CN113107694B - A rail pressure sensor fault handling method and common rail system - Google Patents
A rail pressure sensor fault handling method and common rail system Download PDFInfo
- Publication number
- CN113107694B CN113107694B CN202110509977.6A CN202110509977A CN113107694B CN 113107694 B CN113107694 B CN 113107694B CN 202110509977 A CN202110509977 A CN 202110509977A CN 113107694 B CN113107694 B CN 113107694B
- Authority
- CN
- China
- Prior art keywords
- rail pressure
- virtual
- value
- sensor
- rail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/222—Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/222—Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
- F02D2041/223—Diagnosis of fuel pressure sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
技术领域technical field
本发明涉及发动机技术领域,尤其涉及一种轨压传感器故障处理方法及共轨系统。The invention relates to the technical field of engines, in particular to a rail pressure sensor fault handling method and a common rail system.
背景技术Background technique
高压共轨系统是一种用于柴油发动机的供油系统。该系统在高压油泵、实时压力传感器和电子控制单元组成的闭环系统中,可以将喷射压力的产生和喷射过程彼此完全分开。它是由高压油泵将高压燃油输送到共轨管中,通过实时压力传感器测量共轨管内的压力来实现精确控制,使得共轨管内的压力大小与发动机的转速无关,从而大幅度减小柴油发动机共轨管内的压力随发动机转速变化的程度。电子控制单元控制喷油器的喷油量,喷油量的大小取决于共轨管压力和电磁阀开启时间的长短。通常,将共轨管内的压力称为共轨压力,或者简称为轨压。在共轨系统中,共轨压力不仅决定了喷油压力的高低,而且是喷油计量的重要参数,其稳定性和过渡响应直接影响发动机启动、怠速和加速等性能,所以确保精确地对轨压信号进行采样、滤波和控制具有重要意义。目前多数使用轨压传感器对轨压信号进行监控,但当轨压传感器损坏或者受到强电磁干扰信号不可信时将对系统正常工作产生较大的影响。目前现有技术中,当轨压传感器出现故障或受到强电磁干扰信号不可信时,切换闭环控制为开环控制,在最大供油量的情况下让共轨系统泄压阀打开,保证轨压在某个固定值基本不变。但是频繁打开泄压阀会降低共轨系统的寿命,同时打开泄压阀后轨压基本不变会使排放和经济性恶化。The high pressure common rail system is an oil supply system for diesel engines. In the closed-loop system composed of high-pressure oil pump, real-time pressure sensor and electronic control unit, the system can completely separate the generation of injection pressure and the injection process from each other. It uses a high-pressure oil pump to deliver high-pressure fuel to the common rail pipe, and uses a real-time pressure sensor to measure the pressure in the common rail pipe to achieve precise control, so that the pressure in the common rail pipe has nothing to do with the engine speed, thereby greatly reducing the diesel engine. The degree to which the pressure in the common rail varies with the engine speed. The electronic control unit controls the fuel injection volume of the injector, and the fuel injection volume depends on the pressure of the common rail pipe and the opening time of the solenoid valve. Usually, the pressure in the common rail pipe is called the common rail pressure, or simply called the rail pressure. In the common rail system, the common rail pressure not only determines the level of fuel injection pressure, but also is an important parameter of fuel injection metering. Its stability and transition response directly affect the performance of engine starting, idling and acceleration, so ensure accurate rail alignment It is of great significance to sample, filter and control the pressure signal. At present, most rail pressure sensors are used to monitor the rail pressure signal, but when the rail pressure sensor is damaged or the signal is unreliable due to strong electromagnetic interference, it will have a great impact on the normal operation of the system. In the current existing technology, when the rail pressure sensor fails or the strong electromagnetic interference signal is unreliable, the closed-loop control is switched to open-loop control, and the pressure relief valve of the common rail system is opened under the condition of maximum oil supply to ensure rail pressure. remain unchanged at a fixed value. However, frequent opening of the pressure relief valve will reduce the life of the common rail system. At the same time, the rail pressure will remain basically unchanged after the pressure relief valve is opened, which will deteriorate the emission and economy.
发明内容Contents of the invention
本发明的目的在于提供一种轨压传感器故障处理方法及共轨系统,能够解决轨压传感器损坏或者受到强电磁干扰信号不可信时的轨压控制问题,保证了共轨系统的正常工作,延长了系统的使用寿命。The purpose of the present invention is to provide a rail pressure sensor fault handling method and a common rail system, which can solve the problem of rail pressure control when the rail pressure sensor is damaged or is unreliable when the strong electromagnetic interference signal is received, and ensures the normal operation of the common rail system. system lifespan.
为达此目的,本发明采用以下技术方案:For reaching this purpose, the present invention adopts following technical scheme:
一种轨压传感器故障处理方法,包括以下步骤:A method for troubleshooting a rail pressure sensor, comprising the following steps:
S1、确定轨压传感器处于故障状态,虚拟传感器根据轨压传感器发生故障前的轨压实际值估算虚拟轨压值;S1. Determine that the rail pressure sensor is in a fault state, and the virtual sensor estimates the virtual rail pressure value according to the actual value of the rail pressure before the rail pressure sensor fails;
S2、所述虚拟传感器将估算的所述虚拟轨压值输送至输入模块,所述输入模块根据所述虚拟轨压值与轨压设定值形成轨压控制信号并发送至PID控制器;S2. The virtual sensor transmits the estimated virtual rail pressure value to an input module, and the input module forms a rail pressure control signal according to the virtual rail pressure value and a rail pressure set value and sends it to a PID controller;
S3、所述PID控制器收到所述轨压控制信号后计算油量计量单元控制占空比以控制共轨系统;S3. After receiving the rail pressure control signal, the PID controller calculates the control duty ratio of the oil metering unit to control the common rail system;
S4、所述虚拟传感器根据所述虚拟轨压值估算下一个虚拟轨压值,然后重复执行步骤S2~S4。S4. The virtual sensor estimates the next virtual rail pressure value according to the virtual rail pressure value, and then repeatedly executes steps S2-S4.
可选地,步骤S1具体包括:判断所述轨压传感器是否处于故障状态,若是,则所述虚拟传感器根据所述轨压传感器发生故障前的所述轨压实际值估算所述虚拟轨压值并执行步骤S2;若否,则执行步骤S11后重复执行步骤S11和步骤S3。Optionally, step S1 specifically includes: judging whether the rail pressure sensor is in a fault state, and if so, the virtual sensor estimates the virtual rail pressure value according to the actual value of the rail pressure before the rail pressure sensor fails And execute step S2; if not, execute step S11 and then repeatedly execute step S11 and step S3.
S11、所述共轨系统将所述轨压实际值发送至所述输入模块,所述输入模块根据所述轨压实际值与所述轨压设定值形成所述轨压控制信号并发送至所述PID控制器;然后执行步骤S3后重复执行步骤S11和步骤S3。S11. The common rail system sends the actual value of the rail pressure to the input module, and the input module forms the rail pressure control signal according to the actual value of the rail pressure and the set value of the rail pressure and sends it to The PID controller; then execute step S3 and then repeat step S11 and step S3.
可选地,当执行步骤S11时,所述轨压实际值对所述虚拟传感器持续进行初始化,当判断所述轨压传感器处于故障状态时,停止初始化。Optionally, when step S11 is executed, the actual value of the rail pressure continues to initialize the virtual sensor, and when it is judged that the rail pressure sensor is in a fault state, the initialization is stopped.
可选地,步骤S11中所述轨压控制信号等于所述轨压设定值减去所述轨压实际值。Optionally, the rail pressure control signal in step S11 is equal to the rail pressure set value minus the rail pressure actual value.
可选地,步骤S4中,所述虚拟传感器能够接收所述油量计量单元控制占空比和所述共轨系统输出的所述虚拟轨压值,并结合发动机转速以及喷油器加电时间估算下一个虚拟轨压值。Optionally, in step S4, the virtual sensor can receive the control duty ratio of the fuel metering unit and the virtual rail pressure value output by the common rail system, combined with the engine speed and the power-on time of the fuel injector Estimate the next virtual rail pressure value.
可选地,所述虚拟传感器通过公式P1’=β(Q1-Q2)/V估算所述虚拟轨压值;Optionally, the virtual sensor estimates the virtual rail pressure value through the formula P 1 ′=β(Q 1 −Q 2 )/V;
其中:P1’为虚拟轨压值的一阶导数;β为燃油弹性模量;Q1为高压油泵平均供油量;Q2为喷油器平均喷油量;V为共轨管体积。Among them: P 1 'is the first derivative of the virtual rail pressure; β is the elastic modulus of fuel; Q 1 is the average fuel delivery volume of the high-pressure fuel pump; Q 2 is the average fuel injection volume of the injector; V is the volume of the common rail pipe.
可选地,所述Q1=-k1D+b;Optionally, said Q 1 =-k 1 D+b;
其中:D为油量计量单元控制占空比;K1为常数;b为常数。Among them: D is the control duty ratio of the fuel quantity metering unit; K 1 is a constant; b is a constant.
可选地,所述Q2=k2TnP;Optionally, said Q 2 =k 2 TnP;
其中:k2为常数;n为发动机转速;T为喷油器加电时间;P为上一个虚拟轨压值。Among them: k 2 is a constant; n is the engine speed; T is the power-on time of the fuel injector; P is the last virtual rail pressure value.
可选地,步骤S2中所述轨压控制信号等于所述轨压设定值减去所述虚拟轨压值。Optionally, the rail pressure control signal in step S2 is equal to the rail pressure set value minus the virtual rail pressure value.
一种共轨系统,包括轨压传感器,当所述轨压传感器发生故障时,所述共轨系统采用上所述的轨压传感器故障处理方法进行轨压控制。A common rail system includes a rail pressure sensor. When the rail pressure sensor fails, the common rail system uses the above-mentioned rail pressure sensor fault handling method to perform rail pressure control.
本发明的有益效果:本发明提供的轨压传感器故障处理方法,首先确定轨压传感器处于故障状态,虚拟传感器根据轨压传感器发生故障前的轨压实际值估算虚拟轨压值;然后虚拟传感器将估算的虚拟轨压值输送至输入模块,输入模块根据虚拟轨压值与轨压设定值形成轨压控制信号并发送至PID控制器;接下来PID控制器收到轨压控制信号后计算油量计量单元控制占空比以控制共轨系统;最后虚拟传感器根据虚拟轨压值估算下一个虚拟轨压值,然后重复执行步骤S2~S4。该处理方法通过虚拟传感器,能够保证在轨压传感器故障的情况下仍能实现闭环控制,解决了轨压传感器损坏或者受到强电磁干扰信号不可信时的轨压控制问题,延长了共轨系统的使用寿命。Beneficial effects of the present invention: the rail pressure sensor fault processing method provided by the present invention first determines that the rail pressure sensor is in a fault state, and the virtual sensor estimates the virtual rail pressure value according to the actual value of the rail pressure before the rail pressure sensor fails; then the virtual sensor will The estimated virtual rail pressure value is sent to the input module, and the input module forms a rail pressure control signal based on the virtual rail pressure value and the rail pressure set value and sends it to the PID controller; then the PID controller calculates the oil pressure after receiving the rail pressure control signal The metering unit controls the duty ratio to control the common rail system; finally, the virtual sensor estimates the next virtual rail pressure value according to the virtual rail pressure value, and then repeats steps S2-S4. Through the virtual sensor, this processing method can ensure that closed-loop control can still be realized in the case of rail pressure sensor failure, solves the problem of rail pressure control when the rail pressure sensor is damaged or is unreliable due to strong electromagnetic interference signals, and prolongs the life of the common rail system. service life.
本发明提供的共轨系统,包括轨压传感器,当轨压传感器故障时,该共轨系统能继续工作,延长了系统的使用寿命。The common rail system provided by the invention includes a rail pressure sensor. When the rail pressure sensor fails, the common rail system can continue to work, prolonging the service life of the system.
附图说明Description of drawings
图1是本发明实施例提供的轨压传感器故障处理方法的主要步骤流程图;Fig. 1 is a flow chart of main steps of a rail pressure sensor fault handling method provided by an embodiment of the present invention;
图2是本发明实施例提供的轨压传感器故障处理方法的详细步骤流程图;Fig. 2 is a detailed step-by-step flowchart of a rail pressure sensor fault handling method provided by an embodiment of the present invention;
图3是本发明实施例提供的轨压传感器故障处理方法的控制流程图。Fig. 3 is a control flowchart of a rail pressure sensor fault handling method provided by an embodiment of the present invention.
图中:In the picture:
1-虚拟传感器;2-输入模块;3-PID控制器;4-共轨系统。1-virtual sensor; 2-input module; 3-PID controller; 4-common rail system.
具体实施方式detailed description
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案做进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the technical problems solved by the present invention, the technical solutions adopted and the technical effects achieved clearer, the technical solutions of the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings. Obviously, the described embodiments are only the technical solutions of the present invention. Some, but not all, embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without making creative efforts belong to the protection scope of the present invention.
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, unless otherwise clearly specified and limited, the terms "connected", "connected" and "fixed" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, a first feature being "on" or "under" a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them. Moreover, "above", "above" and "above" the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature. "Below", "under" and "under" the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and through specific implementation methods.
如图1和图3所示,该轨压传感器故障处理方法主要包括以下步骤:As shown in Figures 1 and 3, the rail pressure sensor fault handling method mainly includes the following steps:
S1、确定轨压传感器处于故障状态,虚拟传感器1根据轨压传感器发生故障前的轨压实际值估算虚拟轨压值;S1. Determine that the rail pressure sensor is in a fault state, and the
S2、虚拟传感器1将估算的虚拟轨压值输送至输入模块2,输入模块2根据虚拟轨压值与输入模块2输入的轨压设定值形成轨压控制信号并发送至PID控制器3;S2. The
S3、PID控制器3收到轨压控制信号后计算油量计量单元控制占空比以控制共轨系统4;S3. After receiving the rail pressure control signal, the
S4、虚拟传感器1根据虚拟轨压值估算下一个虚拟轨压值,然后重复执行步骤S2~S4。S4. The
可以理解的是,该轨压传感器故障处理方法通过虚拟传感器1,能够保证在轨压传感器故障的情况下仍能实现闭环控制,解决了轨压传感器损坏或者受到强电磁干扰信号不可信时的轨压控制问题,延长了共轨系统4的使用寿命。It can be understood that the rail pressure sensor failure processing method can ensure that the closed-loop control can still be realized in the case of a rail pressure sensor failure through the
本实施例中,油量计量单元即为高压油泵的入口节流阀,其控制占空比能够控制入口节流阀的开度,从而能够控制进入共轨系统4的共轨管的油量,从而调节轨压的大小。至于具体控制过程和原理均已为现有技术,在此不再进行赘述。PID控制器3采用PID控制,包含比例环节,积分环节以及微分环节,构建系统闭环控制。至于PID控制器3的具体结构以及控制原理均已为现有技术,在此不再进行赘述。In this embodiment, the oil quantity metering unit is the inlet throttle valve of the high-pressure oil pump, and its duty ratio can control the opening of the inlet throttle valve, so as to control the amount of oil entering the common rail pipe of the
如图2和图3所示,该轨压传感器故障处理方法具体包括以下步骤:As shown in Figures 2 and 3, the rail pressure sensor fault handling method specifically includes the following steps:
S1、判断轨压传感器是否处于故障状态,若是,则虚拟传感器1根据轨压传感器发生故障前的轨压实际值估算虚拟轨压值并执行步骤S2;若否,则执行步骤S11;S1. Determine whether the rail pressure sensor is in a fault state, if so,
S11、共轨系统4将轨压实际值发送至输入模块2,输入模块2根据轨压实际值与轨压设定值形成轨压控制信号并发送至PID控制器3;然后执行步骤S3后重复执行步骤S11和步骤S3。S11. The
可以理解的是,当轨压传感器处于正常状态时,共轨系统4将轨压传感器测得的轨压实际值发送至输入模块2,输入模块2通过输入的轨压设定值和轨压实际值形成轨压控制信号对PID控制器3进行控制,即此时未用到虚拟传感器1估算的虚拟轨压值。具体地,步骤S11中轨压控制信号等于轨压设定值减去轨压实际值。至于输入模块2的具体结构和原理均已为现有技术,同时,如何判断轨压传感器是否发生故障,已为现有技术,在此不再进行赘述。本实施例中,轨压传感器未发生故障时,通过轨压传感器测得轨压实际值以控制PID控制器3以进一步控制共轨系统4也为闭环控制。It can be understood that when the rail pressure sensor is in a normal state, the
可选地,当执行步骤S11时,轨压实际值对虚拟传感器1持续进行初始化,当判断轨压传感器处于故障状态时,停止初始化。可以理解的是,当轨压传感器正常工作时,虽然此时未使用虚拟传感器1估算的虚拟轨压值,但在轨压传感器发生故障前,持续用共轨系统4中的轨压传感器输出的轨压实际值对虚拟传感器1估算用的轨压实际值进行初始化,故障发生后停止初始化,能够保证虚拟传感器1对虚拟轨压值估算的准确性,因此能够提高故障模式下轨压控制的效果。Optionally, when step S11 is executed, the
S2、虚拟传感器1将估算的虚拟轨压值输送至输入模块2,输入模块2根据虚拟轨压值与轨压设定值形成轨压控制信号并发送至PID控制器3。S2. The
具体地,步骤S2中轨压控制信号等于轨压设定值减去虚拟轨压值。可以理解的是,当轨压传感器发生故障后,虚拟传感器1将发挥作用,共轨系统4将轨压传感器发生故障前的轨压传感器测得的轨压实际值输出至虚拟传感器1以估算虚拟轨压值并发送至输入模块2,此时轨压设定值减去虚拟轨压值作为PID控制器3的轨压控制信号。至于轨压设定值的具体数值,在此不做限定,可根据实际情况适应性设置;同时轨压实际值和虚拟轨压值也为实时变化的数值,在此不做限定。Specifically, the rail pressure control signal in step S2 is equal to the rail pressure set value minus the virtual rail pressure value. It can be understood that when the rail pressure sensor fails, the
S3、PID控制器3收到轨压控制信号后计算油量计量单元控制占空比以控制共轨系统4。S3. After receiving the rail pressure control signal, the
可以理解的是,PID控制器3计算计算油量计量单元控制占空比后控制共轨系统4,即能够控制入口节流阀的开度,从而达到控制轨压的目的。至于PID控制器3根据轨压控制信号计算油量计量单元控制占空比的具体计算过程和原理已为现有技术,在此不再进行赘述。It can be understood that the
S4、虚拟传感器1根据虚拟轨压值估算下一个虚拟轨压值,然后重复执行步骤S2~S4。S4. The
可以理解的是,虚拟传感器1第一次估算虚拟轨压值时使用的是轨压传感器发生故障前一刻测得的轨压实际值,后续每一次估算虚拟轨压值都使用前一次的虚拟轨压值,然后继续通过PID控制器3对共轨系统4进行控制,从而达到闭环控制的目的。It can be understood that when
可选地,步骤S4中,虚拟传感器1能够接收油量计量单元控制占空比和共轨系统4输出的虚拟轨压值,并结合发动机转速以及喷油器加电时间估算下一个虚拟轨压值。具体地,虚拟传感器1通过公式P1’=β(Q1-Q2)/V估算虚拟轨压值;其中:P1’为虚拟轨压值的一阶导数;β为燃油弹性模量;Q1为高压油泵平均供油量;Q2为喷油器平均喷油量;V为共轨管体积。上述公式中忽略了共轨管体积变形和油液温度的变化率。Optionally, in step S4, the
具体地,Q1=-k1D+b;其中:D为油量计量单元控制占空比;k1为常数;b为常数。可以理解的是,高压油平均泵供油量Q1与油量计量单元控制占空比D成线性关系且斜率为负数,k1即为斜率的绝对值,其为常数,具体数值在此不做限定,不同型号的高压油泵的k1值不同;同时b为上述线性关系的截距,也为常数,不同型号的高压油泵的b值也不同。上述公式中k1和b的具体数值在此均不做限定,可根据实际情况查询高压油泵的参数表即可获得。Specifically, Q 1 =-k 1 D+b; where: D is the control duty ratio of the fuel metering unit; k 1 is a constant; b is a constant. It can be understood that the average pump oil supply Q 1 of high-pressure oil is linearly related to the duty ratio D of the oil metering unit control and the slope is a negative number, k 1 is the absolute value of the slope, which is a constant, and the specific value is not mentioned here As a limitation, the k1 values of different types of high-pressure oil pumps are different; at the same time, b is the intercept of the above linear relationship, which is also a constant, and the b values of different types of high-pressure oil pumps are also different. The specific values of k1 and b in the above formula are not limited here, and can be obtained by consulting the parameter table of the high-pressure oil pump according to the actual situation.
具体地,由于轨压远大于缸压,对流量方程进行泰勒展开,得到喷油器的平均喷油量Q2=k2TnP;其中:k2为常数;n为发动机转速;T为喷油器加电时间;P为上一个虚拟轨压值。可以理解的是,通过上述公式获得的Q2为近似平均喷油量;k2的具体数值,在此不做限定,不同型号的喷油器的k2值不同,可根据实际情况查询喷油器的参数表即可获得。发动机转速n可通过转速传感器获取,喷油器加电时间T可通过共轨系统4的控制单元获得,至于具体的获取方法及过程均已为现有技术,在此不再进行赘述。本实施例中,步骤S1中也采用上述公式估算虚拟轨压值,此时的P为轨压传感器发生故障前测得的轨压实际值。Specifically, since the rail pressure is much greater than the cylinder pressure, Taylor expansion is performed on the flow equation to obtain the average fuel injection quantity Q 2 =k 2 TnP of the injector; where: k 2 is a constant; n is the engine speed; T is the fuel injection The power-on time of the device; P is the last virtual rail pressure value. It can be understood that the Q 2 obtained by the above formula is an approximate average fuel injection quantity; the specific value of k 2 is not limited here, and the k 2 values of different types of injectors are different, and the fuel injection can be queried according to the actual situation The parameter table of the device can be obtained. The engine speed n can be obtained by the speed sensor, and the power-on time T of the fuel injector can be obtained by the control unit of the
通过上述公式即可估算虚拟轨压值,同时通过轨压传感器发生故障前测得的轨压实际值对虚拟传感器1进行持续初始化,即轨压传感器发生故障前测得的轨压实际值可作为估算虚拟轨压值时的初始值,保证了虚拟传感器1数值估算的准确性。The virtual rail pressure value can be estimated by the above formula, and the
本实施例提供的轨压传感器故障处理方法,通过物理模型构建了虚拟传感器1,同时在故障发生前用轨压实际值对虚拟传感器1进行持续初始化,故障发生后停止,保证了虚拟传感器1数值估算的准确性,提高了故障模式下轨压控制的效果。The rail pressure sensor fault handling method provided in this embodiment constructs a
本实施例中还提供了一种共轨系统,包括轨压传感器,当所述轨压传感器发生故障时,共轨系统4采用上述的轨压传感器故障处理方法进行轨压控制。当轨压传感器故障时,该共轨系统4能继续工作,延长了系统的使用寿命。This embodiment also provides a common rail system, including a rail pressure sensor. When the rail pressure sensor fails, the
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, on the basis of the above description, other changes or changes in different forms can also be made. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110509977.6A CN113107694B (en) | 2021-05-11 | 2021-05-11 | A rail pressure sensor fault handling method and common rail system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110509977.6A CN113107694B (en) | 2021-05-11 | 2021-05-11 | A rail pressure sensor fault handling method and common rail system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113107694A CN113107694A (en) | 2021-07-13 |
| CN113107694B true CN113107694B (en) | 2023-01-06 |
Family
ID=76721508
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110509977.6A Active CN113107694B (en) | 2021-05-11 | 2021-05-11 | A rail pressure sensor fault handling method and common rail system |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113107694B (en) |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000265896A (en) * | 1999-03-17 | 2000-09-26 | Toyota Motor Corp | Method for determining abnormality of high-pressure fuel injection device |
| DE10157641C2 (en) * | 2001-11-24 | 2003-09-25 | Mtu Friedrichshafen Gmbh | Method for controlling an internal combustion engine |
| JP2003176746A (en) * | 2001-12-11 | 2003-06-27 | Denso Corp | Fuel injector for diesel engine |
| JP2006037746A (en) * | 2004-07-22 | 2006-02-09 | Denso Corp | Drive device control system and common rail fuel injection device |
| JP2006200478A (en) * | 2005-01-21 | 2006-08-03 | Denso Corp | Fuel injection device |
| JP4650458B2 (en) * | 2007-06-27 | 2011-03-16 | 株式会社デンソー | Supply pump controller |
| JP5103519B2 (en) * | 2008-03-19 | 2012-12-19 | ボッシュ株式会社 | Pressure sensor failure diagnosis method and common rail fuel injection control device |
| EP2295774A1 (en) * | 2009-08-18 | 2011-03-16 | Delphi Technologies Holding S.à.r.l. | Control method for a common rail fuel pump and apparatus for performing the same |
| JP5807953B2 (en) * | 2011-09-28 | 2015-11-10 | ボッシュ株式会社 | Pressure sensor diagnosis method and common rail fuel injection control device |
| DE102012217741A1 (en) * | 2012-09-28 | 2014-04-03 | Robert Bosch Gmbh | Method for determining plausibility of output signal of pressure sensor of direct-injection system of motor car internal combustion engine, involves detecting sensor failure upon comparison of calculation value with pressure value |
| DE102013201576A1 (en) * | 2013-01-31 | 2014-07-31 | Robert Bosch Gmbh | Method for checking the plausibility of a rail pressure sensor value |
| CN106593668B (en) * | 2016-12-14 | 2019-10-29 | 中国第一汽车股份有限公司 | Rail pressure control method under rail pressure sensor fault mode |
-
2021
- 2021-05-11 CN CN202110509977.6A patent/CN113107694B/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN113107694A (en) | 2021-07-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108361139B (en) | Small fuel quantity control method for fuel injector | |
| JP4424395B2 (en) | Fuel injection control device for internal combustion engine | |
| CN1989331B (en) | Control apparatus for high-pressure fuel system of internal combustion engine | |
| CN104047748B (en) | A kind of fuel pressure controller based on active disturbance observation and control method thereof | |
| CN105003372B (en) | A kind of distributive value method for diagnosing faults based on the observation of rail pressure waveform feature parameter | |
| US8091532B2 (en) | Diagnostic systems and methods for a pressure sensor during driving conditions | |
| US9002619B2 (en) | Apparatus for controlling a vehicle | |
| CN103352763B (en) | The method for correcting of oil sprayer MAP curve, device and engine fuel supply system | |
| CN110644564A (en) | Hydraulic excavator control system and method | |
| US11781500B2 (en) | System and method for measuring fuel injection during pump operation | |
| CN101142388A (en) | internal combustion engine | |
| US20140224223A1 (en) | System and method for determining injected fuel quantity based on drain fuel flow | |
| CN113107694B (en) | A rail pressure sensor fault handling method and common rail system | |
| CN106704011B (en) | A method for optimizing rail pressure control in rail pressure sensor failure mode | |
| JP5278290B2 (en) | Failure diagnosis device for fuel injection system | |
| CN113785118B (en) | Determination of the fuel static flow drift of a piezoelectric injector of a motor vehicle heat engine | |
| JP2007303372A (en) | Fuel supply system for internal combustion engine | |
| CN116136196A (en) | High-pressure common rail system oil injection quantity PI closed-loop control method based on observer | |
| CN110714839A (en) | Multi-oil-path aeroengine parking control system | |
| CN101871403A (en) | The diagnostic system of pressure transducer and method during drive condition | |
| WO2020041087A1 (en) | System and method for determining and adjusting fuel injection control parameters | |
| US6792917B2 (en) | Pressure-elevating type fuel injecting system | |
| CN112761807A (en) | Fault diagnosis method, piston cooling system and vehicle | |
| CN112253322A (en) | Engine control method based on oil rail pressure sensor fault | |
| CN108286544B (en) | Aviation pump high speed drive servo system with throttle volume composite control |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |