CN113327775B - A kind of preparation method and electrode material of potassium ion micro-hybrid capacitor - Google Patents
A kind of preparation method and electrode material of potassium ion micro-hybrid capacitor Download PDFInfo
- Publication number
- CN113327775B CN113327775B CN202110589065.4A CN202110589065A CN113327775B CN 113327775 B CN113327775 B CN 113327775B CN 202110589065 A CN202110589065 A CN 202110589065A CN 113327775 B CN113327775 B CN 113327775B
- Authority
- CN
- China
- Prior art keywords
- electrode
- solution
- mxene
- potassium
- alkalized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 29
- 229910001414 potassium ion Inorganic materials 0.000 title claims abstract description 21
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 239000007772 electrode material Substances 0.000 title abstract description 14
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 43
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 35
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 32
- 239000007921 spray Substances 0.000 claims abstract description 22
- 239000010936 titanium Substances 0.000 claims abstract description 19
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000011149 active material Substances 0.000 claims abstract description 7
- -1 polyethylene terephthalate Polymers 0.000 claims abstract description 5
- 239000000243 solution Substances 0.000 claims description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 31
- 239000002131 composite material Substances 0.000 claims description 20
- 239000008367 deionised water Substances 0.000 claims description 20
- 229910021641 deionized water Inorganic materials 0.000 claims description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 19
- 239000011259 mixed solution Substances 0.000 claims description 19
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 14
- 239000002042 Silver nanowire Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 13
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 12
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 12
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 12
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 claims description 12
- 239000007773 negative electrode material Substances 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 239000007774 positive electrode material Substances 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- 239000003960 organic solvent Substances 0.000 claims description 8
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 6
- 239000010410 layer Substances 0.000 claims description 6
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000006258 conductive agent Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 2
- 239000013049 sediment Substances 0.000 claims 1
- 239000010439 graphite Substances 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 14
- 229920000139 polyethylene terephthalate Polymers 0.000 abstract description 12
- 239000005020 polyethylene terephthalate Substances 0.000 abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 7
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052700 potassium Inorganic materials 0.000 abstract description 6
- 239000011591 potassium Substances 0.000 abstract description 6
- 229910052719 titanium Inorganic materials 0.000 abstract description 6
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 abstract description 4
- 230000037427 ion transport Effects 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 abstract description 2
- 229940037179 potassium ion Drugs 0.000 description 13
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 239000006229 carbon black Substances 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 238000004146 energy storage Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明为一种钾离子微型混合电容器的制备方法和电极材料。该方法在模具的辅助下使用气喷枪将活性材料喷涂于聚对苯二甲酸乙二醇酯(PET)上,在PET透明柔性基底上构建了具有多向离子传输通道的微型柔性叉指电极。电极真空烘干后将微孔聚合物电解质涂于电极表面,最后放入真空袋中滴加电解液并封装,获得柔性钾离子微型混合电容器。该电极材料为一种部分钛酸钾生长于石墨层间的多维拓扑结构材料;制备方法中,以氢氧化钾为钾源、纳米二氧化钛为钛源,通过与片状石墨,100‑250℃的温度下水热复合。本发明得到的材料有效解决了钛酸钾材料电导率低、容量低、倍率性能差的问题。
The present invention relates to a preparation method and electrode material of a potassium ion miniature hybrid capacitor. In this method, the active material was sprayed on polyethylene terephthalate (PET) with the aid of a mold using an air spray gun, and a micro flexible interdigital electrode with multidirectional ion transport channels was constructed on the PET transparent flexible substrate. After the electrode is vacuum-dried, the microporous polymer electrolyte is coated on the surface of the electrode, and finally the electrolyte is dropped into a vacuum bag and packaged to obtain a flexible potassium ion micro-hybrid capacitor. The electrode material is a multi-dimensional topological structure material in which part of potassium titanate is grown between graphite layers; in the preparation method, potassium hydroxide is used as potassium source, and nano-titanium dioxide is used as titanium source. Hydrothermal compound at temperature. The material obtained by the invention effectively solves the problems of low electrical conductivity, low capacity and poor rate performance of potassium titanate material.
Description
技术领域technical field
本发明专利属于高比能超级电容器领域,具体涉及一种钾离子微型混合电容器的电极材料及其制备方法和应用。The patent of the invention belongs to the field of high specific energy supercapacitors, and specifically relates to an electrode material of a potassium ion micro-hybrid capacitor and a preparation method and application thereof.
背景技术Background technique
随着社会的不断发展,人们对电子产品的功能需求也在不断的提高,电子产品也迎来了高速发展时期。例如智能手机、平板电脑,智能机器人,电子手表以及各类可穿戴设备等都不断的朝着小型化和柔性化的趋势发展。但是这些逐渐趋于小型化和柔性化的自供电电子产品也面临着电源的问题。因此,各种尺度的电化学储能装置成为小型化和柔性化智能和集成电子产品的关键电源,如人体传感器、微型机器人等自供电的微系统。目前的各种先进储能设备主要以锂离子电池和电容器为主,但是其有限的锂资源也激发了人们开发其它储能设备的热情。钾离子由于其资源丰富,以及与锂离子较为接近的氧化还原电位成为人们研究的热点。With the continuous development of society, people's functional requirements for electronic products are also constantly improving, and electronic products have also ushered in a period of rapid development. For example, smartphones, tablet computers, intelligent robots, electronic watches and various wearable devices are constantly developing towards miniaturization and flexibility. However, these self-powered electronic products, which are gradually becoming miniaturized and flexible, also face the problem of power supply. Therefore, electrochemical energy storage devices of various scales have become key power sources for miniaturized and flexible smart and integrated electronic products, such as self-powered microsystems such as human sensors and microrobots. At present, various advanced energy storage devices are mainly based on lithium-ion batteries and capacitors, but their limited lithium resources have also stimulated people's enthusiasm to develop other energy storage devices. Potassium ion has become a research hotspot because of its abundant resources and its redox potential close to that of lithium ion.
然而钾离子储能器件也面临着一些挑战,例如钾离子(0.138纳米)比锂离子(0.076纳米)尺寸大,使得钾离子在电极材料中插入/脱出的动力学缓慢,导致电极材料的低容量和较差的循环稳定性以及倍率性能。Ti基化合物可作为锂离子电池负极安全稳定运行的理想候选材料,例如钛酸锂(Li4Ti5O12,LTO),目前在商用锂离子电池和锂离子混合电容器领域大规模应用。因此,钛酸钾(K2TinO2n+1,KTO)也被希望能很好的应用于钾离子电池或混合电容器领域。KTO三元负极可以提供高效的K+插层通道,插入/脱插过程对其基本结构和性能影响不大,因此具有很好的循环稳定性。然而其电子电导率较低,抑制了其储钾性能的发挥,限制了钾离子储能器件的发展。最近报道了两种钛基化合物K2Ti4O9和K2Ti8O17并应用与钾离子储能器件,然而,它们只有非常有限的循环性能和倍率性能。为了提高KTO的储钾性能,调控其成分组成、微观结构和与高导电的炭材料复合是一种有效的技术路线。However, potassium ion energy storage devices also face some challenges. For example, the size of potassium ions (0.138 nm) is larger than that of lithium ions (0.076 nm), which makes the kinetics of potassium ion insertion/extraction in the electrode material slow, resulting in low capacity of the electrode material. and poor cycling stability and rate capability. Ti-based compounds, such as lithium titanate (Li 4 Ti 5 O 12 , LTO), are ideal candidates for safe and stable operation of negative electrodes in lithium-ion batteries, which are currently used in large-scale commercial lithium-ion batteries and lithium-ion hybrid capacitors. Therefore, potassium titanate (K 2 Ti n O 2n+1 , KTO) is also expected to be well applied in the field of potassium ion batteries or hybrid capacitors. The KTO ternary anode can provide an efficient K + intercalation channel, and the insertion/deintercalation process has little effect on its basic structure and performance, so it has good cycling stability. However, its low electronic conductivity inhibits its potassium storage performance and limits the development of potassium ion energy storage devices. Two titanium-based compounds, K 2 Ti 4 O 9 and K 2 Ti 8 O 17 , were recently reported and applied in potassium-ion energy storage devices, however, they have only very limited cycling and rate capabilities. In order to improve the potassium storage performance of KTO, it is an effective technical route to control its composition, microstructure and composite with highly conductive carbon materials.
发明内容SUMMARY OF THE INVENTION
本发明的目的为针对当前技术中锂离子储能器件原材料资源有限的问题,提供一种钾离子微型混合电容器及其制备方法和电极材料。该电极材料为一种部分钛酸钾生长于石墨层间的多维拓扑结构材料;制备方法中,以氢氧化钾为钾源、纳米二氧化钛为钛源,通过与片状石墨,100-250℃的温度下水热复合,得到的材料有效解决了钛酸钾材料电导率低、容量低、倍率性能差的问题。应用上,本发明摒弃了传统的三明治型柔性电容器,在模具的辅助下使用气喷枪将活性材料喷涂于聚对苯二甲酸乙二醇酯(PET)上,在PET透明柔性基底上构建了具有多向离子传输通道的微型柔性叉指电极。电极真空烘干后将微孔聚合物电解质涂于电极表面,然后烘干电解质中的有机溶剂,在氩气手套箱中将电极放入真空袋中滴加电解液并封装,获得柔性钾离子微型混合电容器。通过控制活性材料的喷涂量,该电容器可以获得不同的面积比容量。The purpose of the present invention is to provide a potassium ion micro-hybrid capacitor and its preparation method and electrode material in view of the problem of limited raw material resources of lithium ion energy storage devices in the current technology. The electrode material is a multi-dimensional topological structure material in which a part of potassium titanate is grown between graphite layers; in the preparation method, potassium hydroxide is used as potassium source, and nano-titanium dioxide is used as titanium source. Hydrothermal composite at temperature, the obtained material effectively solves the problems of low electrical conductivity, low capacity and poor rate performance of potassium titanate material. In terms of application, the present invention abandons the traditional sandwich-type flexible capacitor, uses an air spray gun to spray the active material on polyethylene terephthalate (PET) with the aid of a mold, and builds a transparent flexible Miniature flexible interdigital electrodes for multidirectional ion transport channels. After the electrode is vacuum dried, the microporous polymer electrolyte is coated on the surface of the electrode, and then the organic solvent in the electrolyte is dried. The electrode is put into a vacuum bag in an argon gas glove box, and the electrolyte is added dropwise and packaged to obtain a flexible potassium ion microarray. Hybrid capacitors. By controlling the spraying amount of active material, the capacitor can obtain different area specific capacity.
本发明为了实现以上目的,采用了以下技术方案。In order to achieve the above objects, the present invention adopts the following technical solutions.
一种钾离子微型混合电容器的制备方法,该方法包括以下步骤:A preparation method of potassium ion miniature hybrid capacitor, the method comprises the following steps:
(1)将聚氧化乙烯和PVDF-HFP加入到有机溶剂中,在40-80℃下搅拌18-24h,得到微孔聚合物电解质;(1) Add polyethylene oxide and PVDF-HFP into an organic solvent, and stir at 40-80° C. for 18-24 hours to obtain a microporous polymer electrolyte;
其中,每6-19ml有机溶剂加20-50mg的聚氧化乙烯、800-1000mg的PVDF-HFP;Among them, add 20-50mg of polyethylene oxide and 800-1000mg of PVDF-HFP per 6-19ml of organic solvent;
(2)向去离子水中加入钛酸钾@石墨复合物作为电容器负极活性物质,配制成浓度为0.5-1mg/ml的混合液,再向其中加入一定量的碱化MXene溶液、导电炭黑(CB)作为导电剂、羧甲基纤维素(CMC)作为粘结剂,制备出负极电极材料混合液;(2) Add potassium titanate@graphite composite to the deionized water as the negative electrode active material of the capacitor, prepare a mixed solution with a concentration of 0.5-1 mg/ml, and then add a certain amount of alkalized MXene solution, conductive carbon black ( CB) as a conductive agent and carboxymethyl cellulose (CMC) as a binder to prepare a negative electrode material mixture;
其中,钛酸钾@石墨复合物、碱化MXene、CB、CMC的质量比为(14:2-5:0.5-2.5:0.5-3),碱化MXene溶液的浓度为4-6mg/ml;Among them, the mass ratio of potassium titanate@graphite composite, alkalized MXene, CB, CMC is (14:2-5:0.5-2.5:0.5-3), and the concentration of alkalized MXene solution is 4-6mg/ml;
另外,向去离子水中加入活性炭(AC)配制成浓度为0.5-1mg/ml的混合液,作为电容器正极活性物质,再向其中加入碱化MXene溶液、导电炭黑(CB)和羧甲基纤维素(CMC),制备出正极电极材料混合液;其中AC、碱化MXene、CB、CMC的质量比为(14:2-5:0.5-2.5:0.5-3),碱化MXene溶液的浓度为4-6mg/ml;In addition, activated carbon (AC) was added to deionized water to prepare a mixed solution with a concentration of 0.5-1 mg/ml, which was used as the positive electrode active material of the capacitor, and then alkalized MXene solution, conductive carbon black (CB) and carboxymethyl fiber were added to it. Element (CMC) was used to prepare a positive electrode material mixture; the mass ratio of AC, alkalized MXene, CB, and CMC was (14:2-5:0.5-2.5:0.5-3), and the concentration of the alkalized MXene solution was 4-6mg/ml;
(3)将叉指电极金属模具固定于PET上,再用挡板将金属模具的正极遮挡,用喷枪喷涂0.05-0.1ml的银纳米线溶液在PET上作为集流体,再将制备好的负极混合液喷涂在银纳米线之上,构建了叉指电极的负极部分;负极的活性物质(钛酸钾@石墨复合物)敷料密度为4-480μg cm-2;(3) Fix the metal mold of the interdigital electrode on the PET, then block the positive electrode of the metal mold with a baffle, spray 0.05-0.1 ml of silver nanowire solution on the PET as a current collector with a spray gun, and then use the prepared negative electrode The mixed solution was sprayed on the silver nanowires to construct the negative part of the interdigital electrode; the active material (potassium titanate@graphite composite) of the negative electrode had a dressing density of 4-480 μg cm -2 ;
再将固定于模具正极之上的挡板取下固定于金属模具的负极部分,用喷枪喷涂0.05-0.1ml的银纳米线溶液于PET上作为集流体,再将制备好的正极混合液喷涂在银纳米线之上,构建了叉指电极的正极部分,其中正极的活性物质(AC)敷料密度为6-500μg cm-2;Then remove the baffle fixed on the positive electrode of the mold and the negative electrode fixed on the metal mold, spray 0.05-0.1 ml of silver nanowire solution on the PET as a current collector with a spray gun, and then spray the prepared positive mixed solution on the metal mold. On the silver nanowires, the positive electrode part of the interdigital electrode is constructed, and the active material (AC) dressing density of the positive electrode is 6-500 μg cm -2 ;
(4)将铝极耳和镍极耳用铜浆分别粘在上一步制备好的叉指电极的正极和负极部分,经过50-100℃烘干后,将制备好的微孔聚合物电解质涂于电极上面,再通过50-110℃烘干,最后在氩气手套箱中将烘干的电极放入真空袋中滴加电解液并封装。(4) Stick aluminum tabs and nickel tabs on the positive and negative electrode parts of the interdigital electrode prepared in the previous step with copper paste, and after drying at 50-100 °C, the prepared microporous polymer electrolyte is coated On the electrode, it is dried at 50-110 °C, and finally the dried electrode is put into a vacuum bag in an argon glove box, and the electrolyte is added dropwise and packaged.
所述的步骤(1)中的有机溶剂为丙酮与酒精体积比为(4-5):1的混合液。The organic solvent in the described step (1) is a mixed solution in which the volume ratio of acetone to alcohol is (4-5):1.
所述的步骤(4)中的烘干方式为真空烘干。The drying method in the step (4) is vacuum drying.
一种钾离子电池的电极材料钛酸钾@石墨复合物,该材料由一维纳米线状的钛酸钾和准二维纳米石墨片组成,其中钛酸钾与石墨片的质量比为(4-5):1;直径7.5-8.0nm的相互连接的纳米线状的钛酸钾均匀地分布于二维纳米石墨片之间,形成了一种多维层次结构;同时该材料的比表面积高达168.9m2 g-1,相应孔径主要分布在5-30nm,并且存在一些微孔和大孔,显示出一维和二维复合材料的堆积结构。An electrode material of potassium ion battery potassium titanate@graphite composite, the material is composed of one-dimensional nanowire-shaped potassium titanate and quasi-two-dimensional nanographite sheets, wherein the mass ratio of potassium titanate to graphite sheets is (4 -5): 1; The interconnected nanowire-like potassium titanate with a diameter of 7.5-8.0 nm is uniformly distributed between the two-dimensional graphite nanosheets, forming a multi-dimensional hierarchical structure; at the same time, the specific surface area of the material is as high as 168.9 m 2 g -1 , the corresponding pore sizes are mainly distributed in 5-30 nm, and there are some micropores and macropores, showing the packing structure of one-dimensional and two-dimensional composites.
一种钾离子电池的电极材料钛酸钾@石墨复合物的制备方法,包括以下步骤:A method for preparing an electrode material potassium titanate@graphite composite for a potassium ion battery, comprising the following steps:
向钾源溶液中加入钛源,再加入石墨,100-250℃下水热反应20-50h,得到了纳米线状的钛酸钾@石墨复合材料;Adding titanium source to potassium source solution, then adding graphite, hydrothermal reaction at 100-250℃ for 20-50h, nanowire-shaped potassium titanate@graphite composite material was obtained;
其中,钾源为氢氧化钾,钛源为纳米二氧化钛;氢氧化钾、二氧化钛与石墨的质量比为(200-400):(2-3):1,氢氧化钾水溶液的浓度为(9-11)mol/L;Wherein, the potassium source is potassium hydroxide, and the titanium source is nano-titanium dioxide; the mass ratio of potassium hydroxide, titanium dioxide and graphite is (200-400): (2-3): 1, and the concentration of the potassium hydroxide aqueous solution is (9- 11)mol/L;
所述的二维碱化MXene的制备方法,包括以下步骤:The preparation method of the two-dimensional alkalized MXene comprises the following steps:
向盐酸中加入氟化锂,混合后得到刻蚀液,向其中加入Ti3ALC2,在30-40℃下刻蚀20-35h,再通过3000-8000r/min的转速用去离子水离心7-9次将酸性刻蚀液去除,再将离心后的沉淀物溶于水中,每10毫升盐酸得到的沉淀物溶于50-80mL水,冰域超声30-60min;将超声后的溶液以2000-4000r/min的转速离心5-10min后取出上层液体即为单层的MXene溶液;Lithium fluoride is added to the hydrochloric acid, and the etching solution is obtained after mixing, adding Ti 3 ALC 2 to it, etching at 30-40 ° C for 20-35 h, and then centrifuging with deionized water at a speed of 3000-8000 r/min for 7 - 9 times to remove the acidic etching solution, then dissolve the precipitate after centrifugation in water, dissolve the precipitate obtained per 10 ml of hydrochloric acid in 50-80 mL of water, and ultrasonicate the ice for 30-60 min; Centrifuge at -4000r/min for 5-10min, take out the upper layer liquid, which is the monolayer MXene solution;
再按照每60ml MXene溶液中加入10-30g氢氧化钾的配比,对单层MXene进行室温碱化20-40h,再通过4000-8000r/min的转速离心到PH为7将氢氧化钾去除,向离心沉淀中加入去离子水得到浓度为4-6mg/ml的具有多孔结构的碱化MXene溶液;Then according to the ratio of adding 10-30g potassium hydroxide to each 60ml MXene solution, the single-layer MXene was alkalized at room temperature for 20-40h, and then the potassium hydroxide was removed by centrifugation at a rotational speed of 4000-8000r/min to a pH of 7. Add deionized water to the centrifugal precipitation to obtain an alkalized MXene solution with a porous structure with a concentration of 4-6 mg/ml;
所述的盐酸的浓度为(10-15)M,每10ml盐酸中加入800-2000mg的氟化锂;每10mL刻蚀液中加入500-1200mg的Ti3ALC2;The concentration of the hydrochloric acid is (10-15) M, and 800-2000 mg of lithium fluoride is added to every 10 ml of hydrochloric acid; 500-1200 mg of Ti 3 ALC 2 is added to every 10 mL of etching solution;
本发明的有益效果是:The beneficial effects of the present invention are:
(1)本发明提供了一种钛酸钾@石墨电极材料,通过将纳米线状的钛酸钾与片状石墨水热复合,不仅消除了纯石墨喷涂后由于二维堆叠效应导致的电化学性能极差的问题,而且有效解决了钛酸钾材料电导率低、容量低、倍率性能差的问题。(1) The present invention provides a potassium titanate@graphite electrode material. By hydrothermally compounding nanowire-shaped potassium titanate and flake graphite, it not only eliminates the electrochemical reaction caused by the two-dimensional stacking effect after pure graphite spraying The problem of extremely poor performance is effectively solved, and the problems of low conductivity, low capacity and poor rate performance of potassium titanate materials are effectively solved.
(2)本发明使用了具有优良导电性能的二维MXene材料作为导电剂,将其以一定的比例分别加入到负极和正极制备成叉指电极后,可以起到桥梁的作用,分别将负极钛酸钾@石墨电极材料和正极活性材料活性碳连接起来,为电子传输提供了良好的通道,大大提高了叉指电极的导电性。(2) The present invention uses a two-dimensional MXene material with excellent electrical conductivity as a conductive agent. After adding it to the negative electrode and the positive electrode to prepare an interdigitated electrode in a certain proportion, it can act as a bridge, and the negative electrode titanium The potassium oxide@graphite electrode material is connected with the active carbon of the positive electrode active material, which provides a good channel for electron transport and greatly improves the conductivity of the interdigital electrode.
(3)本发明将二维MXene材料在一定浓度的氢氧化钾溶液中碱化一定时间,使其二维面产生一定量的纳米孔,作为导电剂时既能起到传输电子的作用又不会阻碍离子在电极中的扩散,大大降低了其对电极活性物质电化学性能的阻碍作用。(3) In the present invention, the two-dimensional MXene material is alkalized in a potassium hydroxide solution of a certain concentration for a certain period of time, so that a certain amount of nanopores are generated on the two-dimensional surface. It will hinder the diffusion of ions in the electrode, and greatly reduce its hindering effect on the electrochemical performance of the electrode active material.
(4)本发明摒弃了传统的三明治结构电容器,而采用了具有多向快速离子传输通道的叉指电极,由于该叉指结构每个正负极叉指之间具有500μm的距离,使得该微型电容器电极具有了12.5mF cm-2的极高面积比容量。(4) The present invention abandons the traditional sandwich structure capacitor, and adopts interdigital electrodes with multidirectional fast ion transmission channels. Since the interdigital structure has a distance of 500 μm between each positive and negative interdigital fingers, the micro The capacitor electrode has a very high areal specific capacity of 12.5mF cm -2 .
(5)与传统水系电容器最高为1.5V的电压相比,本发明的电容器由于使用了叉指电极,钛酸钾@石墨电极材料和半固态有机电解液,其最高电压可以充到3V。且具有良好的集成性能,若将两个电容器串联可以获得最高6V的电压。(5) Compared with the traditional water-based capacitor whose maximum voltage is 1.5V, the capacitor of the present invention can be charged up to 3V due to the use of interdigitated electrodes, potassium titanate@graphite electrode material and semi-solid organic electrolyte. And it has good integration performance, if two capacitors are connected in series, a voltage of up to 6V can be obtained.
附图说明Description of drawings
图1为实施例1中的钛酸钾石墨复合物的XRD图;Fig. 1 is the XRD pattern of the potassium titanate graphite composite in embodiment 1;
图2为实施例1中的钛酸钾石墨复合物的扫描电子显微镜(SEM)图;Fig. 2 is the scanning electron microscope (SEM) figure of the potassium titanate graphite composite in embodiment 1;
图3为微型电容器组装后的照片;Figure 3 is a photo of the assembled microcapacitor;
图4为实施例1的不同电流密度下的时间电压图;4 is a time-voltage diagram under different current densities of Example 1;
具体实施方式Detailed ways
下面对照附图结合优选实施例对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and the preferred embodiments.
本发明的目的是制造一种具有高面积比容量和高能量功率密度的柔性微型电容器。通过水热的方法将钛酸钾与石墨复合起来,降低了钛酸钾的团聚作用和石墨的平铺效应,不仅提高了材料的比容量,而且提高了钛酸钾材料的倍率性能和循环稳定性。以其为负极活性碳为正极与一定比例的碱化多孔MXene、CMC和CB混合后,在PET柔性基底上组装成了非对称微型电容器。具体方法包括:(1)制备碱化MXene溶液:取800-2000mg的氟化锂加入10ml(10-15)M的盐酸中搅拌5-10min后加入500-1200mg的Ti3ALC2粉末,在30-40℃下搅拌20-35h,然后将其用去离子水离心至PH约为7,再将离心后的沉淀物溶于60-100mL去离子水中,冰域超声30-60min。将超声后的溶液以2000-4000r/min的转数离心5-10min后取出上层液体即为MXene溶液。向已分散的MXene溶液中加入10-30g的氢氧化钾,搅拌20-40h后,将溶液中的氢氧化钾通过离心去除得到碱化MXene。(2)钛酸钾@石墨复合材料的制备::将10-20mg的石墨、30-60mg的纳米二氧化钛和5-8g的氢氧化钾加入到去离子水中得到混合液,搅拌200-300min后转移到高压反应斧中,在100-250℃下反应20-50h得到钛酸钾@石墨复合物,再将其用去离子水洗涤至PH为中性,然后在70-100℃的烘箱中烘干12-24h得到钛酸钾@石墨复合物粉体。(3)微孔聚合物电解质材料的制备:取20-50mg的聚氧化乙烯和800-1000mg的PVDF-HFP,再加入5-15ml丙酮1-4ml无水乙醇,在40-80℃下搅拌18-24h获得微孔聚合物电解质。(4)负极电极材料溶液的制备:以去离子水作为溶剂,向其中加入一定量钛酸钾@石墨复合物作为电容器负极活性物质,再向其中加入一定量的碱化MXene溶液、导电炭黑(BC)和CMC,制备出负极电极材料溶液。(5)正极电极材料溶液的制备:以去离子水作为溶剂,向其中加入一定量活性炭作为电容器负极活性物质,再向其中加入一定量的碱化MXene、导电炭黑(BC)和CMC,制备出正极电极材料溶液。(6)叉指电极的制备:将叉指电极金属模具固定于PET上,再将叉指电极模具的挡板固定于金属模具正极的位置,用喷枪喷涂一定厚度的银纳米线,再将制备好的负极混合液喷涂在银纳米线之上,构建了叉指电极的负极部分。再将固定于金属模具正极之上的挡板取下固定于金属模具的负极部分,以类似于负极的同样的步骤构建了叉指电极的正极部分。(7)微型电容器的组装:将铝极耳和镍极耳用铜浆分别粘在上一步制备好的叉指电极的正极和负极部分,经过50-100℃真空烘干后,将制备好的微孔聚合物电解质涂于电极上面,再通过50-110℃真空烘干,然后在氩气手套箱中将电极放入真空袋中滴加电解液并封装。The purpose of the present invention is to manufacture a flexible microcapacitor with high areal specific capacity and high energy power density. The combination of potassium titanate and graphite by hydrothermal method reduces the agglomeration effect of potassium titanate and the tiling effect of graphite, which not only improves the specific capacity of the material, but also improves the rate performance and cycle stability of the potassium titanate material. sex. Asymmetric microcapacitors were assembled on PET flexible substrates by mixing activated carbon with a certain proportion of alkalized porous MXene, CMC and CB with a certain proportion of activated carbon as the negative electrode. The specific method includes: (1) Preparation of alkalized MXene solution: take 800-2000 mg of lithium fluoride, add 10 ml (10-15) M hydrochloric acid, stir for 5-10 min, add 500-1200 mg of Ti 3 ALC 2 powder, and add 500-1200 mg of Ti 3 ALC 2 powder at 30 Stir at -40°C for 20-35h, then centrifuge it with deionized water to a pH of about 7, then dissolve the centrifuged precipitate in 60-100mL of deionized water, and sonicate in ice for 30-60min. The sonicated solution was centrifuged at 2000-4000 r/min for 5-10 min, and the upper layer was taken out to obtain the MXene solution. Add 10-30 g of potassium hydroxide to the dispersed MXene solution, and after stirring for 20-40 h, the potassium hydroxide in the solution is removed by centrifugation to obtain alkalized MXene. (2) Preparation of potassium titanate@graphite composite material: 10-20mg of graphite, 30-60mg of nano-titanium dioxide and 5-8g of potassium hydroxide were added to deionized water to obtain a mixed solution, stirred for 200-300min and then transferred In a high-pressure reaction axe, react at 100-250 °C for 20-50 h to obtain potassium titanate@graphite composite, which is then washed with deionized water until the pH is neutral, and then dried in an oven at 70-100 °C Potassium titanate@graphite composite powder was obtained in 12-24h. (3) Preparation of microporous polymer electrolyte material: take 20-50 mg of polyethylene oxide and 800-1000 mg of PVDF-HFP, add 5-15 ml of acetone and 1-4 ml of absolute ethanol, and stir at 40-80 ° C for 18 -24h to obtain microporous polymer electrolyte. (4) Preparation of negative electrode material solution: take deionized water as solvent, add a certain amount of potassium titanate@graphite composite to it as the negative electrode active material of capacitor, and then add a certain amount of alkalized MXene solution and conductive carbon black to it (BC) and CMC to prepare a negative electrode material solution. (5) Preparation of positive electrode material solution: using deionized water as a solvent, adding a certain amount of activated carbon as the negative electrode active material of the capacitor, and then adding a certain amount of alkalized MXene, conductive carbon black (BC) and CMC to it to prepare The positive electrode material solution is taken out. (6) Preparation of interdigital electrode: fix the metal mold of the interdigital electrode on the PET, then fix the baffle of the interdigital electrode mold to the position of the positive electrode of the metal mold, spray a certain thickness of silver nanowires with a spray gun, and then prepare the The good negative electrode mixture was sprayed on the silver nanowires to construct the negative part of the interdigital electrode. Then, the baffle plate fixed on the positive electrode of the metal mold was removed from the negative electrode part fixed on the metal mold, and the positive electrode part of the interdigital electrode was constructed in the same steps as the negative electrode. (7) Assembly of the microcapacitor: The aluminum tabs and the nickel tabs are respectively attached to the positive and negative parts of the interdigital electrodes prepared in the previous step with copper paste, and after vacuum drying at 50-100 ° C, the prepared The microporous polymer electrolyte is coated on the electrode, and then dried in a vacuum at 50-110 °C, and then the electrode is put into a vacuum bag in an argon glove box, and the electrolyte is added dropwise and packaged.
为了更好的理解该发明,在下文将结合4个实施例对其进行详细描述。但应认识到这些实施例仅为对本发明进行示例性说明,而非限制本发明。以下实施例中使用的化合物或试剂市售可得,或者可通过本领域技术人员已知的常规方法制备得到;所使用的实验仪器可通过商业途径购得。In order to better understand the invention, it will be described in detail below with reference to 4 embodiments. It should be recognized, however, that these embodiments are merely illustrative of the present invention, rather than limiting. The compounds or reagents used in the following examples are commercially available, or can be prepared by conventional methods known to those skilled in the art; the experimental instruments used are commercially available.
实施例1:Example 1:
步骤一:取1600mg的氟化锂加入10ml(12M)稀盐酸中搅拌5min后加入1000mg粒径为300钼的Ti3ALC2粉末,在35℃下搅拌24h将Ti3ALC2粉末中的AL层刻蚀掉,然后将其用去离子水以3500r/min的转速离心洗涤至PH约为7,再将离心后的沉淀物溶于60mL去离子水中,冰浴超声60min。将超声后的溶液以3500r/min的转速离心5min后取出上层液体即为单层MXene溶液。Step 1: Take 1600mg of lithium fluoride and add it to 10ml (12M) dilute hydrochloric acid, stir for 5min, add 1000mg of Ti 3 ALC 2 powder with a particle size of 300 molybdenum, and stir at 35°C for 24 hours to remove the AL layer in the Ti 3 ALC 2 powder. It was etched away, then centrifuged and washed with deionized water at 3500 r/min until the pH was about 7, and then the centrifuged precipitate was dissolved in 60 mL of deionized water, and sonicated in an ice bath for 60 min. The sonicated solution was centrifuged at 3500 r/min for 5 min, and the upper layer was taken out to obtain the monolayer MXene solution.
向已分散的MXene溶液中加入20.16g的氢氧化钾,在室温下搅拌36h(对单层MXene进行室温碱化)后,再通过4500r/min的转速离心到PH=7,将氢氧化钾去除,再向离心沉淀中加入一定量的去离子水获得浓度为5mg/ml的具有多孔结构的碱化MXene溶液。Add 20.16g of potassium hydroxide to the dispersed MXene solution, stir at room temperature for 36h (the single-layer MXene is alkalized at room temperature), and then centrifuge at 4500r/min to PH=7 to remove the potassium hydroxide , and then add a certain amount of deionized water to the centrifugal precipitation to obtain an alkalized MXene solution with a porous structure with a concentration of 5 mg/ml.
将20mg的石墨、50mg的纳米二氧化钛加入到10ml(10M)的氢氧化钾水溶液中得到混合液,搅拌250min后转移到高压反应斧中,在200℃下反应48h,得到钛酸钾@石墨复合物,再将其用去离子水以8000r/min的转速离心洗涤至PH为中性,然后在80℃的烘箱中烘干12h得到钛酸钾@石墨复合物粉体。20mg of graphite and 50mg of nano-titanium dioxide were added to 10ml (10M) of potassium hydroxide aqueous solution to obtain a mixed solution, stirred for 250min and then transferred to a high pressure reaction axe, and reacted at 200°C for 48h to obtain potassium titanate@graphite composite , and then centrifugally washed with deionized water at 8000 r/min until the pH is neutral, and then dried in an oven at 80 °C for 12 h to obtain potassium titanate@graphite composite powder.
取40mg的聚氧化乙烯和800mg的聚偏氟乙烯-六氟丙烯(PVDF-HFP),再加入10ml丙酮2ml无水乙醇,在70℃下搅拌20h获得微孔聚合物电解质。Take 40 mg of polyethylene oxide and 800 mg of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), add 10 ml of acetone and 2 ml of absolute ethanol, and stir at 70 °C for 20 h to obtain a microporous polymer electrolyte.
步骤二:取1.8mg钛酸钾@石墨复合物,将其分散于4ml去离子水中,再向其中加入0.103ml浓度为5mg/ml的碱化MXene分散液、0.129mg的CB和0.129mg的CMC,机械搅拌5h,得到负极电极材料混合液。Step 2: Take 1.8 mg of potassium titanate@graphite composite, disperse it in 4 ml of deionized water, and then add 0.103 ml of alkalized MXene dispersion with a concentration of 5 mg/ml, 0.129 mg of CB and 0.129 mg of CMC to it , and mechanically stirred for 5h to obtain a negative electrode material mixture.
步骤三:取2.7mg活性炭,将其分散于6ml去离子水中,再向其中加入0.155ml浓度为5mg/ml的碱化MXene分散液、0.194mg的CB和0.194mg的CMC,机械搅拌5h,得到正极电极材料混合液。Step 3: Take 2.7 mg of activated carbon, disperse it in 6 ml of deionized water, add 0.155 ml of alkalized MXene dispersion liquid with a concentration of 5 mg/ml, 0.194 mg of CB and 0.194 mg of CMC, and stir mechanically for 5 hours to obtain Positive electrode material mixture.
步骤四:将PET用水清洗干净后,将其放置于紫外清洗机中清洗2min。Step 4: After cleaning the PET with water, place it in a UV cleaning machine for 2 minutes.
步骤五:将清洗好的PET取出并将其与金属叉指模具用少量固体胶粘起来。Step 5: Take out the cleaned PET and glue it to the metal interdigital mold with a small amount of solid.
步骤六:用叉指电极挡板将金属叉指模具的正极部分遮蔽。Step 6: Use the interdigital electrode baffle to cover the positive part of the metal interdigitated mold.
步骤七:将20μL的银纳米线置于喷枪中,并将其以1ml/h的速度喷涂到叉指电极的负极部分。(面积为4.16cm2)Step 7: Put 20 μL of silver nanowires in the spray gun, and spray it on the negative part of the interdigital electrode at a speed of 1 ml/h. (Area is 4.16cm 2 )
步骤八:将步骤一配制好的混合液置于喷枪中,以2ml/h的速度全部喷涂于银纳米线之上。Step 8: Put the mixed solution prepared in Step 1 in a spray gun, and spray it on the silver nanowires at a speed of 2ml/h.
步骤九:喷涂完后将负极的叉指挡板去除,以同样的方式用挡板将叉指金属模板的正极部分遮蔽。Step 9: After spraying, remove the interdigital baffle of the negative electrode, and use the baffle to cover the positive part of the interdigitated metal template in the same way.
步骤十:将20μL的银纳米线置于喷枪中,并将其以1ml/h的速度喷涂到叉指电极的正极部分(与负极面积相同)。Step 10: Put 20 μL of silver nanowires in a spray gun, and spray it on the positive part of the interdigital electrode (same area as the negative electrode) at a speed of 1 ml/h.
步骤十一:将第二步配置好的混合液置于喷枪中,以2ml/h的速度全部喷涂于银纳米线之上。Step 11: Put the mixed solution prepared in the second step in the spray gun, and spray it on the silver nanowires at a speed of 2ml/h.
步骤十二:喷涂完后将正极的叉指挡板去除,然后将叉指模板取下,得到叉指电极。Step 12: After spraying, remove the interdigital baffle of the positive electrode, and then remove the interdigital template to obtain the interdigital electrode.
步骤十三:用铜浆将铝极耳和镍极耳粘于电极的正极和负极。Step 13: Use copper paste to stick aluminum tabs and nickel tabs to the positive and negative electrodes of the electrodes.
步骤十四:将制备好的叉指电极置于真空烘箱中,以80℃的温度烘干15h,彻底去除电极中残留的水份。Step fourteen: place the prepared interdigital electrode in a vacuum oven, and dry it at a temperature of 80° C. for 15 hours to completely remove the residual water in the electrode.
步骤十五:用滴管滴两滴制得的微孔聚合物电解质于电极之上,再将其均匀涂开,将涂好微孔聚合物的叉指电极置于真空烘箱中,以80℃的温度烘干12h,彻底去除电极中残留的有机溶剂。Step 15: Use a dropper to drop two drops of the prepared microporous polymer electrolyte on the electrode, then spread it evenly, and place the microporous polymer-coated interdigital electrode in a vacuum oven at 80°C. Drying at high temperature for 12 h to completely remove the residual organic solvent in the electrode.
步骤十六:在氩气手套箱中,将烘干的电极用小型抽真空密封机密封。Step 16: In an argon glove box, seal the dried electrodes with a small vacuum sealing machine.
步骤十七:将密封好电极的真空袋不含极耳的一侧开一个小口,再将钾离子电解液注射入电极中。Step 17: Open a small opening on the side of the vacuum bag that does not contain the electrode ears, and then inject the potassium ion electrolyte into the electrode.
步骤十八:注入电解液(0.8M KPF6inEC:DEC=1:1Vol%)浸泡6h后,用真空密封机将多余的电解液抽出并密封,得到柔性钛酸钾微型电容器。Step 18: After injecting electrolyte (0.8M KPF 6 inEC:DEC=1:1 Vol%) and soaking for 6 hours, the excess electrolyte was extracted and sealed with a vacuum sealing machine to obtain a flexible potassium titanate microcapacitor.
实施例2:Example 2:
实施例2与实施例1的区别仅在于叉指电极的正负极活性物质溶液使用量不同,使用量为60μL配制好的正极混合液和90μL配制好的负极混合液。The only difference between Example 2 and Example 1 is that the positive and negative electrode active material solutions of the interdigital electrodes are used in different amounts, which are 60 μL of the prepared positive mixed solution and 90 μL of the prepared negative mixed solution.
实施例3:Example 3:
实施例3与实施例1的区别仅在于叉指电极的正负极活性物质溶液使用量不同,使用量为40μL配制好的正极混合液和60μL配制好的负极混合液。The difference between Example 3 and Example 1 is only that the positive and negative electrode active material solutions of the interdigital electrodes are used in different amounts, which are 40 μL of the prepared positive mixed solution and 60 μL of the prepared negative mixed solution.
实施例4:Example 4:
实施例4与实施例1的区别仅在于叉指电极的正负极活性物质溶液使用量不同,使用量为20μL配制好的正极混合液和30μL配制好的负极混合液。The only difference between Example 4 and Example 1 is that the positive and negative electrode active material solutions of the interdigital electrodes are used in different amounts, which are 20 μL of the prepared positive mixed solution and 30 μL of the prepared negative mixed solution.
对各实施例的电容器进行电化学性能测试(利用普林斯顿电化学工作站,电压范围选择为0.01-3V,电流密度为0.005mA cm-2-0.2mA cm-2,其结果如表1所示。Electrochemical performance tests were carried out on the capacitors of each embodiment (using a Princeton electrochemical workstation, the voltage range was selected as 0.01-3V, and the current density was 0.005mA cm -2 -0.2mA cm -2 , and the results are shown in Table 1.
表1.各实施例电容器容量测试结果Table 1. Capacitor capacity test results of each embodiment
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the patent of the present invention. It should be pointed out that for those skilled in the art, without departing from the concept of the present invention, several modifications and improvements can be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
本发明未尽事宜为公知技术。Matters not addressed in the present invention are known in the art.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110589065.4A CN113327775B (en) | 2021-05-28 | 2021-05-28 | A kind of preparation method and electrode material of potassium ion micro-hybrid capacitor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110589065.4A CN113327775B (en) | 2021-05-28 | 2021-05-28 | A kind of preparation method and electrode material of potassium ion micro-hybrid capacitor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113327775A CN113327775A (en) | 2021-08-31 |
| CN113327775B true CN113327775B (en) | 2022-04-29 |
Family
ID=77422155
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110589065.4A Active CN113327775B (en) | 2021-05-28 | 2021-05-28 | A kind of preparation method and electrode material of potassium ion micro-hybrid capacitor |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113327775B (en) |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62193062A (en) * | 1986-02-19 | 1987-08-24 | Mitsubishi Heavy Ind Ltd | Electrode for storage battery |
| CN1215741A (en) * | 1997-10-23 | 1999-05-05 | 上海市合成树脂研究所 | Potassium titanate crystal whisker reinforced polyimide composite material |
| CN1502122A (en) * | 2000-06-23 | 2004-06-02 | ����Τ�����ʹ�˾ | Method for restoring hydrophobicity in dielectric films and dielectric materials |
| CN103101968A (en) * | 2011-11-09 | 2013-05-15 | 上海纳米技术及应用国家工程研究中心有限公司 | Potassium titanate nanowire and preparation method thereof |
| CN103313937A (en) * | 2010-09-03 | 2013-09-18 | 奈克松有限公司 | Porous electroactive material |
| TW201501154A (en) * | 2014-05-02 | 2015-01-01 | Univ Nat United | A structure and fabrication method of nano metal wires solid capacitor |
| JP2016157836A (en) * | 2015-02-25 | 2016-09-01 | 株式会社サンエイト | Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same |
| CN106051001A (en) * | 2015-11-24 | 2016-10-26 | 王永红 | Environmentally friendly three-dimensional composite reinforced organic brake pad and preparation technology thereof |
| CN106575806A (en) * | 2014-06-16 | 2017-04-19 | 加利福尼亚大学董事会 | Hybrid electrochemical cell |
| CN107256809A (en) * | 2017-06-29 | 2017-10-17 | 河北工业大学 | A kind of preparation method of transparent flexible supercapacitor |
| CN109692581A (en) * | 2019-01-15 | 2019-04-30 | 山东理工大学 | Two-dimensional layer Ti3C2Film and the preparation method and application thereof |
| CN110672670A (en) * | 2019-10-18 | 2020-01-10 | 吉林大学 | Planar flexible room temperature NO based on three-dimensional MXene folded ball/ZnO composite material2Sensor and preparation method thereof |
| CN112226644A (en) * | 2020-09-25 | 2021-01-15 | 河海大学 | A kind of MXene reinforced copper matrix composite material and preparation method thereof |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110164701A (en) * | 2019-06-06 | 2019-08-23 | 合肥羿振电力设备有限公司 | A kind of lithium-ion capacitor and preparation method thereof |
| CN110828198B (en) * | 2019-11-05 | 2022-03-08 | 中国科学院合肥物质科学研究院 | Laminated interdigitated electrochemical capacitor and preparation method thereof |
| CN111899985A (en) * | 2020-05-29 | 2020-11-06 | 中山大学 | Preparation method and application of titanium nitride/graphene composite material |
-
2021
- 2021-05-28 CN CN202110589065.4A patent/CN113327775B/en active Active
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62193062A (en) * | 1986-02-19 | 1987-08-24 | Mitsubishi Heavy Ind Ltd | Electrode for storage battery |
| CN1215741A (en) * | 1997-10-23 | 1999-05-05 | 上海市合成树脂研究所 | Potassium titanate crystal whisker reinforced polyimide composite material |
| CN1502122A (en) * | 2000-06-23 | 2004-06-02 | ����Τ�����ʹ�˾ | Method for restoring hydrophobicity in dielectric films and dielectric materials |
| CN103313937A (en) * | 2010-09-03 | 2013-09-18 | 奈克松有限公司 | Porous electroactive material |
| CN103101968A (en) * | 2011-11-09 | 2013-05-15 | 上海纳米技术及应用国家工程研究中心有限公司 | Potassium titanate nanowire and preparation method thereof |
| TW201501154A (en) * | 2014-05-02 | 2015-01-01 | Univ Nat United | A structure and fabrication method of nano metal wires solid capacitor |
| CN106575806A (en) * | 2014-06-16 | 2017-04-19 | 加利福尼亚大学董事会 | Hybrid electrochemical cell |
| JP2016157836A (en) * | 2015-02-25 | 2016-09-01 | 株式会社サンエイト | Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same |
| CN106051001A (en) * | 2015-11-24 | 2016-10-26 | 王永红 | Environmentally friendly three-dimensional composite reinforced organic brake pad and preparation technology thereof |
| CN107256809A (en) * | 2017-06-29 | 2017-10-17 | 河北工业大学 | A kind of preparation method of transparent flexible supercapacitor |
| CN109692581A (en) * | 2019-01-15 | 2019-04-30 | 山东理工大学 | Two-dimensional layer Ti3C2Film and the preparation method and application thereof |
| CN110672670A (en) * | 2019-10-18 | 2020-01-10 | 吉林大学 | Planar flexible room temperature NO based on three-dimensional MXene folded ball/ZnO composite material2Sensor and preparation method thereof |
| CN112226644A (en) * | 2020-09-25 | 2021-01-15 | 河海大学 | A kind of MXene reinforced copper matrix composite material and preparation method thereof |
Non-Patent Citations (2)
| Title |
|---|
| Atomic layer deposition regulating hydrated K2Ti6O13 nanobelts on graphene platform with accelerated solid solution potassiation for potassium ion capacitors;Li Dongyang等;《CHEMICAL ENGINEERING JOURNAL》;20201210;第417卷;第1-11页 * |
| 六氟异丙醇功能化石墨烯的制备及其在化学传感器上的应用;刘元超等;《材料开发与应用》;20180831;第11-16页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113327775A (en) | 2021-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN106450205B (en) | Two-dimensional transition metal carbon/nitride and nano-sulfur particle composites and their preparation and application | |
| CN108550827B (en) | Preparation method and application of three-dimensional porous silicon-carbon anode material | |
| CN104362296B (en) | A kind of new sulfur sill electrode and the preparation method and application thereof | |
| CN104852025B (en) | Grapheme oxide-coated sulfur particle composite anode material for lithium-sulfur battery and preparation method thereof | |
| CN107359321B (en) | The lithium sulfur battery anode material and preparation method thereof of the nitrogen-doped carbon of spherical structure/titanium oxide bivalve cladding titanium oxide/sulphur | |
| CN108172821A (en) | A method for eliminating residual lithium and preparing lithium-ion conductor-coated high-nickel ternary cathode material | |
| CN105576209A (en) | High-capacity silicon-based anode material for lithium ion battery and preparation method thereof, and lithium ion battery | |
| CN101593827B (en) | Silicon/graphite nanosheet composite negative electrode of lithium ion battery and preparation method thereof | |
| CN107681142A (en) | A kind of molybdenum disulfide cladding carbon nano-fiber as lithium ion battery negative material and preparation method thereof | |
| EP3620437B1 (en) | Linear hierarchical structure lithium titanate material, preparation and application thereof | |
| WO2019242647A1 (en) | Lithium-ion battery anode material and preparation method therefor, anode, and lithium-ion battery | |
| CN106299271A (en) | Nano nickel cobaltate/graphene composite material and preparation method thereof | |
| CN114792789B (en) | A nitrogen-doped carbon-coated nickel cobalt sulfide hollow structure, preparation method and application | |
| CN112044372B (en) | Hollow titanium dioxide @ carbon composite microsphere and preparation method thereof | |
| CN110098367A (en) | A kind of carbon nano-tube/titanic oxide nano lamella compound modified diaphragm and preparation method thereof | |
| CN108281625A (en) | A kind of nanometer of compound nucleocapsid of stannic disulfide/carbosphere and preparation method thereof | |
| CN108134055A (en) | The synthetic method of sodium titanate nanobelt/titanium carbide nanometer sheet compound | |
| CN105226244A (en) | Three-dimensional porous silicon-nano silver composite material and preparation thereof and the application as lithium ion battery negative material | |
| WO2023108321A1 (en) | Composite modified graphite material, dual-ion battery positive electrode material, dual-ion battery negative electrode material, and dual-ion battery | |
| CN110783568A (en) | Preparation method and application of hollow carbon-coated molybdenum selenide nanostructure | |
| CN109301229A (en) | Preparation method and application of graphene-coated tin oxide/tin disulfide nanoflowers as anode material for potassium ion battery | |
| CN113772718A (en) | SnS-SnS2@ GO heterostructure composite material and preparation method and application thereof | |
| CN113327775B (en) | A kind of preparation method and electrode material of potassium ion micro-hybrid capacitor | |
| CN115207493B (en) | Vanadium-based water-based zinc ion battery and preparation method thereof | |
| CN111081945A (en) | A kind of preparation method of multifunctional Nb2O5/hollow carbon fiber composite diaphragm coating material for lithium-sulfur battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |