CN113328239B - Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming - Google Patents
Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming Download PDFInfo
- Publication number
- CN113328239B CN113328239B CN202110504474.XA CN202110504474A CN113328239B CN 113328239 B CN113328239 B CN 113328239B CN 202110504474 A CN202110504474 A CN 202110504474A CN 113328239 B CN113328239 B CN 113328239B
- Authority
- CN
- China
- Prior art keywords
- impedance
- periodic
- phase
- modulation
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
本发明公开了一种任意俯仰面矩形波束赋形的周期阻抗调制表面,属于天线和周期阻抗调制表面技术领域。本发明所述周期阻抗调制表面将周期阻抗调制表面应用于矩形波束赋形中,相比现有的阵列综合和算法相结合的技术,其不需要采用多馈源以及复杂的馈电网络,只需要将同轴线的内芯延长而形成单极子进行馈电,结构简单,易于实现。本发明的另一个优势在于相比于现有方法在法向方向实现矩形波束赋形,其可以在具有一定倾角的方向上实现矩形波束赋形。
The invention discloses a periodic impedance modulation surface for arbitrary elevation plane rectangular beam forming, and belongs to the technical field of antennas and periodic impedance modulation surfaces. The periodic impedance modulation surface of the present invention applies the periodic impedance modulation surface to the rectangular beamforming. Compared with the existing technology of combining array synthesis and algorithm, it does not need to use multiple feed sources and complex feeding networks, only It is necessary to extend the inner core of the coaxial line to form a monopole for feeding, and the structure is simple and easy to implement. Another advantage of the present invention is that compared with the existing method to realize rectangular beam forming in the normal direction, it can realize rectangular beam forming in a direction with a certain inclination angle.
Description
技术领域technical field
本发明属于天线和周期阻抗调制表面技术领域,具体涉及一种任意俯仰面矩形波束赋形的周期阻抗调制表面。The invention belongs to the technical field of antennas and periodic impedance modulation surfaces, and in particular relates to a periodic impedance modulation surface for arbitrary elevation plane rectangular beam forming.
背景技术Background technique
天线作为无线通信系统的终端,再移动通信中发挥着极其重要的作用。传统基站天线发射的电磁波的增益波瓣一般为球状,且波瓣宽度较宽,在主辐射方向的两边增益下降比较平缓,这就导致不同指向的天线之间发射的电磁波信号相互干扰,于是对具有一定滚降率的矩形波束赋形技术提出了要求,以消除或减小多波束复用区域内信号的相互干扰。As the terminal of the wireless communication system, the antenna plays an extremely important role in mobile communication. The gain lobe of the electromagnetic wave emitted by the traditional base station antenna is generally spherical, and the lobe width is relatively wide. Rectangular beamforming techniques with a certain roll-off rate are required to eliminate or reduce the mutual interference of signals in the multi-beam multiplexing area.
文献“Flat-Top Footprint Pattern Synthesis Through the Design ofArbitrary Planar-Shaped Apertures”通过两种技术实现矩形波束赋形,一种是利用瑞利商得到具有恒定相位分布的方向图阵列;另一种是基于功率合成技术,对阵列方向图的相位没有要求。文献“Synthesizing Uniform Amplitude Sparse Dipole Arrays WithShaped Patterns by Joint Optimization of Element Positions,Rotations andPhases”通过联合优化算法来确定每个单元的位置、旋转角度和相位激励来实现任意形状的波束赋形。The document "Flat-Top Footprint Pattern Synthesis Through the Design of Arbitrary Planar-Shaped Apertures" realizes rectangular beamforming through two techniques, one is to use the Rayleigh quotient to obtain a pattern array with a constant phase distribution; the other is to use the power-based The synthesis technique has no requirements on the phase of the array pattern. The paper "Synthesizing Uniform Amplitude Sparse Dipole Arrays WithShaped Patterns by Joint Optimization of Element Positions, Rotations and Phases" implements beamforming of arbitrary shapes by using a joint optimization algorithm to determine the position, rotation angle and phase excitation of each element.
但上述现有技术结合优化算法对阵列的幅度和相位进行调控来实现波束赋形,但是普遍采用多馈源,因而需要复杂的馈电网络,尺寸/体积较大且不易实现,且现有技术仅仅实现了法向的矩形波束赋形,不能在任意俯仰面上实现矩形波束赋形。However, the above-mentioned prior art combines the optimization algorithm to control the amplitude and phase of the array to realize beamforming, but generally uses multiple feed sources, thus requiring a complex feeding network, large size/volume and difficult to implement, and the prior art Only the normal rectangular beamforming is realized, and the rectangular beamforming cannot be realized on any elevation plane.
发明内容SUMMARY OF THE INVENTION
本发明的目的是克服上述现有技术的缺陷,提供一种任意俯仰面矩形波束赋形的周期阻抗调制表面。The purpose of the present invention is to overcome the above-mentioned defects of the prior art, and to provide a periodic impedance modulation surface for arbitrary elevation plane rectangular beamforming.
本发明所提出的技术问题是这样解决的:The technical problem proposed by the present invention is solved like this:
一种任意俯仰面矩形波束赋形的周期阻抗调制表面,包括切角矩形金属贴片单元1、介质基板2、金属接地板3和单极子馈源4;切角矩形金属贴片单元1位于介质基板2的上表面,金属接地板3位于介质基板2的下表面;周期阻抗调制表面的整体形状为圆形,被划分为均匀分布的晶格,金属贴片单元1被限制在晶格内;A periodic impedance modulation surface for arbitrary pitch plane rectangular beamforming, including a chamfered rectangular
单极子馈源4采用同轴线,同轴线的内芯穿过金属接地板3和介质基板2并向空间中延伸,外导体和金属接地板3相连;单极子馈源4对应的介质基板2的上表面位置不设置切角矩形金属贴片单元1;The monopole feed source 4 adopts a coaxial wire, the inner core of the coaxial wire passes through the
切角矩形金属贴片单元1在不同位置的宽度a、高度b和沿纵轴逆时针旋转角θ不同,具体确定方法为:The width a, height b and counterclockwise rotation angle θ along the longitudinal axis of the chamfered rectangular
步骤1.在电磁仿真软件中对阻抗单元进行建模,包括一个切角矩形金属贴片单元1和一个晶格的介质基板和金属接地板,并设置周期性边界条件,以切角单元金属贴片1的宽度a、高度b和沿纵轴逆时针旋转角θ为变量进行参数扫描得到贴片尺寸和张量阻抗分布之间的对应关系,并将其作为数据库保存备用;
步骤2.给定期望目标场,计算最终的周期阻抗表面的阻抗分布;
步骤2-1.给定期望的目标场EA:Step 2-1. Given the desired target field E A :
其中,E0表示目标场的幅度,kl(ρ)表示目标场的相位因子,ρ为半径值,eρ(ρ)和γρ(ρ)表示单位极化向量半径方向的幅度和相位,表示半径方向单位极坐标,和分别表示单位极化向量方位角方向的幅度和相位,表示方位角方向单位极坐标,j为虚数符号;where E 0 represents the amplitude of the target field, kl(ρ) represents the phase factor of the target field, ρ is the radius value, e ρ (ρ) and γ ρ (ρ) represent the amplitude and phase of the unit polarization vector in the radial direction, represents the unit polar coordinate in the radial direction, and represent the magnitude and phase of the unit polarization vector in the azimuth direction, respectively, Indicates the unit polar coordinate in the azimuth direction, j is the imaginary number symbol;
步骤2-2.给定表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗和方位角方向的平均阻抗的初始值,令当前迭代次数=1;Step 2-2. Given the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction and the average impedance in the azimuth direction The initial value of , let the current number of iterations = 1;
步骤2-3.根据下式反解初始的表面波场的传播常数βSW:Step 2-3. Inversely solve the propagation constant β SW of the initial surface wave field according to the following formula:
步骤2-4.计算当前迭代次数的周期阻抗表面的阻抗分布X:Step 2-4. Calculate the impedance distribution X of the periodic impedance surface for the current iteration number:
其中,Xρρ为半径方向阻抗分量,为半径方向和方位角方向的耦合阻抗分量,为方位角方向阻抗分量;mρ(ρ)为半径方向调制系数模值,φρ(ρ)为半径方向调制系数相位,为方位角方向调制系数模值,为方位角方向调制系数相位;Among them, X ρρ is the impedance component in the radial direction, are the coupling impedance components in the radial and azimuth directions, is the impedance component in the azimuth direction; m ρ (ρ) is the modulo value of the modulation coefficient in the radial direction, φ ρ (ρ) is the phase of the modulation coefficient in the radial direction, is the modulo value of the modulation coefficient in the azimuth direction, is the phase of the modulation coefficient in the azimuth direction;
步骤2-5.令更新后的 Step 2-5. Make the updated
令更新后的反解下式更新表面波场的传播常数βSW:make the updated Update the propagation constant β SW of the surface wave field by inversely solving the following equation:
更新表面阻抗的相位因子Ks(ρ):Update the phase factor Ks(ρ) of the surface impedance:
其中,βΔ(ρ)为更新后与更新前的表面波场的传播常数差值;Among them, β Δ (ρ) is the difference between the propagation constants of the surface wave field after the update and before the update;
步骤2-6.更新调制系数m:Step 2-6. Update the modulation coefficient m:
将周期阻抗表面的阻抗分布X整理成以下形式:The impedance distribution X of the periodic impedance surface is organized into the following form:
X=X(0)+X(+1)+X(-1) X=X (0) +X (+1) +X (-1)
其中,j0为激励场的幅度,为第二类一阶贝塞尔函数;和分别为零阶和负一阶的接地介质阻抗;where j 0 is the magnitude of the excitation field, is a first-order Bessel function of the second kind; and zero-order and negative-first-order ground dielectric impedances, respectively;
步骤2-6.判断是否满足截止条件,若是,则将更新后的表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗和方位角方向的平均阻抗计算最终的周期阻抗表面的阻抗分布X;否则,令当前迭代次数+1,返回执行步骤2-3;Step 2-6. Determine whether the cut-off condition is met. If yes, then update the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction. and the average impedance in the azimuth direction Calculate the impedance distribution X of the final periodic impedance surface; otherwise, set the current iteration number +1, and return to step 2-3;
截止条件为当前迭代次数达到设定的最大迭代次数,或更新后的调制系数m与更新前的差值小于设定阈值;The cut-off condition is that the current number of iterations reaches the set maximum number of iterations, or the difference between the updated modulation coefficient m and before the update is less than the set threshold;
步骤3.将步骤2计算得到的最终的周期阻抗表面的阻抗分布与步骤1的数据库中的张量阻抗分布进行匹配,根据数据库中贴片尺寸和张量阻抗分布之间的对应关系,找到对应于最终的周期阻抗表面的阻抗分布的贴片尺寸;
步骤4.再次给定期望的目标场EA′:Step 4. Given the desired target field EA' again :
其中,kl(ρ)表示再次给定的期望目标场的相位因子,γ′ρ(ρ)表示再次给定的期望目标场的单位极化向量半径方向的相位,表示再次给定的期望目标场的单位极化向量方位角方向的相位;where kl(ρ) represents the phase factor of the re-given desired target field, γ′ ρ (ρ) represents the phase in the radial direction of the unit polarization vector of the re-given desired target field, represents the phase in the azimuth direction of the unit polarization vector of the again given desired target field;
重复步骤2-步骤3,得到对应于再次给定期望的目标场计算得到的周期阻抗表面的阻抗分布的贴片尺寸;对两次得到的最终的周期阻抗表面的阻抗分布的贴片尺寸取平均值。Repeat steps 2-3 to obtain the patch size corresponding to the impedance distribution of the periodic impedance surface calculated given the desired target field again; average the patch size of the impedance distribution of the final periodic impedance surface obtained twice value.
进一步的,周期阻抗调制表面的整体形状为圆形,半径对应中心频率30GHz对应的自由空间波长的5倍,周期阻抗调制表面被划分为均匀分布的晶格,每个晶格的边长为中心频率30GHz对应的自由空间波长的1/10,金属贴片单元1被限制在晶格内。Further, the overall shape of the periodic impedance modulation surface is a circle, and the radius corresponds to 5 times the free space wavelength corresponding to the center frequency of 30 GHz. The periodic impedance modulation surface is divided into uniformly distributed lattices, and the side length of each lattice is the center. The frequency of 30GHz corresponds to 1/10 of the free space wavelength, and the
进一步的,介质基板2的厚度h=0.508mm,相对介电常数为10.2,金属接地板3的形状和半径与介质基板2一致。Further, the thickness of the
本发明的有益效果是:The beneficial effects of the present invention are:
本发明所述周期阻抗调制表面将周期阻抗调制表面应用于矩形波束赋形中,相比现有的阵列综合和算法相结合的技术,其不需要采用多馈源以及复杂的馈电网络,只需要将同轴线的内芯延长而形成单极子进行馈电,结构简单,易于实现。本发明的另一个优势在于相比于现有方法在法向方向实现矩形波束赋形,其可以在具有一定倾角的方向上实现矩形波束赋形。The periodic impedance modulation surface of the present invention applies the periodic impedance modulation surface to rectangular beamforming. Compared with the existing technology combining array synthesis and algorithm, it does not need to use multiple feed sources and complex feeding networks, and only It is necessary to extend the inner core of the coaxial line to form a monopole for feeding, and the structure is simple and easy to implement. Another advantage of the present invention is that compared with the existing method to realize rectangular beam forming in the normal direction, it can realize rectangular beam forming in a direction with a certain inclination angle.
附图说明Description of drawings
图1为本发明所述周期阻抗调制表面的整体结构俯视图和侧视图;1 is a top view and a side view of the overall structure of the periodic impedance modulation surface of the present invention;
图2为本发明所述周期阻抗调制表面靠近中心部分的细节图;FIG. 2 is a detailed view of the portion near the center of the periodic impedance modulation surface of the present invention;
图3为实施例中张量阻抗单元的结构示意图和俯视图;3 is a schematic structural diagram and a top view of a tensor impedance unit in an embodiment;
图4为实施例中周期阻抗调制表面在30GHz的XOZ面的直角坐标增益方向图;Fig. 4 is the Cartesian coordinate gain pattern of the XOZ plane of the periodic impedance modulation surface at 30GHz in the embodiment;
图5为实施例中周期阻抗调制表面在30GHz的XOZ面的极坐标增益方向图;Fig. 5 is the polar coordinate gain pattern of the XOZ plane of the periodic impedance modulation surface at 30GHz in the embodiment;
图6为实施例中周期阻抗调制表面在俯仰角为37度截面的直角坐标增益方向图;Fig. 6 is the Cartesian coordinate gain pattern of the section of the periodic impedance modulation surface at the pitch angle of 37 degrees in the embodiment;
图7为实施例中周期阻抗调制表面的三维增益方向图。7 is a three-dimensional gain pattern of a periodic impedance modulating surface in an embodiment.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进行进一步的说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
本实施例提供一种任意俯仰面矩形波束赋形的周期阻抗调制表面,其整体结构俯视图和侧视图如图1所示,靠近中心部分的细节图如图2所示,包括切角矩形金属贴片单元1、介质基板2、金属接地板3和单极子馈源4;切角矩形金属贴片单元1位于介质基板2的上表面,金属接地板3位于介质基板2的下表面;This embodiment provides a periodic impedance modulation surface for arbitrary elevation plane rectangular beamforming, whose overall structure top view and side view are shown in FIG. 1 , and a detailed view near the center is shown in FIG. The
周期阻抗调制表面的整体形状为圆形,半径对应中心频率30GHz对应的自由空间波长的5倍,周期阻抗调制表面被划分为均匀分布的晶格,每个晶格的边长为中心频率30GHz对应的自由空间波长的1/10,金属贴片单元1被限制在晶格内。介质基板2的厚度h=0.508mm,相对介电常数为10.2,金属接地板3的形状和半径与介质基板2一致。The overall shape of the periodic impedance modulation surface is a circle, and the radius corresponds to 5 times the free space wavelength corresponding to the center frequency of 30GHz. The periodic impedance modulation surface is divided into uniformly distributed lattices, and the side length of each lattice is corresponding to the center frequency of 30GHz. 1/10 of the free space wavelength of the
单极子馈源4采用同轴线,同轴线的内芯穿过金属接地板3和介质基板2并向空间中延伸,外导体和金属接地板3相连。单极子馈源4对应的介质基板2的上表面位置不设置切角矩形金属贴片单元1;本实施例中,位于周期阻抗调制表面中心的5×5切角矩形金属贴片单元1被去除。The monopole feed source 4 adopts a coaxial wire, the inner core of the coaxial wire passes through the
切角矩形金属贴片单元1在不同位置的宽度a、高度b和沿纵轴逆时针旋转角θ不同,具体确定方法为:The width a, height b and counterclockwise rotation angle θ along the longitudinal axis of the chamfered rectangular
步骤1.在电磁仿真软件中对阻抗单元进行建模,阻抗单元的结构示意图如图3所示,包括一个切角矩形金属贴片单元1和一个晶格的介质基板和金属接地板,并设置周期性边界条件,并以切角单元金属贴片1的宽度a、高度b和沿纵轴逆时针旋转角θ为变量进行参数扫描得到贴片尺寸和张量阻抗分布之间的对应关系,并将其作为数据库保存备用;
步骤2.给定期望目标场,计算最终的周期阻抗表面的阻抗分布;
步骤2-1.给定期望的目标场EA:Step 2-1. Given the desired target field E A :
其中,E0表示目标场的幅度,kl(ρ)表示目标场的相位因子,ρ为半径值,eρ(ρ)和γρ(ρ)表示单位极化向量半径方向的幅度和相位,表示半径方向单位极坐标,和分别表示单位极化向量方位角方向的幅度和相位,表示方位角方向单位极坐标,j为虚数符号;where E 0 represents the amplitude of the target field, kl(ρ) represents the phase factor of the target field, ρ is the radius value, e ρ (ρ) and γ ρ (ρ) represent the amplitude and phase of the unit polarization vector in the radial direction, represents the unit polar coordinate in the radial direction, and represent the magnitude and phase of the unit polarization vector in the azimuth direction, respectively, Indicates the unit polar coordinate in the azimuth direction, j is the imaginary number symbol;
步骤2-2.给定表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗和方位角方向的平均阻抗的初始值,令当前迭代次数=1;Step 2-2. Given the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction and the average impedance in the azimuth direction The initial value of , let the current number of iterations = 1;
步骤2-3.根据下式反解初始的表面波场的传播常数βSW:Step 2-3. Inversely solve the propagation constant β SW of the initial surface wave field according to the following formula:
步骤2-4.计算当前迭代次数的周期阻抗表面的阻抗分布X:Step 2-4. Calculate the impedance distribution X of the periodic impedance surface for the current iteration number:
其中,Xρρ为半径方向阻抗分量,为半径方向和方位角方向的耦合阻抗分量,为方位角方向阻抗分量;mρ(ρ)为半径方向调制系数模值,φρ(ρ)为半径方向调制系数相位,为方位角方向调制系数模值,为方位角方向调制系数相位;Among them, X ρρ is the impedance component in the radial direction, are the coupling impedance components in the radial and azimuth directions, is the impedance component in the azimuth direction; m ρ (ρ) is the modulo value of the modulation coefficient in the radial direction, φ ρ (ρ) is the phase of the modulation coefficient in the radial direction, is the modulo value of the modulation coefficient in the azimuth direction, is the phase of the modulation coefficient in the azimuth direction;
步骤2-5.令更新后的 Step 2-5. Make the updated
令更新后的反解下式更新表面波场的传播常数βSW:make the updated Update the propagation constant β SW of the surface wave field by inversely solving the following equation:
更新表面阻抗的相位因子Ks(ρ):Update the phase factor Ks(ρ) of the surface impedance:
其中,βV(ρ)为更新后与更新前的表面波场的传播常数差值;Among them, β V (ρ) is the difference between the propagation constants of the surface wave field after the update and before the update;
步骤2-6.更新调制系数m:Step 2-6. Update the modulation coefficient m:
将周期阻抗表面的阻抗分布X整理成以下形式:The impedance distribution X of the periodic impedance surface is organized into the following form:
X=X(0)+X(+1)+X(-1) X=X (0) +X (+1) +X (-1)
其中,j0为激励场的幅度,为第二类一阶贝塞尔函数;和分别为零阶和负一阶的接地介质阻抗。where j 0 is the magnitude of the excitation field, is a first-order Bessel function of the second kind; and Ground dielectric impedance of zero order and negative first order, respectively.
步骤2-6.判断是否满足截止条件,若是,则将更新后的表面阻抗的相位因子Ks(ρ)、调制系数m、半径方向的平均阻抗和方位角方向的平均阻抗计算最终的周期阻抗表面的阻抗分布X;否则,令当前迭代次数+1,返回执行步骤2-3。Step 2-6. Determine whether the cut-off condition is met. If yes, then update the phase factor Ks(ρ) of the surface impedance, the modulation coefficient m, and the average impedance in the radial direction. and the average impedance in the azimuth direction Calculate the impedance distribution X of the final periodic impedance surface; otherwise, set the current iteration number +1, and return to step 2-3.
截止条件为当前迭代次数达到设定的最大迭代次数,或更新后的调制系数m与更新前的差值小于设定阈值。The cut-off condition is that the current number of iterations reaches the set maximum number of iterations, or the difference between the updated modulation coefficient m and before the update is less than the set threshold.
步骤3.将步骤2计算得到的最终的周期阻抗表面的阻抗分布与步骤1的数据库中的张量阻抗分布进行匹配,根据数据库中贴片尺寸和张量阻抗分布之间的对应关系,找到对应于最终的周期阻抗表面的阻抗分布的贴片尺寸。
步骤4.再次给定期望的目标场EA′:Step 4. Given the desired target field EA' again :
其中,kl(ρ)表示再次给定的期望目标场的相位因子,γ′ρ(ρ)表示再次给定的期望目标场的单位极化向量半径方向的相位,表示再次给定的期望目标场的单位极化向量方位角方向的相位;where kl(ρ) represents the phase factor of the re-given desired target field, γ′ ρ (ρ) represents the phase in the radial direction of the unit polarization vector of the re-given desired target field, represents the phase in the azimuth direction of the unit polarization vector of the again given desired target field;
重复步骤2-步骤3,得到对应于再次给定期望的目标场计算得到的周期阻抗表面的阻抗分布的贴片尺寸;对两次得到的最终的周期阻抗表面的阻抗分布的贴片尺寸取平均值。Repeat steps 2-3 to obtain the patch size corresponding to the impedance distribution of the periodic impedance surface calculated given the desired target field again; average the patch size of the impedance distribution of the final periodic impedance surface obtained twice value.
图4和图6分别为方位角为0度截面增益随俯仰角变化的直角坐标和极坐标方向图,由图可知3dB波束宽度为25度即俯仰角26°到51°,最大增益15.8dB;图5为俯仰角为37度截面增益随方位角变化的直角坐标方向图,由图可知,在该截面方向图呈笔状分布,3dB波束宽度为13度。图7为周期阻抗调制表面的三维增益方向图。结果可知,此方案实现了具有一定俯仰角的二维矩形波束赋形。Figures 4 and 6 are the rectangular and polar patterns of the azimuth angle of the section gain changing with the pitch angle, respectively. It can be seen from the figure that the 3dB beam width is 25 degrees, that is, the pitch angle is 26° to 51°, and the maximum gain is 15.8dB; Fig. 5 is a Cartesian coordinate pattern of the section gain changing with the azimuth angle when the pitch angle is 37 degrees. It can be seen from the figure that the pattern in this section is distributed in a pen shape, and the 3dB beam width is 13 degrees. Figure 7 is a three-dimensional gain pattern of a periodic impedance modulating surface. The results show that this scheme realizes two-dimensional rectangular beamforming with a certain pitch angle.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110504474.XA CN113328239B (en) | 2021-05-10 | 2021-05-10 | Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110504474.XA CN113328239B (en) | 2021-05-10 | 2021-05-10 | Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113328239A CN113328239A (en) | 2021-08-31 |
| CN113328239B true CN113328239B (en) | 2022-05-03 |
Family
ID=77415269
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110504474.XA Active CN113328239B (en) | 2021-05-10 | 2021-05-10 | Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113328239B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114552211B (en) * | 2022-03-04 | 2023-04-18 | 电子科技大学 | High-gain multi-beam periodic impedance modulation surface antenna loaded with EBG structure |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6483480B1 (en) * | 2000-03-29 | 2002-11-19 | Hrl Laboratories, Llc | Tunable impedance surface |
| US7911407B1 (en) * | 2008-06-12 | 2011-03-22 | Hrl Laboratories, Llc | Method for designing artificial surface impedance structures characterized by an impedance tensor with complex components |
| WO2015080849A1 (en) * | 2012-03-22 | 2015-06-04 | Hrl Laboratories, Llc | Circularly polarized scalar impedance artificial impedance surface antenna |
| CN108539393A (en) * | 2018-04-09 | 2018-09-14 | 重庆大学 | A kind of horizontal polarization holographic antenna of high calibre efficiency pencil beam |
| EP3570375A1 (en) * | 2018-05-14 | 2019-11-20 | Paris Sciences et Lettres - Quartier Latin | Reconfigurable antenna assembly having a metasurface of metasurfaces |
| CN111630715A (en) * | 2018-01-22 | 2020-09-04 | 京瓷株式会社 | Antennas, bicycles, display devices and unmanned aerial vehicles |
| CN112736482A (en) * | 2020-12-25 | 2021-04-30 | 电子科技大学 | Rectangular beam forming holographic artificial impedance surface |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9887456B2 (en) * | 2014-02-19 | 2018-02-06 | Kymeta Corporation | Dynamic polarization and coupling control from a steerable cylindrically fed holographic antenna |
| WO2017015308A1 (en) * | 2015-07-20 | 2017-01-26 | Hrl Laboratories, Llc | Surface wave polarization converter |
-
2021
- 2021-05-10 CN CN202110504474.XA patent/CN113328239B/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6483480B1 (en) * | 2000-03-29 | 2002-11-19 | Hrl Laboratories, Llc | Tunable impedance surface |
| US7911407B1 (en) * | 2008-06-12 | 2011-03-22 | Hrl Laboratories, Llc | Method for designing artificial surface impedance structures characterized by an impedance tensor with complex components |
| WO2015080849A1 (en) * | 2012-03-22 | 2015-06-04 | Hrl Laboratories, Llc | Circularly polarized scalar impedance artificial impedance surface antenna |
| CN111630715A (en) * | 2018-01-22 | 2020-09-04 | 京瓷株式会社 | Antennas, bicycles, display devices and unmanned aerial vehicles |
| CN108539393A (en) * | 2018-04-09 | 2018-09-14 | 重庆大学 | A kind of horizontal polarization holographic antenna of high calibre efficiency pencil beam |
| EP3570375A1 (en) * | 2018-05-14 | 2019-11-20 | Paris Sciences et Lettres - Quartier Latin | Reconfigurable antenna assembly having a metasurface of metasurfaces |
| CN112736482A (en) * | 2020-12-25 | 2021-04-30 | 电子科技大学 | Rectangular beam forming holographic artificial impedance surface |
Non-Patent Citations (2)
| Title |
|---|
| "Design of Scalar Impedance Holographic Metasurfaces for Antenna Beam Formation With Desired Polarization";Sivaseetharaman Pandi et al.;《IEEE Transactions on Antennas and Propagation》;20150427;全文 * |
| "基于全息阻抗表面的近场调控";蒋哲;《中国优秀硕士学位论文全文数据库(电子期刊)》;20210115;全文 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113328239A (en) | 2021-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN112736482B (en) | A Holographic Artificial Impedance Surface Based on Rectangular Beamforming | |
| Ojaroudiparchin et al. | 8× 8 planar phased array antenna with high efficiency and insensitivity properties for 5G mobile base stations | |
| CN109546355B (en) | Cylinder conformal printing antenna array device | |
| US20100231464A1 (en) | High gain metamaterial antenna device | |
| KR20200096324A (en) | Microstrip antenna, antenna array and method of manufacturing microstrip antenna | |
| CN109786937A (en) | A small ultra-wide beam cavity-backed double-layer microstrip antenna and its wide-angle scanning array | |
| CN112736483B (en) | Polarization reconfigurable two-dimensional beam scanning holographic antenna and implementation method thereof | |
| JP2022544107A (en) | Phased array antenna with reduced edge effect | |
| CN213845512U (en) | Broadband Circularly Polarized Antenna Based on Artificial Magnetic Conductor | |
| CN111900550B (en) | A dual-source metasurface highly directional antenna fused with dual modulation of impedance and phase | |
| CN113328239B (en) | Periodic impedance modulation surface for arbitrary pitching surface rectangular beam forming | |
| CN210443662U (en) | Novel K-band high-gain metamaterial microstrip antenna | |
| CN109687122A (en) | A kind of broadband low minor lobe array antenna | |
| CN112909529B (en) | Two-dimensional multi-beam super-surface antenna capable of realizing wide-band and wide-angle scanning | |
| CN103401068B (en) | High-gain wideband stereoscopic slot Yagi antenna | |
| CN108550982A (en) | A kind of period half width leaky wave dyadic array antenna for realizing two-dimentional omnidirectional's scanning | |
| CN112103640B (en) | Antenna array based on 5G millimeter wave base station and arrangement method thereof | |
| Mahatmanto et al. | Planar microstrip array antenna with rectangular configuration fed with Chebyshev power distribution for C-band satellite application | |
| CN114512824B (en) | Millimeter wave cross scanning multibeam array antenna based on common cavity rotman lens | |
| CN115241647B (en) | A modeling method for miniaturized dual-frequency omnidirectional antenna | |
| CN113764894B (en) | A three-beam independently polarized holographic artificial impedance surface antenna | |
| CN116093616A (en) | An Amplitude-Phase Weighted Series-fed Microstrip Antenna Array | |
| CN211045710U (en) | Log-periodic dipole antenna and antenna array | |
| CN115548695A (en) | Circularly polarized intelligent watch GPS antenna based on reactance loading | |
| CN114464993A (en) | Microstrip antenna and method for widening beam width thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |