于热应力材料的热膨胀系数大于相变材料的热膨胀系数,使得两者之间存在体积膨胀差,从而第一应力材料层301会为相变材料插塞柱302提供平行于衬底100方向的压应力,进而降低相变材料的活化能,起到降低相变存储单元操作功耗的作用。The storage principle of the phase change memory is to use the Joule heat generated by the electric pulse to make the phase change memory material unit switch between a crystalline state with a lower resistance state and an amorphous state with a higher resistance state. The energy of switching between the crystalline state and the non-static state is called the activation energy of the phase change material. Applying physical stress to the phase change material can reduce the activation energy of the phase change material. A first stress material layer 301 is arranged around the phase change material plug 302. When the phase change material plug 302 is heated, since the thermal expansion coefficient of the thermal stress material is greater than that of the phase change material, there is a volume between the two. Therefore, the first stress material layer 301 will provide a compressive stress parallel to the direction of the substrate 100 for the phase change material plug 302, thereby reducing the activation energy of the phase change material and reducing the operating power consumption of the phase change memory cell. effect.

图10是本发明实施例提供的一种低操作功耗的相变存储单元的制备方法的流程图,用于制备图2所示的相变存储单元。如图10所示,该方法与图3所示方法的区别在于:FIG. 10 is a flowchart of a method for fabricating a phase-change memory cell with low operating power consumption provided by an embodiment of the present invention, which is used to fabricate the phase-change memory cell shown in FIG. 2 . As shown in Figure 10, the difference between this method and the method shown in Figure 3 is:

步骤S22中,先在底电极200上制备第一绝缘层300和下应力材料层303,对所述第一绝缘层300和下应力材料层303进行图形化得到第一通孔,再在所述第一通孔中制备相变材料插塞柱302和第一应力材料层301。In step S22, a first insulating layer 300 and a lower stress material layer 303 are first prepared on the bottom electrode 200, and the first insulating layer 300 and the lower stress material layer 303 are patterned to obtain a first through hole, and then the first through hole is formed on the bottom electrode 200. Phase change material plug posts 302 and a first stress material layer 301 are prepared in the first through holes.

步骤S24中,先在相变材料层400上制备上应力材料层503和第二绝缘层500,对所述第二绝缘层500和上应力材料层503进行图形化得到第二通孔,再在所述第二通孔中制备顶电极插塞柱502。In step S24, an upper stress material layer 503 and a second insulating layer 500 are first prepared on the phase change material layer 400, and the second insulating layer 500 and the upper stress material layer 503 are patterned to obtain a second through hole, and then a second through hole is formed on the phase change material layer 400. A top electrode plug 502 is prepared in the second through hole.

其余步骤与图3所示方法相同,在此不再赘述。The remaining steps are the same as the method shown in FIG. 3 , and are not repeated here.

由于下应力材料层303和上应力材料层503均与相变材料层400接触,扩大了压应力的作用范围,使得相变材料的活化能能够进一步降低。Since both the lower stress material layer 303 and the upper stress material layer 503 are in contact with the phase change material layer 400 , the action range of the compressive stress is expanded, so that the activation energy of the phase change material can be further reduced.

可选地,下应力材料层303和上应力材料层503的厚度均不超过20nm,以减少变形对相变材料单元的整体性的影响。Optionally, the thicknesses of both the lower stress material layer 303 and the upper stress material layer 503 do not exceed 20 nm, so as to reduce the influence of deformation on the integrity of the phase change material unit.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection of the present invention. within the range.

Claims (10)

1.一种低操作功耗的相变存储单元,其特征在于,所述相变存储单元包括:1. A phase-change memory cell with low operating power consumption, wherein the phase-change memory cell comprises: 衬底以及依次设置在所述衬底上的底电极、第一绝缘层、相变材料层、第二绝缘层和顶电极,a substrate and a bottom electrode, a first insulating layer, a phase change material layer, a second insulating layer and a top electrode sequentially arranged on the substrate, 所述第一绝缘层中设置有相变材料插塞柱,所述相变材料插塞柱的一端与所述相变材料层连接,所述相变材料插塞柱的另一端与所述底电极连接,围绕所述相变材料插塞柱的周围设有第一应力材料层,所述第一应力材料层的材料为热应力材料,所述热应力材料的热膨胀系数大于所述相变材料的热膨胀系数;The first insulating layer is provided with a phase change material plug, one end of the phase change material plug is connected to the phase change material layer, and the other end of the phase change material plug is connected to the bottom The electrodes are connected, a first stress material layer is arranged around the phase change material plug, the material of the first stress material layer is a thermal stress material, and the thermal expansion coefficient of the thermal stress material is larger than that of the phase change material the thermal expansion coefficient; 所述第二绝缘层中设置有顶电极插塞柱,所述顶电极插塞柱的一端与所述相变材料层连接,所述顶电极插塞柱的另一端与所述顶电极连接,所述相变材料插塞柱与所述顶电极插塞柱在所述衬底上的投影不重合。The second insulating layer is provided with a top electrode plug, one end of the top electrode plug is connected to the phase change material layer, and the other end of the top electrode plug is connected to the top electrode, The projections of the phase change material plugs and the top electrode plugs on the substrate do not coincide. 2.根据权利要求1所述的相变存储单元,其特征在于,围绕所述顶电极插塞柱的周围设有第二应力材料层,所述第二应力材料层的材料为热应力材料。2 . The phase change memory cell according to claim 1 , wherein a second stress material layer is provided around the top electrode plug, and the material of the second stress material layer is a thermal stress material. 3 . 3.根据权利要求2所述的相变存储单元,其特征在于,所述相变材料插塞柱在所述衬底上的投影位于所述第二应力材料层在所述衬底上的投影内。3 . The phase change memory cell according to claim 2 , wherein the projection of the phase change material plug on the substrate is located at the projection of the second stress material layer on the substrate. 4 . Inside. 4.根据权利要求1~3任一项所述的相变存储单元,其特征在于,所述相变存储单元还包括:4. The phase-change memory cell according to any one of claims 1 to 3, wherein the phase-change memory cell further comprises: 位于所述第一绝缘层和所述相变材料层之间的下应力材料层和位于所述第二绝缘层和所述相变材料层之间的上应力材料层,所述上应力材料层和下应力材料层的材料均为热应力材料。a lower stress material layer between the first insulating layer and the phase change material layer and an upper stress material layer between the second insulating layer and the phase change material layer, the upper stress material layer and the material of the lower stress material layer are all thermal stress materials. 5.根据权利要求1~3任一项所述的相变存储单元,其特征在于,所述热应力材料的膨胀系数至少为所述相变材料热膨胀系数的1.5倍。5 . The phase change memory cell according to claim 1 , wherein the expansion coefficient of the thermal stress material is at least 1.5 times the thermal expansion coefficient of the phase change material. 6 . 6.根据权利要求1~3任一项所述的相变存储单元,其特征在于,所述热应力材料为苯并环丁烯。6 . The phase change memory cell according to claim 1 , wherein the thermal stress material is benzocyclobutene. 7 . 7.一种低操作功耗的相变存储单元的制备方法,其特征在于,7. A preparation method of a phase-change memory cell with low operating power consumption, characterized in that, 在衬底上形成底电极;forming a bottom electrode on the substrate; 在所述底电极上制备第一绝缘层,并对所述第一绝缘层进行图形化得到第一通孔,在所述第一通孔中制备相变材料插塞柱和第一应力材料层,所述相变材料插塞柱的一端与所述底电极连接,所述第一应力材料层围绕所述相变材料插塞柱的周围设置,所述第一应力材料层的材料为热应力材料,所述热应力材料的热膨胀系数大于所述相变材料的热膨胀系数;A first insulating layer is prepared on the bottom electrode, and the first insulating layer is patterned to obtain a first through hole, and a phase change material plug and a first stress material layer are prepared in the first through hole , one end of the phase change material plug is connected to the bottom electrode, the first stress material layer is arranged around the phase change material plug, and the material of the first stress material layer is thermal stress material, the thermal expansion coefficient of the thermal stress material is greater than the thermal expansion coefficient of the phase change material; 在所述第一绝缘层上制备相变材料层,所述相变材料插塞柱的另一端与所述相变材料层连接;preparing a phase change material layer on the first insulating layer, and the other end of the phase change material plug is connected to the phase change material layer; 在所述相变材料层上制备第二绝缘层,并对所述第二绝缘层进行图形化得到第二通孔,在所述第二通孔中制备顶电极插塞柱,所述顶电极插塞柱的一端与所述相变材料层连接,所述相变材料插塞柱与所述顶电极插塞柱在所述衬底上的投影不重合;A second insulating layer is prepared on the phase change material layer, and the second insulating layer is patterned to obtain a second through hole, and a top electrode plug is prepared in the second through hole, and the top electrode One end of the plug post is connected to the phase change material layer, and the projections of the phase change material plug post and the top electrode plug post on the substrate are not coincident; 在所述第二绝缘层上制备顶电极,所述顶电极插塞柱的另一端与所述顶电极连接。A top electrode is prepared on the second insulating layer, and the other end of the top electrode plug is connected to the top electrode. 8.根据权利要求7所述的相变存储单元的制备方法,其特征在于,所述方法还包括,在所述第二通孔中制备第二应力材料层,所述第二应力材料层围绕所述顶电极插塞柱的周围设置,所述第二应力材料层的材料为热应力材料。8 . The method for manufacturing a phase change memory cell according to claim 7 , wherein the method further comprises: preparing a second stress material layer in the second through hole, the second stress material layer surrounding the The periphery of the top electrode plug is arranged, and the material of the second stress material layer is a thermal stress material. 9.根据权利要求8所述的相变存储单元的制备方法,其特征在于,所述相变材料插塞柱在所述衬底上的投影位于所述第二应力材料层在所述衬底上的投影内。9 . The method for manufacturing a phase change memory cell according to claim 8 , wherein the projection of the phase change material plug on the substrate is located on the substrate of the second stress material layer. 10 . within the projection on. 10.根据权利要求7~9任一项所述的相变存储单元的制备方法,其特征在于,应力材料的热膨胀系数至少为所述相变材料热膨胀系数的1.5倍。10 . The method for manufacturing a phase change memory cell according to claim 7 , wherein the thermal expansion coefficient of the stress material is at least 1.5 times the thermal expansion coefficient of the phase change material. 11 .
CN202110006493.XA 2021-01-05 2021-01-05 Phase change memory cell with low operation power consumption and preparation method thereof Active CN112909160B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110006493.XA CN112909160B (en) 2021-01-05 2021-01-05 Phase change memory cell with low operation power consumption and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110006493.XA CN112909160B (en) 2021-01-05 2021-01-05 Phase change memory cell with low operation power consumption and preparation method thereof

Publications (2)

Publication Number Publication Date
CN112909160A CN112909160A (en) 2021-06-04
CN112909160B true CN112909160B (en) 2022-04-08

Family

ID=76112135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110006493.XA Active CN112909160B (en) 2021-01-05 2021-01-05 Phase change memory cell with low operation power consumption and preparation method thereof

Country Status (1)

Country Link
CN (1) CN112909160B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933207A (en) * 2006-10-13 2007-03-21 中国科学院上海微系统与信息技术研究所 Phase transformation memory storing unit and producing method thereof
JP2011103323A (en) * 2009-11-10 2011-05-26 Hitachi Ltd Semiconductor memory device
CN107017341A (en) * 2017-03-28 2017-08-04 华中科技大学 A kind of asymmetric ring-type microelectrode phase-change memory cell and device
US10454027B1 (en) * 2018-08-14 2019-10-22 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switches with stressor layers and contact adhesion layers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100448893B1 (en) * 2002-08-23 2004-09-16 삼성전자주식회사 Phase-changeable memory device and method for fabricating the same
KR100687750B1 (en) * 2005-09-07 2007-02-27 한국전자통신연구원 Phase change type memory device using antimony and selenium metal alloy and manufacturing method thereof
US20070249086A1 (en) * 2006-04-19 2007-10-25 Philipp Jan B Phase change memory
JP2009099854A (en) * 2007-10-18 2009-05-07 Elpida Memory Inc Method of manufacturing vertical phase change memory device
JP2009177073A (en) * 2008-01-28 2009-08-06 Renesas Technology Corp Semiconductor device and method of manufacturing the same
US8031518B2 (en) * 2009-06-08 2011-10-04 Micron Technology, Inc. Methods, structures, and devices for reducing operational energy in phase change memory
CN101937971A (en) * 2010-08-18 2011-01-05 中国科学院半导体研究所 Vertical phase change memory and its preparation method
CN105405971B (en) * 2015-12-04 2018-02-06 江苏时代全芯存储科技有限公司 Phase change memory and its manufacturing method
CN110635030B (en) * 2019-09-24 2021-10-01 华中科技大学 Vertical electrode configuration for nanoscale phase-change memory cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1933207A (en) * 2006-10-13 2007-03-21 中国科学院上海微系统与信息技术研究所 Phase transformation memory storing unit and producing method thereof
JP2011103323A (en) * 2009-11-10 2011-05-26 Hitachi Ltd Semiconductor memory device
CN107017341A (en) * 2017-03-28 2017-08-04 华中科技大学 A kind of asymmetric ring-type microelectrode phase-change memory cell and device
US10454027B1 (en) * 2018-08-14 2019-10-22 Newport Fab, Llc Phase-change material (PCM) radio frequency (RF) switches with stressor layers and contact adhesion layers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Structure of Phase‐Change Chalcogenides and Their High‐Pressure Behavior;Kailang Xu等;《Phys. Status Solidi RRL》;20181227;第13卷;全文 *

Also Published As

Publication number Publication date
CN112909160A (en) 2021-06-04

Similar Documents

Publication Publication Date Title
US7488967B2 (en) Structure for confining the switching current in phase memory (PCM) cells
CN100461484C (en) Phase-change memory storage unit and preparation method thereof
CN100563041C (en) Device unit structure and manufacturing method of a resistance memory
CN100530739C (en) Phase change memory unit with loop phase change material and its making method
CN110212088B (en) A two-dimensional material phase change memory cell
CN108807667B (en) A three-dimensional stacked memory and its preparation method
CN102832340B (en) Phase transition storage unit and manufacture method thereof
WO2014040356A1 (en) Phase change memory location for replacing dram and flash and manufacturing method therefor
CN112652714A (en) Preparation method of phase change memory array
CN101101962A (en) Gallium-adulterated Ga3Sb8Te1 phase change memory unit and its making method
US20090206317A1 (en) Phase change memory device and method for manufacturing the same
CN102097585A (en) Preparation method of quasi-edge contact nano phase-change memory cell
CN112909160B (en) Phase change memory cell with low operation power consumption and preparation method thereof
CN102593350B (en) Phase change memory cell and producing method thereof
CN101764195A (en) Method for making nano-sized phase change memory
CN100397561C (en) A kind of preparation method of nanophase change memory device unit
CN110797458B (en) Memristor and preparation method thereof
CN112909161B (en) Low-power-consumption phase change memory unit with buffer layer and preparation method thereof
CN103531710B (en) A kind of high-speed low-power-consumption phase change memory unit and preparation method thereof
CN102522500B (en) A kind of preparation method of phase-change random access memory array
CN113889571B (en) A high performance phase change memory and its preparation method
CN106159085A (en) Phase-change memory cell and preparation method thereof
CN102054934B (en) Preparation method of planar phase change storage
CN100461485C (en) Current limiter based on chalcogenide phase change material and manufacturing method
CN114361202A (en) Phase change memory cell and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant