CN113131321B - Low-threshold self-starting full-polarization-maintaining femtosecond fiber laser - Google Patents
Low-threshold self-starting full-polarization-maintaining femtosecond fiber laser Download PDFInfo
- Publication number
- CN113131321B CN113131321B CN202110387712.3A CN202110387712A CN113131321B CN 113131321 B CN113131321 B CN 113131321B CN 202110387712 A CN202110387712 A CN 202110387712A CN 113131321 B CN113131321 B CN 113131321B
- Authority
- CN
- China
- Prior art keywords
- polarization
- maintaining
- fiber
- coupler
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06712—Polarising fibre; Polariser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06716—Fibre compositions or doping with active elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06791—Fibre ring lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094003—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
- H01S3/094011—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10053—Phase control
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种低阈值自启动全保偏飞秒光纤激光器,属于激光器技术领域。The invention relates to a low-threshold self-starting full polarization-maintaining femtosecond fiber laser, which belongs to the technical field of lasers.
背景技术Background technique
飞秒光纤激光器可在光纤谐振腔中产生脉冲时域宽度达到飞秒量级(10-15)的超短激光脉冲,在医疗、通信、材料加工、测距、光频梳等领域具有重要的应用。飞秒激光的产生通过锁模的方法实现,传统的锁模光纤激光器采用常规石英光纤作为谐振腔,其工作状态易受温度、振动等外界环境影响。基于全保偏光纤结构的锁模激光器,外界环境变化对飞秒脉冲影响较小,因此产生的飞秒激光稳定性好,适合复杂条件下的实际应用,并且其结构紧凑、效率高、成本低,适合批量生产。Femtosecond fiber lasers can generate ultrashort laser pulses with a pulse time domain width of the order of femtoseconds (10 -15 ) in a fiber resonator, which is of great importance in the fields of medical treatment, communication, material processing, ranging, and optical frequency combs. application. The generation of femtosecond laser is realized by the method of mode locking. The traditional mode locking fiber laser uses conventional quartz fiber as the resonant cavity, and its working state is easily affected by the external environment such as temperature and vibration. The mode-locked laser based on the all-polarization-maintaining fiber structure has little effect on the femtosecond pulse due to changes in the external environment, so the femtosecond laser produced has good stability and is suitable for practical applications under complex conditions, and has a compact structure, high efficiency and low cost. , suitable for mass production.
目前采用在全保偏光纤谐振腔结构中产生飞秒激光的方法主要有以下两种:其一为采用基于非线性光纤环形镜的八字腔结构,产生常规孤子、类噪声、耗散孤子等飞秒脉冲;其二为采用基于线性相移器的九子腔结构,产生常规孤子脉冲。其中,第一种方法需要较长的腔长来增加非线性相移,较大的传输损耗导致该结构通常具有较高的锁模阈值。第二种方法通过在放大环中引入线性相移降低了锁模阈值,但是输出的锁模脉冲类型较为单一,通常仅为常规孤子脉冲。At present, there are two main methods for generating femtosecond laser in an all polarization-maintaining fiber resonator structure. Second pulse; the second is to use a nine-subcavity structure based on a linear phase shifter to generate conventional soliton pulses. Among them, the first method requires a longer cavity length to increase the nonlinear phase shift, and the larger transmission loss results in the structure generally having a higher mode-locking threshold. The second method reduces the mode-locking threshold by introducing a linear phase shift in the amplifier loop, but the output mode-locking pulse is of a single type, usually only a conventional soliton pulse.
中国专利公开号为“CN103825177B”,公开了“一种基于多个非线性放大环形镜的脉冲全保偏光纤激光器”,该激光器包括主振荡腔、前级非线性放大环形镜腔、后级一个或多个非线性放大环形镜腔;激光器内光场顺时针传播,依次通过所述主振荡腔、前级非线性放大环形镜腔、后级一个或多个非线性放大环形镜腔及主振荡腔,形成闭环腔;主振荡腔中分束器分束比较低一端作为激光器的输出端。The Chinese Patent Publication No. "CN103825177B" discloses "a pulsed fully polarization-maintaining fiber laser based on multiple nonlinear amplifying ring mirrors". or multiple nonlinear amplifying annular mirror cavities; the light field in the laser propagates clockwise, and sequentially passes through the main oscillator cavity, the front-stage nonlinear amplifying annular mirror cavity, one or more nonlinear amplifying annular mirror cavities in the subsequent stage, and the main oscillator The lower end of the beam splitter in the main oscillator cavity is used as the output end of the laser.
该技术通过采用多个(两个及以上)非线性放大环形镜的级联结构,有效抑制幅度噪声,减弱脉冲分裂,消除脉冲前后小脉冲,窄化脉冲。但多个非线性环形镜优化脉冲输出特性的同时,会引入额外的传输损耗,会造成锁模阈值的提升和转换效率的下降,此外复杂的谐振腔结构不利于激光器的集成与小型化。By adopting a cascade structure of multiple (two or more) nonlinear amplifying ring mirrors, the technology effectively suppresses amplitude noise, weakens pulse splitting, eliminates small pulses before and after pulses, and narrows pulses. However, when multiple nonlinear ring mirrors optimize the pulse output characteristics, additional transmission loss will be introduced, which will lead to an increase in the mode-locking threshold and a decrease in the conversion efficiency. In addition, the complex resonator structure is not conducive to the integration and miniaturization of the laser.
中国专利公开号为“CN110896191A”,公开了“一种基于多个非线性放大环形镜的脉冲全保偏光纤激光器”,其特征在于:第一半导体激光器的尾纤与第一保偏波分复用器的泵浦端连接;第一保偏波分复用器的输出端与第一保偏单模光纤的输入端连接,第一保偏单模光纤的输出端与第一保偏光纤隔离器的输入端连接;第一保偏光纤隔离器4的输出端与第二保偏光纤耦合器的第一输入端连接。第一保偏色散补偿光纤的输入端与第二保偏光纤耦合器的第一输出端连接,输出端与第一保偏光纤耦合器的输入端连接;第一保偏光纤耦合器的第一输出端与第一保偏波分复用器的第二输入端相连,组成闭合环形腔。The Chinese Patent Publication No. "CN110896191A" discloses "a pulsed total polarization maintaining fiber laser based on multiple nonlinear amplifying ring mirrors", which is characterized in that the pigtail of the first semiconductor laser is complexed with the first polarization maintaining wavelength division complex. connected with the pump end of the device; the output end of the first polarization-maintaining wavelength division multiplexer is connected with the input end of the first polarization-maintaining single-mode fiber, and the output end of the first polarization-maintaining single-mode fiber is isolated from the first polarization-maintaining fiber The output end of the first polarization maintaining
该技术采用传统非线性光纤环形镜实现锁模,使激光器在低重频工作状态下产生高脉冲能量的激光,并且能够实现稳定的自启动锁模。但传统的非线性光纤环形镜结构需要足够的腔长累积来实现自启动,这会大幅度增加锁模阈值并且降低锁模脉冲的重复频率。This technology uses traditional nonlinear fiber ring mirrors to achieve mode locking, enabling the laser to generate high pulse energy lasers under low repetition frequency operation, and to achieve stable self-starting mode locking. However, the traditional nonlinear fiber ring mirror structure requires sufficient cavity length accumulation to achieve self-starting, which greatly increases the mode-locking threshold and reduces the repetition frequency of the mode-locking pulse.
发明内容SUMMARY OF THE INVENTION
本发明为解决现有全保偏飞秒光纤激光器阈值高、自启动困难的问题,提出一种低阈值自启动全保偏飞秒光纤激光器。可在短腔长、低阈值的工作条件下,实现锁模飞秒激光的自启动,结构简单,飞秒脉冲稳定,可进一步推动全保偏飞秒光纤激光器的批量生产及产业化。In order to solve the problems of high threshold and difficult self-starting of the existing full polarization-maintaining femtosecond fiber laser, the invention proposes a low-threshold self-starting full polarization-maintaining femtosecond fiber laser. It can realize the self-starting of the mode-locked femtosecond laser under the working conditions of short cavity length and low threshold. The structure is simple and the femtosecond pulse is stable, which can further promote the mass production and industrialization of all polarization-maintaining femtosecond fiber lasers.
本发明采用以下技术方案:The present invention adopts the following technical solutions:
低阈值自启动全保偏飞秒光纤激光器,其特征在于,该激光器包括第一泵浦源、第二泵浦源、第一保偏波分复用器、第二保偏波分复用器、保偏掺铒光纤、第一保偏单模光纤、保偏相移器、2×2耦合器、偏振相关隔离器、第二保偏单模光纤和耦合器;A low-threshold self-starting fully polarization-maintaining femtosecond fiber laser, characterized in that the laser includes a first pump source, a second pump source, a first polarization-maintaining wavelength division multiplexer, and a second polarization-maintaining wavelength division multiplexer , polarization-maintaining erbium-doped fiber, first polarization-maintaining single-mode fiber, polarization-maintaining phase shifter, 2×2 coupler, polarization-dependent isolator, second polarization-maintaining single-mode fiber and coupler;
第一泵浦源、第二泵浦源分别与第一波分复用器的a端、第二波分复用器的d端连接,构成双向泵浦结构,注入到保偏掺铒光纤;第一波分复用器的信号端c端与第一保偏单模光纤连接,第一保偏单模光纤的另一端与保偏相移器的输入端连接,保偏相移器输出端与2×2耦合器的g端连接,2×2耦合器h端与偏振相关隔离器连接,偏振相关隔离器输出端与耦合器的k端连接;耦合器有两个输出端口,其中m端作为激光输出端,l端与第二保偏单模光纤连接,第二保偏单模光纤另一端与2×2耦合器的j端连接,构成单向环,2×2耦合器第二输入端与第二波分复用器的f端连接,构成放大环。The first pump source and the second pump source are respectively connected to the a-end of the first wavelength division multiplexer and the d end of the second wavelength-division multiplexer to form a bidirectional pumping structure, which is injected into the polarization-maintaining erbium-doped fiber; The signal end c of the first wavelength division multiplexer is connected to the first polarization-maintaining single-mode fiber, the other end of the first polarization-maintaining single-mode fiber is connected to the input end of the polarization-maintaining phase shifter, and the output end of the polarization-maintaining phase shifter It is connected to the g terminal of the 2×2 coupler, the h terminal of the 2×2 coupler is connected to the polarization dependent isolator, and the output terminal of the polarization dependent isolator is connected to the k terminal of the coupler; the coupler has two output ports, among which the m terminal As the laser output end, the l end is connected to the second polarization-maintaining single-mode fiber, and the other end of the second polarization-maintaining single-mode fiber is connected to the j end of the 2×2 coupler to form a one-way ring, and the second input of the 2×2 coupler The terminal is connected to the f terminal of the second wavelength division multiplexer to form an amplification ring.
该激光器结构中全部光纤及器件的尾纤均为保偏光纤,实现全保偏谐振腔结构。In the laser structure, all the fibers and the pigtails of the devices are polarization-maintaining fibers, realizing a fully polarization-maintaining resonant cavity structure.
保偏掺铒光纤为增益光纤,其输出激光为1.55μm波段。The polarization-maintaining erbium-doped fiber is a gain fiber, and its output laser is in the 1.55 μm band.
所述保偏相移器由光纤环行器、光纤准直器、法拉第旋光晶体和平面镜构成,为反射式结构;顺时针传输的光由光纤环行器的Ⅰ端口入射,经Ⅱ端口输出至光纤准直器,经光纤准直器入射至法拉第旋光晶体,出射光由平面镜反射至法拉第旋光晶体,从而偏振态被旋转90°,法拉第旋光晶体的返回光依次返回至光纤准直器和光纤环行器的Ⅱ端口,最终由Ⅲ端口输出;逆时针传输的光由光纤环行器的Ⅲ端口入射后,直接从Ⅰ端口输出,偏振态保持不变。The polarization-maintaining phase shifter is composed of a fiber circulator, a fiber collimator, a Faraday optical crystal and a plane mirror, and is a reflective structure; the light transmitted clockwise is incident from the I port of the fiber circulator, and is output to the fiber collimator through the II port. The collimator is incident on the Faraday optical crystal through the fiber collimator, and the outgoing light is reflected by the plane mirror to the Faraday optical crystal, so that the polarization state is rotated by 90°, and the return light of the Faraday optical crystal returns to the optical fiber collimator and the optical fiber circulator in turn. Port II is finally output from port III; after the light transmitted counterclockwise is incident on port III of the fiber circulator, it is directly output from port I, and the polarization state remains unchanged.
所述保偏相移器的结构是由保偏光纤作为尾纤的集成化光纤器件。The structure of the polarization-maintaining phase shifter is an integrated optical fiber device with a polarization-maintaining fiber as a pigtail.
所述保偏相移器的线性相移量为π/2,以实现锁模激光自启动。The linear phase shift of the polarization-maintaining phase shifter is π/2, so as to realize the self-starting of the mode-locked laser.
本发明有益效果:Beneficial effects of the present invention:
本发明采用线性相移器的飞秒光纤激光器,阈值低、可自启动、飞秒脉冲稳定性好。通过合适地控制光纤谐振腔的总色散值及非线性效应等参数,可分别实现传统孤子脉冲、色散管理孤子脉冲、自相似脉冲和类噪声脉冲几种工作状态。The invention adopts the femtosecond fiber laser of the linear phase shifter, which has low threshold value, self-starting and good femtosecond pulse stability. By properly controlling the parameters such as the total dispersion value and nonlinear effect of the fiber resonator, several working states of traditional soliton pulse, dispersion-managed soliton pulse, self-similar pulse and noise-like pulse can be realized respectively.
本发明采用全保偏谐振腔结构,抗干扰能力强,输出激光脉冲宽度窄,稳定性好。该激光器应用了保偏相移器,在无需外界激励的条件下,可实现飞秒脉冲自启动,对复杂环境的适应性强,适合大批量生产,可大规模应用工业加工、科学研究等领域。The invention adopts a full polarization maintaining resonant cavity structure, has strong anti-interference ability, narrow output laser pulse width and good stability. The laser uses a polarization-maintaining phase shifter, which can realize the self-starting of femtosecond pulses without external excitation, has strong adaptability to complex environments, is suitable for mass production, and can be applied in large-scale industrial processing, scientific research and other fields .
附图说明Description of drawings
图1为本发明低阈值自启动全保偏飞秒光纤激光器结构示意图。FIG. 1 is a schematic structural diagram of a low-threshold self-starting full polarization-maintaining femtosecond fiber laser of the present invention.
图2为非线性放大环路结构示意图。FIG. 2 is a schematic diagram of the structure of the nonlinear amplification loop.
图3为非线性放大环路结构器件的与相移量的关系示意图。FIG. 3 is a schematic diagram showing the relationship between the nonlinear amplification loop structure device and the phase shift amount.
图4(a)为孤子脉冲光谱图、(b)为孤子脉冲自相关曲线、(c)为孤子脉冲时域序列图、(d)为孤子脉冲频谱图。Figure 4(a) is the soliton pulse spectrogram, (b) is the autocorrelation curve of the soliton pulse, (c) is the time domain sequence diagram of the soliton pulse, and (d) is the soliton pulse spectrogram.
图5(a)为类噪声脉冲光谱图、(b)为类噪声脉冲时域序列图、(c)为类噪声脉冲自相关曲线、(d)为类噪声脉冲频谱图。Figure 5(a) is the noise-like pulse spectrogram, (b) is the noise-like pulse time-domain sequence diagram, (c) is the noise-like pulse autocorrelation curve, and (d) is the noise-like pulse spectrogram.
图6为平均输出功率与总泵浦功率关系示意图。FIG. 6 is a schematic diagram showing the relationship between the average output power and the total pump power.
具体实施方式Detailed ways
下面结合附图对本发明做详细说明。The present invention will be described in detail below with reference to the accompanying drawings.
如图1所示,低阈值自启动全保偏飞秒光纤激光器,其包括第一泵浦源1、第二泵浦源2、第一保偏波分复用器3、第二保偏波分复用器4、保偏掺铒光纤5、第一保偏单模光纤6、保偏相移器7、2×2耦合器8、偏振相关隔离器9、第二保偏单模光纤10和耦合器11。As shown in Fig. 1, the low threshold self-starting full polarization-maintaining femtosecond fiber laser includes a
第一泵浦源1、第二泵浦源2分别与第一波分复用器3的a端、第二波分复用器4的d端连接,构成双向泵浦结构,注入到保偏掺铒光纤5,第一波分复用器3的信号端c端与第一保偏单模光纤6连接,第一保偏单模光纤6的另一端与保偏相移器7的输入端连接,保偏相移器7输出端与2×2耦合器8的第一输入端g端连接,2×2耦合器8的第一输出端h端与偏振相关隔离器9连接,偏振相关隔离器9输出端与耦合器11的k端连接,耦合器11的m端作为激光输出端,l端与第二保偏单模光纤10连接,第二保偏单模光纤10另一端与2×2耦合器8的第二输出端j端连接,构成单向环,2×2耦合器8的第二输入端i端与第二波分复用器4的信号f端连接,构成放大环。The
结构中第一保偏单模光纤和第二保偏单模光纤增加腔内非线性相移,保偏掺铒光纤、保偏相移器和保偏耦合器共同构成非线性放大环路结构,用来实现谐振腔内多纵模的相位锁定,保偏相移器可以增加非线性放大环路非线性相移为0时的透过率,从而降低锁模阈值。同时开启第一泵浦源和第二泵浦源,当谐振腔内增益足够时,无需任何额外的机械或电学控制,即可实现锁模脉冲的自启动。In the structure, the first polarization-maintaining single-mode fiber and the second polarization-maintaining single-mode fiber increase the nonlinear phase shift in the cavity, and the polarization-maintaining erbium-doped fiber, the polarization-maintaining phase shifter and the polarization-maintaining coupler together form a nonlinear amplification loop structure. It is used to realize the phase locking of multi-longitudinal modes in the resonant cavity, and the polarization maintaining phase shifter can increase the transmittance when the nonlinear phase shift of the nonlinear amplification loop is 0, thereby reducing the mode locking threshold. When the first pump source and the second pump source are turned on at the same time, when the gain in the resonator is sufficient, the self-starting of the mode-locked pulse can be realized without any additional mechanical or electrical control.
该激光器结构中全部光纤及器件的尾纤均为保偏光纤,实现全保偏谐振腔结构。In the laser structure, all the fibers and the pigtails of the devices are polarization-maintaining fibers, realizing a fully polarization-maintaining resonant cavity structure.
保偏掺铒光纤5作为增益介质,用来产生1.55μm波段增益,为实现其它波段的激光输出,增益光纤还可以选取其它掺杂元素的保偏光纤,如镱、铥、钬等。The polarization-maintaining erbium-doped
第一保偏单模光纤6和第二保偏单模光纤10分别接入到放大环与单向环中,用于提供非线性相移,同时可避免单个环路损耗过大导致的阈值过高。The first polarization-maintaining single-
保偏相移器7接入在放大环中,引入线性相移用来促进锁模激光自启动并降低锁模阈值,其在单向环中的位置灵活可变。The polarization-maintaining
开启第一泵浦源1并增加功率至40mW,多纵模相位锁定通过非线性放大环路实现,增益光从2×2耦合器8的第一输入端入射至环路,由于保偏掺铒光纤5在环路中的放置的不对成性,顺时针和逆时针两个方向传输的光经历了不同的非线性相移,当两束光再次返回到2×2耦合器8并由第二输入端出射时,环路形成强度相关的透射率变化,形成饱和吸收效应,实现模式锁定,在保偏相移器7的作用下,实现锁模脉冲自启动,得到常规孤子脉冲输出。逐渐增加第一泵浦源1和第二泵浦源2的功率,当二者总功率达到390mW时,常规孤子脉冲自动转换为类噪声脉冲,类噪声脉冲转态可维持到泵浦功率达到最大700mW。工作过程中关闭第一泵浦源1和第二泵浦源2,并再次设置至锁模脉冲所需的泵浦功率范围内,激光器可自动恢复对应的锁模状态。Turn on the
第一波分复用器3的a、b、c端及第二波分复用器4的d、e、f端分别为泵浦端、公共端和信号端。2×2耦合器8的g、i、h、j端分别为第一输入端、第二输入端、第一输出端和第二输出端。耦合器11的k、l、m端分别为输入端、第一输出端和第二输出端。The a, b, and c terminals of the first
如图2所示,保偏相移器7由光纤环行器7-1、光纤准直器7-2、法拉第旋光晶体7-3和平面镜7-4构成,为反射式结构。顺时针传输的光由光纤环行器7-1的Ⅰ端口入射,经Ⅱ端口输出至光纤准直器7-2,经光纤准直器7-2入射至法拉第旋光晶体7-3,出射光由平面镜7-4反射至法拉第旋光晶体7-3,从而偏振态被旋转90°,法拉第旋光晶体7-3的返回光依次返回至光纤准直器7-2和光纤环行器7-1的Ⅱ端口,最终由Ⅲ端口输出;逆时针传输的光由光纤环行器7-1的Ⅲ端口入射后,直接从Ⅰ端口输出,偏振态保持不变。因此,相移器将顺、逆时针两个方向的之间光引入了额外的π/2线性相移量,从而大幅度提升锁模的自启动几率。As shown in FIG. 2 , the polarization-maintaining
如图3所示,引入保偏相移器7后,当非线性放大环路的非线性相移量为0时,其透过率可提升至高于0.5。这个过程可等效于,当第一泵浦源1和第二泵浦源2刚开启时,非线性放大环路具有较大的瞬时透过率,实现锁模脉冲自启动。As shown in FIG. 3 , after the introduction of the polarization maintaining
图4(a)为孤子脉冲光谱图,中心波长为1560nm,3dB带宽为3.7nm。图4(b)为孤子脉冲自相关曲线,脉冲宽度为863.8fs,图4(c)为孤子脉冲序列,脉冲时域间隔为645.1ns,图4(d)为孤子脉冲频谱,重复频率为1.6MHz,基频信噪比为52dB,证明孤子脉冲具有较好的噪声特性。Figure 4(a) shows the spectrum of the soliton pulse, the center wavelength is 1560nm, and the 3dB bandwidth is 3.7nm. Figure 4(b) is the autocorrelation curve of the soliton pulse, the pulse width is 863.8fs, Figure 4(c) is the soliton pulse sequence, the pulse time interval is 645.1ns, and Figure 4(d) is the soliton pulse spectrum, the repetition frequency is 1.6 MHz, the signal-to-noise ratio of the fundamental frequency is 52dB, which proves that the soliton pulse has good noise characteristics.
图5(a)为类噪声脉冲光谱图,3dB带宽为13.4nm,图5(b)为类噪声脉冲包络波形图,单包络宽度为712ps,图5(c)为类噪声脉冲自相关曲线,基座中心处的峰值宽度为417.9fs,对应类噪声包络中的单个飞秒脉冲平均宽度,图5(d)为类噪声脉冲频谱图,基频信噪比为54dB。Figure 5(a) is the noise-like pulse spectrum, the 3dB bandwidth is 13.4nm, Figure 5(b) is the noise-like pulse envelope waveform, the single envelope width is 712ps, and Figure 5(c) is the noise-like pulse autocorrelation Curve, the peak width at the center of the base is 417.9fs, which corresponds to the average width of a single femtosecond pulse in the noise-like envelope. Figure 5(d) is the noise-like pulse spectrum, and the fundamental frequency SNR is 54dB.
本发明可在同一谐振腔结构中产生传统孤子和类噪声脉冲两种飞秒脉冲。如图6所示,当第一泵浦源1和第二泵浦源2的总功率低于390mW时,激光器工作在孤子锁模状态,当总泵浦功率高于390mW时,激光器工作在类噪声锁模状态,因此类噪声脉冲具有更高的输出功率。实际应用中,仅需通过合适地设置泵浦功率,即可实现孤子脉冲和类噪声脉冲的相互转换,可根据实际需求,选取合适的工作状态。激光器在自启动和状态切换的过程中,无需偏振态调节机制,操作简单。如对输出功率有特定需求,可将激光器直接连接至功率放大模块,如主振荡功率放大器和啁啾脉冲放大器等。The invention can generate two kinds of femtosecond pulses of traditional soliton and noise-like pulse in the same resonant cavity structure. As shown in Figure 6, when the total power of the
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110387712.3A CN113131321B (en) | 2021-04-12 | 2021-04-12 | Low-threshold self-starting full-polarization-maintaining femtosecond fiber laser |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110387712.3A CN113131321B (en) | 2021-04-12 | 2021-04-12 | Low-threshold self-starting full-polarization-maintaining femtosecond fiber laser |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113131321A CN113131321A (en) | 2021-07-16 |
| CN113131321B true CN113131321B (en) | 2022-08-26 |
Family
ID=76776595
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110387712.3A Active CN113131321B (en) | 2021-04-12 | 2021-04-12 | Low-threshold self-starting full-polarization-maintaining femtosecond fiber laser |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113131321B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114122877B (en) * | 2021-10-27 | 2024-08-13 | 中国人民解放军国防科技大学 | 1.5 Micron wave band full polarization-preserving bidirectional mode-locking optical fiber laser |
| CN114336237A (en) * | 2021-11-12 | 2022-04-12 | 吉林大学第一医院 | Hundred-femtosecond ultrashort pulse light source based on graded-index multimode fiber |
| CN116169548A (en) * | 2023-02-21 | 2023-05-26 | 清华大学 | Optical fiber frequency comb light source |
| CN117578173B (en) * | 2023-10-27 | 2024-11-08 | 北京大学长三角光电科学研究院 | Full polarization-maintaining O-shaped ultrashort pulse mode-locked fiber laser |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101820129A (en) * | 2010-02-04 | 2010-09-01 | 中国科学技术大学 | Square-wave pulse laser device and square-wave pulse laser generating method |
| CN102340092A (en) * | 2010-07-21 | 2012-02-01 | 清华大学 | Fiber mode-locked lasers |
| CN110829164A (en) * | 2019-11-19 | 2020-02-21 | 长春理工大学 | All-fiber ultrashort pulse light source capable of simultaneously generating soliton and noise-like pulses |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015073257A1 (en) * | 2013-11-12 | 2015-05-21 | Imra America, Inc. | Compact fiber short pulse laser sources |
| CN205081351U (en) * | 2015-10-10 | 2016-03-09 | 苏州龙格库塔光电科技有限公司 | High -power L wave band erbium doped fiber amplifier of all optical fibre structure |
| CN107645118A (en) * | 2017-10-23 | 2018-01-30 | 北京大学 | A kind of Gao Zhongying optical fiber laser and control method based on phase bias device principle |
| CN108808432A (en) * | 2018-09-19 | 2018-11-13 | 山东大学 | A kind of high power narrow linewidth optical fiber laser and its working method based on Rayleigh scattering |
| CN112271540B (en) * | 2020-11-02 | 2025-03-07 | 中国科学院微电子研究所 | A low repetition rate erbium-doped femtosecond fiber laser |
-
2021
- 2021-04-12 CN CN202110387712.3A patent/CN113131321B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101820129A (en) * | 2010-02-04 | 2010-09-01 | 中国科学技术大学 | Square-wave pulse laser device and square-wave pulse laser generating method |
| CN102340092A (en) * | 2010-07-21 | 2012-02-01 | 清华大学 | Fiber mode-locked lasers |
| CN110829164A (en) * | 2019-11-19 | 2020-02-21 | 长春理工大学 | All-fiber ultrashort pulse light source capable of simultaneously generating soliton and noise-like pulses |
Non-Patent Citations (4)
| Title |
|---|
| Self-starting passive mode-locked figure-eight laser using a symmetrical coupler in the loop;Ibarra-Escamilla;《CLEO/Europe》;20071231;全文 * |
| Wavelength tunable mode-locked pulse fiber laser based on figure-of-eight cavity;Guo Xiong-ying;《Acta Photonica Sinica》;20080228;全文 * |
| 透/反复合双饱和吸收体被动锁模光纤激光器;何广龙;《激光与光电子学进展》;20170623;全文 * |
| 非线性偏振旋转被动锁模光纤激光器自动锁模电路;易波;《光学精密工程》;20131215;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113131321A (en) | 2021-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113131321B (en) | Low-threshold self-starting full-polarization-maintaining femtosecond fiber laser | |
| US20090003391A1 (en) | Low-repetition-rate ring-cavity passively mode-locked fiber laser | |
| JP2010510660A (en) | Passive mode-locked figure-8 fiber laser | |
| CN108598856B (en) | Femtosecond Laser | |
| CN108899748A (en) | Narrow linewidth mode locking thulium-doped fiber laser with high repetition frequency | |
| CN105470800B (en) | High power ultra-short pulse optical frequency carding device based on self similarity amplifier | |
| CN110829164A (en) | All-fiber ultrashort pulse light source capable of simultaneously generating soliton and noise-like pulses | |
| CN103001118A (en) | An all-fiber high-power picosecond pulse laser amplifier with gain-narrowing control | |
| CN113206427A (en) | High repetition frequency linear polarization femtosecond mode-locked fiber laser | |
| CN115064931A (en) | High-energy ultrashort pulse laser | |
| CN107863673A (en) | A kind of full polarization fibre pulse laser based on nonlinear optical loop mirror | |
| CN114122887B (en) | All-fiber ultrafast laser capable of intelligently starting mode locking and performing real-time monitoring control | |
| WO2024001392A1 (en) | Solid-state laser based on nonlinear amplifying loop mirror | |
| CN113690725B (en) | Holmium-doped polarization maintaining fiber femtosecond laser of bidirectional cascade pump | |
| CN114552365A (en) | Spectrum domain and time domain programmable tuning laser and tuning method | |
| CN215070850U (en) | A high repetition frequency linearly polarized femtosecond mode-locked fiber laser | |
| CN109149328B (en) | Environmentally stable low-repetition-frequency linear cavity picosecond ytterbium-doped fiber laser | |
| CN114336237A (en) | Hundred-femtosecond ultrashort pulse light source based on graded-index multimode fiber | |
| CN103715590A (en) | Polarization-maintaining all-fiber mode-locked laser with low repetition frequency | |
| CN112271540B (en) | A low repetition rate erbium-doped femtosecond fiber laser | |
| CN118943867A (en) | A fully polarization-maintaining fiber femtosecond laser based on a mode-locked start-promoting structure | |
| CN113346341A (en) | All-positive-dispersion femtosecond fiber laser based on biased NALM mode locking | |
| CN117937212A (en) | A 915nm low repetition rate all-fiber nine-shaped cavity ultrafast laser | |
| CN111180984A (en) | An all-fiber ultrafast laser based on polarization-maintaining fiber cross-splicing technology | |
| CN216312317U (en) | Dissipative soliton resonance pulse all-fiber mode-locked laser with single-mode and multi-mode symbiosis |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |