[go: up one dir, main page]

CN113328239B - Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming - Google Patents

Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming Download PDF

Info

Publication number
CN113328239B
CN113328239B CN202110504474.XA CN202110504474A CN113328239B CN 113328239 B CN113328239 B CN 113328239B CN 202110504474 A CN202110504474 A CN 202110504474A CN 113328239 B CN113328239 B CN 113328239B
Authority
CN
China
Prior art keywords
impedance
periodic
phase
modulation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110504474.XA
Other languages
Chinese (zh)
Other versions
CN113328239A (en
Inventor
李家林
汪宗林
赵青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110504474.XA priority Critical patent/CN113328239B/en
Publication of CN113328239A publication Critical patent/CN113328239A/en
Application granted granted Critical
Publication of CN113328239B publication Critical patent/CN113328239B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种任意俯仰面矩形波束赋形的周期阻抗调制表面,属于天线和周期阻抗调制表面技术领域。本发明所述周期阻抗调制表面将周期阻抗调制表面应用于矩形波束赋形中,相比现有的阵列综合和算法相结合的技术,其不需要采用多馈源以及复杂的馈电网络,只需要将同轴线的内芯延长而形成单极子进行馈电,结构简单,易于实现。本发明的另一个优势在于相比于现有方法在法向方向实现矩形波束赋形,其可以在具有一定倾角的方向上实现矩形波束赋形。

Figure 202110504474

The invention discloses a periodic impedance modulation surface for arbitrary elevation plane rectangular beam forming, and belongs to the technical field of antennas and periodic impedance modulation surfaces. The periodic impedance modulation surface of the present invention applies the periodic impedance modulation surface to the rectangular beamforming. Compared with the existing technology of combining array synthesis and algorithm, it does not need to use multiple feed sources and complex feeding networks, only It is necessary to extend the inner core of the coaxial line to form a monopole for feeding, and the structure is simple and easy to implement. Another advantage of the present invention is that compared with the existing method to realize rectangular beam forming in the normal direction, it can realize rectangular beam forming in a direction with a certain inclination angle.

Figure 202110504474

Description

一种任意俯仰面矩形波束赋形的周期阻抗调制表面A Periodic Impedance Modulation Surface for Rectangular Beamforming in Arbitrary Elevation Planes

技术领域technical field

本发明属于天线和周期阻抗调制表面技术领域,具体涉及一种任意俯仰面矩形波束赋形的周期阻抗调制表面。The invention belongs to the technical field of antennas and periodic impedance modulation surfaces, and in particular relates to a periodic impedance modulation surface for arbitrary elevation plane rectangular beam forming.

背景技术Background technique

天线作为无线通信系统的终端,再移动通信中发挥着极其重要的作用。传统基站天线发射的电磁波的增益波瓣一般为球状,且波瓣宽度较宽,在主辐射方向的两边增益下降比较平缓,这就导致不同指向的天线之间发射的电磁波信号相互干扰,于是对具有一定滚降率的矩形波束赋形技术提出了要求,以消除或减小多波束复用区域内信号的相互干扰。As the terminal of the wireless communication system, the antenna plays an extremely important role in mobile communication. The gain lobe of the electromagnetic wave emitted by the traditional base station antenna is generally spherical, and the lobe width is relatively wide. Rectangular beamforming techniques with a certain roll-off rate are required to eliminate or reduce the mutual interference of signals in the multi-beam multiplexing area.

文献“Flat-Top Footprint Pattern Synthesis Through the Design ofArbitrary Planar-Shaped Apertures”通过两种技术实现矩形波束赋形,一种是利用瑞利商得到具有恒定相位分布的方向图阵列;另一种是基于功率合成技术,对阵列方向图的相位没有要求。文献“Synthesizing Uniform Amplitude Sparse Dipole Arrays WithShaped Patterns by Joint Optimization of Element Positions,Rotations andPhases”通过联合优化算法来确定每个单元的位置、旋转角度和相位激励来实现任意形状的波束赋形。The document "Flat-Top Footprint Pattern Synthesis Through the Design of Arbitrary Planar-Shaped Apertures" realizes rectangular beamforming through two techniques, one is to use the Rayleigh quotient to obtain a pattern array with a constant phase distribution; the other is to use the power-based The synthesis technique has no requirements on the phase of the array pattern. The paper "Synthesizing Uniform Amplitude Sparse Dipole Arrays WithShaped Patterns by Joint Optimization of Element Positions, Rotations and Phases" implements beamforming of arbitrary shapes by using a joint optimization algorithm to determine the position, rotation angle and phase excitation of each element.

但上述现有技术结合优化算法对阵列的幅度和相位进行调控来实现波束赋形,但是普遍采用多馈源,因而需要复杂的馈电网络,尺寸/体积较大且不易实现,且现有技术仅仅实现了法向的矩形波束赋形,不能在任意俯仰面上实现矩形波束赋形。However, the above-mentioned prior art combines the optimization algorithm to control the amplitude and phase of the array to realize beamforming, but generally uses multiple feed sources, thus requiring a complex feeding network, large size/volume and difficult to implement, and the prior art Only the normal rectangular beamforming is realized, and the rectangular beamforming cannot be realized on any elevation plane.

发明内容SUMMARY OF THE INVENTION

本发明的目的是克服上述现有技术的缺陷,提供一种任意俯仰面矩形波束赋形的周期阻抗调制表面。The purpose of the present invention is to overcome the above-mentioned defects of the prior art, and to provide a periodic impedance modulation surface for arbitrary elevation plane rectangular beamforming.

本发明所提出的技术问题是这样解决的:The technical problem proposed by the present invention is solved like this:

一种任意俯仰面矩形波束赋形的周期阻抗调制表面,包括切角矩形金属贴片单元1、介质基板2、金属接地板3和单极子馈源4;切角矩形金属贴片单元1位于介质基板2的上表面,金属接地板3位于介质基板2的下表面;周期阻抗调制表面的整体形状为圆形,被划分为均匀分布的晶格,金属贴片单元1被限制在晶格内;A periodic impedance modulation surface for arbitrary pitch plane rectangular beamforming, including a chamfered rectangular metal patch unit 1, a dielectric substrate 2, a metal ground plate 3 and a monopole feed 4; the chamfered rectangular metal patch unit 1 is located in the The upper surface of the dielectric substrate 2, the metal grounding plate 3 is located on the lower surface of the dielectric substrate 2; the overall shape of the periodic impedance modulation surface is a circle, which is divided into a uniformly distributed lattice, and the metal patch unit 1 is confined within the lattice ;

单极子馈源4采用同轴线,同轴线的内芯穿过金属接地板3和介质基板2并向空间中延伸,外导体和金属接地板3相连;单极子馈源4对应的介质基板2的上表面位置不设置切角矩形金属贴片单元1;The monopole feed source 4 adopts a coaxial wire, the inner core of the coaxial wire passes through the metal ground plate 3 and the dielectric substrate 2 and extends into the space, and the outer conductor is connected to the metal ground plate 3; the monopole feed source 4 corresponds to The position of the upper surface of the dielectric substrate 2 is not provided with a chamfered rectangular metal patch unit 1;

切角矩形金属贴片单元1在不同位置的宽度a、高度b和沿纵轴逆时针旋转角θ不同,具体确定方法为:The width a, height b and counterclockwise rotation angle θ along the longitudinal axis of the chamfered rectangular metal patch unit 1 are different at different positions. The specific determination method is as follows:

步骤1.在电磁仿真软件中对阻抗单元进行建模,包括一个切角矩形金属贴片单元1和一个晶格的介质基板和金属接地板,并设置周期性边界条件,以切角单元金属贴片1的宽度a、高度b和沿纵轴逆时针旋转角θ为变量进行参数扫描得到贴片尺寸和张量阻抗分布之间的对应关系,并将其作为数据库保存备用;Step 1. Model the impedance element in electromagnetic simulation software, including a chamfered rectangular metal patch element 1 and a lattice of dielectric substrate and metal ground plate, and set periodic boundary conditions to chamfer the element metal patch The width a, height b and the counterclockwise rotation angle θ of slice 1 are used as variables to scan the parameters to obtain the corresponding relationship between the patch size and the tensor impedance distribution, and save it as a database for future use;

步骤2.给定期望目标场,计算最终的周期阻抗表面的阻抗分布;Step 2. Given the desired target field, calculate the impedance distribution of the final periodic impedance surface;

步骤2-1.给定期望的目标场EAStep 2-1. Given the desired target field E A :

Figure BDA0003057820020000021
Figure BDA0003057820020000021

其中,E0表示目标场的幅度,kl(ρ)表示目标场的相位因子,ρ为半径值,eρ(ρ)和γρ(ρ)表示单位极化向量半径方向的幅度和相位,

Figure BDA0003057820020000022
表示半径方向单位极坐标,
Figure BDA0003057820020000023
Figure BDA0003057820020000024
分别表示单位极化向量方位角方向的幅度和相位,
Figure BDA0003057820020000025
表示方位角方向单位极坐标,j为虚数符号;where E 0 represents the amplitude of the target field, kl(ρ) represents the phase factor of the target field, ρ is the radius value, e ρ (ρ) and γ ρ (ρ) represent the amplitude and phase of the unit polarization vector in the radial direction,
Figure BDA0003057820020000022
represents the unit polar coordinate in the radial direction,
Figure BDA0003057820020000023
and
Figure BDA0003057820020000024
represent the magnitude and phase of the unit polarization vector in the azimuth direction, respectively,
Figure BDA0003057820020000025
Indicates the unit polar coordinate in the azimuth direction, j is the imaginary number symbol;

步骤2-2.给定表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗

Figure BDA0003057820020000026
和方位角方向的平均阻抗
Figure BDA0003057820020000027
的初始值,令当前迭代次数=1;Step 2-2. Given the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction
Figure BDA0003057820020000026
and the average impedance in the azimuth direction
Figure BDA0003057820020000027
The initial value of , let the current number of iterations = 1;

步骤2-3.根据下式反解初始的表面波场的传播常数βSWStep 2-3. Inversely solve the propagation constant β SW of the initial surface wave field according to the following formula:

Figure BDA0003057820020000028
Figure BDA0003057820020000028

步骤2-4.计算当前迭代次数的周期阻抗表面的阻抗分布X:Step 2-4. Calculate the impedance distribution X of the periodic impedance surface for the current iteration number:

Figure BDA0003057820020000029
Figure BDA0003057820020000029

Figure BDA00030578200200000210
Figure BDA00030578200200000210

Figure BDA00030578200200000211
Figure BDA00030578200200000211

Figure BDA00030578200200000212
Figure BDA00030578200200000212

Figure BDA00030578200200000213
Figure BDA00030578200200000213

其中,Xρρ为半径方向阻抗分量,

Figure BDA00030578200200000214
为半径方向和方位角方向的耦合阻抗分量,
Figure BDA00030578200200000215
为方位角方向阻抗分量;mρ(ρ)为半径方向调制系数模值,φρ(ρ)为半径方向调制系数相位,
Figure BDA00030578200200000216
为方位角方向调制系数模值,
Figure BDA0003057820020000031
为方位角方向调制系数相位;Among them, X ρρ is the impedance component in the radial direction,
Figure BDA00030578200200000214
are the coupling impedance components in the radial and azimuth directions,
Figure BDA00030578200200000215
is the impedance component in the azimuth direction; m ρ (ρ) is the modulo value of the modulation coefficient in the radial direction, φ ρ (ρ) is the phase of the modulation coefficient in the radial direction,
Figure BDA00030578200200000216
is the modulo value of the modulation coefficient in the azimuth direction,
Figure BDA0003057820020000031
is the phase of the modulation coefficient in the azimuth direction;

步骤2-5.令更新后的

Figure BDA0003057820020000032
Step 2-5. Make the updated
Figure BDA0003057820020000032

令更新后的

Figure BDA0003057820020000033
反解下式更新表面波场的传播常数βSW:make the updated
Figure BDA0003057820020000033
Update the propagation constant β SW of the surface wave field by inversely solving the following equation:

Figure BDA0003057820020000034
Figure BDA0003057820020000034

更新表面阻抗的相位因子Ks(ρ):Update the phase factor Ks(ρ) of the surface impedance:

Figure BDA0003057820020000035
Figure BDA0003057820020000035

其中,βΔ(ρ)为更新后与更新前的表面波场的传播常数差值;Among them, β Δ (ρ) is the difference between the propagation constants of the surface wave field after the update and before the update;

步骤2-6.更新调制系数m:Step 2-6. Update the modulation coefficient m:

Figure BDA0003057820020000036
Figure BDA0003057820020000036

Figure BDA0003057820020000037
Figure BDA0003057820020000037

Figure BDA0003057820020000038
Figure BDA0003057820020000038

Figure BDA0003057820020000039
Figure BDA0003057820020000039

Figure BDA00030578200200000310
Figure BDA00030578200200000310

Figure BDA00030578200200000311
Figure BDA00030578200200000311

Figure BDA00030578200200000312
Figure BDA00030578200200000312

将周期阻抗表面的阻抗分布X整理成以下形式:The impedance distribution X of the periodic impedance surface is organized into the following form:

X=X(0)+X(+1)+X(-1) X=X (0) +X (+1) +X (-1)

Figure BDA00030578200200000313
Figure BDA00030578200200000313

Figure BDA00030578200200000314
Figure BDA00030578200200000314

Figure BDA0003057820020000041
Figure BDA0003057820020000041

其中,j0为激励场的幅度,

Figure BDA0003057820020000042
为第二类一阶贝塞尔函数;
Figure BDA0003057820020000043
Figure BDA0003057820020000044
分别为零阶和负一阶的接地介质阻抗;where j 0 is the magnitude of the excitation field,
Figure BDA0003057820020000042
is a first-order Bessel function of the second kind;
Figure BDA0003057820020000043
and
Figure BDA0003057820020000044
zero-order and negative-first-order ground dielectric impedances, respectively;

步骤2-6.判断是否满足截止条件,若是,则将更新后的表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗

Figure BDA0003057820020000045
和方位角方向的平均阻抗
Figure BDA0003057820020000046
计算最终的周期阻抗表面的阻抗分布X;否则,令当前迭代次数+1,返回执行步骤2-3;Step 2-6. Determine whether the cut-off condition is met. If yes, then update the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction.
Figure BDA0003057820020000045
and the average impedance in the azimuth direction
Figure BDA0003057820020000046
Calculate the impedance distribution X of the final periodic impedance surface; otherwise, set the current iteration number +1, and return to step 2-3;

截止条件为当前迭代次数达到设定的最大迭代次数,或更新后的调制系数m与更新前的差值小于设定阈值;The cut-off condition is that the current number of iterations reaches the set maximum number of iterations, or the difference between the updated modulation coefficient m and before the update is less than the set threshold;

步骤3.将步骤2计算得到的最终的周期阻抗表面的阻抗分布与步骤1的数据库中的张量阻抗分布进行匹配,根据数据库中贴片尺寸和张量阻抗分布之间的对应关系,找到对应于最终的周期阻抗表面的阻抗分布的贴片尺寸;Step 3. Match the impedance distribution of the final periodic impedance surface calculated in step 2 with the tensor impedance distribution in the database in step 1, and find the corresponding relationship between the patch size and the tensor impedance distribution in the database. The patch size of the impedance distribution on the final periodic impedance surface;

步骤4.再次给定期望的目标场EA′:Step 4. Given the desired target field EA' again :

Figure BDA0003057820020000047
Figure BDA0003057820020000047

其中,kl(ρ)表示再次给定的期望目标场的相位因子,γ′ρ(ρ)表示再次给定的期望目标场的单位极化向量半径方向的相位,

Figure BDA0003057820020000048
表示再次给定的期望目标场的单位极化向量方位角方向的相位;where kl(ρ) represents the phase factor of the re-given desired target field, γ′ ρ (ρ) represents the phase in the radial direction of the unit polarization vector of the re-given desired target field,
Figure BDA0003057820020000048
represents the phase in the azimuth direction of the unit polarization vector of the again given desired target field;

重复步骤2-步骤3,得到对应于再次给定期望的目标场计算得到的周期阻抗表面的阻抗分布的贴片尺寸;对两次得到的最终的周期阻抗表面的阻抗分布的贴片尺寸取平均值。Repeat steps 2-3 to obtain the patch size corresponding to the impedance distribution of the periodic impedance surface calculated given the desired target field again; average the patch size of the impedance distribution of the final periodic impedance surface obtained twice value.

进一步的,周期阻抗调制表面的整体形状为圆形,半径对应中心频率30GHz对应的自由空间波长的5倍,周期阻抗调制表面被划分为均匀分布的晶格,每个晶格的边长为中心频率30GHz对应的自由空间波长的1/10,金属贴片单元1被限制在晶格内。Further, the overall shape of the periodic impedance modulation surface is a circle, and the radius corresponds to 5 times the free space wavelength corresponding to the center frequency of 30 GHz. The periodic impedance modulation surface is divided into uniformly distributed lattices, and the side length of each lattice is the center. The frequency of 30GHz corresponds to 1/10 of the free space wavelength, and the metal patch unit 1 is confined within the lattice.

进一步的,介质基板2的厚度h=0.508mm,相对介电常数为10.2,金属接地板3的形状和半径与介质基板2一致。Further, the thickness of the dielectric substrate 2 is h=0.508 mm, the relative permittivity is 10.2, and the shape and radius of the metal ground plate 3 are consistent with the dielectric substrate 2 .

本发明的有益效果是:The beneficial effects of the present invention are:

本发明所述周期阻抗调制表面将周期阻抗调制表面应用于矩形波束赋形中,相比现有的阵列综合和算法相结合的技术,其不需要采用多馈源以及复杂的馈电网络,只需要将同轴线的内芯延长而形成单极子进行馈电,结构简单,易于实现。本发明的另一个优势在于相比于现有方法在法向方向实现矩形波束赋形,其可以在具有一定倾角的方向上实现矩形波束赋形。The periodic impedance modulation surface of the present invention applies the periodic impedance modulation surface to rectangular beamforming. Compared with the existing technology combining array synthesis and algorithm, it does not need to use multiple feed sources and complex feeding networks, and only It is necessary to extend the inner core of the coaxial line to form a monopole for feeding, and the structure is simple and easy to implement. Another advantage of the present invention is that compared with the existing method to realize rectangular beam forming in the normal direction, it can realize rectangular beam forming in a direction with a certain inclination angle.

附图说明Description of drawings

图1为本发明所述周期阻抗调制表面的整体结构俯视图和侧视图;1 is a top view and a side view of the overall structure of the periodic impedance modulation surface of the present invention;

图2为本发明所述周期阻抗调制表面靠近中心部分的细节图;FIG. 2 is a detailed view of the portion near the center of the periodic impedance modulation surface of the present invention;

图3为实施例中张量阻抗单元的结构示意图和俯视图;3 is a schematic structural diagram and a top view of a tensor impedance unit in an embodiment;

图4为实施例中周期阻抗调制表面在30GHz的XOZ面的直角坐标增益方向图;Fig. 4 is the Cartesian coordinate gain pattern of the XOZ plane of the periodic impedance modulation surface at 30GHz in the embodiment;

图5为实施例中周期阻抗调制表面在30GHz的XOZ面的极坐标增益方向图;Fig. 5 is the polar coordinate gain pattern of the XOZ plane of the periodic impedance modulation surface at 30GHz in the embodiment;

图6为实施例中周期阻抗调制表面在俯仰角为37度截面的直角坐标增益方向图;Fig. 6 is the Cartesian coordinate gain pattern of the section of the periodic impedance modulation surface at the pitch angle of 37 degrees in the embodiment;

图7为实施例中周期阻抗调制表面的三维增益方向图。7 is a three-dimensional gain pattern of a periodic impedance modulating surface in an embodiment.

具体实施方式Detailed ways

下面结合附图和实施例对本发明进行进一步的说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.

本实施例提供一种任意俯仰面矩形波束赋形的周期阻抗调制表面,其整体结构俯视图和侧视图如图1所示,靠近中心部分的细节图如图2所示,包括切角矩形金属贴片单元1、介质基板2、金属接地板3和单极子馈源4;切角矩形金属贴片单元1位于介质基板2的上表面,金属接地板3位于介质基板2的下表面;This embodiment provides a periodic impedance modulation surface for arbitrary elevation plane rectangular beamforming, whose overall structure top view and side view are shown in FIG. 1 , and a detailed view near the center is shown in FIG. The chip unit 1, the dielectric substrate 2, the metal ground plate 3 and the monopole feed source 4; the cut-corner rectangular metal patch unit 1 is located on the upper surface of the dielectric substrate 2, and the metal ground plate 3 is located on the lower surface of the dielectric substrate 2;

周期阻抗调制表面的整体形状为圆形,半径对应中心频率30GHz对应的自由空间波长的5倍,周期阻抗调制表面被划分为均匀分布的晶格,每个晶格的边长为中心频率30GHz对应的自由空间波长的1/10,金属贴片单元1被限制在晶格内。介质基板2的厚度h=0.508mm,相对介电常数为10.2,金属接地板3的形状和半径与介质基板2一致。The overall shape of the periodic impedance modulation surface is a circle, and the radius corresponds to 5 times the free space wavelength corresponding to the center frequency of 30GHz. The periodic impedance modulation surface is divided into uniformly distributed lattices, and the side length of each lattice is corresponding to the center frequency of 30GHz. 1/10 of the free space wavelength of the metal patch unit 1 is confined within the lattice. The thickness h of the dielectric substrate 2 is 0.508 mm, the relative dielectric constant is 10.2, and the shape and radius of the metal ground plate 3 are consistent with those of the dielectric substrate 2 .

单极子馈源4采用同轴线,同轴线的内芯穿过金属接地板3和介质基板2并向空间中延伸,外导体和金属接地板3相连。单极子馈源4对应的介质基板2的上表面位置不设置切角矩形金属贴片单元1;本实施例中,位于周期阻抗调制表面中心的5×5切角矩形金属贴片单元1被去除。The monopole feed source 4 adopts a coaxial wire, the inner core of the coaxial wire passes through the metal grounding plate 3 and the dielectric substrate 2 and extends into the space, and the outer conductor is connected to the metal grounding plate 3 . The chamfered rectangular metal patch unit 1 is not provided on the upper surface of the dielectric substrate 2 corresponding to the monopole feed 4; in this embodiment, the 5×5 chamfered rectangular metal patch unit 1 located in the center of the periodic impedance modulation surface is remove.

切角矩形金属贴片单元1在不同位置的宽度a、高度b和沿纵轴逆时针旋转角θ不同,具体确定方法为:The width a, height b and counterclockwise rotation angle θ along the longitudinal axis of the chamfered rectangular metal patch unit 1 are different at different positions. The specific determination method is as follows:

步骤1.在电磁仿真软件中对阻抗单元进行建模,阻抗单元的结构示意图如图3所示,包括一个切角矩形金属贴片单元1和一个晶格的介质基板和金属接地板,并设置周期性边界条件,并以切角单元金属贴片1的宽度a、高度b和沿纵轴逆时针旋转角θ为变量进行参数扫描得到贴片尺寸和张量阻抗分布之间的对应关系,并将其作为数据库保存备用;Step 1. Model the impedance unit in the electromagnetic simulation software. The schematic diagram of the impedance unit is shown in Figure 3, including a chamfered rectangular metal patch unit 1 and a lattice dielectric substrate and metal grounding plate, and set Periodic boundary conditions, and take the width a, height b and counterclockwise rotation angle θ of the chamfered element metal patch 1 as variables to scan the parameters to obtain the corresponding relationship between the patch size and the tensor impedance distribution, and Save it as a database for backup;

步骤2.给定期望目标场,计算最终的周期阻抗表面的阻抗分布;Step 2. Given the desired target field, calculate the impedance distribution of the final periodic impedance surface;

步骤2-1.给定期望的目标场EAStep 2-1. Given the desired target field E A :

Figure BDA0003057820020000061
Figure BDA0003057820020000061

其中,E0表示目标场的幅度,kl(ρ)表示目标场的相位因子,ρ为半径值,eρ(ρ)和γρ(ρ)表示单位极化向量半径方向的幅度和相位,

Figure BDA0003057820020000062
表示半径方向单位极坐标,
Figure BDA0003057820020000063
Figure BDA0003057820020000064
分别表示单位极化向量方位角方向的幅度和相位,
Figure BDA0003057820020000065
表示方位角方向单位极坐标,j为虚数符号;where E 0 represents the amplitude of the target field, kl(ρ) represents the phase factor of the target field, ρ is the radius value, e ρ (ρ) and γ ρ (ρ) represent the amplitude and phase of the unit polarization vector in the radial direction,
Figure BDA0003057820020000062
represents the unit polar coordinate in the radial direction,
Figure BDA0003057820020000063
and
Figure BDA0003057820020000064
represent the magnitude and phase of the unit polarization vector in the azimuth direction, respectively,
Figure BDA0003057820020000065
Indicates the unit polar coordinate in the azimuth direction, j is the imaginary number symbol;

步骤2-2.给定表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗

Figure BDA0003057820020000066
和方位角方向的平均阻抗
Figure BDA0003057820020000067
的初始值,令当前迭代次数=1;Step 2-2. Given the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction
Figure BDA0003057820020000066
and the average impedance in the azimuth direction
Figure BDA0003057820020000067
The initial value of , let the current number of iterations = 1;

步骤2-3.根据下式反解初始的表面波场的传播常数βSWStep 2-3. Inversely solve the propagation constant β SW of the initial surface wave field according to the following formula:

Figure BDA0003057820020000068
Figure BDA0003057820020000068

步骤2-4.计算当前迭代次数的周期阻抗表面的阻抗分布X:Step 2-4. Calculate the impedance distribution X of the periodic impedance surface for the current iteration number:

Figure BDA0003057820020000069
Figure BDA0003057820020000069

Figure BDA00030578200200000610
Figure BDA00030578200200000610

Figure BDA00030578200200000611
Figure BDA00030578200200000611

Figure BDA00030578200200000612
Figure BDA00030578200200000612

Figure BDA00030578200200000613
Figure BDA00030578200200000613

其中,Xρρ为半径方向阻抗分量,

Figure BDA00030578200200000614
为半径方向和方位角方向的耦合阻抗分量,
Figure BDA00030578200200000615
为方位角方向阻抗分量;mρ(ρ)为半径方向调制系数模值,φρ(ρ)为半径方向调制系数相位,
Figure BDA00030578200200000616
为方位角方向调制系数模值,
Figure BDA00030578200200000617
为方位角方向调制系数相位;Among them, X ρρ is the impedance component in the radial direction,
Figure BDA00030578200200000614
are the coupling impedance components in the radial and azimuth directions,
Figure BDA00030578200200000615
is the impedance component in the azimuth direction; m ρ (ρ) is the modulo value of the modulation coefficient in the radial direction, φ ρ (ρ) is the phase of the modulation coefficient in the radial direction,
Figure BDA00030578200200000616
is the modulo value of the modulation coefficient in the azimuth direction,
Figure BDA00030578200200000617
is the phase of the modulation coefficient in the azimuth direction;

步骤2-5.令更新后的

Figure BDA00030578200200000618
Step 2-5. Make the updated
Figure BDA00030578200200000618

令更新后的

Figure BDA00030578200200000619
反解下式更新表面波场的传播常数βSW:make the updated
Figure BDA00030578200200000619
Update the propagation constant β SW of the surface wave field by inversely solving the following equation:

Figure BDA00030578200200000620
Figure BDA00030578200200000620

更新表面阻抗的相位因子Ks(ρ):Update the phase factor Ks(ρ) of the surface impedance:

Figure BDA0003057820020000071
Figure BDA0003057820020000071

其中,βV(ρ)为更新后与更新前的表面波场的传播常数差值;Among them, β V (ρ) is the difference between the propagation constants of the surface wave field after the update and before the update;

步骤2-6.更新调制系数m:Step 2-6. Update the modulation coefficient m:

Figure BDA0003057820020000072
Figure BDA0003057820020000072

Figure BDA0003057820020000073
Figure BDA0003057820020000073

Figure BDA0003057820020000074
Figure BDA0003057820020000074

Figure BDA0003057820020000075
Figure BDA0003057820020000075

Figure BDA0003057820020000076
Figure BDA0003057820020000076

Figure BDA0003057820020000077
Figure BDA0003057820020000077

Figure BDA0003057820020000078
Figure BDA0003057820020000078

将周期阻抗表面的阻抗分布X整理成以下形式:The impedance distribution X of the periodic impedance surface is organized into the following form:

X=X(0)+X(+1)+X(-1) X=X (0) +X (+1) +X (-1)

Figure BDA0003057820020000079
Figure BDA0003057820020000079

Figure BDA00030578200200000710
Figure BDA00030578200200000710

Figure BDA00030578200200000711
Figure BDA00030578200200000711

其中,j0为激励场的幅度,

Figure BDA00030578200200000712
为第二类一阶贝塞尔函数;
Figure BDA00030578200200000713
Figure BDA00030578200200000714
分别为零阶和负一阶的接地介质阻抗。where j 0 is the magnitude of the excitation field,
Figure BDA00030578200200000712
is a first-order Bessel function of the second kind;
Figure BDA00030578200200000713
and
Figure BDA00030578200200000714
Ground dielectric impedance of zero order and negative first order, respectively.

步骤2-6.判断是否满足截止条件,若是,则将更新后的表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗

Figure BDA00030578200200000715
和方位角方向的平均阻抗
Figure BDA00030578200200000716
计算最终的周期阻抗表面的阻抗分布X;否则,令当前迭代次数+1,返回执行步骤2-3。Step 2-6. Determine whether the cut-off condition is met. If yes, then update the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction.
Figure BDA00030578200200000715
and the average impedance in the azimuth direction
Figure BDA00030578200200000716
Calculate the impedance distribution X of the final periodic impedance surface; otherwise, set the current iteration number +1, and return to step 2-3.

截止条件为当前迭代次数达到设定的最大迭代次数,或更新后的调制系数m与更新前的差值小于设定阈值。The cut-off condition is that the current number of iterations reaches the set maximum number of iterations, or the difference between the updated modulation coefficient m and before the update is less than the set threshold.

步骤3.将步骤2计算得到的最终的周期阻抗表面的阻抗分布与步骤1的数据库中的张量阻抗分布进行匹配,根据数据库中贴片尺寸和张量阻抗分布之间的对应关系,找到对应于最终的周期阻抗表面的阻抗分布的贴片尺寸。Step 3. Match the impedance distribution of the final periodic impedance surface calculated in step 2 with the tensor impedance distribution in the database in step 1, and find the corresponding relationship between the patch size and the tensor impedance distribution in the database. The patch size of the impedance distribution on the final periodic impedance surface.

步骤4.再次给定期望的目标场EA′:Step 4. Given the desired target field EA' again :

Figure BDA0003057820020000081
Figure BDA0003057820020000081

其中,kl(ρ)表示再次给定的期望目标场的相位因子,γ′ρ(ρ)表示再次给定的期望目标场的单位极化向量半径方向的相位,

Figure BDA0003057820020000082
表示再次给定的期望目标场的单位极化向量方位角方向的相位;where kl(ρ) represents the phase factor of the re-given desired target field, γ′ ρ (ρ) represents the phase in the radial direction of the unit polarization vector of the re-given desired target field,
Figure BDA0003057820020000082
represents the phase in the azimuth direction of the unit polarization vector of the again given desired target field;

重复步骤2-步骤3,得到对应于再次给定期望的目标场计算得到的周期阻抗表面的阻抗分布的贴片尺寸;对两次得到的最终的周期阻抗表面的阻抗分布的贴片尺寸取平均值。Repeat steps 2-3 to obtain the patch size corresponding to the impedance distribution of the periodic impedance surface calculated given the desired target field again; average the patch size of the impedance distribution of the final periodic impedance surface obtained twice value.

图4和图6分别为方位角为0度截面增益随俯仰角变化的直角坐标和极坐标方向图,由图可知3dB波束宽度为25度即俯仰角26°到51°,最大增益15.8dB;图5为俯仰角为37度截面增益随方位角变化的直角坐标方向图,由图可知,在该截面方向图呈笔状分布,3dB波束宽度为13度。图7为周期阻抗调制表面的三维增益方向图。结果可知,此方案实现了具有一定俯仰角的二维矩形波束赋形。Figures 4 and 6 are the rectangular and polar patterns of the azimuth angle of the section gain changing with the pitch angle, respectively. It can be seen from the figure that the 3dB beam width is 25 degrees, that is, the pitch angle is 26° to 51°, and the maximum gain is 15.8dB; Fig. 5 is a Cartesian coordinate pattern of the section gain changing with the azimuth angle when the pitch angle is 37 degrees. It can be seen from the figure that the pattern in this section is distributed in a pen shape, and the 3dB beam width is 13 degrees. Figure 7 is a three-dimensional gain pattern of a periodic impedance modulating surface. The results show that this scheme realizes two-dimensional rectangular beamforming with a certain pitch angle.

Claims (3)

1.一种任意俯仰面矩形波束赋形的周期阻抗调制表面,其特征在于,包括切角矩形金属贴片单元(1)、介质基板(2)、金属接地板(3)和单极子馈源(4);切角矩形金属贴片单元(1)位于介质基板(2)的上表面,金属接地板(3)位于介质基板(2)的下表面;周期阻抗调制表面的整体形状为圆形,被划分为均匀分布的晶格,切角矩形金属贴片单元(1)被限制在晶格内;1. A periodic impedance modulation surface for arbitrary elevation plane rectangular beamforming, characterized in that it comprises a corner-cut rectangular metal patch unit (1), a dielectric substrate (2), a metal ground plate (3) and a monopole feeder. The source (4); the chamfered rectangular metal patch unit (1) is located on the upper surface of the dielectric substrate (2), and the metal ground plate (3) is located on the lower surface of the dielectric substrate (2); the overall shape of the periodic impedance modulation surface is a circle The shape is divided into a uniformly distributed lattice, and the chamfered rectangular metal patch unit (1) is confined within the lattice; 单极子馈源(4)采用同轴线,同轴线的内芯穿过金属接地板(3)和介质基板(2)并向空间中延伸,外导体和金属接地板(3)相连;单极子馈源(4)对应的介质基板(2)的上表面位置不设置切角矩形金属贴片单元(1);The monopole feed source (4) adopts a coaxial wire, the inner core of the coaxial wire passes through the metal grounding plate (3) and the dielectric substrate (2) and extends into the space, and the outer conductor is connected to the metal grounding plate (3); The position of the upper surface of the dielectric substrate (2) corresponding to the monopole feed source (4) is not provided with a chamfered rectangular metal patch unit (1); 不同位置的切角矩形金属贴片单元(1)的宽度a、高度b和沿纵轴逆时针旋转角θ不同,具体确定方法为:The width a, height b and counterclockwise rotation angle θ along the vertical axis of the chamfered rectangular metal patch unit (1) at different positions are different, and the specific determination method is as follows: 步骤1.在电磁仿真软件中对阻抗单元进行建模,包括一个切角矩形金属贴片单元(1)和一个晶格的介质基板和金属接地板,并设置周期性边界条件,以切角单元金属贴片(1)的宽度a、高度b和沿纵轴逆时针旋转角θ为变量进行参数扫描得到贴片尺寸和张量阻抗分布之间的对应关系,并将其作为数据库保存备用;Step 1. Model the impedance element in electromagnetic simulation software, including a chamfered rectangular metal patch element (1) and a lattice of dielectric substrate and metal ground plate, and set periodic boundary conditions to chamfer the element The width a, height b and counterclockwise rotation angle θ along the vertical axis of the metal patch (1) are used as variables to perform parameter scanning to obtain the corresponding relationship between the patch size and the tensor impedance distribution, and save it as a database for future use; 步骤2.给定期望目标场,计算最终的周期阻抗表面的阻抗分布;Step 2. Given the desired target field, calculate the impedance distribution of the final periodic impedance surface; 步骤2-1.给定期望的目标场EAStep 2-1. Given the desired target field E A :
Figure FDA0003525946330000011
Figure FDA0003525946330000011
其中,E0表示目标场的幅度,kl(ρ)表示目标场的相位因子,ρ为半径值,eρ(ρ)和γρ(ρ)表示单位极化向量半径方向的幅度和相位,
Figure FDA0003525946330000012
表示半径方向单位极坐标,
Figure FDA0003525946330000018
Figure FDA0003525946330000019
分别表示单位极化向量方位角方向的幅度和相位,
Figure FDA0003525946330000013
表示方位角方向单位极坐标,j为虚数符号;
where E 0 represents the amplitude of the target field, kl(ρ) represents the phase factor of the target field, ρ is the radius value, e ρ (ρ) and γ ρ (ρ) represent the amplitude and phase of the unit polarization vector in the radial direction,
Figure FDA0003525946330000012
represents the unit polar coordinate in the radial direction,
Figure FDA0003525946330000018
and
Figure FDA0003525946330000019
represent the magnitude and phase of the unit polarization vector in the azimuth direction, respectively,
Figure FDA0003525946330000013
Indicates the unit polar coordinate in the azimuth direction, and j is the imaginary number symbol;
步骤2-2.给定表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗
Figure FDA0003525946330000014
和方位角方向的平均阻抗
Figure FDA0003525946330000015
的初始值,令当前迭代次数=1;
Step 2-2. Given the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction
Figure FDA0003525946330000014
and the average impedance in the azimuth direction
Figure FDA0003525946330000015
The initial value of , let the current number of iterations = 1;
步骤2-3.根据下式反解初始的表面波场的传播常数βSWStep 2-3. Inversely solve the propagation constant β SW of the initial surface wave field according to the following formula:
Figure FDA0003525946330000016
Figure FDA0003525946330000016
步骤2-4.计算当前迭代次数的周期阻抗表面的阻抗分布X:Step 2-4. Calculate the impedance distribution X of the periodic impedance surface for the current iteration number:
Figure FDA0003525946330000017
Figure FDA0003525946330000017
Figure FDA0003525946330000021
Figure FDA0003525946330000021
Figure FDA0003525946330000022
Figure FDA0003525946330000022
Figure FDA0003525946330000023
Figure FDA0003525946330000023
Figure FDA0003525946330000024
Figure FDA0003525946330000024
其中,Xρρ为半径方向阻抗分量,
Figure FDA0003525946330000025
为半径方向和方位角方向的耦合阻抗分量,
Figure FDA0003525946330000026
为方位角方向阻抗分量;mρ(ρ)为半径方向调制系数模值,fρ(ρ)为半径方向调制系数相位,
Figure FDA0003525946330000027
为方位角方向调制系数模值,
Figure FDA0003525946330000028
为方位角方向调制系数相位;
Among them, X ρρ is the impedance component in the radial direction,
Figure FDA0003525946330000025
are the coupling impedance components in the radial and azimuth directions,
Figure FDA0003525946330000026
is the impedance component in the azimuth direction; m ρ (ρ) is the modulo value of the modulation coefficient in the radial direction, f ρ (ρ) is the phase of the modulation coefficient in the radial direction,
Figure FDA0003525946330000027
is the modulo value of the modulation coefficient in the azimuth direction,
Figure FDA0003525946330000028
is the phase of the modulation coefficient in the azimuth direction;
步骤2-5.令更新后的
Figure FDA0003525946330000029
Step 2-5. Make the updated
Figure FDA0003525946330000029
令更新后的
Figure FDA00035259463300000210
反解下式更新表面波场的传播常数βSW
make the updated
Figure FDA00035259463300000210
Update the propagation constant β SW of the surface wave field by inversely solving the following equation:
Figure FDA00035259463300000211
Figure FDA00035259463300000211
更新表面阻抗的相位因子Ks(ρ):Update the phase factor Ks(ρ) of the surface impedance:
Figure FDA00035259463300000212
Figure FDA00035259463300000212
其中,βΔ(ρ)为更新后与更新前的表面波场的传播常数差值;Among them, β Δ (ρ) is the difference between the propagation constants of the surface wave field after the update and before the update; 步骤2-6.更新调制系数m:Step 2-6. Update the modulation coefficient m:
Figure FDA00035259463300000213
Figure FDA00035259463300000213
Figure FDA00035259463300000214
Figure FDA00035259463300000214
Figure FDA00035259463300000215
Figure FDA00035259463300000215
Figure FDA00035259463300000216
Figure FDA00035259463300000216
Figure FDA00035259463300000217
Figure FDA00035259463300000217
Figure FDA00035259463300000218
Figure FDA00035259463300000218
Figure FDA0003525946330000031
Figure FDA0003525946330000031
将周期阻抗表面的阻抗分布X整理成以下形式:The impedance distribution X of the periodic impedance surface is organized into the following form: X=X(0)+X(+1)+X(-1) X=X (0) +X (+1) +X (-1)
Figure FDA0003525946330000032
Figure FDA0003525946330000032
Figure FDA0003525946330000033
Figure FDA0003525946330000033
Figure FDA0003525946330000034
Figure FDA0003525946330000034
其中,j0为激励场的幅度,
Figure FDA0003525946330000035
为第二类一阶贝塞尔函数;
Figure FDA0003525946330000036
Figure FDA0003525946330000037
分别为零阶和负一阶的接地介质阻抗;
where j 0 is the amplitude of the excitation field,
Figure FDA0003525946330000035
is a first-order Bessel function of the second kind;
Figure FDA0003525946330000036
and
Figure FDA0003525946330000037
Ground dielectric impedance of zero-order and negative first-order, respectively;
步骤2-6.判断是否满足截止条件,若是,则将更新后的表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗
Figure FDA0003525946330000038
和方位角方向的平均阻抗
Figure FDA0003525946330000039
计算最终的周期阻抗表面的阻抗分布X;否则,令当前迭代次数+1,返回执行步骤2-3;
Step 2-6. Determine whether the cut-off condition is met. If yes, then update the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction.
Figure FDA0003525946330000038
and the average impedance in the azimuth direction
Figure FDA0003525946330000039
Calculate the impedance distribution X of the final periodic impedance surface; otherwise, set the current iteration number +1, and return to step 2-3;
步骤3.将步骤2计算得到的最终的周期阻抗表面的阻抗分布与步骤1的数据库中的张量阻抗分布进行匹配,根据数据库中贴片尺寸和张量阻抗分布之间的对应关系,找到对应于最终的周期阻抗表面的阻抗分布的贴片尺寸;Step 3. Match the impedance distribution of the final periodic impedance surface calculated in step 2 with the tensor impedance distribution in the database in step 1, and find the corresponding relationship between the patch size and the tensor impedance distribution in the database. The patch size of the impedance distribution on the final periodic impedance surface; 步骤4.再次给定期望的目标场EA':Step 4. Again given the desired target field EA ':
Figure FDA00035259463300000310
Figure FDA00035259463300000310
其中,kl'(ρ)表示再次给定的期望目标场的相位因子,γ'ρ(ρ)表示再次给定的期望目标场的单位极化向量半径方向的相位,
Figure FDA00035259463300000311
表示再次给定的期望目标场的单位极化向量方位角方向的相位;
Among them, kl'(ρ) represents the phase factor of the re-given desired target field, γ' ρ (ρ) represents the phase in the radial direction of the unit polarization vector of the re-given desired target field,
Figure FDA00035259463300000311
represents the phase in the azimuth direction of the unit polarization vector of the again given desired target field;
重复步骤2-步骤3,得到对应于再次给定期望的目标场计算得到的周期阻抗表面的阻抗分布的贴片尺寸;对两次得到的最终的周期阻抗表面的阻抗分布的贴片尺寸取平均值。Repeat steps 2-3 to obtain the patch size corresponding to the impedance distribution of the periodic impedance surface calculated given the desired target field again; average the patch size of the impedance distribution of the final periodic impedance surface obtained twice value.
2.根据权利要求1所述的任意俯仰面矩形波束赋形的周期阻抗调制表面,其特征在于,周期阻抗调制表面的半径对应中心频率30GHz对应的自由空间波长的5倍,每个晶格的边长为中心频率30GHz对应的自由空间波长的1/10,金属贴片单元(1)被限制在晶格内。2. The periodic impedance modulation surface of any pitch plane rectangular beamforming according to claim 1, wherein the radius of the periodic impedance modulation surface corresponds to 5 times the free space wavelength corresponding to the center frequency of 30 GHz, and the The side length is 1/10 of the free space wavelength corresponding to the center frequency of 30 GHz, and the metal patch unit (1) is confined within the lattice. 3.根据权利要求1所述的任意俯仰面矩形波束赋形的周期阻抗调制表面,其特征在于,介质基板(2)的厚度h=0.508mm,相对介电常数为10.2,金属接地板(3)的形状和半径与介质基板(2)一致。3. The periodic impedance modulation surface for arbitrary pitch plane rectangular beamforming according to claim 1, characterized in that, the thickness of the dielectric substrate (2) is h=0.508mm, the relative permittivity is 10.2, and the metal ground plate (3) ) in shape and radius consistent with the dielectric substrate (2).
CN202110504474.XA 2021-05-10 2021-05-10 Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming Active CN113328239B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110504474.XA CN113328239B (en) 2021-05-10 2021-05-10 Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110504474.XA CN113328239B (en) 2021-05-10 2021-05-10 Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming

Publications (2)

Publication Number Publication Date
CN113328239A CN113328239A (en) 2021-08-31
CN113328239B true CN113328239B (en) 2022-05-03

Family

ID=77415269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110504474.XA Active CN113328239B (en) 2021-05-10 2021-05-10 Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming

Country Status (1)

Country Link
CN (1) CN113328239B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114552211B (en) * 2022-03-04 2023-04-18 电子科技大学 High-gain multi-beam periodic impedance modulation surface antenna loaded with EBG structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483480B1 (en) * 2000-03-29 2002-11-19 Hrl Laboratories, Llc Tunable impedance surface
US7911407B1 (en) * 2008-06-12 2011-03-22 Hrl Laboratories, Llc Method for designing artificial surface impedance structures characterized by an impedance tensor with complex components
WO2015080849A1 (en) * 2012-03-22 2015-06-04 Hrl Laboratories, Llc Circularly polarized scalar impedance artificial impedance surface antenna
CN108539393A (en) * 2018-04-09 2018-09-14 重庆大学 A kind of horizontal polarization holographic antenna of high calibre efficiency pencil beam
EP3570375A1 (en) * 2018-05-14 2019-11-20 Paris Sciences et Lettres - Quartier Latin Reconfigurable antenna assembly having a metasurface of metasurfaces
CN111630715A (en) * 2018-01-22 2020-09-04 京瓷株式会社 Antennas, bicycles, display devices and unmanned aerial vehicles
CN112736482A (en) * 2020-12-25 2021-04-30 电子科技大学 Rectangular beam forming holographic artificial impedance surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887456B2 (en) * 2014-02-19 2018-02-06 Kymeta Corporation Dynamic polarization and coupling control from a steerable cylindrically fed holographic antenna
WO2017015308A1 (en) * 2015-07-20 2017-01-26 Hrl Laboratories, Llc Surface wave polarization converter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483480B1 (en) * 2000-03-29 2002-11-19 Hrl Laboratories, Llc Tunable impedance surface
US7911407B1 (en) * 2008-06-12 2011-03-22 Hrl Laboratories, Llc Method for designing artificial surface impedance structures characterized by an impedance tensor with complex components
WO2015080849A1 (en) * 2012-03-22 2015-06-04 Hrl Laboratories, Llc Circularly polarized scalar impedance artificial impedance surface antenna
CN111630715A (en) * 2018-01-22 2020-09-04 京瓷株式会社 Antennas, bicycles, display devices and unmanned aerial vehicles
CN108539393A (en) * 2018-04-09 2018-09-14 重庆大学 A kind of horizontal polarization holographic antenna of high calibre efficiency pencil beam
EP3570375A1 (en) * 2018-05-14 2019-11-20 Paris Sciences et Lettres - Quartier Latin Reconfigurable antenna assembly having a metasurface of metasurfaces
CN112736482A (en) * 2020-12-25 2021-04-30 电子科技大学 Rectangular beam forming holographic artificial impedance surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Design of Scalar Impedance Holographic Metasurfaces for Antenna Beam Formation With Desired Polarization";Sivaseetharaman Pandi et al.;《IEEE Transactions on Antennas and Propagation》;20150427;全文 *
"基于全息阻抗表面的近场调控";蒋哲;《中国优秀硕士学位论文全文数据库(电子期刊)》;20210115;全文 *

Also Published As

Publication number Publication date
CN113328239A (en) 2021-08-31

Similar Documents

Publication Publication Date Title
CN112736482B (en) A Holographic Artificial Impedance Surface Based on Rectangular Beamforming
Ojaroudiparchin et al. 8× 8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations
CN109546355B (en) Cylinder conformal printing antenna array device
US20100231464A1 (en) High gain metamaterial antenna device
KR20200096324A (en) Microstrip antenna, antenna array and method of manufacturing microstrip antenna
CN109786937A (en) A small ultra-wide beam cavity-backed double-layer microstrip antenna and its wide-angle scanning array
CN112736483B (en) Polarization reconfigurable two-dimensional beam scanning holographic antenna and implementation method thereof
JP2022544107A (en) Phased array antenna with reduced edge effect
CN213845512U (en) Broadband Circularly Polarized Antenna Based on Artificial Magnetic Conductor
CN111900550B (en) A dual-source metasurface highly directional antenna fused with dual modulation of impedance and phase
CN113328239B (en) Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming
CN210443662U (en) Novel K-band high-gain metamaterial microstrip antenna
CN109687122A (en) A kind of broadband low minor lobe array antenna
CN112909529B (en) Two-dimensional multi-beam super-surface antenna capable of realizing wide-band and wide-angle scanning
CN103401068B (en) High-gain wideband stereoscopic slot Yagi antenna
CN108550982A (en) A kind of period half width leaky wave dyadic array antenna for realizing two-dimentional omnidirectional's scanning
CN112103640B (en) Antenna array based on 5G millimeter wave base station and arrangement method thereof
Mahatmanto et al. Planar microstrip array antenna with rectangular configuration fed with Chebyshev power distribution for C-band satellite application
CN114512824B (en) Millimeter wave cross scanning multibeam array antenna based on common cavity rotman lens
CN115241647B (en) A modeling method for miniaturized dual-frequency omnidirectional antenna
CN113764894B (en) A three-beam independently polarized holographic artificial impedance surface antenna
CN116093616A (en) An Amplitude-Phase Weighted Series-fed Microstrip Antenna Array
CN211045710U (en) Log-periodic dipole antenna and antenna array
CN115548695A (en) Circularly polarized intelligent watch GPS antenna based on reactance loading
CN114464993A (en) Microstrip antenna and method for widening beam width thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant