CN113362467B - Point cloud preprocessing and ShuffleNet-based mobile terminal three-dimensional pose estimation method - Google Patents
Point cloud preprocessing and ShuffleNet-based mobile terminal three-dimensional pose estimation method Download PDFInfo
- Publication number
- CN113362467B CN113362467B CN202110634620.0A CN202110634620A CN113362467B CN 113362467 B CN113362467 B CN 113362467B CN 202110634620 A CN202110634620 A CN 202110634620A CN 113362467 B CN113362467 B CN 113362467B
- Authority
- CN
- China
- Prior art keywords
- dimensional
- target
- pose
- mobile terminal
- key
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/005—General purpose rendering architectures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/20—Finite element generation, e.g. wire-frame surface description, tesselation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Image Analysis (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明公开了一种基于点云预处理和ShuffleNet的移动端三维位姿估计方法,首先在PC端进行预处理,将目标点云数据进行三维重建并导入三维渲染引擎;在三维引擎中采用旋转拍照算法得到目标在不同视角下的二维照片,通过本发明提出的关键体素块提取算法标注照片并建立训练数据集;采用具备轻量级高性能优势且适用于移动端计算的ShuffleNetv2‑YOLOv3训练目标关键体素块检测模型;从移动端摄像头读取视频流,通过ShuffleNetv2‑YOLOv3模型检测目标关键体素块,将关键体素块中心点对应的2D‑3D点对通过RANSAC和EPNP算法计算得到目标的相对位姿。最后利用移动端优势通过内置IMU和GPS提供的数据计算目标在实际三维世界中的位姿。
The invention discloses a mobile terminal three-dimensional pose estimation method based on point cloud preprocessing and ShuffleNet. First, preprocessing is performed on the PC terminal, and the target point cloud data is subjected to three-dimensional reconstruction and imported into a three-dimensional rendering engine; in the three-dimensional engine, rotation The camera algorithm obtains the two-dimensional photos of the target under different viewing angles, and the key voxel block extraction algorithm proposed by the present invention is used to mark the photos and establish a training data set; the ShuffleNetv2-YOLOv3 which has the advantages of light weight and high performance and is suitable for mobile terminal computing is adopted Train the key voxel block detection model of the target; read the video stream from the mobile camera, detect the key voxel block of the target through the ShuffleNetv2‑YOLOv3 model, and calculate the 2D‑3D point pair corresponding to the center point of the key voxel block through RANSAC and EPNP algorithms Get the relative pose of the target. Finally, using the advantages of the mobile terminal, the pose of the target in the actual 3D world is calculated through the data provided by the built-in IMU and GPS.
Description
技术领域technical field
本发明属于计算机技术领域,涉及一种基于点云预处理和ShuffleNet的移动端三维位姿估计方法,可以广泛应用于机器人抓取、车辆智能导航、增强现实和医学诊断等领域。The invention belongs to the field of computer technology, and relates to a mobile terminal three-dimensional pose estimation method based on point cloud preprocessing and ShuffleNet, which can be widely used in the fields of robot grasping, vehicle intelligent navigation, augmented reality, medical diagnosis and the like.
背景技术Background technique
三维位姿估计在机器人抓取、车辆智能导航、增强现实和医学诊断等领域中起着十分关键的作用。目前主流位姿估计方法分为两大类,一类是基于二维图像的识别方法,这种方法对输入的RGB或RGB-D图像预测物体的1个中心点和8个角点,然后通过PNP或EPNP算法得到物体的6D姿态。该类算法实时性较好但准确度较低。另一类则基于点云数据进行定位,这种方法首先使用深层网络在3D点云数据与2D图像之间建立对应关系,然后通过PNP或EPNP算法得到物体的6D姿态。由于使用了点云数据,因此精度比第一类更高,但比较而言速度更低。3D pose estimation plays a key role in the fields of robot grasping, vehicle intelligent navigation, augmented reality and medical diagnosis. At present, the mainstream pose estimation methods are divided into two categories. One is the recognition method based on two-dimensional images. This method predicts one center point and eight corner points of the object for the input RGB or RGB-D image, and then passes The PNP or EPNP algorithm obtains the 6D pose of the object. This type of algorithm has good real-time performance but low accuracy. The other is positioning based on point cloud data. This method first uses a deep network to establish a correspondence between 3D point cloud data and 2D images, and then obtains the 6D pose of the object through the PNP or EPNP algorithm. Due to the use of point cloud data, the accuracy is higher than the first class, but the speed is comparatively lower.
手机移动端具有普及率高携带方便的优点,但由于硬件配置远低于PC,采用常规算法识别速度难以满足要求。而配置需要外接的激光雷达和深度摄像头将削弱其便携优势,移动端只能采用RGB视频流识别方案,导致位姿分析的准确度不高。Mobile phones have the advantages of high penetration and portability, but because the hardware configuration is far lower than that of PCs, it is difficult to meet the requirements for recognition speed using conventional algorithms. The configuration requires an external lidar and depth camera, which will weaken its portability advantage. The mobile terminal can only use the RGB video stream recognition solution, resulting in low accuracy of pose analysis.
发明内容Contents of the invention
本发明主要针对移动端在辅助工业应用领域对目标位姿估计的需求,提供了一种基于点云预处理和ShuffleNet的移动端三维位姿估计方法。The present invention mainly aims at the demand of the mobile terminal for target pose estimation in the auxiliary industrial application field, and provides a mobile terminal three-dimensional pose estimation method based on point cloud preprocessing and ShuffleNet.
本发明所采用的设计方案是:一种基于点云预处理和ShuffleNet的移动端三维位姿估计方法,包括以下步骤:The design scheme adopted in the present invention is: a mobile terminal three-dimensional pose estimation method based on point cloud preprocessing and ShuffleNet, comprising the following steps:
步骤1:对激光扫描得到的目标点云数据进行三维重建;将三维重建获得的三维模型导入渲染引擎以供拍照;Step 1: Perform 3D reconstruction on the target point cloud data obtained by laser scanning; import the 3D model obtained from 3D reconstruction into the rendering engine for taking pictures;
步骤2:采用定位旋转拍照算法分别获取目标在不同视角下的二维照片及相机位姿;通过SIFT提取二维照片特征点并计算对应三维特征点,将目标模型划分为大小相等的体素块,根据三维特征点数量筛选目标关键体素块;生成关键体素块在照片集上的二维投影并建立训练数据集;通过ShuffleNetv2-YOLOv3轻量级网络训练针对目标的ShuffleNet特征检测模型;Step 2: Use the positioning and rotation camera algorithm to obtain the two-dimensional photos and camera poses of the target under different viewing angles; extract the feature points of the two-dimensional photos through SIFT and calculate the corresponding three-dimensional feature points, and divide the target model into voxel blocks of equal size , screen key voxel blocks of the target according to the number of three-dimensional feature points; generate two-dimensional projections of key voxel blocks on the photo set and establish a training data set; train the ShuffleNet feature detection model for the target through the ShuffleNetv2-YOLOv3 lightweight network;
步骤3:将视频流输入训练好的ShuffleNetv2-YOLOv3目标关键体素块的检测模型,识别关键体素块得到2D-3D匹配点对,结合RANSAC和EPNP算法计算目标相对位姿;Step 3: Input the video stream into the trained ShuffleNetv2-YOLOv3 target key voxel block detection model, identify the key voxel blocks to obtain 2D-3D matching point pairs, and calculate the relative pose of the target by combining RANSAC and EPNP algorithms;
步骤4:结合移动端GPS和IMU信息计算目标在三维世界中的绝对位姿。Step 4: Combining the mobile terminal GPS and IMU information to calculate the absolute pose of the target in the 3D world.
本发明结合两类三维位姿估计算法的优点,首先在PC端进行预处理。为目标点云数据通过Delaulay算法重建三维模型。本发明采用定位旋转拍照和关键体素块提取算法自动生成目标体素特征检测数据集,采用具备轻量级高性能优势适用于移动端计算的ShuffleNetv2-YOLOv3训练特征检测模型。The present invention combines the advantages of two types of three-dimensional pose estimation algorithms, and first performs preprocessing on the PC side. The 3D model is reconstructed for the target point cloud data through the Delaulay algorithm. The present invention adopts positioning, rotation, photographing and key voxel block extraction algorithms to automatically generate a target voxel feature detection data set, and adopts the ShuffleNetv2-YOLOv3 training feature detection model that has the advantage of light weight and high performance and is suitable for mobile computing.
本发明在识别阶段充分利用移动端硬件设备优势,引入GPS和IMU数据定位移动端位姿。通过训练好的ShuffleNetv2-YOLOv3模型检测目标关键体素块,再采用RANSAC和EPNP算法计算得到目标的与移动端摄像头间的相对位姿。最后计算出目标在三维世界的绝对位姿。在手机移动端普及率超90%的今日,本发明能在移动端提供不依赖于深度摄像头和激光设备,实时性和准确度达到工业辅助应用要求的位姿估计,具有便携实用易推广的优势。The present invention makes full use of the advantages of mobile terminal hardware equipment in the identification stage, and introduces GPS and IMU data to locate the pose of the mobile terminal. The key voxel blocks of the target are detected by the trained ShuffleNetv2-YOLOv3 model, and then the relative pose between the target and the mobile camera is calculated by using the RANSAC and EPNP algorithms. Finally, the absolute pose of the target in the 3D world is calculated. Today, when the penetration rate of mobile phones exceeds 90%, the present invention can provide pose estimation on mobile terminals that does not rely on depth cameras and laser equipment, and whose real-time and accuracy meet the requirements of industrial auxiliary applications. It has the advantages of being portable, practical and easy to promote .
附图说明Description of drawings
图1为本发明实施例的流程图。Fig. 1 is a flowchart of an embodiment of the present invention.
图2为本发明实施例的原理框图。Fig. 2 is a functional block diagram of an embodiment of the present invention.
具体实施方式Detailed ways
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。In order to facilitate those of ordinary skill in the art to understand and implement the present invention, the present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the implementation examples described here are only used to illustrate and explain the present invention, and are not intended to limit this invention.
请见图1和图2,本发明提供的一种基于点云预处理和ShuffleNet的移动端三维位姿估计方法,包括以下步骤:Please see Fig. 1 and Fig. 2, a kind of mobile terminal 3D pose estimation method based on point cloud preprocessing and ShuffleNet provided by the present invention, comprises the following steps:
步骤1:对激光扫描得到的目标点云数据进行三维重建;将三维重建获得的三维模型导入渲染引擎以供拍照;Step 1: Perform 3D reconstruction on the target point cloud data obtained by laser scanning; import the 3D model obtained from 3D reconstruction into the rendering engine for taking pictures;
本实施例的具体实现包括以下子步骤:The specific realization of this embodiment includes the following sub-steps:
步骤1.1:通过Delaulay算法对激光扫描得到目标点云数据进行三维重建,得到目标三维模型;Step 1.1: Perform 3D reconstruction on the target point cloud data obtained by laser scanning through the Delaulay algorithm to obtain the 3D model of the target;
步骤1.2:将目标三维模型导入渲染引擎,计算目标三维模型包围盒及中心点,移动目标三维模型使中心点至原点。Step 1.2: Import the target 3D model into the rendering engine, calculate the bounding box and center point of the target 3D model, and move the target 3D model to bring the center point to the origin.
步骤2:采用定位旋转拍照算法分别获取目标在不同视角下的二维照片及相机位姿;通过SIFT提取二维照片特征点并计算对应三维特征点,将目标模型划分为大小相等的体素块,根据三维特征点数量筛选目标关键体素块;生成关键体素块在照片集上的二维投影并建立训练数据集;通过ShuffleNetv2-YOLOv3轻量级网络训练针对目标的ShuffleNet特征检测模型;Step 2: Use the positioning and rotation camera algorithm to obtain the two-dimensional photos and camera poses of the target under different viewing angles; extract the feature points of the two-dimensional photos through SIFT and calculate the corresponding three-dimensional feature points, and divide the target model into voxel blocks of equal size , screen key voxel blocks of the target according to the number of three-dimensional feature points; generate two-dimensional projections of key voxel blocks on the photo set and establish a training data set; train the ShuffleNet feature detection model for the target through the ShuffleNetv2-YOLOv3 lightweight network;
本实施例的具体实现包括以下子步骤:The specific realization of this embodiment includes the following sub-steps:
步骤2.1:在三维引擎中对目标拍照得到目标照片;Step 2.1: Take pictures of the target in the 3D engine to obtain the target photo;
步骤2.2:通过SIFT算法检测目标照片中的二维特征点,得到特征点集K={k1,...,kn};Step 2.2: Detect the two-dimensional feature points in the target photo through the SIFT algorithm, and obtain the feature point set K={k 1 ,...,k n };
步骤2.3:通过屏幕射线投影算法计算每个特征点ki对应的三维坐标点pi,将二维特征点对应的三维特征点集记为P={p1,...,pn};Step 2.3: Calculate the three-dimensional coordinate point p i corresponding to each feature point k i through the screen ray projection algorithm, and record the three-dimensional feature point set corresponding to the two-dimensional feature point as P={p 1 ,...,p n };
步骤2.4:相机围绕目标旋转并继续为目标拍照,重复步骤2.2和步骤2.3直到得到目标的多视角照片并计算得到三维特征点集PS={P1,...,PN},其中,N为照片数量,P为每张照片的三维特征点集;Step 2.4: The camera rotates around the target and continues to take pictures of the target, repeat steps 2.2 and 2.3 until the multi-view photos of the target are obtained and the three-dimensional feature point set PS={P 1 ,...,P N } is calculated, where, N is the number of photos, and P is the three-dimensional feature point set of each photo;
步骤2.5:将目标三维体素(Volume Pixel)划分为M个相同体素大小的块B={b1,...,bM};将三维特征点出现在每个体素块中的频率设置为体素块权值q,筛选权值最大的m个块KB={b1,...,bm}作为关键体素块,其中m<M;Step 2.5: Divide the target 3D voxel (Volume Pixel) into M blocks of the same voxel size B={b 1 ,...,b M }; set the frequency of 3D feature points appearing in each voxel block is the voxel block weight q, select m blocks with the largest weight KB={b 1 ,...,b m } as key voxel blocks, where m<M;
步骤2.6:将关键体素块作为类别,根据投影变换公式计算其在二维照片集上的区域,生成标注信息,得到训练数据集;Step 2.6: Take the key voxel block as a category, calculate its area on the two-dimensional photo set according to the projection transformation formula, generate label information, and obtain a training data set;
步骤2.7:通过生成的数据集训练ShuffleNetv2-YOLOv3,得到针对目标关键体素块的检测模型。Step 2.7: Train ShuffleNetv2-YOLOv3 through the generated data set to obtain a detection model for key voxel blocks of the target.
步骤3:将视频流输入训练好的ShuffleNetv2-YOLOv3目标关键体素块的检测模型,识别关键体素块得到2D-3D匹配点对,结合EPNP算法计算目标相对位姿;Step 3: Input the video stream into the trained ShuffleNetv2-YOLOv3 target key voxel block detection model, identify the key voxel blocks to obtain 2D-3D matching point pairs, and calculate the relative pose of the target in combination with the EPNP algorithm;
本实施例的具体实现包括以下子步骤:The specific realization of this embodiment includes the following sub-steps:
步骤3.1:读取视频流,输入训练好的ShuffleNetv2-YOLOv3关键体素块的检测模型,输出为若干关键体素块对应的二维区域;Step 3.1: Read the video stream, input the trained ShuffleNetv2-YOLOv3 detection model of key voxel blocks, and output the two-dimensional areas corresponding to several key voxel blocks;
步骤3.2:计算检测到的二维区域中心点,和对应关键体素块中心点组成2D-3D匹配点对;Step 3.2: Calculate the center point of the detected two-dimensional area, and form a 2D-3D matching point pair with the center point of the corresponding key voxel block;
步骤3.3:通过RANSAC及EPNP算法计算目标与移动端摄像头间的相对位姿。Step 3.3: Calculate the relative pose between the target and the mobile camera through RANSAC and EPNP algorithms.
步骤4:通过移动端GPS和IMU信息计算移动端摄像头在三维世界中的位姿,结合目标与移动端摄像头间的相对位置计算得到目标在三维世界中的绝对位姿;Step 4: Calculate the pose of the mobile camera in the three-dimensional world through the mobile GPS and IMU information, and calculate the absolute pose of the target in the three-dimensional world by combining the relative position between the target and the mobile camera;
本实施例的具体实现包括以下子步骤:The specific realization of this embodiment includes the following sub-steps:
步骤4.1:读取移动端GPS和IMU数据;Step 4.1: Read mobile GPS and IMU data;
步骤4.2:通过步骤4.1获取的数据计算移动端在三维世界中的定位;Step 4.2: Calculate the positioning of the mobile terminal in the three-dimensional world through the data obtained in step 4.1;
步骤4.3:通过步骤4.2中计算的移动端位姿和步骤3中计算的目标相对位姿计算出目标在三维世界中的绝对位姿。Step 4.3: Calculate the absolute pose of the target in the three-dimensional world through the pose of the mobile terminal calculated in step 4.2 and the relative pose of the target calculated in step 3.
本发明实时位姿估计在移动端,从移动端摄像头读取视频流,使用ShuffleNet模型得到目标在RGB图像中的特征点,再通过RANSAC和EPNP算法得到相对位姿。本发明充分利用移动端优势,通过移动端GPS和IMU提供的定位信息,结合相对位姿计算目标在实际三维世界中的位姿。The real-time pose estimation of the present invention is performed on the mobile end, reads the video stream from the mobile end camera, uses the ShuffleNet model to obtain the feature points of the target in the RGB image, and then obtains the relative pose through the RANSAC and EPNP algorithms. The present invention makes full use of the advantages of the mobile terminal, and calculates the pose of the target in the actual three-dimensional world through the positioning information provided by the GPS and IMU of the mobile terminal, combined with the relative pose.
应当理解的是,本说明书未详细阐述的部分均属于现有技术。It should be understood that the parts not described in detail in this specification belong to the prior art.
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。It should be understood that the above-mentioned descriptions for the preferred embodiments are relatively detailed, and should not therefore be considered as limiting the scope of the patent protection of the present invention. Within the scope of protection, replacements or modifications can also be made, all of which fall within the protection scope of the present invention, and the scope of protection of the present invention should be based on the appended claims.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110634620.0A CN113362467B (en) | 2021-06-08 | 2021-06-08 | Point cloud preprocessing and ShuffleNet-based mobile terminal three-dimensional pose estimation method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202110634620.0A CN113362467B (en) | 2021-06-08 | 2021-06-08 | Point cloud preprocessing and ShuffleNet-based mobile terminal three-dimensional pose estimation method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN113362467A CN113362467A (en) | 2021-09-07 |
| CN113362467B true CN113362467B (en) | 2023-04-07 |
Family
ID=77532983
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202110634620.0A Active CN113362467B (en) | 2021-06-08 | 2021-06-08 | Point cloud preprocessing and ShuffleNet-based mobile terminal three-dimensional pose estimation method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN113362467B (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115222731B (en) * | 2022-09-07 | 2022-12-02 | 西南交通大学 | An abnormal detection method for train fasteners based on two-dimensional image to point cloud mapping |
| CN115578265B (en) * | 2022-12-06 | 2023-04-07 | 中汽智联技术有限公司 | Point cloud enhancement method, system and storage medium |
| CN116310120B (en) * | 2023-03-14 | 2024-12-03 | 网易(杭州)网络有限公司 | Multi-view 3D reconstruction method, device, equipment and storage medium |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3276575A1 (en) * | 2016-07-25 | 2018-01-31 | Nuctech Company Limited | Method, apparatus and system for reconstructing images of 3d surface |
| WO2018047687A1 (en) * | 2016-09-12 | 2018-03-15 | パナソニックIpマネジメント株式会社 | Three-dimensional model generating device and three-dimensional model generating method |
| WO2018148924A1 (en) * | 2017-02-17 | 2018-08-23 | 深圳市大疆创新科技有限公司 | Method and device for reconstructing three-dimensional point cloud |
| CN109961504A (en) * | 2017-12-25 | 2019-07-02 | 宏达国际电子股份有限公司 | Three-dimensional model reconstruction method, electronic device and non-transitory computer-readable recording medium |
| CN110517209A (en) * | 2018-05-21 | 2019-11-29 | 北京京东尚科信息技术有限公司 | Data processing method, device, system and computer readable storage medium |
| CN111814683A (en) * | 2020-07-09 | 2020-10-23 | 北京航空航天大学 | A Robust Visual SLAM Method Based on Semantic Priors and Deep Learning Features |
| CN111899301A (en) * | 2020-06-02 | 2020-11-06 | 广州中国科学院先进技术研究所 | Workpiece 6D pose estimation method based on deep learning |
| CN112489129A (en) * | 2020-12-18 | 2021-03-12 | 深圳市优必选科技股份有限公司 | Pose recognition model training method and device, pose recognition method and terminal equipment |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8023726B2 (en) * | 2006-11-10 | 2011-09-20 | University Of Maryland | Method and system for markerless motion capture using multiple cameras |
| US9488492B2 (en) * | 2014-03-18 | 2016-11-08 | Sri International | Real-time system for multi-modal 3D geospatial mapping, object recognition, scene annotation and analytics |
| US10528802B2 (en) * | 2018-01-09 | 2020-01-07 | Futurewei Technologies, Inc. | Head pose and distraction estimation |
| US12062249B2 (en) * | 2018-05-04 | 2024-08-13 | Northeastern University | System and method for generating image landmarks |
| CN109241990A (en) * | 2018-07-19 | 2019-01-18 | 杭州电子科技大学 | A kind of threedimensional model mask method propagated based on multi-tag |
| CN109387204B (en) * | 2018-09-26 | 2020-08-28 | 东北大学 | Synchronous positioning and composition method of mobile robot for indoor dynamic environment |
| JP7111671B2 (en) * | 2019-09-05 | 2022-08-02 | 株式会社東芝 | LEARNING APPARATUS, LEARNING SYSTEM AND LEARNING METHOD |
| US12223615B2 (en) * | 2020-06-30 | 2025-02-11 | Intel Corporation | Apparatus and method for approximate trilinear interpolation for scene reconstruction |
-
2021
- 2021-06-08 CN CN202110634620.0A patent/CN113362467B/en active Active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3276575A1 (en) * | 2016-07-25 | 2018-01-31 | Nuctech Company Limited | Method, apparatus and system for reconstructing images of 3d surface |
| WO2018047687A1 (en) * | 2016-09-12 | 2018-03-15 | パナソニックIpマネジメント株式会社 | Three-dimensional model generating device and three-dimensional model generating method |
| WO2018148924A1 (en) * | 2017-02-17 | 2018-08-23 | 深圳市大疆创新科技有限公司 | Method and device for reconstructing three-dimensional point cloud |
| CN109961504A (en) * | 2017-12-25 | 2019-07-02 | 宏达国际电子股份有限公司 | Three-dimensional model reconstruction method, electronic device and non-transitory computer-readable recording medium |
| CN110517209A (en) * | 2018-05-21 | 2019-11-29 | 北京京东尚科信息技术有限公司 | Data processing method, device, system and computer readable storage medium |
| CN111899301A (en) * | 2020-06-02 | 2020-11-06 | 广州中国科学院先进技术研究所 | Workpiece 6D pose estimation method based on deep learning |
| CN111814683A (en) * | 2020-07-09 | 2020-10-23 | 北京航空航天大学 | A Robust Visual SLAM Method Based on Semantic Priors and Deep Learning Features |
| CN112489129A (en) * | 2020-12-18 | 2021-03-12 | 深圳市优必选科技股份有限公司 | Pose recognition model training method and device, pose recognition method and terminal equipment |
Non-Patent Citations (3)
| Title |
|---|
| 2D3D-MatchNet: Learning to Match Keypoints Across 2D Image and 3D Point Cloud;Mengdan Feng 等;《2019 International Conference on Robotics and Automation (ICRA)》;20190812;第1-7页 * |
| 一种具有精确位姿的飞机CAD模型投影图像库设计方法;付泰等;《计算机科学》;20180615;257-259 * |
| 基于透视式增强现实的BIM建筑三维重建仿真;马小秋等;《计算机仿真》;20200315(第03期);234-238 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN113362467A (en) | 2021-09-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110568447B (en) | Visual positioning method, device and computer readable medium | |
| US10977818B2 (en) | Machine learning based model localization system | |
| CN113362467B (en) | Point cloud preprocessing and ShuffleNet-based mobile terminal three-dimensional pose estimation method | |
| CN109685913B (en) | Augmented Reality Realization Method Based on Computer Vision Positioning | |
| CN102959946B (en) | Techniques for augmenting image data based on related 3D point cloud data | |
| KR102097016B1 (en) | Apparatus and methdo for analayzing motion | |
| CN110866977B (en) | Augmented reality processing method and device, system, storage medium and electronic equipment | |
| CN108830894A (en) | Remote guide method, apparatus, terminal and storage medium based on augmented reality | |
| CN108288292A (en) | A kind of three-dimensional rebuilding method, device and equipment | |
| WO2018112788A1 (en) | Image processing method and device | |
| WO2021136386A1 (en) | Data processing method, terminal, and server | |
| TW201222288A (en) | Image retrieving system and method and computer program product thereof | |
| JP6293386B2 (en) | Data processing apparatus, data processing method, and data processing program | |
| TW201635242A (en) | Generation method, device and system for indoor two-dimension plan | |
| CN109934873B (en) | Method, device and equipment for acquiring marked image | |
| CN106780757A (en) | A way to augment reality | |
| US20240242318A1 (en) | Face deformation compensating method for face depth image, imaging device, and storage medium | |
| CN110310325B (en) | Virtual measurement method, electronic device and computer readable storage medium | |
| CN107203961B (en) | Expression migration method and electronic equipment | |
| CN114882106A (en) | Pose determination method and device, equipment and medium | |
| CN111914790B (en) | Real-time human rotation angle recognition method in different scenarios based on dual cameras | |
| Thangarajah et al. | Vision-based registration for augmented reality-a short survey | |
| CN115205325B (en) | Target tracking method and device | |
| CN111260544B (en) | Data processing method and device, electronic equipment and computer storage medium | |
| CN112395912B (en) | A face segmentation method, electronic device and computer-readable storage medium |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |