CN112983849B - A centrifugal compressor structure with automatic balance of axial force - Google Patents
A centrifugal compressor structure with automatic balance of axial force Download PDFInfo
- Publication number
- CN112983849B CN112983849B CN202110186719.9A CN202110186719A CN112983849B CN 112983849 B CN112983849 B CN 112983849B CN 202110186719 A CN202110186719 A CN 202110186719A CN 112983849 B CN112983849 B CN 112983849B
- Authority
- CN
- China
- Prior art keywords
- stage
- primary
- impeller
- volute
- shaft seal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 35
- 239000003507 refrigerant Substances 0.000 description 14
- 230000006835 compression Effects 0.000 description 11
- 238000007906 compression Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005461 lubrication Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009916 joint effect Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
- F04D17/122—Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D25/0606—Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
- F04D29/057—Bearings hydrostatic; hydrodynamic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/083—Sealings especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
- F04D29/286—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/4206—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/5806—Cooling the drive system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/661—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
- F04D29/662—Balancing of rotors
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本发明属于流体机械领域,涉及一种轴向力可自动平衡的离心式压缩机结构,包括:一级蜗壳、二级蜗壳分别安装在电机壳体的两端,主轴的两端背靠背分别安装有一级叶轮和二级叶轮,一级叶轮和二级叶轮分别位于一级蜗壳、二级蜗壳内;电机壳体和一级蜗壳之间设有一级轴封,电机壳体和二级蜗壳之间设有二级轴封。本发明通过调整一级轴封和二级轴封的进气压力控制一级叶轮和二级叶轮的轮背压力,分别与一级叶轮的前后压差所产生的轴向力和二级叶轮的前后压差所产生的轴向力平衡掉,避免了离心式压缩机由于轴向力不平衡而导致的磨损和故障,提高压缩机的性能和使用寿命。同时可以轮背作为止推盘,取消止推轴承,提高叶轮定位精度和整机的紧凑性。
The invention belongs to the field of fluid machinery, and relates to a centrifugal compressor structure whose axial force can be automatically balanced. The primary impeller and the secondary impeller are respectively installed, and the primary impeller and the secondary impeller are respectively located in the primary volute and the secondary volute; a primary shaft seal is arranged between the motor housing and the primary volute, and the motor housing A secondary shaft seal is arranged between the body and the secondary volute. The invention controls the wheel back pressure of the first-stage impeller and the second-stage impeller by adjusting the intake pressure of the first-stage shaft seal and the second-stage shaft seal. The axial force generated by the front and rear pressure difference is balanced out, avoiding the wear and failure of the centrifugal compressor due to the unbalanced axial force, and improving the performance and service life of the compressor. At the same time, the wheel back can be used as a thrust plate, and the thrust bearing is eliminated, which improves the positioning accuracy of the impeller and the compactness of the whole machine.
Description
技术领域technical field
本发明属于流体机械领域,涉及一种轴向力可自动平衡的离心式压缩机结构。The invention belongs to the field of fluid machinery, and relates to a centrifugal compressor structure whose axial force can be automatically balanced.
背景技术Background technique
离心式压缩机中作为流体机械的一种,在冶金、石油化工、天然气输送、制冷以及动力等工业领域获得广泛应用,在推动经济发展中起着至关重要的作用。As a type of fluid machinery, centrifugal compressors are widely used in metallurgy, petrochemical, natural gas transportation, refrigeration and power industries, and play a vital role in promoting economic development.
离心式压缩机中气体压力的提高,是由于气体流经叶轮时,叶轮高速旋转对气体做功而使气体产生压力提升,与此同时气体获得高速度,在气体通过扩压器和蜗壳扩张通道时,气体的流动速度逐渐降低,动能转变为压力能使压力进一步提高。The increase of the gas pressure in the centrifugal compressor is due to the fact that when the gas flows through the impeller, the high-speed rotation of the impeller does work on the gas to increase the pressure of the gas. At the same time, the gas obtains a high speed. When , the flow velocity of the gas gradually decreases, and the kinetic energy is converted into pressure, which can further increase the pressure.
传统的离心式压缩机在设计工况下运行平稳,但在非设计工况往往存在一些缺点和不足,比如压缩机运转时轴向力不平衡导致轴系窜动,轴向载荷增大,导致轴承磨损严重,影响压缩机的性能和寿命。另外传统的离心式压缩机在高压力的工况下,叶轮和轮背侧的压差过大时也容易出现轴向力不平衡的问题。Traditional centrifugal compressors run smoothly under design conditions, but there are often some shortcomings and deficiencies in non-design conditions. The bearing wear is serious, which affects the performance and life of the compressor. In addition, the traditional centrifugal compressor is prone to the problem of axial force imbalance when the pressure difference between the impeller and the back side of the wheel is too large under high pressure conditions.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的主要目的在于提供一种轴向力可自动平衡的离心式压缩机结构,以克服上述现有技术的缺陷。In view of this, the main purpose of the present invention is to provide a centrifugal compressor structure with which the axial force can be automatically balanced, so as to overcome the above-mentioned defects of the prior art.
本发明解决上述问题的技术方案是:一种轴向力可自动平衡的离心式压缩机结构,其特殊之处在于,包括:The technical solution of the present invention to solve the above problem is: a centrifugal compressor structure with an automatic balance of axial force, the special feature of which is that it includes:
电机壳体、主轴、电机、一级蜗壳、二级蜗壳;电机位于电机壳体内,电机带动主轴转动;Motor housing, spindle, motor, primary volute, secondary volute; the motor is located in the motor housing, and the motor drives the spindle to rotate;
一级蜗壳、二级蜗壳分别安装在电机壳体的两端,主轴的两端背靠背分别安装有一级叶轮和二级叶轮,一级叶轮和二级叶轮分别位于一级蜗壳、二级蜗壳内;The first-stage volute and the second-stage volute are respectively installed on both ends of the motor casing, and the two ends of the main shaft are respectively installed with a first-stage impeller and a second-stage impeller. inside the stage volute;
所述电机壳体和一级蜗壳之间设有一级轴封,所述电机壳体和二级蜗壳之间设有二级轴封;A primary shaft seal is provided between the motor housing and the primary volute, and a secondary shaft seal is provided between the motor housing and the secondary volute;
所述一级轴封将一级蜗壳的腔室与电机壳体内的腔室分隔开来,所述二级轴封将二级蜗壳的腔室与电机壳体内的腔室分隔开来,在减小叶轮出口气体向轮背的泄漏量的基础上保证压缩机中一级叶轮、二级叶轮运转时相对独立,互不影响。所述电机壳体靠近所述一级轴封内侧、二级轴封位置设置分别有上通孔和下通孔,所述上通孔进口连接有过滤器。The primary shaft seal separates the chamber of the primary volute from the chamber in the motor housing, and the secondary shaft seal separates the chamber of the secondary volute from the chamber in the motor housing. Separated, on the basis of reducing the leakage of the gas from the impeller outlet to the wheel back, it is ensured that the first-stage impeller and the second-stage impeller in the compressor operate relatively independently and do not affect each other. The motor housing is provided with an upper through hole and a lower through hole respectively at the inner side of the primary shaft seal and the position of the secondary shaft seal, and a filter is connected to the inlet of the upper through hole.
进一步地,上述电机壳体上对应一级轴封、二级轴封的位置分别开设第一通气孔、第三通气孔;所述一级轴封、二级轴封开第二通气孔和第四通气孔,第二通气孔和第四通气孔的出口轴线与所述主轴平行并指向所述一级叶轮、二级叶轮轮背;所述第一通气孔、第三通气孔分别与第二通气孔和第四通气孔连通。Further, the positions corresponding to the primary shaft seal and the secondary shaft seal on the motor housing are respectively provided with a first vent hole and a third vent hole; the primary shaft seal and the secondary shaft seal open the second vent hole and The fourth vent hole, the outlet axes of the second vent hole and the fourth vent hole are parallel to the main shaft and point to the back of the first stage impeller and the second stage impeller; the first vent hole and the third vent hole are respectively connected with the first The second vent hole communicates with the fourth vent hole.
通过调节通入所述通气孔和的压力,调节一级和二级叶轮轮背的压力从而使与各级叶轮的轴向力平衡,避免单个叶轮轴向力过大带来变形量、振动过大的问题。另外,对叶轮轮背供气可以减小叶轮出口的泄露,达到有效密封的目的。By adjusting the pressure entering the vent holes and the pressure on the backs of the primary and secondary impellers to balance the axial force with the impellers at all levels, avoid deformation and excessive vibration caused by excessive axial force of a single impeller. big problem. In addition, supplying air to the back of the impeller can reduce the leakage of the impeller outlet and achieve the purpose of effective sealing.
进一步地,上述第二通气孔和第四通气孔的数量为多个,在圆周方向上均匀分布,以使一级叶轮、二级叶轮轮背具有均匀的压力。Further, the number of the second ventilation holes and the fourth ventilation holes is multiple, and they are evenly distributed in the circumferential direction, so that the wheel backs of the primary impeller and the secondary impeller have uniform pressure.
进一步地,上述主轴上抵靠所述一级轴封内侧设有第一动压径向气体轴承;抵靠所述二级轴封内侧设有第二动压径向气体轴承,所述第一动压径向气体轴承、第二动压径向气体轴承共同支承所述主轴,并承担所述主轴的径向载荷,所述两级叶轮轮背的共同作用,承担所述主轴的轴向载荷。直接利用两级叶轮轮背面作为止推面,不仅使压缩机的结构更加紧凑,而且可以提高叶轮的定位精度,保证叶轮在小间隙的情况下也能安全稳定运行,进一步提高叶轮的效率。Further, a first dynamic pressure radial gas bearing is provided on the main shaft against the inner side of the primary shaft seal; a second dynamic pressure radial gas bearing is provided against the inner side of the secondary shaft seal, and the first dynamic pressure radial gas bearing is provided on the inner side of the secondary shaft seal. The dynamic pressure radial gas bearing and the second dynamic pressure radial gas bearing jointly support the main shaft and bear the radial load of the main shaft, and the joint action of the two-stage impeller wheel back bears the axial load of the main shaft . Using the back of the two-stage impeller wheel directly as the thrust surface not only makes the compressor structure more compact, but also improves the positioning accuracy of the impeller, ensures the safe and stable operation of the impeller in the case of small clearance, and further improves the efficiency of the impeller.
进一步地,上述一级蜗壳上设置一级入口和一级出口,一级入口设置在所述一级蜗壳中心位置处,所述一级出口设置在所述一级蜗壳圆周上;所述二级蜗壳上设置二级入口和二级出口,二级入口设置在所述二级蜗壳中心位置处,所述二级出口设置在所述二级蜗壳圆周上。一级出口与二级入口连通。Further, a first-stage inlet and a first-stage outlet are arranged on the above-mentioned first-stage volute, the first-stage inlet is arranged at the center of the first-stage volute, and the first-stage outlet is arranged on the circumference of the first-stage volute; The secondary volute is provided with a secondary inlet and a secondary outlet, the secondary inlet is arranged at the center of the secondary volute, and the secondary outlet is arranged on the circumference of the secondary volute. The primary outlet communicates with the secondary inlet.
进一步地,上述一级蜗壳与所述一级轴封装配后形成一级叶轮扩压器,所述一级叶轮出口正对所述一级叶轮扩压器入口;所述二级蜗壳与所述二级轴封装配后形成二级叶轮扩压器,所述二级叶轮出口正对所述二级叶轮扩压器入口。Further, the first-stage volute is assembled with the first-stage shaft seal to form a first-stage impeller diffuser, and the first-stage impeller outlet is facing the first-stage impeller-diffuser inlet; the second-stage volute is connected to the first-stage impeller diffuser. The secondary shaft seal is assembled to form a secondary impeller diffuser, and the outlet of the secondary impeller faces the inlet of the secondary impeller diffuser.
进一步地,上述电机包括电机转子和电机定子,电机定子固定在电机壳体内,电机转子带动主轴转动。Further, the above-mentioned motor includes a motor rotor and a motor stator, the motor stator is fixed in the motor housing, and the motor rotor drives the main shaft to rotate.
进一步地,上述电机壳体上的第一通气孔、第三通气孔分别安装有与外部设备连通的接头。Further, the first vent hole and the third vent hole on the above-mentioned motor housing are respectively installed with connectors that communicate with external equipment.
本发明的优点:Advantages of the present invention:
1)本发明在工作时,一级叶轮前后的压差会产生一个轴向力,二级叶轮前后的压差也会产生一个轴向力。通过调整一级轴封和二级轴封的进气压力控制一级叶轮和二级叶轮的轮背压力,一级叶轮的前后压差所产生的轴向力和二级叶轮的前后压差所产生的轴向力能够分别平衡掉,避免了离心式压缩机由于轴向力不平衡而导致的磨损和故障,提高压缩机的性能和使用寿命。1) When the present invention is working, the pressure difference before and after the primary impeller will generate an axial force, and the pressure difference before and after the secondary impeller will also generate an axial force. By adjusting the inlet pressure of the primary shaft seal and the secondary shaft seal to control the wheel back pressure of the primary impeller and the secondary impeller, the axial force generated by the pressure difference between the front and rear of the primary impeller and the pressure difference between the front and rear of the secondary impeller The generated axial force can be balanced out respectively, which avoids the wear and failure of the centrifugal compressor due to the unbalanced axial force, and improves the performance and service life of the compressor.
2)紧凑、高效。本发明直接利用两级叶轮轮背作为止推面,不用止推轴承,提高压缩机的紧凑性,而且可以保证叶轮的精确定位,减小叶轮的振动、变形,叶轮的间隙也可以减小,从而提高叶轮的效率。同时,对轮背供气提高了轮背侧的压力,可以减小叶轮出口的泄露。2) Compact and efficient. The invention directly utilizes the two-stage impeller wheel back as the thrust surface, without the use of thrust bearings, improves the compactness of the compressor, and can ensure the precise positioning of the impeller, reduce the vibration and deformation of the impeller, and reduce the clearance of the impeller. Thereby increasing the efficiency of the impeller. At the same time, the air supply to the wheel back increases the pressure on the wheel back side, which can reduce the leakage of the impeller outlet.
3、)洁净、长寿命和高可靠性。本发明采用气体轴承,不仅无磨损,维护成本低,而且洁净性好。另外两侧叶轮的轴向载荷可主动平衡,转子的运转状态平稳,轴承的可靠性高,使用寿命长。3.) Clean, long life and high reliability. The invention adopts the gas bearing, which not only has no wear, low maintenance cost, but also has good cleanliness. In addition, the axial load of the impellers on both sides can be actively balanced, the running state of the rotor is stable, the reliability of the bearing is high, and the service life is long.
附图说明Description of drawings
图1为本发明实施例提供的一种轴向力可自动平衡的离心式压缩机的结构示意图;1 is a schematic structural diagram of a centrifugal compressor whose axial force can be automatically balanced according to an embodiment of the present invention;
图2为图1所示离心式压缩机中一级轴封的结构示意图;Fig. 2 is the structural representation of the primary shaft seal in the centrifugal compressor shown in Fig. 1;
图3为图1所示离心式压缩机中二级轴封的结构示意图;Fig. 3 is the structural representation of the secondary shaft seal in the centrifugal compressor shown in Fig. 1;
图4为图1所示离心式压缩机的工作原理示意图。FIG. 4 is a schematic diagram of the working principle of the centrifugal compressor shown in FIG. 1 .
其中:1、电机壳体,2、第一动压径向轴承,3、电机,5、第二动压径向轴承,6、一级叶轮扩压器,7、二级叶轮扩压器,12、一级蜗壳,13、二级蜗壳,14、主轴,15、电机转子,16、电机定子,17、上接头,18、下接头,21、一级轴封,22、二级轴封,27、一级叶轮,30、二级叶轮,31、第一通气孔,32、第二通气孔,33、第三通气孔,34、第四通气孔,35、上通孔,36、下通孔,37、第一接头,38、第二接头,41、一级入口,42、一级出口,43、二级入口,44、二级出口,48、腔室,100、离心式压缩机,101、二级压缩机,102、一级压缩机,103、双级压缩循环冷凝器,104、经济器,105、第一节流阀,106、第二节流阀,107、双级压缩循环蒸发器,108、储液罐,109、第三节流阀,110、第四节流阀。Among them: 1. Motor housing, 2. First dynamic pressure radial bearing, 3. Motor, 5. Second dynamic pressure radial bearing, 6. First-stage impeller diffuser, 7. Second-stage impeller diffuser , 12, primary volute, 13, secondary volute, 14, main shaft, 15, motor rotor, 16, motor stator, 17, upper joint, 18, lower joint, 21, primary shaft seal, 22, secondary Shaft seal, 27, primary impeller, 30, secondary impeller, 31, first vent hole, 32, second vent hole, 33, third vent hole, 34, fourth vent hole, 35, upper through hole, 36 , lower through hole, 37, first joint, 38, second joint, 41, primary inlet, 42, primary outlet, 43, secondary inlet, 44, secondary outlet, 48, chamber, 100, centrifugal compressor, 101, secondary compressor, 102, primary compressor, 103, two-stage compression cycle condenser, 104, economizer, 105, first throttle, 106, second throttle, 107, double Stage compression cycle evaporator, 108, liquid storage tank, 109, third throttle valve, 110, fourth throttle valve.
具体实施方式Detailed ways
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention. Accordingly, the following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the invention as claimed, but is merely representative of selected embodiments of the invention.
一种轴向力可自动平衡的离心式压缩机结构,如图1所示,包括电机壳体1、位于电机壳体1中的主轴14、以及安装在电机壳体1内的电机3。电机壳体1的左侧端部处,安装有一级蜗壳12和一级轴封21。电机壳体的右侧端部处,安装有二级蜗壳13和二级轴封22。主轴14的左侧端部处,安装有一级叶轮27。主轴14的右侧端部处,安装有二级叶轮30。A centrifugal compressor structure whose axial force can be automatically balanced, as shown in FIG. 1 , includes a
在一级蜗壳12上设有一级入口41和一级出口42,一级入口41设置在一级蜗壳12中心位置,一级出口42设置在一级蜗壳12圆周上;在二级蜗壳13上设有二级入口43和二级出口44,二级入口43设置在二级蜗壳13中心位置,二级出口44设置在二级蜗壳13圆周上。A first-
一级叶轮27位于一级蜗壳12内,一级蜗壳12与一级轴封21装配后形成一级叶轮扩压器6,一级叶轮27出口正对一级叶轮扩压器6入口。二级叶轮30位于二级蜗壳13内,二级蜗壳13与二级轴封22装配后形成二级叶轮扩压器7,二级叶轮30出口正对二级叶轮扩压器7入口。The
一级轴封21将一级蜗壳腔室12与电机3所在腔室分隔开来,二级轴封22将二级蜗壳13腔室与电机壳体1腔室分隔开来,压缩机中一级叶轮27与二级叶轮30运转时相对独立,互不影响。在图1所示状态下的电机壳体1左侧端部处,设置有上通孔35,上通孔35的进口连接过滤器后安装上接头17(图示未标出);在电机壳体1靠近二级轴封22内侧位置设置有下通孔36,下通孔36外安装有与外部设备连通的下接头18(图示未标出)。通过上接头17、过滤器可以向电机壳体1内部供给冷却剂等介质,再通过下接头18和下通孔36将电机壳体1内部的冷却剂等介质排出,这样可以对电机3进行冷却,可以防止电机3过热而导致的运行故障。作为本发明的一个优选实施例,在电机壳体1端部安装一级轴封21的位置,例如在图1所示状态下的电机壳体1左侧端部处,开第一通气孔31,第一通气孔31外安装有与外部设备连通的第一接头37(图示未标出);一级轴封21开第二通气孔32,第二通气孔32入口轴线与主轴14垂直,第二通气孔32出口轴线与主轴14平行并指向一级叶轮27;电机壳体1端部的第一通气孔31与一级轴封21上的第二通气孔32连通。The
在电机壳体1端部安装二级轴封22的位置,例如在图1所示状态下的电机壳体1右侧端部处,开第三通气孔33,第三通气孔33外安装有与外部设备连通的第二接头38(图示未标出);二级轴封22开第四通气孔34,第四通气孔34入口轴线与主轴14垂直,第四通气孔34出口轴线与主轴14平行并指向一级叶轮30;电机壳体1端部的第三通气孔33与二级轴封22上的第四通气孔34连通。At the position where the
如图2和3所示,第二通气孔32和第四通气孔34可以包含多个通气孔,以使一级叶轮27、二级叶轮30轮背具有均匀的压力。As shown in FIGS. 2 and 3 , the
作为本发明的一个优选实施例,在主轴14上抵靠一级轴封21内侧,例如在图1所示状态下的主轴左侧处,设有第一动压径向气体轴承2;抵靠所述二级轴封内侧设有第二动压径向气体轴承5。所述两动压径向气体轴承共同支承所述主轴,并承担所述主轴的径向载荷,直接利用所述两级叶轮轮背面作为止推面,利用所述两级叶轮轮背的共同作用,承担所述主轴的轴向载荷。As a preferred embodiment of the present invention, a first dynamic pressure radial gas bearing 2 is provided on the
在离心式压缩机的工作过程中,冷却介质会进入电机所在腔室48内,第一动压径向气体轴承2、第二动压径向气体轴承5与主轴14之间形成动压径向气体摩擦副;介质通过电机壳体两端的第一通气孔31、第三通气孔33,进入各级叶轮的轮背,各级叶轮高速旋转时,各级轴封与叶轮轮背之间产生气膜,提供轴向载荷和平衡叶轮的轴向力。当主轴14旋转时,进入电机所在腔室48内的介质会流过第一动压径向气体轴承2、第二动压径向气体轴承5和主轴14之间的间隙。第一动压径向气体轴承2、第二动压径向气体轴承5与主轴14的相对运动会产生动压效应,使气膜具有高压从而具有良好的承载能力,可以使压径向气体轴承达到自润滑的效果。与传统润滑油润滑相比,不仅能防止介质与润滑油的互溶导致润滑状态的恶化,还能防止润滑油流失带来的不利影响以及降低介质在热交换设备中的换热效果。During the working process of the centrifugal compressor, the cooling medium will enter the
电机3接通电源后在电机转子15和电机定子16之间产生交变磁场,磁场作用于电机转子15,使电机转子15带动主轴14旋转,主轴14进而带动一级叶轮27和二级叶轮30转动,将工质分别从一级入口41和二级口43吸入并对工质做功,提高工质压力,增压后的工质流出叶轮后还具有较大的动能。分别通过一级叶轮扩压器6和二级叶轮扩压器7后,大部分动能转变为压力能使工质压力进一步提高,最后通过位于一级蜗壳12圆周上的一级出口42和二级蜗壳13圆周上的二级出口44排出。After the motor 3 is powered on, an alternating magnetic field is generated between the
在上述过程中,由于通过一级叶轮27和二级叶轮30对进入一级蜗壳12和二级蜗壳13的工质进行增压,因此一级叶轮27和二级叶轮30的轮前和轮背侧均存在压差。在图1中,一级叶轮27左侧为轮前右侧为轮背,因为增压过程发生在轮前,所以轮前平均压强低于增压后的压强,轮背具有增压后的压强。轮背压力与轮前压力产生的压差会对主轴14产生轴向力,该轴向力的方向会因一级叶轮27截面积、主轴14截面积、运行工况等因素发生改变。类似地,在图1中,二级叶轮30轮背压力与轮前压力产生的压差也会对主轴14产生轴向力,该轴向力的方向也会因二级叶轮截面积、主轴14截面积、运行工况等因素发生改变。设计过程中尽量使一级叶轮27轮前轮背压差产生的轴向力和二级叶轮30轮前轮背压差产生的轴向力相互平衡掉,避免了轴向力不平衡导致的故障和损失。In the above process, since the working fluid entering the first-
为了说明本发明实施例轴向力可自动平衡的离心式压缩机结构的工作原理,仅使用带经济器一级节流两级压缩循环为例对其原理进行阐述。本发明实施例并不局限于此循环,也可以应用在多种其他种类的两级压缩循环。参照图4,本发明实施例离心式压缩机的工作原理为:In order to illustrate the working principle of the centrifugal compressor structure in which the axial force can be automatically balanced according to the embodiment of the present invention, the principle is described using only a one-stage throttling two-stage compression cycle with an economizer as an example. Embodiments of the present invention are not limited to this cycle, and can also be applied to various other types of two-stage compression cycles. 4, the working principle of the centrifugal compressor of the embodiment of the present invention is:
本发明实施例提供的离心式压缩机100接通电源,工质首先流经一级压缩机102的一级蜗壳12中心位置的一级入口41进入一级蜗壳12的内部空腔。一级压缩机102的一级叶轮27对吸入的气体工质做工,增加气体工质的压力。增压后的气体工质通过一级蜗壳12圆周方向的出口42流出一级压缩机102,从二级蜗壳13中心位置的二级入口43进入二级压缩机101。二级压缩机101的二级叶轮30对气体工质做功后从二级蜗壳13圆周方向的二级出口44流出二级压缩机。在一级压缩机102的工作过程中,随着主轴14转速的逐步提升,第一动压径向气体轴承2和第二动压径向气体轴承5分别与主轴14形成气膜,润滑形式变为气体润滑。The
经过二级压缩机101加压后的高温高压气态制冷剂流经双级压缩循环冷凝器103冷却降温为液体状态进入储液罐108,随后流出的制冷剂分为两路进入经济器104。一路制冷剂流经第一节流阀105后进入经济器104吸收热量降低经济器内另一路制冷剂的温度,随后制冷剂由离心式压缩机100上的上接头17后经过滤器除杂进入电机壳体1,冷却电机壳体1内的电机3后由下接头18流出。随后与一级压缩机102出口气体混合后一起进入二级压缩机101中心位置二级入口43进行二级压缩。另一路制冷剂先流过经济器104降温后(被上一路制冷剂吸收热量)流经第二节流阀106后再流入双级压缩循环蒸发器107蒸发吸热产生制冷量,随后被一级压缩机102吸入进行下一循环。The high-temperature and high-pressure gaseous refrigerant pressurized by the
经二级压缩机101二级出口44流出的高温高压气体除大部分流入冷凝器参与主循环外,还有分出两路制冷剂。一路制冷剂流经第三节流阀109后通过接头37流经第一通气孔31、第二通气孔32后到达一级叶轮27轮背,调节一级叶轮27轮前与轮背的压力差,随后部分制冷剂随一级压缩排出,部分流经一级轴封进入电机壳体后进入二级压缩。另一路制冷剂流经第四节流阀110后通过接头38流经第三通气孔33、第四通气孔34后到达二级叶轮30轮背,调节二级叶轮30轮前与轮背的压力差,随后部分制冷剂随二级压缩排出,部分流经二级轴封22进入电机壳体1后进入二级压缩。The high temperature and high pressure gas flowing out through the
以上所述仅为本发明的实施例,并非以此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的系统领域,均同理包括在本发明的保护范围内。The above descriptions are only the embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any equivalent structure or equivalent process transformation made by using the contents of the description and drawings of the present invention, or directly or indirectly applied to other related The system field is similarly included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110186719.9A CN112983849B (en) | 2021-02-10 | 2021-02-10 | A centrifugal compressor structure with automatic balance of axial force |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110186719.9A CN112983849B (en) | 2021-02-10 | 2021-02-10 | A centrifugal compressor structure with automatic balance of axial force |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112983849A CN112983849A (en) | 2021-06-18 |
| CN112983849B true CN112983849B (en) | 2022-04-05 |
Family
ID=76393389
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110186719.9A Active CN112983849B (en) | 2021-02-10 | 2021-02-10 | A centrifugal compressor structure with automatic balance of axial force |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112983849B (en) |
Families Citing this family (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102014376B1 (en) * | 2018-06-25 | 2019-08-26 | 클러스터엘앤지(주) | Boil-off gas compressor for lng fueled ship |
| CN113653655A (en) * | 2021-08-13 | 2021-11-16 | 鑫磊压缩机股份有限公司 | Double-stage air suspension centrifugal compressor capable of reducing radial force |
| CN113565773B (en) * | 2021-08-13 | 2024-09-20 | 珠海格力电器股份有限公司 | Compressor, water vapor centrifugal unit, evaporation concentration system and diffuser radial clearance control method |
| CN114439761B (en) * | 2022-01-14 | 2023-10-03 | 江苏海拓宾未来工业科技集团有限公司 | A double-impeller air-suspended low-pressure pure oil-free centrifugal compressor |
| CN114705339A (en) * | 2022-03-31 | 2022-07-05 | 清华大学 | Axial force balance device |
| CN114754015B (en) * | 2022-04-19 | 2023-11-10 | 广东美芝制冷设备有限公司 | Fan and cleaning equipment |
| CN115092891B (en) * | 2022-05-16 | 2023-08-15 | 西安交通大学 | Oxygen generator and method suitable for plateau environment |
| CN115949613A (en) * | 2023-01-03 | 2023-04-11 | 安德科悬浮(深圳)科技有限公司 | A fluid impeller axial balancer |
| CN116293975A (en) * | 2023-03-01 | 2023-06-23 | 青岛海信日立空调系统有限公司 | Air conditioning system |
| CN116608154B (en) * | 2023-06-17 | 2024-04-26 | 杭州杭氧膨胀机有限公司 | Axial force balance system of hydrogen liquefaction turbine expander and control method |
| CN120251546B (en) * | 2025-06-06 | 2025-08-12 | 浙江镕达永能压缩机有限公司 | An interstage self-circulating two-stage centrifugal steam compressor sealing system and operating method |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9732766B2 (en) * | 2014-02-19 | 2017-08-15 | Honeywell International Inc. | Electric motor-driven compressor having a heat shield forming a wall of a diffuser |
| CN108999793A (en) * | 2018-08-12 | 2018-12-14 | 西安交通大学 | A kind of centrifugal compressor |
| CN111322275B (en) * | 2020-01-16 | 2025-04-01 | 江苏乐科节能科技股份有限公司 | A self-cooling system and method for a closed two-stage centrifugal water vapor compressor directly driven by a high-speed permanent magnet motor |
| CN111396336A (en) * | 2020-04-20 | 2020-07-10 | 珠海格力电器股份有限公司 | Air suspension compressors and refrigeration equipment |
-
2021
- 2021-02-10 CN CN202110186719.9A patent/CN112983849B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN112983849A (en) | 2021-06-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112983849B (en) | A centrifugal compressor structure with automatic balance of axial force | |
| CN207647779U (en) | Compressor and air conditioning system with same | |
| WO2017215493A1 (en) | Refrigerating unit | |
| CN112211831A (en) | Air Suspension High Speed Centrifugal Compressor | |
| WO2020100251A1 (en) | Centrifugal compressor and turbocharger equipped with centrifugal compressor | |
| CN116398452A (en) | Magnetic suspension centrifugal heat pump compressor with wide frequency conversion operation | |
| CN209340166U (en) | multi-split air conditioning system | |
| CN219953690U (en) | Magnetic suspension centrifugal heat pump compressor with wide frequency conversion operation | |
| CN117780663A (en) | Centrifugal compressors and refrigeration equipment | |
| CN116480600A (en) | An air-floating centrifugal compressor with grooved bearings | |
| CN213511271U (en) | Air suspension high-speed centrifugal compressor | |
| CN212055116U (en) | A hybrid screw compressor with a single-machine bipolar parallel shafting system | |
| CN215333481U (en) | A centrifugal compressor structure with automatic balance of axial force | |
| CN115900118A (en) | Air floatation centrifugal compressor energy storage thermal management system | |
| CN208966639U (en) | a centrifugal compressor | |
| CN218062777U (en) | Compressor and air conditioning equipment | |
| CN218817170U (en) | Energy storage and heat management device of centrifugal compressor | |
| WO2024103959A1 (en) | Compressor and air conditioner | |
| CN116007214A (en) | Centrifugal Compressor Energy Storage Thermal Management System | |
| CN113107871B (en) | Compressors and air conditioning equipment | |
| CN221896808U (en) | Centrifugal double-suction pump based on dynamic pressure bearing structure | |
| CN219412959U (en) | Automobile air conditioner based on air-floating centrifugal compressor | |
| CN218817171U (en) | Air-float centrifugal compressor energy storage heat management device | |
| CN218906851U (en) | Automobile thermal management device based on air-floatation centrifugal compressor | |
| CN219413028U (en) | Cooling device based on air supporting centrifugal compressor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |