CN113297415B - Edge video analysis intelligent service method and system for the power edge side - Google Patents
Edge video analysis intelligent service method and system for the power edge side Download PDFInfo
- Publication number
- CN113297415B CN113297415B CN202110462213.6A CN202110462213A CN113297415B CN 113297415 B CN113297415 B CN 113297415B CN 202110462213 A CN202110462213 A CN 202110462213A CN 113297415 B CN113297415 B CN 113297415B
- Authority
- CN
- China
- Prior art keywords
- model
- computing device
- video
- edge computing
- edge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/71—Indexing; Data structures therefor; Storage structures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/75—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biophysics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Evolutionary Biology (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域Technical field
本发明涉及物联网技术领域,具体涉及面向电力边缘侧的边缘视频分析智能服务方法及系统。The present invention relates to the technical field of the Internet of Things, and specifically relates to an edge video analysis intelligent service method and system for the power edge side.
背景技术Background technique
近年来,随着万物互联时代的到来和无线网络的普及,网络边缘的设备数量和其产生的数据量都急剧增长。作为民生企业的国家电网公司为了保障电力的稳定运行,在输电线路、变电站、配电线路、安监等场景投入了大量的监测设备如监控摄像头、传感设备、穿戴设备等等,需要对产生的数据进行计算处理,在这种情况下,以云计算为代表的集中式处理模式将无法高效地处理边缘设备产生的数据,无法满足人们对服务质量的需求。其劣势主要体现在以下问题:In recent years, with the advent of the Internet of Everything era and the popularity of wireless networks, the number of devices at the edge of the network and the amount of data they generate have increased dramatically. As a people's livelihood enterprise, in order to ensure the stable operation of electricity, the State Grid Corporation of China has invested a large number of monitoring equipment such as surveillance cameras, sensing equipment, wearable devices, etc. in transmission lines, substations, distribution lines, safety surveillance and other scenarios. It needs to monitor the generated In this case, the centralized processing model represented by cloud computing will not be able to efficiently process the data generated by edge devices and will not be able to meet people's demand for service quality. Its disadvantages are mainly reflected in the following issues:
(1)电力智能视频分析算法模型无法适配边缘侧:当前云端的算法模型运行需要大量计算资源,受限于边缘侧计算资源不足,无法直接在边缘侧运行,存在实时性不足和宽带资源不足等问题;(1) The power intelligent video analysis algorithm model cannot be adapted to the edge side: The current cloud algorithm model requires a large amount of computing resources to run. It is limited by the insufficient computing resources on the edge side and cannot be run directly on the edge side. There are insufficient real-time performance and insufficient broadband resources. And other issues;
(2)电力场景边缘层视频分析模型管控不足:缺乏对边缘侧算法模型的统一管控机制,存在边缘侧算法模型维护、视图、渠道的混乱的情况,亟待统一的边缘侧模型全生命周期的管控;(2) Insufficient management and control of edge layer video analysis models in power scenarios: There is a lack of unified management and control mechanism for edge-side algorithm models, and there is confusion in edge-side algorithm model maintenance, views, and channels. There is an urgent need for unified edge-side model full life cycle management and control. ;
(3)尚未形成电力云边端协同机制:目前电力人工智能短发模型主要在云端应用部署,对边缘侧和终端侧的智能化提升有限,存在云端与终端侧的技术壁垒,亟待边缘智能服务的研发,完善电力云边端协同机制。(3) The power cloud-edge collaboration mechanism has not yet been formed: At present, the power artificial intelligence short-term model is mainly deployed in the cloud, and the intelligence improvement on the edge and terminal sides is limited. There are technical barriers between the cloud and the terminal side, and there is an urgent need for edge intelligent services. Research and develop to improve the power cloud-edge-device collaboration mechanism.
发明内容Contents of the invention
针对上述现有技术存在的问题,本发明提供了一种面向电力边缘侧的边缘视频分析智能服务方法、系统、电子设备、存储介质,能够实现对边缘计算装置的视频分析模型进行管控和实现云边协同。该技术方案如下:In view of the problems existing in the above-mentioned existing technologies, the present invention provides an edge video analysis intelligent service method, system, electronic equipment, and storage medium for the power edge side, which can control the video analysis model of the edge computing device and implement cloud computing. Side collaboration. The technical solution is as follows:
第一方面,提供了一种面向电力边缘侧的边缘视频分析智能服务方法,包括如下步骤:The first aspect provides an edge video analysis intelligent service method for the power edge side, including the following steps:
根据关联索引的边缘计算装置,对来自源端数据采集网络及其源端设备上传的视频监控数据进行多源分类采集处理和交叉分类整合处理,获得交叉分类采集视频数据;According to the edge computing device of the associated index, the video surveillance data uploaded from the source data collection network and its source equipment are subjected to multi-source classification collection processing and cross-classification integration processing to obtain cross-classification collection video data;
对交叉分类中的历史视频数据和增量更新视频数据进行视频智能分析模型更新得到第一更新视频分析模型,并根据预先设置的更新模型下发策略同步更新边缘计算装置的视频智能分析模型;Update the video intelligent analysis model on the historical video data and incremental update video data in the cross classification to obtain the first updated video analysis model, and synchronously update the video intelligent analysis model of the edge computing device according to the preset update model delivery strategy;
基于所述关联索引的边缘计算装置上传的反馈信息,监控边缘计算装置的视频智能分析模型全生命周期运行状态。Based on the feedback information uploaded by the edge computing device of the associated index, the full life cycle operating status of the video intelligent analysis model of the edge computing device is monitored.
在一种可能的实现方式中,所述根据预先设置的更新模型下发策略同步更新边缘计算装置的视频智能分析模型,包括:In a possible implementation, synchronously updating the video intelligent analysis model of the edge computing device according to a preset update model delivery strategy includes:
(21)建立和边缘计算装置之间的模型更新业务连接;(21) Establish a model update service connection with the edge computing device;
(22)基于第一更新视频分析模型的第一参数,判断模型是否适配边缘计算装置,若是,进入步骤(24),若否,则进行模型轻量化转换处理;(22) Based on the first parameter of the first updated video analysis model, determine whether the model is suitable for the edge computing device. If so, proceed to step (24). If not, perform model lightweight conversion processing;
(23)基于边缘计算装置的第二参数,判断边缘计算装置是否适配第一更新视频分析模型,若是,进入步骤(24),若否,则进行边缘计算装置升级优化;(23) Based on the second parameters of the edge computing device, determine whether the edge computing device is adapted to the first updated video analysis model. If yes, proceed to step (24). If not, perform upgrade and optimization of the edge computing device;
(24)根据更新模型推送信息,对边缘计算装置进行视频智能分析模型的部署、更新升级。(24) According to the updated model push information, the edge computing device deploys, updates and upgrades the video intelligent analysis model.
在一种可能的实现方式中,所述建立和边缘计算装置之间的模型更新业务连接,包括以下方式之一或组合:In a possible implementation manner, establishing a model update service connection between the edge computing device and the edge computing device includes one or a combination of the following methods:
以预定方式通知所述关联索引的边缘计算装置进行更新;Notify the edge computing device of the associated index to update in a predetermined manner;
以预定方式直接对关联索引的边缘计算装置的视频智能分析模型进行更新;Directly update the video intelligent analysis model of the associated indexed edge computing device in a predetermined manner;
根据边缘计算装置发出的模型更新版本请求,调取数据库中的实时最新版本视频智能分析模型发送给边缘计算装置。According to the model update version request issued by the edge computing device, the real-time latest version of the video intelligent analysis model in the database is retrieved and sent to the edge computing device.
在一种可能的实现方式中,所述进行模型轻量化转换处理,包括对第一更新视频分析模型剪枝、压缩和量化处理,所述对第一更新视频分析模型剪枝包括如下步骤:In a possible implementation, the model lightweight conversion process includes pruning, compressing and quantizing the first updated video analysis model, and pruning the first updated video analysis model includes the following steps:
基于第一更新视频分析模型随机生成每层剪除的通道数,得到剪除通道后的第一代第二更新视频分析模型;The number of channels to be pruned in each layer is randomly generated based on the first updated video analysis model, and the first-generation second updated video analysis model after channel pruning is obtained;
基于多次随机选择每层剪除的通道数,得到多个第一代第二更新视频分析模型;Based on multiple random selections of the number of channels to be pruned in each layer, multiple first-generation and second-updated video analysis models are obtained;
获取所述每个第一代第二更新视频分析模型的权重参数;Obtain the weight parameters of each first-generation second updated video analysis model;
根据每个第一代第二更新视频分析模型的权重参数,获取每个第一代第二更新视频分析模型的适应值,结合智能优化算法,确定适应值最优的第一代第二更新视频分析模型记为第二更新视频分析模型。According to the weight parameters of each first-generation and second-updated video analysis model, the fitness value of each first-generation and second-updated video analysis model is obtained, and combined with the intelligent optimization algorithm, the first-generation and second-updated video with the best fitness value is determined. The analysis model is recorded as the second updated video analysis model.
在一种可能的实现方式中,所述获取所述每个第一代第二更新视频分析模型的权重参数,采用训练完成的权重预测网络获得预测结果,所述权重预测网络的训练方法为:In a possible implementation, the weight parameters of each first-generation second updated video analysis model are obtained, and the trained weight prediction network is used to obtain the prediction results. The training method of the weight prediction network is:
(51)基于第一更新视频分析模型随机选择每层剪除的通道数得到每层剩余的通道数,基于每层剩余的通道数构建第一代第二更新视频分析模型,并经过训练得到第一代第二更新视频分析模型的权重参数;(51) Based on the first updated video analysis model, the number of channels pruned out of each layer is randomly selected to obtain the remaining number of channels in each layer. Based on the remaining number of channels in each layer, the first generation second updated video analysis model is constructed, and after training, the first The second generation updates the weight parameters of the video analysis model;
(52)重复预设次步骤(51)得到多组每层剩余的通道数和对应的第一代第二更新视频分析模型的权重参数组成的第一训练样本,基于第一训练样本对预先构建的神经网络模型训练获得权重预测网络。(52) Repeat the preset step (51) to obtain multiple sets of first training samples composed of the remaining number of channels in each layer and the corresponding weight parameters of the first-generation second updated video analysis model, pre-constructed based on the first training sample pair The neural network model is trained to obtain the weight prediction network.
在一种可能的实现方式中,所述结合智能优化算法,确定适应值最优的第一代第二更新视频分析模型,包括:以模型每层剩余的通道数作为一个个体,以对应得到的第一代第二更新视频分析模型的损失函数值确定适应度函数值,通过遗传算法迭代搜索获取最优第一代第二更新视频分析模型。In one possible implementation, combining the intelligent optimization algorithm to determine the first-generation second updated video analysis model with the optimal fitness value includes: taking the remaining number of channels in each layer of the model as an individual, and corresponding to the obtained The loss function value of the first-generation and second-updated video analysis model determines the fitness function value, and the optimal first-generation and second-updated video analysis model is obtained through iterative search of the genetic algorithm.
在一种可能的实现方式中,所述接收边缘计算装置上传的反馈信息,监控边缘计算装置的视频智能分析模型全生命周期运行状态,包括:In a possible implementation, the step of receiving feedback information uploaded by the edge computing device and monitoring the full life cycle operating status of the video intelligent analysis model of the edge computing device includes:
根据边缘计算装置反馈信息所属业务逻辑类型调用对应的模型运行状态监控方法;Call the corresponding model running status monitoring method according to the business logic type to which the edge computing device feedback information belongs;
根据反馈信息所属业务逻辑类型以及当前反馈信息通过预设的业务逻辑运行模型对边缘计算装置的模型运行状态进行预测,根据预测结果和实际运行状态分析模型运行状态的异常情况;Predict the model operating status of the edge computing device through the preset business logic operating model based on the business logic type of the feedback information and the current feedback information, and analyze abnormal conditions of the model operating state based on the prediction results and actual operating status;
根据模型运行状态监控方法进行监控,获取监控数据,并通过汇总分析生成运行状态监控记录数据;Monitor according to the model running status monitoring method, obtain monitoring data, and generate running status monitoring record data through summary analysis;
根据监控数据和边缘计算装置的模型全生命周期运行模型进行比较分析,获取模型运行状态的异常情况。Comparative analysis is performed based on the monitoring data and the model full life cycle operation model of the edge computing device to obtain abnormal conditions of the model operation status.
第二方面,提供了一种面向电力边缘侧的边缘视频分析智能服务系统,包括:In the second aspect, an edge video analysis intelligent service system for the power edge side is provided, including:
多源数据采集整合单元,用于根据关联索引的边缘计算装置,对来自源端数据采集网络及其源端设备上传的视频监控数据进行多源分类采集处理和交叉分类整合处理,获得交叉分类采集视频数据;The multi-source data collection and integration unit is used to perform multi-source classification collection processing and cross-classification integration processing on the video surveillance data uploaded from the source data collection network and its source equipment based on the edge computing device of the associated index, to obtain cross-classification collection video data;
模型更新单元,用于对交叉分类中的历史视频数据和增量更新视频数据进行视频智能分析模型更新,并根据预先设置的更新模型下发策略同步更新边缘计算装置的视频智能分析模型;The model update unit is used to update the video intelligent analysis model for historical video data and incrementally updated video data in cross-classification, and to synchronously update the video intelligent analysis model of the edge computing device according to the preset update model delivery strategy;
模型生命周期监控单元,用于对所述关联索引的边缘计算装置上传的反馈信息,监控边缘计算装置的视频智能分析模型全生命周期运行状态。The model life cycle monitoring unit is used to monitor the full life cycle operating status of the video intelligent analysis model of the edge computing device based on the feedback information uploaded by the edge computing device of the associated index.
第三方面,提供了一种电子设备,所述电子设备包括:In a third aspect, an electronic device is provided, and the electronic device includes:
存储器,用于存储可执行指令;Memory, used to store executable instructions;
处理器,用于运行所述存储器存储的可执行指令时,实现上述的面向电力边缘侧的边缘视频分析智能服务方法。The processor is configured to implement the above-mentioned edge video analysis intelligent service method for the power edge side when running the executable instructions stored in the memory.
第四方面,提供了一种计算机可读存储介质,存储有可执行指令,其特征在于,所述可执行指令被处理器执行时实现上述的面向电力边缘侧的边缘视频分析智能服务方法。A fourth aspect provides a computer-readable storage medium storing executable instructions, which is characterized in that when the executable instructions are executed by a processor, the above-mentioned edge video analysis intelligent service method for the power edge side is implemented.
本发明的面向电力边缘侧的边缘视频分析智能服务方法及系统,具备如下有益效果:The edge video analysis intelligent service method and system for the power edge side of the present invention has the following beneficial effects:
1、本发明根据对关联索引的边缘计算装置上传的反馈信息进行边缘计算装置模型全生命周期运行状态监控,实现云端的边缘视频分析智能服务方法与边缘计算装置的交互,进而实现对边缘计算装置的模型随需部署,实现算法模型的云边协同。1. The present invention monitors the full life cycle operation status of the edge computing device model based on the feedback information uploaded to the edge computing device of the associated index, realizes the interaction between the edge video analysis intelligent service method in the cloud and the edge computing device, and then realizes the monitoring of the edge computing device. Models can be deployed on demand to achieve cloud-edge collaboration of algorithm models.
2、本发明根据预先设置的更新模型下发策略同步更新边缘计算装置的视频智能分析模型,判断第一更新视频分析模型和边缘计算装置双方的参数是否相互适配,并在第一更新视频分析模型的第一参数不适配边缘计算装置时进行模型轻量化转换处理,提高边缘侧的视频分析智能化水平。2. The present invention synchronously updates the video intelligent analysis model of the edge computing device according to the preset update model delivery strategy, determines whether the parameters of the first updated video analysis model and the edge computing device are compatible with each other, and performs the first updated video analysis on When the first parameter of the model is not suitable for the edge computing device, the model is lightweight and converted to improve the intelligent level of video analysis on the edge side.
3、本发明对于第一更新视频分析模型的轻量化转换处理过程中,采用随机生成方法获得多个轻量化网络模型,避免了人工设计的缺陷,同时基于随机生成的多个轻量化网络模型进行模型权重参数预测,并基于具有权重参数的多个轻量化网络模型进行择优,提高了轻量化处理的效率和轻量化模型的视频分析性能。3. During the lightweight conversion process of the first updated video analysis model, the present invention uses a random generation method to obtain multiple lightweight network models, avoiding the defects of manual design. At the same time, it is based on multiple randomly generated lightweight network models. Model weight parameter prediction and selection based on multiple lightweight network models with weight parameters improve the efficiency of lightweight processing and the video analysis performance of lightweight models.
附图说明Description of the drawings
图1是本发明实施例面向电力边缘侧的边缘视频分析智能服务方法的流程图;Figure 1 is a flow chart of an edge video analysis intelligent service method for the power edge side according to an embodiment of the present invention;
图2是本发明实施例对第一更新视频分析模型进行剪枝的流程图;Figure 2 is a flow chart of pruning the first updated video analysis model according to an embodiment of the present invention;
图3是本发明实施例中监控边缘计算装置的视频智能分析模型全生命周期运行状态的方法流程图;Figure 3 is a flow chart of a method for monitoring the full life cycle operating status of the video intelligent analysis model of an edge computing device in an embodiment of the present invention;
图4是本发明实施例面向电力边缘侧的边缘视频分析智能服务系统的结构框图。Figure 4 is a structural block diagram of an edge video analysis intelligent service system for the power edge side according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,所描述的实施例不应视为对本发明的限制,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with the accompanying drawings. The described embodiments should not be regarded as limiting the present invention. Those of ordinary skill in the art will not make any All other embodiments obtained under the premise of creative work belong to the scope of protection of the present invention.
图1是根据本公开实施例的一种面向电力边缘侧的边缘视频分析智能服务方法的流程示意图,该方法可以通过面向电力边缘侧的边缘视频分析智能系统来执行,该系统可以通过软件和/或硬件的方式实现,并集成于电子设备中。具体的,参考图1,该方法包括如下步骤:Figure 1 is a schematic flowchart of an edge video analysis intelligent service method for the power edge side according to an embodiment of the present disclosure. The method can be executed by an edge video analysis intelligent system for the power edge side. The system can be implemented through software and/or Or implemented in hardware and integrated into electronic equipment. Specifically, referring to Figure 1, the method includes the following steps:
根据关联索引的边缘计算装置,对来自源端数据采集网络及其源端设备上传的视频监控数据进行多源分类采集处理和交叉分类整合处理,获得交叉分类采集视频数据;According to the edge computing device of the associated index, the video surveillance data uploaded from the source data collection network and its source equipment are subjected to multi-source classification collection processing and cross-classification integration processing to obtain cross-classification collection video data;
对交叉分类中的历史视频数据和增量更新视频数据进行视频智能分析模型更新得到第一更新视频分析模型,并根据预先设置的更新模型下发策略同步更新边缘计算装置的视频智能分析模型,其中进行视频智能分析模型更新得到第一更新视频分析模型,可以按照预定时间周期进行一次更新,也可以根据增量更新视频数据的数据量大小判断是否进行一次更新;The video intelligent analysis model is updated on the historical video data and incremental update video data in the cross classification to obtain the first updated video analysis model, and the video intelligent analysis model of the edge computing device is synchronously updated according to the preset update model delivery strategy, where The video intelligent analysis model is updated to obtain the first updated video analysis model. An update can be performed according to a predetermined time period, or whether to perform an update can be determined based on the amount of incrementally updated video data;
基于所述关联索引的边缘计算装置上传的反馈信息,监控边缘计算装置的视频智能分析模型全生命周期运行状态。Based on the feedback information uploaded by the edge computing device of the associated index, the full life cycle operating status of the video intelligent analysis model of the edge computing device is monitored.
本发明实施例根据对关联索引的边缘计算装置上传的反馈信息进行边缘计算装置模型全生命周期运行状态监控,实现云端的边缘视频分析智能服务方法与边缘计算装置的交互,进而实现对边缘计算装置的模型随需部署,实现算法模型的云边协同。Embodiments of the present invention monitor the operating status of the edge computing device model throughout its life cycle based on the feedback information uploaded to the edge computing device associated with the index, thereby realizing the interaction between the cloud's edge video analysis intelligent service method and the edge computing device, and thereby realizing the monitoring of the edge computing device. Models can be deployed on demand to achieve cloud-edge collaboration of algorithm models.
上述根据预先设置的更新模型下发策略同步更新边缘计算装置的视频智能分析模型,包括:The above-mentioned synchronous update of the video intelligent analysis model of the edge computing device according to the preset update model delivery strategy includes:
(21)建立和边缘计算装置之间的模型更新业务连接;(21) Establish a model update service connection with the edge computing device;
(22)基于第一更新视频分析模型的第一参数,该第一参数包括视频智能分析模型的模型参数量和模型运行所需计算资源等,判断模型是否适配边缘计算装置,若是,进入步骤(24),若否,则进行模型轻量化转换处理;(22) Based on the first parameter of the first updated video analysis model, which includes the model parameters of the video intelligent analysis model and the computing resources required for model operation, determine whether the model is suitable for the edge computing device. If so, proceed to step (24), if not, perform model lightweight conversion processing;
(23)基于边缘计算装置的第二参数,该第二参数包括边缘计算装置的软件承载系统的运行参数,比如固件版本等,判断边缘计算装置是否适配第一更新视频分析模型,若是,进入步骤(24),若否,则进行边缘计算装置升级优化;(23) Based on the second parameters of the edge computing device, which include operating parameters of the software hosting system of the edge computing device, such as firmware versions, etc., determine whether the edge computing device is adapted to the first updated video analysis model. If so, enter Step (24), if not, upgrade and optimize the edge computing device;
(24)根据更新模型推送信息,对边缘计算装置进行视频智能分析模型的部署、更新升级。(24) According to the updated model push information, the edge computing device deploys, updates and upgrades the video intelligent analysis model.
上述述建立和边缘计算装置之间的模型更新业务连接,包括以下方式之一或组合:The above-mentioned establishment of a model update service connection between the edge computing device and the edge computing device includes one or a combination of the following methods:
以预定方式通知所述关联索引的边缘计算装置进行更新;Notify the edge computing device of the associated index to update in a predetermined manner;
以预定方式直接对关联索引的边缘计算装置的视频智能分析模型进行更新;Directly update the video intelligent analysis model of the associated indexed edge computing device in a predetermined manner;
根据边缘计算装置发出的模型更新版本请求,调取数据库中的实时最新版本视频智能分析模型发送给边缘计算装置。According to the model update version request issued by the edge computing device, the real-time latest version of the video intelligent analysis model in the database is retrieved and sent to the edge computing device.
该预定方式包括多种进行请求信息推送的方式以及通知信息的格式和形式等,本实施例中,边缘计算装置智能服务器和建立和边缘计算装置之间的模型更新业务连,根据更新参数设置,边缘计算装置智能服务器确定直接发出更新请求或者直接更新边缘计算装置上的模型或者基于边缘计算装置的更新请求信息。The predetermined method includes a variety of ways to push request information and formats and forms of notification information. In this embodiment, the edge computing device intelligent server establishes a model update service connection with the edge computing device. According to the update parameter settings, The edge computing device intelligent server determines to directly issue an update request or directly update the model on the edge computing device or based on the update request information of the edge computing device.
上述对第一更新视频分析模型进行模型轻量化转换处理,包括对第一更新视频分析模型剪枝、压缩和量化处理,所述对第一更新视频分析模型剪枝包括如下步骤:The above-mentioned model lightweight conversion processing of the first updated video analysis model includes pruning, compression and quantization processing of the first updated video analysis model. The pruning of the first updated video analysis model includes the following steps:
基于第一更新视频分析模型随机生成每层剪除的通道数,得到剪除通道后的第一代第二更新视频分析模型;The number of channels to be pruned in each layer is randomly generated based on the first updated video analysis model, and the first-generation second updated video analysis model after channel pruning is obtained;
基于多次随机选择每层剪除的通道数,得到多个第一代第二更新视频分析模型;Based on multiple random selections of the number of channels to be pruned in each layer, multiple first-generation and second-updated video analysis models are obtained;
获取所述每个第一代第二更新视频分析模型的权重参数;Obtain the weight parameters of each first-generation second updated video analysis model;
根据每个第一代第二更新视频分析模型的权重参数,获取每个第一代第二更新视频分析模型的适应值,结合智能优化算法,确定适应值最优的第一代第二更新视频分析模型记为第二更新视频分析模型,具体的,智能优化算法采用遗传算法,以模型每层剩余的通道数作为一个个体,以对应得到的第一代第二更新视频分析模型的损失函数值确定适应度函数值,通过遗传算法迭代搜索获取最优第一代第二更新视频分析模型。According to the weight parameters of each first-generation and second-updated video analysis model, the fitness value of each first-generation and second-updated video analysis model is obtained, and combined with the intelligent optimization algorithm, the first-generation and second-updated video with the best fitness value is determined. The analysis model is recorded as the second updated video analysis model. Specifically, the intelligent optimization algorithm uses a genetic algorithm, and uses the remaining number of channels in each layer of the model as an individual to correspond to the loss function value of the first generation second updated video analysis model. Determine the fitness function value and obtain the optimal first-generation and second-updated video analysis model through iterative search using a genetic algorithm.
具体的,基于智能优化算法的种群规模参数m,确定进行m次随机选择每层剪除的通道数,则该智能优化算法的种群初始化方法即为:对第一更新视频分析模型以m种通道剪除方法剪除通道后得到m个第一代第二更新视频分析模型每层的剩余通道数。基于该初始种群进行适应度函数值计算以及个体更新进行智能优化算法的迭代。Specifically, based on the population size parameter m of the intelligent optimization algorithm, the number of channels for each layer to be pruned m times is determined randomly. Then the population initialization method of the intelligent optimization algorithm is: pruning the first updated video analysis model with m channels After pruning the channels, the method obtains the remaining number of channels in each layer of m first-generation and second-updated video analysis models. Based on the initial population, the fitness function value is calculated and individual updates are performed to iterate the intelligent optimization algorithm.
本实施例通过随机生成每层剪除的通道数,得到剪除通道后每层的通道数,避免人工设计的局限,每层剪除的通道数随机生成,并且通过对剪除通道后的多个第一代第二更新视频分析模型进行比较,选择出最优第一代第二更新视频分析模型,提高了模型剪枝后得到的第二更新视频分析模型的拟合优良程度;This embodiment randomly generates the number of channels to be pruned in each layer to obtain the number of channels in each layer after pruning the channels, avoiding the limitations of manual design. The number of pruned channels in each layer is randomly generated, and by comparing multiple first-generation channels after pruning the channels. The second updated video analysis model is compared to select the optimal first-generation second updated video analysis model, which improves the goodness of fit of the second updated video analysis model obtained after model pruning;
通过对第一代第二更新视频分析模型的权重参数进行预测,避免了对多个第一代第二更新视频分析模型通过输入视频数据训练得到用于输出视频分析结果的第一代第二更新视频分析模型的模型权重参数,即避免了对多个视频分析模型的迭代训练过程,提高模型剪枝的效率。By predicting the weight parameters of the first-generation and second-updated video analysis models, it is avoided to train multiple first-generation and second-updating video analysis models through input video data to obtain the first-generation and second-updating output video analysis results. The model weight parameters of the video analysis model avoid the iterative training process of multiple video analysis models and improve the efficiency of model pruning.
上述获取所述每个第一代第二更新视频分析模型的权重参数,采用训练完成的权重预测网络获得预测结果,所述权重预测网络的训练方法为:The weight parameters of each first-generation second updated video analysis model are obtained as above, and the trained weight prediction network is used to obtain the prediction results. The training method of the weight prediction network is:
(51)基于第一更新视频分析模型随机选择每层剪除的通道数得到每层剩余的通道数,基于每层剩余的通道数构建第一代第二更新视频分析模型,并经过训练得到第一代第二更新视频分析模型的权重参数,该训练步骤即是对第一更新视频分析模型剪除随机数量的通道后的模型微调训练;(51) Based on the first updated video analysis model, the number of channels pruned out of each layer is randomly selected to obtain the remaining number of channels in each layer. Based on the remaining number of channels in each layer, the first generation second updated video analysis model is constructed, and after training, the first Generate the weight parameters of the second updated video analysis model. This training step is the fine-tuning training of the model after pruning a random number of channels of the first updated video analysis model;
(52)重复预设次步骤(51)得到多组每层剩余的通道数和对应的第一代第二更新视频分析模型的权重参数组成的第一训练样本,基于第一训练样本对预先构建的神经网络模型训练获得权重预测网络,该预先构建的神经网络模型可采用全连接网络结构。(52) Repeat the preset step (51) to obtain multiple sets of first training samples composed of the remaining number of channels in each layer and the corresponding weight parameters of the first-generation second updated video analysis model, pre-constructed based on the first training sample pair The weight prediction network is obtained by training the neural network model. The pre-built neural network model can adopt a fully connected network structure.
上述接收边缘计算装置上传的反馈信息,监控边缘计算装置的视频智能分析模型全生命周期运行状态,包括:The above-mentioned method receives feedback information uploaded by the edge computing device and monitors the full life cycle operation status of the video intelligent analysis model of the edge computing device, including:
根据边缘计算装置反馈信息所属业务逻辑类型调用对应的模型运行状态监控方法;Call the corresponding model running status monitoring method according to the business logic type to which the edge computing device feedback information belongs;
根据反馈信息所属业务逻辑类型以及当前反馈信息通过预设的业务逻辑运行模型对边缘计算装置的模型运行状态进行预测,根据预测结果和实际运行状态分析模型运行状态的异常情况;Predict the model operating status of the edge computing device through the preset business logic operating model based on the business logic type of the feedback information and the current feedback information, and analyze abnormal conditions of the model operating state based on the prediction results and actual operating status;
根据模型运行状态监控方法进行监控,获取监控数据,并通过汇总分析生成运行状态监控记录数据;Monitor according to the model running status monitoring method, obtain monitoring data, and generate running status monitoring record data through summary analysis;
根据监控数据和边缘计算装置的模型全生命周期运行模型进行比较分析,获取模型运行状态的异常情况。Comparative analysis is performed based on the monitoring data and the model full life cycle operation model of the edge computing device to obtain abnormal conditions of the model operation status.
其中,业务逻辑类型包括视频智能分析模型的上传、下载、部署、更新、版本管理等,对于不同的业务逻辑类型对应不同运行状态监控方法,比如在模型的更新业务中,整个业务逻辑的一种实现方式大致包括:边缘计算装置请求和边缘计算装置智能服务器建立更新业务连接,同时发送边缘计算装置本地的视频智能分析模型版本序号、边缘计算装置智能服务器根据边缘计算装置本地的视频智能分析模型版本序号和数据库中最新的当前版本序号进行对比,判断是否需要进行更新,在需要更新时,向边缘计算装置发送可更新提示信息,在边缘计算装置确定进行更新时,对边缘计算装置提供视频智能分析模型更新版本的下载业务,基于该业务逻辑,在接收到边缘计算装置的反馈信息时,可以根据反馈信息调用对应的业务逻辑运行模型对边缘计算装置的运行状态进行判断,并预测接下来的边缘计算装置的运行状态,根据预测的运行状态和实际的运行状态分析运行状态是否异常,比如当前是边缘计算装置发送了边缘计算装置本地的视频智能分析模型版本序号,接下来预测边缘计算装置可能会进行更新版本的下载请求;同时可根据反馈信息确定对应业务逻辑的模型运行状态监控方法,监控相应的模型运行参数,比如交互时的响应时间,根据该运行状态监控数据和预设的视频智能分析模型全生命周期运行模型中的对应运行参数设置进行比较分析,分析运行状态是否异常。Among them, business logic types include uploading, downloading, deployment, updating, version management, etc. of video intelligent analysis models. Different business logic types correspond to different running status monitoring methods. For example, in the model update business, a kind of the entire business logic The implementation method generally includes: the edge computing device requests to establish an update service connection with the edge computing device intelligent server, and at the same time sends the edge computing device's local video intelligent analysis model version serial number, and the edge computing device intelligent server based on the edge computing device's local video intelligent analysis model version The serial number is compared with the latest current version serial number in the database to determine whether an update is required. When an update is required, an updateable prompt message is sent to the edge computing device. When the edge computing device determines to update, video intelligent analysis is provided to the edge computing device. Based on the business logic of the download business of the updated version of the model, when receiving feedback information from the edge computing device, the corresponding business logic operation model can be called according to the feedback information to judge the operating status of the edge computing device and predict the next edge. Calculate the operating status of the device and analyze whether the operating status is abnormal based on the predicted operating status and the actual operating status. For example, the edge computing device currently sends the local video intelligent analysis model version number of the edge computing device. Next, it is predicted that the edge computing device may Make a download request for an updated version; at the same time, the model operating status monitoring method corresponding to the business logic can be determined based on the feedback information, and the corresponding model operating parameters, such as the response time during interaction, can be monitored based on the operating status monitoring data and preset video intelligent analysis Compare and analyze the corresponding operating parameter settings in the model's full life cycle operation model, and analyze whether the operating status is abnormal.
本实施例还提供了一种面向电力边缘侧的边缘视频分析智能服务系统,包括:This embodiment also provides an edge video analysis intelligent service system for the power edge side, including:
多源数据采集整合单元,用于根据关联索引的边缘计算装置,对来自源端数据采集网络及其源端设备上传的视频监控数据进行多源分类采集处理和交叉分类整合处理,获得交叉分类采集视频数据;The multi-source data collection and integration unit is used to perform multi-source classification collection processing and cross-classification integration processing on the video surveillance data uploaded from the source data collection network and its source equipment based on the edge computing device of the associated index, to obtain cross-classification collection video data;
模型更新单元,用于对交叉分类中的历史视频数据和增量更新视频数据进行视频智能分析模型更新得到第一更新视频分析模型,并根据预先设置的更新模型下发策略同步更新边缘计算装置的视频智能分析模型;The model update unit is used to update the intelligent video analysis model of the historical video data and incrementally updated video data in cross-classification to obtain the first updated video analysis model, and to synchronously update the edge computing device according to the preset update model delivery strategy. Video intelligent analysis model;
模型生命周期监控单元,用于对所述关联索引的边缘计算装置上传的反馈信息,监控边缘计算装置的视频智能分析模型全生命周期运行状态。The model life cycle monitoring unit is used to monitor the full life cycle operating status of the video intelligent analysis model of the edge computing device based on the feedback information uploaded by the edge computing device of the associated index.
关于面向电力边缘侧的边缘视频分析智能服务系统的具体限定可以参见上文中对于面向电力边缘侧的边缘视频分析智能服务方法的限定,在此不再赘述。上述面向电力边缘侧的边缘视频分析智能服务系统中的各个单元可全部或部分通过软件、硬件及其组合来实现。上述各单元可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个单元对应的操作。For specific limitations on the edge video analysis intelligent service system for the power edge side, please refer to the limitations on the edge video analysis intelligent service method for the power edge side mentioned above, which will not be described again here. Each unit in the above-mentioned edge video analysis intelligent service system for the power edge side can be implemented in whole or in part through software, hardware, and combinations thereof. Each of the above units may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to each of the above units.
本实施例还提供了一种电子设备,所述电子设备包括:This embodiment also provides an electronic device, which includes:
存储器,用于存储可执行指令;Memory, used to store executable instructions;
处理器,提供计算和控制能力,用于运行所述存储器存储的可执行指令时,实现上述的面向电力边缘侧的边缘视频分析智能服务方法。The processor provides computing and control capabilities, and is used to implement the above-mentioned edge video analysis intelligent service method for the power edge side when running executable instructions stored in the memory.
该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、电子程序和数据库,数据库用于存储边缘计算装置上传的视频数据等。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备设有网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现面向电力边缘侧的边缘视频分析智能服务方法。The memory of the electronic device includes non-volatile storage media and internal memory. The non-volatile storage medium stores an operating system, electronic programs and a database. The database is used to store video data uploaded by the edge computing device, etc. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media. The electronic device is provided with a network interface for communicating with an external terminal through a network connection. When the computer program is executed by the processor, the edge video analysis intelligent service method for the power edge side is implemented.
本实施例还提供了一种计算机可读存储介质,存储有可执行指令,所述可执行指令被处理器执行时实现上述的面向电力边缘侧的边缘视频分析智能服务方法,该计算机可读存储介质可以是只读存储器(read-only memory,ROM)、随机存取存储器(random accessmemory,RAM)、只读光盘(compact disc read-only memory,CD-ROM)、磁带、软盘和光数据存储节点等。This embodiment also provides a computer-readable storage medium that stores executable instructions. When the executable instructions are executed by a processor, the above-mentioned edge video analysis intelligent service method for the power edge side is implemented. The computer-readable storage medium stores executable instructions. The media can be read-only memory (ROM), random access memory (RAM), compact disc read-only memory (CD-ROM), magnetic tape, floppy disk, optical data storage node, etc. .
本发明不局限于上述具体的实施方式,本领域的普通技术人员从上述构思出发,不经过创造性的劳动,所做出的种种变换,均落在本发明的保护范围之内。The present invention is not limited to the above-mentioned specific embodiments. Various modifications made by those of ordinary skill in the art based on the above-mentioned concepts without creative efforts fall within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110462213.6A CN113297415B (en) | 2021-04-27 | 2021-04-27 | Edge video analysis intelligent service method and system for the power edge side |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110462213.6A CN113297415B (en) | 2021-04-27 | 2021-04-27 | Edge video analysis intelligent service method and system for the power edge side |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113297415A CN113297415A (en) | 2021-08-24 |
| CN113297415B true CN113297415B (en) | 2023-09-15 |
Family
ID=77320423
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110462213.6A Active CN113297415B (en) | 2021-04-27 | 2021-04-27 | Edge video analysis intelligent service method and system for the power edge side |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113297415B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115102859B (en) * | 2022-08-24 | 2022-11-18 | 广东电网有限责任公司广州供电局 | Intelligent realization method for flexibly updating and iterating hardware equipment on Internet of things edge |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105760555A (en) * | 2016-04-08 | 2016-07-13 | 浙江中烟工业有限责任公司 | Filter stick forming process quality analyzing and tracing system |
| CN110400387A (en) * | 2019-06-26 | 2019-11-01 | 广东康云科技有限公司 | A kind of joint method for inspecting, system and storage medium based on substation |
| CN110428522A (en) * | 2019-07-24 | 2019-11-08 | 青岛联合创智科技有限公司 | A kind of intelligent safety and defence system of wisdom new city |
| WO2020107444A1 (en) * | 2018-11-30 | 2020-06-04 | 苏州数言信息技术有限公司 | Wireless network system and communication method |
| CN111343436A (en) * | 2020-03-26 | 2020-06-26 | 中国铁道科学研究院集团有限公司电子计算技术研究所 | Rail transit video surveillance method and system based on cloud-edge collaboration |
| CN111698470A (en) * | 2020-06-03 | 2020-09-22 | 河南省民盛安防服务有限公司 | Security video monitoring system based on cloud edge cooperative computing and implementation method thereof |
| CN111932027A (en) * | 2020-08-28 | 2020-11-13 | 电子科技大学 | Cloud service comprehensive scheduling optimization system and method fusing edge facilities |
| CN112202840A (en) * | 2020-09-07 | 2021-01-08 | 天地(常州)自动化股份有限公司 | Coal mine fire alarm system and method based on edge calculation mode and storage medium |
| CN112256537A (en) * | 2020-11-12 | 2021-01-22 | 腾讯科技(深圳)有限公司 | Model running state display method and device, computer equipment and storage medium |
| CN112379869A (en) * | 2020-11-13 | 2021-02-19 | 广东电科院能源技术有限责任公司 | Standardized development training platform |
| CN112433733A (en) * | 2019-08-26 | 2021-03-02 | 国际商业机器公司 | Controlling performance of deep learning models deployed on edge devices via predictive models |
| CN112685069A (en) * | 2019-10-20 | 2021-04-20 | 辉达公司 | Real-time updating of machine learning models |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9990587B2 (en) * | 2015-01-22 | 2018-06-05 | Preferred Networks, Inc. | Machine learning heterogeneous edge device, method, and system |
| CN107766889B (en) * | 2017-10-26 | 2021-06-04 | 浪潮集团有限公司 | A deep learning computing system and method for cloud edge computing fusion |
| CN110417120A (en) * | 2019-06-26 | 2019-11-05 | 广东康云科技有限公司 | A kind of substation's outdoor scene 3 D intelligent cruising inspection system and method |
| CN111199279A (en) * | 2019-10-30 | 2020-05-26 | 山东浪潮人工智能研究院有限公司 | A method and device for integrating cloud edge computing and artificial intelligence in the police industry |
-
2021
- 2021-04-27 CN CN202110462213.6A patent/CN113297415B/en active Active
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105760555A (en) * | 2016-04-08 | 2016-07-13 | 浙江中烟工业有限责任公司 | Filter stick forming process quality analyzing and tracing system |
| WO2020107444A1 (en) * | 2018-11-30 | 2020-06-04 | 苏州数言信息技术有限公司 | Wireless network system and communication method |
| CN110400387A (en) * | 2019-06-26 | 2019-11-01 | 广东康云科技有限公司 | A kind of joint method for inspecting, system and storage medium based on substation |
| CN110428522A (en) * | 2019-07-24 | 2019-11-08 | 青岛联合创智科技有限公司 | A kind of intelligent safety and defence system of wisdom new city |
| CN112433733A (en) * | 2019-08-26 | 2021-03-02 | 国际商业机器公司 | Controlling performance of deep learning models deployed on edge devices via predictive models |
| CN112685069A (en) * | 2019-10-20 | 2021-04-20 | 辉达公司 | Real-time updating of machine learning models |
| CN111343436A (en) * | 2020-03-26 | 2020-06-26 | 中国铁道科学研究院集团有限公司电子计算技术研究所 | Rail transit video surveillance method and system based on cloud-edge collaboration |
| CN111698470A (en) * | 2020-06-03 | 2020-09-22 | 河南省民盛安防服务有限公司 | Security video monitoring system based on cloud edge cooperative computing and implementation method thereof |
| CN111932027A (en) * | 2020-08-28 | 2020-11-13 | 电子科技大学 | Cloud service comprehensive scheduling optimization system and method fusing edge facilities |
| CN112202840A (en) * | 2020-09-07 | 2021-01-08 | 天地(常州)自动化股份有限公司 | Coal mine fire alarm system and method based on edge calculation mode and storage medium |
| CN112256537A (en) * | 2020-11-12 | 2021-01-22 | 腾讯科技(深圳)有限公司 | Model running state display method and device, computer equipment and storage medium |
| CN112379869A (en) * | 2020-11-13 | 2021-02-19 | 广东电科院能源技术有限责任公司 | Standardized development training platform |
Non-Patent Citations (4)
| Title |
|---|
| Deep Learning With Edge Computing: A Review;J. Chen等;《Proceedings of the IEEE》;第107卷(第8期);1655-1674 * |
| 基于云边协同计算架构的资源分配和任务调度方法研究;赵龙乾;《中国优秀硕士学位论文全文数据库 信息科技辑》(第2期);I137-15 * |
| 边缘计算在电力设备管理及运行维护中的应用;贾滨诚;《华电技术》;第43卷(第3期);14-19 * |
| 边缘计算场景下基于强化学习的应用最优部署;马新新;《计算机工程与设计》;第42卷(第1期);15-23 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113297415A (en) | 2021-08-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20200143246A1 (en) | Demand classification based pipeline system for time-series data forecasting | |
| CN114268640B (en) | Cloud-side collaborative industrial IoT intelligent routing system | |
| CN111741073B (en) | Power data transmission system based on 5G communication network | |
| CN113286002B (en) | Power data transmission method based on multi-priority queue | |
| CN109787846A (en) | A kind of 5G network service quality exception monitoring and prediction technique and system | |
| WO2019206100A1 (en) | Feature engineering programming method and apparatus | |
| CN106101196B (en) | A task scheduling system for cloud rendering platform based on probability model | |
| CN112365366A (en) | Micro-grid management method and system based on intelligent 5G slice | |
| CN114138501B (en) | Processing method and device for edge intelligent service for field safety monitoring | |
| CN115016923A (en) | IoT data intelligent processing method based on edge gateway | |
| CN117395251A (en) | Resource scheduling method, device and computer readable storage medium | |
| CN116566831A (en) | Mobile network resource management method and system based on cloud computing | |
| CN113297415B (en) | Edge video analysis intelligent service method and system for the power edge side | |
| CN114968981A (en) | Big data platform system and data processing method based on power grid data | |
| CN119485241A (en) | Intelligent switch networking method and device based on Bluetooth mesh | |
| CN114490053A (en) | Context awareness strategy recommendation system based on edge calculation and supervised learning method | |
| CN114328425A (en) | A power data sharing device and method for high concurrent data release request | |
| CN113055490B (en) | Data storage method and device | |
| CN112235164A (en) | A controller-based neural network traffic prediction device | |
| CN113986222B (en) | Cloud computing API translation system | |
| CN113759210B (en) | Distribution room status monitoring system and distribution room monitoring data transmission method | |
| CN115733857A (en) | Multi-level distributed equipment health monitoring system | |
| CN213126061U (en) | Neural network flow prediction device based on controller | |
| CN115776433A (en) | Communication method, communication device, related equipment and storage medium | |
| CN115941433A (en) | Network slice performance optimization guarantee method and system, storage medium and electronic equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |