CN113365014A - Parallel compressed sensing GPU (graphics processing Unit) acceleration real-time imaging system and method - Google Patents
Parallel compressed sensing GPU (graphics processing Unit) acceleration real-time imaging system and method Download PDFInfo
- Publication number
- CN113365014A CN113365014A CN202110512028.3A CN202110512028A CN113365014A CN 113365014 A CN113365014 A CN 113365014A CN 202110512028 A CN202110512028 A CN 202110512028A CN 113365014 A CN113365014 A CN 113365014A
- Authority
- CN
- China
- Prior art keywords
- parallel
- resolution image
- measurement
- gpu
- compressed sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/01—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
- H04N7/0117—Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3102—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Graphics (AREA)
- Studio Devices (AREA)
Abstract
本发明公开了一种并行压缩感知GPU加速实时成像系统与方法,所述系统包括并行流水线式处理的光学单元(I)、电学单元(II)和后端数据流水线处理单元(III);其中,所述光学单元(I),用于收集光信号,得到目标图像信号,经分段和调制后发送至电学单元(II);所述电学单元(II),用于进行并行互补压缩感知成像,完成并行互补测量,将低分辨率图像数据发送至后端数据流水线处理单元(III);所述后端数据流水线处理单元(III),用于采用GPU加速压缩感知高速重建算法实现高分辨图像重建与实时显示。本发明采用光学单元、电学单元和GPU加速重建部件并行流水线方案,实现压缩感知实时采集低分辨图像、实时重建与显示高分辨图像。
The invention discloses a parallel compressed sensing GPU accelerated real-time imaging system and method. The system includes an optical unit (I), an electrical unit (II) and a back-end data pipeline processing unit (III) for parallel pipeline processing; wherein, The optical unit (I) is used for collecting optical signals to obtain a target image signal, which is segmented and modulated and then sent to the electrical unit (II); the electrical unit (II) is used for parallel complementary compressed sensing imaging, Completing the parallel complementary measurement, sending the low-resolution image data to the back-end data pipeline processing unit (III); the back-end data pipeline processing unit (III) is used to implement high-resolution image reconstruction by using a GPU-accelerated compressed sensing high-speed reconstruction algorithm with real-time display. The invention adopts the parallel pipeline scheme of the optical unit, the electrical unit and the GPU accelerated reconstruction component, and realizes the real-time acquisition of low-resolution images, real-time reconstruction and display of high-resolution images by compressed sensing.
Description
技术领域technical field
本发明涉及成像技术领域,特别涉及一种并行压缩感知GPU加速实时成像系统与方法,有别于传统直接测量的计算成像体制的成像方法。The invention relates to the field of imaging technology, in particular to a parallel compressed sensing GPU accelerated real-time imaging system and method, which is different from the imaging method of the traditional direct measurement computational imaging system.
背景技术Background technique
光信号的成像探测是人类感知周围环境和认识世界的重要手段,毫不夸张的说,没有成像技术的诞生和发展,就没有现代光电探测技术。数字化和智能物联网时代(AIoT)驱动着对探测器时间分辨率和空间分辨率的要求越来越高,探测数据规模激增,成像方式和光电探测技术在各方面性能不断改进和提高,成像体制也经历着巨大的飞跃,迅速推进着人类感知世界的进程。The imaging detection of optical signals is an important means for humans to perceive the surrounding environment and understand the world. It is no exaggeration to say that without the birth and development of imaging technology, there would be no modern photoelectric detection technology. The era of digitization and the intelligent Internet of Things (AIoT) has driven higher and higher requirements for the temporal and spatial resolution of detectors, the scale of detection data has surged, and the imaging methods and photoelectric detection technologies have been continuously improved and improved in various aspects. It has also experienced a huge leap, rapidly advancing the process of human perception of the world.
一方面,在应用场景需求端,探测场景像素规模的增大,时间分辨率和空间分辨率的更高需求从未停止。另一方面,非可见光波段的较高分辨率探测器成本仍然较高,随着分辨率的提高可见光探测器成本越来越高。现有分辨率探测器无法以“所见即所得”的直接测量方式实现对海量像素规模的场景实时成像,而现有技术指标设备以传统方式要进一步达到更高的时间分辨率和控件分辨率则难上加难。如何应对成像像素规模、时间分辨率、空间分辨率要求的数据率、实时显示要求与传输带宽、探测器成本、存储资源之间的矛盾,成为成像系统技术研究的重要方向和难点。压缩感知成像以减少采样量、降低探测器分辨率要求为动机,将新的信号处理体制压缩感知理论创造性地应用于成像领域。其中,单像素相机是压缩感知成像最具代表性的新成像体制,它采用没有空间分辨率的点探测器通过调制采样的间接测量方式,将压缩与采样一并进行,以远低于奈奎斯特-香农采样定律要求的采样数进行信号测量,随后通过后端数据处理的重建算法会付出具有空间分辨率的成像目标,实现了以无空间分辨率的点探测器进行探测低成本探测器、低传输带宽,又能保证维持空间分辨率图像获取的最终成像目标。On the one hand, on the demand side of the application scene, the pixel scale of the detection scene increases, and the demand for higher temporal resolution and spatial resolution has never stopped. On the other hand, the cost of higher resolution detectors in the non-visible light band is still high, and the cost of visible light detectors is getting higher and higher as the resolution increases. Existing resolution detectors cannot realize real-time imaging of massive pixel-scale scenes in the direct measurement method of "what you see is what you get", while the existing technical indicator equipment needs to further achieve higher temporal resolution and control resolution in the traditional way. It is more difficult. How to deal with the contradictions between imaging pixel scale, temporal resolution, spatial resolution required data rate, real-time display requirements and transmission bandwidth, detector cost, and storage resources have become an important direction and difficulty in imaging system technology research. Compressed sensing imaging is motivated by reducing the sampling amount and reducing the detector resolution requirements, and creatively applies the new signal processing system compressed sensing theory to the imaging field. Among them, the single-pixel camera is the most representative new imaging system for compressed sensing imaging. It adopts the indirect measurement method of point detectors without spatial resolution through modulation sampling, and performs compression and sampling together. The number of samples required by the Sterling-Shannon sampling law is used to measure the signal, and then the reconstruction algorithm of the back-end data processing will pay the imaging target with spatial resolution, which realizes the detection with the point detector without spatial resolution. , low transmission bandwidth, and can ensure the final imaging target of maintaining spatial resolution image acquisition.
但是,探测分辨率需求的进一步提高,光学采集前端也受到了现有空间光学调制前端调制频率的限制,同时基于压缩感知成像理论的压缩感知成像模型也面临着大规模场景下测量矩阵构造难度和重建算法的复杂度迅速提高,传统串行单像素相机架构也不能满足需求,亟待新的提高性能策略的引入。However, with the further improvement of detection resolution requirements, the optical acquisition front-end is also limited by the modulation frequency of the existing spatial optical modulation front-end. At the same time, the compressed sensing imaging model based on the compressed sensing imaging theory is also faced with the difficulty of constructing the measurement matrix in large-scale scenarios. The complexity of the reconstruction algorithm is rapidly increasing, and the traditional serial single-pixel camera architecture cannot meet the demand, and new performance improvement strategies are urgently needed.
发明内容SUMMARY OF THE INVENTION
本发明的目的是在于克服传统成像体制使用常规探测器和传输带宽在高分辨快速采集与实时显示方面的不足,采用分而治之处理和并行化系统思想对单像素相机进行扩展,从而提供一种并行压缩感知GPU加速实时成像系统与方法。The purpose of the present invention is to overcome the shortcomings of the traditional imaging system using conventional detectors and transmission bandwidth in high-resolution fast acquisition and real-time display, and to expand the single-pixel camera by adopting divide-and-conquer processing and parallelization system ideas, thereby providing a parallel compression Perceptual GPU-accelerated real-time imaging systems and methods.
为了实现上述目的,本发明的实施例1提出了一种并行压缩感知GPU加速实时成像系统,所述系统包括并行流水线式处理的光学单元、电学单元和后端数据流水线处理单元;其中,In order to achieve the above object,
所述光学单元,用于收集光信号,得到目标图像信号,经分段和调制后发送至电学单元;The optical unit is used to collect the optical signal, obtain the target image signal, and send it to the electrical unit after segmentation and modulation;
所述电学单元,用于进行并行互补压缩感知成像,完成并行互补测量,将低分辨率图像数据发送至后端数据流水线处理单元;The electrical unit is used to perform parallel complementary compressed sensing imaging, complete parallel complementary measurement, and send the low-resolution image data to the back-end data pipeline processing unit;
所述后端数据流水线处理单元,用于采用GPU加速压缩感知高速重建算法实现高分辨图像重建与实时显示。The back-end data pipeline processing unit is used for realizing high-resolution image reconstruction and real-time display by using a GPU-accelerated compressed sensing high-speed reconstruction algorithm.
作为上述系统的一种改进,所述光学单元包括:视场光阑和成像物镜镜头(1)、空间光调制器和会聚收光部件;其中,As an improvement of the above system, the optical unit includes: a field diaphragm and an imaging objective lens (1), a spatial light modulator and a condensing light-collecting component; wherein,
所述视场光阑和成像物镜镜头,用于收集目标透射、反射或辐射出的光信号,并成像到空间光调制器上;The field diaphragm and the imaging objective lens are used to collect the light signal transmitted, reflected or radiated by the target, and image the light signal on the spatial light modulator;
所述空间光调制器,用于对目标图像信号进行分段并行随机调制,将不同位置的光反射到所述会聚收光部件;The spatial light modulator is used to perform segmental parallel random modulation on the target image signal, and reflect light at different positions to the converging light-receiving component;
所述会聚收光部件,用于将会聚收集到的光传输到电学单元。The condensing light-collecting component is used for transmitting the condensed and collected light to the electrical unit.
作为上述系统的一种改进,所述电学单元包括:光电阵列探测器、随机数发生器、信号同步控制模块、数据采集缓存;As an improvement of the above system, the electrical unit includes: a photoelectric array detector, a random number generator, a signal synchronization control module, and a data acquisition buffer;
所述光电阵列探测器,用于并行地探测到分段光信号,转化为电信号输出至数据采集缓存部件;The photoelectric array detector is used to detect the segmented optical signals in parallel, convert them into electrical signals, and output them to the data acquisition buffer component;
所述数据采集缓存部件,用于即时、持续地将低分辨图像传输至后端数据流水线处理单元;The data acquisition cache component is used to instantly and continuously transmit the low-resolution image to the back-end data pipeline processing unit;
所述随机数发生器,用于控制空间光调制器对光信号进行分段并行随机调制;还用于生成二值光信号随机分布的散斑;The random number generator is used to control the spatial light modulator to perform piecewise parallel random modulation on the optical signal; it is also used to generate randomly distributed speckles of the binary optical signal;
所述信号同步控制模块,用于通过信号同步控制光电阵列探测器、随机数发生器和数据采集缓存。The signal synchronization control module is used to control the photoelectric array detector, the random number generator and the data acquisition buffer through the signal synchronization.
作为上述系统的一种改进,所述后端数据流水线处理单元包括:数据共享服务部件、高分辨图像重建与显示部件以及通用计算GPU加速压缩感知高速重建部件;其中,As an improvement of the above system, the back-end data pipeline processing unit includes: a data sharing service component, a high-resolution image reconstruction and display component, and a general-purpose computing GPU-accelerated compressed sensing high-speed reconstruction component; wherein,
所述数据共享服务部件,用于接收并存储低分辨图像数据;the data sharing service component for receiving and storing low-resolution image data;
高分辨图像重建与显示部件,用于持续不断地处理数据共享服务部件的低分辨率图像数据,通过函数调用通用计算GPU加速压缩感知高速重建部件以快速重建出高分辨图像并实时显示;The high-resolution image reconstruction and display component is used to continuously process the low-resolution image data of the data sharing service component, and the general-purpose computing GPU-accelerated compressed sensing high-speed reconstruction component is called by the function to quickly reconstruct the high-resolution image and display it in real time;
所述通用计算GPU加速压缩感知高速重建部件,用于利用低分辨图像、分块随机矩阵和稀疏基,采用GPU加速压缩感知高速重建算法实现高分辨图像重建。The general-purpose computing GPU-accelerated compressed sensing high-speed reconstruction component is used for realizing high-resolution image reconstruction by using a GPU-accelerated compressed sensing high-speed reconstruction algorithm by utilizing low-resolution images, block random matrices and sparse bases.
作为上述系统的一种改进,所述空间光调制器采用数字微镜器件;所述会聚收光部件包括会聚透镜和光阑;其中,所述会聚透镜,用于将空间光调制器反射到光电阵列探测器;所述光阑,用于消除杂散光。As an improvement of the above system, the spatial light modulator adopts a digital micromirror device; the light-converging component includes a condensing lens and a diaphragm; wherein, the condensing lens is used to reflect the spatial light modulator to the photoelectric array Detector; the diaphragm for eliminating stray light.
本发明的实施例2提出了一种并行压缩感知GPU加速实时成像方法,基于上述系统系统实现,所述方法包括:
视场光阑和成像物镜镜头收集目标透射、反射或辐射出的光信号,成像到空间光调制器,空间光调制器在随机数发生器的控制下对目标图像信号进行分段并行随机调制,将不同位置的光反射到会聚收光部件,会聚收光部件将会聚收集到的光传输到光电阵列探测器;The field diaphragm and the imaging objective lens collect the light signal transmitted, reflected or radiated by the target, and image it to the spatial light modulator. The spatial light modulator performs segmental parallel random modulation on the target image signal under the control of the random number generator. Reflect the light at different positions to the condensing light-collecting part, and the condensing light-collecting part transmits the collected light to the photoelectric array detector;
信号同步控制模块通过信号同步控制光电阵列探测器、随机数发生器和数据采集缓存,进行光学并行互补压缩感知成像,完成并行互补测量,将低分辨率图像数据记录到数据采集缓存;The signal synchronization control module controls the photoelectric array detector, the random number generator and the data acquisition buffer through the signal synchronization, performs optical parallel complementary compressed sensing imaging, completes the parallel complementary measurement, and records the low-resolution image data to the data acquisition buffer;
数据采集缓存即时、持续地将低分辨率图像数据传输至数据共享服务部件,高分辨图像重建与显示部件持续不断地处理数据共享服务部件的低分辨率图像数据,调用通用计算GPU加速压缩感知高速重建部件快速重建出高分辨图像并实时显示。The data acquisition cache instantly and continuously transmits low-resolution image data to the data sharing service component, and the high-resolution image reconstruction and display component continuously processes the low-resolution image data of the data sharing service component, and invokes general-purpose computing GPU to accelerate compressed sensing high-speed The reconstruction component quickly reconstructs high-resolution images and displays them in real time.
作为上述方法的一种改进,所述光学并行互补压缩感知成像,完成并行互补测量,具体包括:As an improvement of the above method, the optical parallel complementary compressed sensing imaging, to complete the parallel complementary measurement, specifically includes:
将空间光调制器上N×N有效成像区域分成若干块,每个块的大小为C×C,并行成像到光电阵列探测器的N/C×N/C像素上,则光电阵列探测器上获取的对应第i个观察向量列Y(i)满足下式:The N×N effective imaging area on the spatial light modulator is divided into several blocks, the size of each block is C×C, and the image is parallelized on the N/C×N/C pixels of the photoelectric array detector, then the size of each block is C×C. The obtained corresponding i-th observation vector column Y (i) satisfies the following formula:
Y(i)=Φ(i)(x(i))+E(i) Y (i) = Φ (i) (x (i) )+E (i)
其中,X(i)为以列优先方式表示空间光调制器中的第i分块,Φ(i)为第i分块子场景图像的投影算子;Wherein, X (i) represents the i-th sub-block in the spatial light modulator in a column-first manner, and Φ (i) is the projection operator of the sub-scene image of the i-th sub-block;
设为由在空间光调制器上形成的目标场景组成块中的其中一块,并且设为分别显示在空间光调制器上的互补测量二值模式,为光电阵列探测器采集到的互补压缩测量,是互补压缩测量差分矢量,则在光电阵列探测器上获得的每个测量值如下所示:Assume is one of the blocks formed by the target scene formed on the spatial light modulator, and set are the complementary measured binary patterns displayed on the spatial light modulator, respectively, Complementary compression measurements acquired for the photoelectric array detector, is the complementary compressed measurement difference vector, then each measurement obtained on the photoelectric array detector is as follows:
其中,e1和e2表示互补压缩测量采集到的两次随机噪声;Among them, e 1 and e 2 represent two random noises collected by complementary compression measurement;
由下式得到互补矩阵的一次测量给出Δy为:One measurement of the complementary matrix gives Δy as:
其中,表示元素乘积。in, Represents the element-wise product.
作为上述方法的一种改进,所述高分辨图像重建与显示部件持续不断地处理数据共享服务部件的低分辨率图像数据;具体包括:As an improvement of the above method, the high-resolution image reconstruction and display component continuously processes the low-resolution image data of the data sharing service component; specifically, it includes:
高分辨图像重建与显示部件将数据共享服务部件的测量数据中的并行块按列优先顺序排列,每个块中的互补测量向量由分布在每个低分辨率图像相应位置的特定块的测量值组成,在子测量矩阵中,每个块的互补测量向量与每个掩模向量同步,重构每个原始图像块的压缩块观测值向量。The high-resolution image reconstruction and display component arranges the parallel blocks in the measurement data of the data sharing service component in column-major order, and the complementary measurement vector in each block consists of the measurement values of the specific block distributed in the corresponding position of each low-resolution image. composed, in the sub-measurement matrix, the complementary measurement vector of each block is synchronized with each mask vector, and the compressed block observation vector of each original image block is reconstructed.
作为上述方法的一种改进,所述快速重建出高分辨图像并实时显示,具体包括:As an improvement of the above method, the high-resolution image is rapidly reconstructed and displayed in real time, which specifically includes:
根据设定的压缩率、重建子块大小和测量次数,生成全采样测量矩阵,从中抽取生成亚采样测量矩阵,并转换为CUDA稀疏矩阵格式;According to the set compression ratio, reconstruction sub-block size and measurement times, generate a full sampling measurement matrix, extract from it to generate a sub-sampling measurement matrix, and convert it to CUDA sparse matrix format;
将多帧低分辨图像合并为一帧;通过差分计算得到互补测量值,将每一帧进行分块,并对每块按列向量重置;Combine multiple frames of low-resolution images into one frame; obtain complementary measurements through differential calculation, divide each frame into blocks, and reset each block by column vector;
根据CUDA稀疏矩阵格式和GPU核函数定义重建每块图像,并将多块拼接成一帧或多帧高分辨率图像并实时显示。Each image is reconstructed according to the CUDA sparse matrix format and GPU kernel function definition, and multiple blocks are stitched into one or more high-resolution images and displayed in real time.
与现有技术相比,本发明的优势在于:Compared with the prior art, the advantages of the present invention are:
1、本发明采用并行压缩感知理论,并行压缩感知采用算法分制思想(Divide andConquer)将完整信号的压缩感知测量与重建问题分解为多个独立的子信号压缩测量与重建问题,最后将重建得到的多个原始子信号合并得到原始信号,以此来降低测量矩阵构建复杂度、测量矩阵内存空间要求和重建算法复杂度,提高系统并行性;1. The present invention adopts the parallel compressed sensing theory, and the parallel compressed sensing adopts the idea of algorithm division (Divide and Conquer) to decompose the compressed sensing measurement and reconstruction problem of the complete signal into a plurality of independent sub-signal compression measurement and reconstruction problems, and finally the reconstruction is obtained. The original signal is obtained by combining multiple original sub-signals, so as to reduce the construction complexity of the measurement matrix, the memory space requirements of the measurement matrix and the complexity of the reconstruction algorithm, and improve the parallelism of the system;
2、本发明采用低分辨图像重建高分辨图像,解决现阶段高分辨率中红外探测器、单光子探测器、太赫兹探测器缺乏的问题;2. The present invention uses low-resolution images to reconstruct high-resolution images, and solves the problem of lack of high-resolution mid-infrared detectors, single-photon detectors, and terahertz detectors at this stage;
3、本发明采用二值随机调制,充分发挥空间光调制器的翻转频率,结合压缩感知理论的亚采样优势和并行压缩感知并行采样优势,提高采样速度;3. The present invention adopts binary random modulation, gives full play to the turnover frequency of the spatial light modulator, and improves the sampling speed by combining the sub-sampling advantage of the compressed sensing theory and the parallel sampling advantage of parallel compressed sensing;
4、本发明采用GPU加速压缩感知重建算法,结合合并块重建策略和帧拼接策略,提高重建速度;4. The present invention adopts the GPU-accelerated compressed sensing reconstruction algorithm, and combines the merged block reconstruction strategy and the frame splicing strategy to improve the reconstruction speed;
5、本发明采用光学单元、电学单元和GPU加速重建部件并行流水线方案,实现压缩感知实时采集、实时重建与显示。5. The present invention adopts the parallel pipeline scheme of the optical unit, the electrical unit and the GPU accelerated reconstruction component to realize the real-time acquisition, real-time reconstruction and display of compressed sensing.
附图说明Description of drawings
图1是本发明实施例1的并行压缩感知GPU加速成像系统的结构示意图;1 is a schematic structural diagram of a parallel compressed sensing GPU-accelerated imaging system according to
图2(a)是本发明实施例2的子测量信号和相应子测量矩阵进行合并的过程示意图;FIG. 2(a) is a schematic diagram of a process of combining sub-measurement signals and corresponding sub-measurement matrices according to
图2(b)是图2(a)对应子测量矩阵构建过程;Fig. 2(b) is the corresponding sub-measurement matrix construction process of Fig. 2(a);
图3是本发明实施例2的GPU加速并行重建过程示意图;3 is a schematic diagram of a GPU-accelerated parallel reconstruction process according to
图4是GPU重建算法与本发明的方法的处理时间对比图。FIG. 4 is a comparison diagram of processing time between the GPU reconstruction algorithm and the method of the present invention.
附图标记reference number
Ⅰ、光学单元 Ⅱ、电学单元Ⅰ. Optical unit Ⅱ. Electrical unit
Ⅲ、后端数据流水线处理单元Ⅲ. Back-end data pipeline processing unit
1、视场光阑和成像物镜镜头 2、空间光调制器1. Field diaphragm and imaging
3、会聚收光部件 4、光电阵列探测器3. Converging light-collecting components 4. Photoelectric array detector
5、随机数发生器 6、信号同步控制模块5.
7、数据采集缓存 8、数据共享服务部件7.
9、高分辨图像重建与显示部件9. High-resolution image reconstruction and display components
10、通用计算GPU加速压缩感知高速重建部件10. General computing GPU-accelerated compressed sensing high-speed reconstruction components
具体实施方式Detailed ways
本发明提供了一种并行压缩感知GPU加速实时成像系统与方法,The invention provides a parallel compressed sensing GPU accelerated real-time imaging system and method,
下面结合附图和实施例对本发明的技术方案进行详细的说明。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and embodiments.
实施例1Example 1
如图1所示,本发明的实施例1提供了一种并行压缩感知GPU加速实时成像系统。As shown in FIG. 1 ,
本发明的采用通用计算GPU重建算法加速的分块并行压缩感知成像系统利用了压缩感知(Compressed Sensing,CS)原理,所述的压缩感知原理是由Donoho、Tao和Candès等人提出的全新信号处理体制,以亚采样的测量数量并通过信号随机调制的采样方式实现信号的压缩式地采样,在接收端通过数学算法完美恢复出原始信号。并行压缩感知采用算法分制思想(Divide and Conquer)将完整信号的压缩感知测量与重建问题分解为多个独立的子信号压缩测量与重建问题,最后将重建得到的多个原始子信号合并得到原始信号,以此来降低测量矩阵构建复杂度、测量矩阵内存空间要求和重建算法复杂度,提高系统并行性。The block-parallel compressed sensing imaging system accelerated by the general computing GPU reconstruction algorithm of the present invention utilizes the compressed sensing (Compressed Sensing, CS) principle, which is a brand-new signal processing proposed by Donoho, Tao and Candès et al. The system realizes the compressed sampling of the signal with the sub-sampling measurement quantity and the sampling method of random modulation of the signal, and perfectly restores the original signal through a mathematical algorithm at the receiving end. Parallel compressive sensing uses the algorithm of division and system (Divide and Conquer) to decompose the compressive sensing measurement and reconstruction problem of the complete signal into multiple independent sub-signal compression measurement and reconstruction problems, and finally merge the reconstructed original sub-signals to obtain the original In order to reduce the complexity of measurement matrix construction, measurement matrix memory space requirements and reconstruction algorithm complexity, and improve the parallelism of the system.
完整的压缩感知测量数学模型可表示为并行压缩感知将进行信号向量分块。The complete mathematical model of compressed sensing measurement can be expressed as Parallel compressed sensing will do the signal vector Block.
其中,xi表示信号的第i个元素,(·)T是转置运算符。将该信号分为互不重叠的M段,即where x i represents the signal The ith element of , ( ) T is the transpose operator. The signal is divided into M segments that do not overlap each other, namely
其中,x[j]表示信号的第j个长度为lj的分段,则有 where x[j] represents the signal the j-th segment of length l j , then we have
并行待测信号测量矩阵以对角矩阵形式表达:The parallel test signal measurement matrix is expressed in the form of a diagonal matrix:
测量过程以矩阵形式表达为:The measurement process is expressed in matrix form as:
并行压缩感知成像过程可模型化为使用对角化测量矩阵的光信号并行测量和并行重建。其中,在并行压缩采样过程中,本发明采用互补压缩测量方法;在并行重建过程中,本发明将若干个子测量信号和相应子测量矩阵进行合并后重建采用GPU加速算法进行重建。并行测量、GPU加速并行重建和显示组成流水线。The parallel compressed sensing imaging process can be modeled as parallel measurement and parallel reconstruction of optical signals using a diagonalized measurement matrix. Among them, in the process of parallel compression and sampling, the present invention adopts the complementary compression measurement method; in the process of parallel reconstruction, the present invention combines several sub-measurement signals and corresponding sub-measurement matrices, and then uses GPU acceleration algorithm for reconstruction. Parallel measurement, GPU-accelerated parallel reconstruction, and display form a pipeline.
参考图1,本发明提供了一种并行压缩感知GPU加速实时成像系统与方法,包括光学单元I、电学单元II、后端数据流水线处理单元III;其中,光学单元I至少包括视场光阑和成像物镜镜头1、空间光调制器2、会聚收光部件3;电学单元II至少包括光电阵列探测器4、随机数发生器5、信号同步控制模块6、数据采集缓存部件7;后端数据流水线处理单元III包括数据共享服务部件8、高分辨图像重建与显示部件9、通用计算GPU加速压缩感知高速重建部件10;1, the present invention provides a parallel compressed sensing GPU accelerated real-time imaging system and method, including an optical unit I, an electrical unit II, and a back-end data pipeline processing unit III; wherein, the optical unit I at least includes a field diaphragm and a Imaging
在光学单元Ⅰ中,目标透射、反射或辐射出的光信号由所述视场光阑和成像物镜镜头1收集,成像到所述空间光调制器2上;所述空间光调制器2对目标图像信号进行分段并行随机调制,将不同位置的光反射到所述会聚收光部件3;所述会聚收集到的光传输到所述所述电学单元Ⅱ的光电阵列探测器4;In the optical unit I, the light signal transmitted, reflected or radiated by the target is collected by the field diaphragm and the
在电学单元Ⅱ中,所述低分辨率光电阵列探测器4并行地探测到所述会聚收光部件3收集的分段光信号,转化为电信号输出,记录低分辨图像到所述数据采集缓存部件7;所述随机数发生器5控制所述空间光调制器2对光信号进行分段并行随机调制;所述信号同步模块6对相机调制和采集记录进行控制协调,包括对光学单元和电学单元各部件的工作控制和同步脉冲出发信号,确保空间光调制器2和随机数发生器5之间的同步,控制协调着相机的所述光电阵列探测器4数据记录采集和所述随机数发生器5的随机数生成节拍;所述数据采集缓存部件7即时、持续地将输出的低分辨图像提供给所述后端数据流水线处理单元Ⅲ的数据共享服务部件8;In the electrical unit II, the low-resolution photoelectric array detector 4 detects the segmented optical signals collected by the converging light-receiving
在后端数据流水线处理单元Ⅲ中,所述高分辨图像重建与显示部件9持续不断地处理所述数据共享服务部件8的低分辨率图像数据,调用所述通用计算GPU加速压缩感知高速重建部件10快速重建出高分辨图像;所述通用计算GPU加速压缩感知高速重建部件10利用低分辨图像、分块随机矩阵、稀疏基采用GPU加速压缩感知高速重建算法实现高分辨图像重建;其中,所述数据采集缓存部件7、所述数据共享服务部件8、所述高分辨图像重建与显示部件9组成调制采集、压缩传输、高速重建的并行处理流水线。In the back-end data pipeline processing unit III, the high-resolution image reconstruction and
以上是对本发明的总体结构描述,下面对各部件具体实现进一步描述。The above is a description of the overall structure of the present invention, and the specific implementation of each component is further described below.
所述视场光阑和成像物镜镜头1收集目标透射、反射或辐射出的光信号;The field diaphragm and the
所述空间光调制器2含有许多独立单元,它们他们在空间上排列成一维或二维阵列,每个单元都可以独立地接收光学信号或电学信号的控制,并按此信号改变自身的光学性质,从而对照明在其上的光波进行调制。这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。由于它的这种性质,可作为实时光学信息处理、光计算和光学神经网络等系统中构造单元或关键的器件,可以分为透射式和反射式,其种类有许多种,主要有数字微镜器件(Digital Micro-mirror Device,DMD)、液晶光阀实现。在本实施例中,所述空间光调制器为数字微镜器件,其他实施例中,也可以是其它类型的空间光调制器。The spatial
本实施例中所采用的DMD是包含有大量安装在铰链上的微镜的阵列(主流的DMD由1024×768的阵列构成),每一镜片的尺寸为13.68μm×13.68μm,并可对每个像素上的光实现独立控制。通过对每一个镜片下的存储单元以二进制信号进行电子化寻址,便可让每个镜片在静电作用下向两侧翻转(本实施例中为+12°和-12°),把这两种状态记为1和0,分别对应“开”和“关”,当镜片不工作时,它们处于0°的“停泊”状态。The DMD used in this embodiment is an array containing a large number of micromirrors mounted on hinges (the mainstream DMD is composed of an array of 1024×768), and the size of each mirror is 13.68 μm×13.68 μm, and can be used for each mirror. The light on each pixel is independently controlled. By electronically addressing the memory cells under each mirror with binary signals, each mirror can be flipped to both sides (+12° and -12° in this embodiment) under the action of static electricity. These states are denoted as 1 and 0, corresponding to "on" and "off", respectively. When the lenses are not working, they are in a "parked" state of 0°.
所述会聚收光部件3包括会聚透镜和光阑。会聚透镜将空间光调制器2反射到光电阵列探测器;光阑用于消除杂散光。The condensing light-receiving
所述光电阵列探测器4采用低成本的常规阵列探测器,可根据波段响应范围调整,包括可见光波段和非可见光波段。本实施例中,光电阵列探测器采用工业相机CCD。本发明采用低分辨图像重建高分辨图像,解决现阶段高分辨率中红外探测器、单光子探测器、太赫兹探测器缺乏的问题。The photoelectric array detector 4 adopts a low-cost conventional array detector, which can be adjusted according to the response range of the wavelength band, including the visible light band and the non-visible light band. In this embodiment, the photoelectric array detector adopts an industrial camera CCD. The invention uses low-resolution images to reconstruct high-resolution images, and solves the problem of lack of high-resolution mid-infrared detectors, single-photon detectors, and terahertz detectors at the present stage.
所述随机数发生器5用于生成二值光信号随机分布的散斑。The random number generator 5 is used to generate randomly distributed speckles of the binary optical signal.
所述信号同步控制模块6确保空间光调制器2和随机数发生器5之间的同步,控制协调着相机的所述光电阵列探测器4数据记录采集和所述随机数发生器5的随机数生成节拍。The signal
所述数据共享服务部件8作为中的“产品”缓冲区同步量使得所述数据采集缓存部件7、高分辨图像重建与显示部件9异步运行形成“生产者-消费者”模式的并行流水线。The data sharing
所述高分辨图像重建与显示部件9通过函数调用所述通用计算GPU加速压缩感知高速重建部件10进行重建,且重建模块和显示模块以异步并行化方式执行。The high-resolution image reconstruction and
所述通用计算GPU加速压缩感知高速重建部件10所采用通用计算GPGPU下列任意形式:桌面显卡GPU、服务器GPU、数据中心GPU、移动设备搭载的GPU。所述通用计算GPU加速压缩感知高速重建部件10所使用的压缩感知算法采用TV算法、最小二乘法、匹配跟踪算法MP、正交匹配跟踪算法OMP、基跟踪算法BP、TwIST算法;稀疏基采用离散余弦变换基、小波基、傅里叶变换基、梯度基、gabor变换基中的任意一种;无需使用稀疏基时,直接对原始信号进行重建。The general computing GPU accelerated compressed sensing high-
实施例2Example 2
本发明的实施例2提供了一种并行压缩感知GPU加速实时成像方法,基于实施例1的系统进行,具体步骤如下:
步骤1)光信号获取的步骤:Step 1) The steps of optical signal acquisition:
目标透射、反射或辐射出的光信号由所述视场光阑和成像物镜镜头1收集,成像到所述空间光调制器2上;所述空间光调制器2对目标图像信号进行分段并行随机调制,将不同位置的光反射到所述会聚收光部件3;所述会聚收集到的光传输到所述所述电学单元Ⅱ的光电阵列探测器4;The light signal transmitted, reflected or radiated by the target is collected by the field diaphragm and the
步骤2)光学并行互补压缩感知成像的步骤Step 2) Steps of Optical Parallel Complementary Compressed Sensing Imaging
所述随机数发生器5控制所述空间光调制器2对光信号进行分段并行随机调制;所述信号同步模块6对相机调制和采集记录进行控制协调,包括对光学单元和电学单元各部件的工作控制和同步脉冲出发信号,确保空间光调制器2和随机数发生器5之间的同步,控制协调着相机的所述光电阵列探测器4数据记录采集和所述随机数发生器5的随机数生成节拍。具体并行方式如下。The random number generator 5 controls the spatial
空间光调制器2上N×N有效成像区域被分成若干块(每个块的大小为C×C),并行地成像到二维光电阵列探测器4的N/C×N/C像素上。光电阵列探测器4中的每个探测器相当于SPC(Single Pixel Camera)系统中的一个光电二极管,这样该模型表示为The N×N effective imaging area on the spatial
Y(i)=Φ(i)(X(i))+E(i) (5)Y (i) = Φ (i) (X (i) )+E (i) (5)
其中X(i)以列优先方式表示空间光调制器2中的第i分块,Y(i)表示在光电阵列探测器4上获取的对应第i个观察向量列,Φ(i)是空间光调制器2第i分块子场景图像的投影算子。where X (i) represents the i-th block in the spatial
设是由在空间光调制器2上形成的目标场景组成块中的其中一块,并且设是分别显示在空间光调制器2上的互补测量二值模式。为光电阵列探测器4采集到的互补压缩测量,是互补压缩测量差分矢量。在光电阵列探测器4上获得的每个测量值如下所示:Assume is one of the target scene constituent blocks formed on the spatial
最后,互补矩阵的一次测量给出为Finally, one measurement of the complementary matrix is given as
式中表示元素乘积。in the formula Represents the element-wise product.
在信号同步控制模块6通过信号同步控制光电探测阵列探测4、随机数发生器5和数据采集缓存部件7,参照上述步骤完成并行互补测量,并将互补测量向量和测量值记录到数据采集缓存部件7。In the signal
步骤3)子测量信号和相应子测量矩阵进行合并Step 3) The sub-measurement signal and the corresponding sub-measurement matrix are combined
图2为该过程的示意图,图2(a)描绘了4×4(4×4像素作为一个元素块)和2×2(8×8像素作为一个组合块)的多个块的压缩比的测量矩阵构造情况;图2(b)为对应子测量矩阵构建过程。Figure 2 is a schematic diagram of the process, and Figure 2(a) depicts the compression ratio of multiple blocks of 4x4 (4x4 pixels as an element block) and 2x2 (8x8 pixels as a combined block) The construction of the measurement matrix; Figure 2(b) shows the construction process of the corresponding sub-measurement matrix.
将空间光调制器2有效成像区域分为若干个大小相同的元素块B×B((C×C)为基本元素块,元素块的整数倍组成),每个元素块相当于一个光电阵列探测4的并行SPC重建块。其次,生成空间光调制器2上的每个光电阵列探测4并行SPC编码块掩模(C×C),并进行互补正负测量以提高CS成像质量。与测量矩阵相对应的单位测量向量以逐块和逐列的方式依次并行取自多个SPC块。最后,掩模向量化后合并到整个测量矩阵中。The effective imaging area of the spatial
在设计好的测量矩阵中,所有分块的观测值向量与每个掩模向量同步。首先,将观测结果中的并行块按列优先顺序排列。其次,每个块的观测值的列向量来自与测量序列对应的块的线性组合。即每个低分辨率图像由所有元素块的投影结果组成,而每个块中的观测向量由分布在每个低分辨率图像相应位置的特定块的观测值组成。Blocki是用于重构第i个原始图像块的第i个压缩块观测值向量,Mj表示第j个编码模式对应的第j个测量值。Blockiand Mj准确指示出第i个压缩分块和第j个测量观测值的对应关系,其中每一次行向量调制采样得到一张低分辨图像。In the designed measurement matrix, the observation vectors of all blocks are synchronized with each mask vector. First, the parallel blocks in the observations are arranged in column-major order. Second, the column vector of observations for each block is derived from a linear combination of the blocks corresponding to the measurement sequence. That is, each low-resolution image consists of the projection results of all element blocks, and the observation vector in each block consists of the observations of a specific block distributed at the corresponding position of each low-resolution image. Block i is the i-th compressed block observation value vector used to reconstruct the i-th original image block, and M j represents the j-th measurement value corresponding to the j-th encoding mode. Block i and M j accurately indicate the correspondence between the i-th compressed block and the j-th measurement observation, where A low-resolution image is obtained for each row vector modulation sample.
步骤4)GPU加速并行重建过程Step 4) GPU-accelerated parallel reconstruction process
图3为该过程的示意图,采用空间光调制器2。假设空间光调制器2有效成像区域有N×N个微镜的分辨率,并且对应的光电阵列探测器4有效成像区域具有个像素,使得每个像素对应空间光调制器2上C×C个微镜区域大小,则每个区域图像将从m(m≤C×C)次测量值中恢复。1)在GPU上准备分块测量矩阵。生成尺寸为的全采样分块投影矩阵和尺寸为的欠采样分块测量矩阵,并将其转换为CUDA稀疏矩阵格式。2)在GPU上准备分块观测值向量组。为了获得更高的重建效率,需要将相应的低分辨率观测值加载到主机中,并将多帧合并为一帧记为N×N,下一步是将观测值与正负互补测量图像进行差分,将每一帧分为块,并按列将每一帧置为列向量,大小为3)用GPU加速模块重建每个块,并将所有重建的高分辨率块拼接成一个或多个高分辨率的完整图像帧。FIG. 3 is a schematic diagram of the process, using the spatial
步骤5)低分辨图像采集、高分辨重建与显示的流水线过程Step 5) The pipeline process of low-resolution image acquisition, high-resolution reconstruction and display
在后端数据流水线处理单元Ⅲ中,所述高分辨图像重建与显示部件9持续不断地处理所述数据共享服务部件8的低分辨率图像数据,调用所述通用计算GPU加速压缩感知高速重建部件10快速重建出高分辨图像;所述通用计算GPU加速压缩感知高速重建部件10利用低分辨图像、分块随机矩阵、稀疏基采用GPU加速压缩感知高速重建算法实现高分辨图像重建;其中,所述数据采集缓存部件7、所述数据共享服务部件8、所述高分辨图像重建与显示部件9组成调制采集、压缩传输、高速重建的并行处理流水线。In the back-end data pipeline processing unit III, the high-resolution image reconstruction and
图4所示为采用本发明的方法与现有技术对于图像处理的时间对比图。FIG. 4 is a time comparison diagram of image processing using the method of the present invention and the prior art.
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the embodiments, those of ordinary skill in the art should understand that any modification or equivalent replacement of the technical solutions of the present invention will not depart from the spirit and scope of the technical solutions of the present invention, and should be included in the present invention. within the scope of the claims.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110512028.3A CN113365014B (en) | 2021-05-11 | 2021-05-11 | A parallel compressed sensing GPU accelerated real-time imaging system and method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110512028.3A CN113365014B (en) | 2021-05-11 | 2021-05-11 | A parallel compressed sensing GPU accelerated real-time imaging system and method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113365014A true CN113365014A (en) | 2021-09-07 |
| CN113365014B CN113365014B (en) | 2022-04-26 |
Family
ID=77526119
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110512028.3A Expired - Fee Related CN113365014B (en) | 2021-05-11 | 2021-05-11 | A parallel compressed sensing GPU accelerated real-time imaging system and method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113365014B (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113554574A (en) * | 2021-09-23 | 2021-10-26 | 苏州浪潮智能科技有限公司 | A compressed sensing image restoration method, device, equipment and medium |
| CN113992840A (en) * | 2021-09-15 | 2022-01-28 | 中国航天科工集团第二研究院 | Large-view-field high-resolution imaging method and device based on compressed sensing |
| CN114630128A (en) * | 2022-05-17 | 2022-06-14 | 苇创微电子(上海)有限公司 | A kind of image compression, decompression method and system based on row data block rearrangement |
| CN115439566A (en) * | 2022-08-23 | 2022-12-06 | 中国电子科技南湖研究院 | Compressed sensing system and method based on storage and calculation integrated architecture |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120038786A1 (en) * | 2010-08-11 | 2012-02-16 | Kelly Kevin F | Decreasing Image Acquisition Time for Compressive Imaging Devices |
| CN105182359A (en) * | 2015-07-31 | 2015-12-23 | 武汉大学 | Satellite-borne Lidar hyperchaotic compressed sensing high-spatial-resolution imaging method |
| CN105488767A (en) * | 2015-11-30 | 2016-04-13 | 盐城工学院 | Rapid reconstructing method of compressed sensing image based on least square optimization |
| US20180260649A1 (en) * | 2017-03-08 | 2018-09-13 | Raytheon Company | Multi-channel compressive sensing-based object recognition |
| CN108537804A (en) * | 2018-04-04 | 2018-09-14 | 中国科学院长春光学精密机械与物理研究所 | A kind of interesting target extracting method of parallelly compressed perception imaging system |
| CN108844899A (en) * | 2018-04-04 | 2018-11-20 | 中国科学院长春光学精密机械与物理研究所 | A kind of parallelly compressed perception imaging system |
| US20190150742A1 (en) * | 2015-08-31 | 2019-05-23 | The Board Of Trustees Of The Leland Stanford Junior University | Compressed Sensing High Resolution Functional Magnetic Resonance Imaging |
| US20200234406A1 (en) * | 2019-01-18 | 2020-07-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Lapran: a scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction |
| CN111524066A (en) * | 2020-01-13 | 2020-08-11 | 北京理工大学 | A high-speed compression imaging method based on sliding window data processing |
| CN111640063A (en) * | 2020-05-20 | 2020-09-08 | 中国科学院国家空间科学中心 | Compression imaging system and method based on space frequency domain multi-scale modulation and reconstruction |
| CN111833265A (en) * | 2020-06-15 | 2020-10-27 | 北京邮电大学 | A Ghost Imaging Image Restoration Scheme Based on Group Sparse Cyclic Modulation |
-
2021
- 2021-05-11 CN CN202110512028.3A patent/CN113365014B/en not_active Expired - Fee Related
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120038786A1 (en) * | 2010-08-11 | 2012-02-16 | Kelly Kevin F | Decreasing Image Acquisition Time for Compressive Imaging Devices |
| CN105182359A (en) * | 2015-07-31 | 2015-12-23 | 武汉大学 | Satellite-borne Lidar hyperchaotic compressed sensing high-spatial-resolution imaging method |
| US20190150742A1 (en) * | 2015-08-31 | 2019-05-23 | The Board Of Trustees Of The Leland Stanford Junior University | Compressed Sensing High Resolution Functional Magnetic Resonance Imaging |
| CN105488767A (en) * | 2015-11-30 | 2016-04-13 | 盐城工学院 | Rapid reconstructing method of compressed sensing image based on least square optimization |
| US20180260649A1 (en) * | 2017-03-08 | 2018-09-13 | Raytheon Company | Multi-channel compressive sensing-based object recognition |
| CN108537804A (en) * | 2018-04-04 | 2018-09-14 | 中国科学院长春光学精密机械与物理研究所 | A kind of interesting target extracting method of parallelly compressed perception imaging system |
| CN108844899A (en) * | 2018-04-04 | 2018-11-20 | 中国科学院长春光学精密机械与物理研究所 | A kind of parallelly compressed perception imaging system |
| US20200234406A1 (en) * | 2019-01-18 | 2020-07-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Lapran: a scalable laplacian pyramid reconstructive adversarial network for flexible compressive sensing reconstruction |
| CN111524066A (en) * | 2020-01-13 | 2020-08-11 | 北京理工大学 | A high-speed compression imaging method based on sliding window data processing |
| CN111640063A (en) * | 2020-05-20 | 2020-09-08 | 中国科学院国家空间科学中心 | Compression imaging system and method based on space frequency domain multi-scale modulation and reconstruction |
| CN111833265A (en) * | 2020-06-15 | 2020-10-27 | 北京邮电大学 | A Ghost Imaging Image Restoration Scheme Based on Group Sparse Cyclic Modulation |
Non-Patent Citations (6)
| Title |
|---|
| XUE-FENG LIU ET AL: "Complementary compressive imaging for the telescopic system", 《SCIENTIFIC REPORTS》 * |
| XUE-FENG LIU ET AL: "Three-dimensional single-pixel compressive reflectivity imaging based on complementary modulation", 《APPLIED OPTICS》 * |
| 何文杰: "压缩感知重构算法的并行化及GPU加速", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 * |
| 王兴达: "基于压缩感知理论的单光子成像软件系统的设计与实现", 《中国优秀硕士学位论文全文数据库 (基础科学辑)》 * |
| 王陈业: "基于分块观测的图像ROI增强压缩感知网络", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 * |
| 董蕾: "基于GPU的图像压缩感知算法并行化研究", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113992840A (en) * | 2021-09-15 | 2022-01-28 | 中国航天科工集团第二研究院 | Large-view-field high-resolution imaging method and device based on compressed sensing |
| CN113992840B (en) * | 2021-09-15 | 2023-06-23 | 中国航天科工集团第二研究院 | Large-view-field high-resolution imaging method and device based on compressed sensing |
| CN113554574A (en) * | 2021-09-23 | 2021-10-26 | 苏州浪潮智能科技有限公司 | A compressed sensing image restoration method, device, equipment and medium |
| CN114630128A (en) * | 2022-05-17 | 2022-06-14 | 苇创微电子(上海)有限公司 | A kind of image compression, decompression method and system based on row data block rearrangement |
| CN114630128B (en) * | 2022-05-17 | 2022-07-22 | 苇创微电子(上海)有限公司 | A kind of image compression, decompression method and system based on row data block rearrangement |
| CN115439566A (en) * | 2022-08-23 | 2022-12-06 | 中国电子科技南湖研究院 | Compressed sensing system and method based on storage and calculation integrated architecture |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113365014B (en) | 2022-04-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113365014B (en) | A parallel compressed sensing GPU accelerated real-time imaging system and method | |
| CN110545379B (en) | Parallel time-space domain combined compression imaging method and device adopting DMD | |
| CN103323396B (en) | A kind of two-dimensional compression ghost imaging system based on coincidence measurement and method | |
| CN100481937C (en) | Equipment for reconstructing high dynamic image in high resolution | |
| CN103308189B (en) | Entanglement imaging system and method based on dual-compression coincidence measurements | |
| CN105223582A (en) | A kind of laser infrared radar imaging device based on compressed sensing and formation method | |
| CN104121990A (en) | Random grating based compressed sensing broadband hyperspectral imaging system | |
| CN106483105A (en) | Declined visual system and image acquiring method based on the transmission of intensity correlation imaging | |
| WO2013003330A1 (en) | Modulated aperture imaging for automatic moving target detection | |
| CN114264370B (en) | Compressed sensing computed tomography spectrometer system and imaging method | |
| CN104992424A (en) | Single-pixel rapid active imaging system based on discrete cosine transform | |
| CN114565514A (en) | Image super-resolution method based on line scanning | |
| CN116609942B (en) | Sub-aperture compressed sensing polarization super-resolution imaging method | |
| CN112113661A (en) | Deep learning type snapshot spectrum imaging device and detection method thereof | |
| CN113790676A (en) | Three-dimensional space spectral imaging method and device based on coded aperture and light field distribution | |
| CN108881732A (en) | Single pixel camera high-quality video imaging system based on double Scale Matrixes algorithms | |
| Zhou et al. | Real-time physical compression computational ghost imaging based on array spatial light field modulation and deep learning | |
| CN114895449B (en) | Four-dimensional high-speed fluorescence microscopic imaging device based on compressed sensing | |
| Zhang et al. | Computational super-resolution imaging with a sparse rotational camera array | |
| CN107580164A (en) | The compressed sensing super-resolution imaging system and its imaging method of a kind of single measurement | |
| CN103986936A (en) | A video compression acquisition system and acquisition method thereof | |
| Quero et al. | Emerging vision technology: SPI camera an overview | |
| CN116148197B (en) | A non-repetitive spectrum high-speed measurement system and method based on spatio-temporal modulation | |
| CN111640063A (en) | Compression imaging system and method based on space frequency domain multi-scale modulation and reconstruction | |
| CN111915697B (en) | One-step harmonic single-pixel imaging method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220426 |